余岳溪,高正陽(yáng),季鵬,李方勇,楊維結(jié)
(1廣東電網(wǎng)有限責(zé)任公司電力科學(xué)研究院,廣東 廣州 510080;2華北電力大學(xué)能源動(dòng)力與機(jī)械工程學(xué)院,河北 保定 071003)
煤焦異相還原N2O的反應(yīng)機(jī)理
余岳溪1,高正陽(yáng)2,季鵬2,李方勇1,楊維結(jié)2
(1廣東電網(wǎng)有限責(zé)任公司電力科學(xué)研究院,廣東 廣州 510080;2華北電力大學(xué)能源動(dòng)力與機(jī)械工程學(xué)院,河北 保定 071003)
采用兩種不同的簡(jiǎn)化煤焦模型,利用量子化學(xué)密度泛函理論研究了煤焦異相還原N2O的反應(yīng)機(jī)理。通過(guò)計(jì)算反應(yīng)物、中間體以及過(guò)渡態(tài)的結(jié)構(gòu)和能量明確了反應(yīng)的過(guò)程,并通過(guò)熱力學(xué)分析和動(dòng)力學(xué)分析深入分析煤焦異相還原N2O的反應(yīng)機(jī)理。研究結(jié)果表明:?jiǎn)蝹€(gè)碳原子無(wú)法體現(xiàn)N2O分子在煤焦表面的吸附和脫附過(guò)程,不適于作為煤焦模型研究煤焦異相還原N2O的反應(yīng),六環(huán)苯環(huán)簇碳基模型可以成功地研究煤焦異相還原N2O的反應(yīng)。煤焦異相還原N2O的反應(yīng)共經(jīng)歷三個(gè)過(guò)渡態(tài)和兩個(gè)中間體將N2O還原成N2,N2O分子在煤焦表面的吸附反應(yīng)的活化能為51.01 kJ·mol?1,煤焦表面吸附N2O的過(guò)程容易進(jìn)行。煤焦異相還原N2O的反應(yīng)在所研究的溫度范圍(298.15~1500 K)內(nèi)為放熱反應(yīng),可以自發(fā)發(fā)生,反應(yīng)平衡常數(shù)大于105,可以完全進(jìn)行,認(rèn)為是單向反應(yīng)。煤焦異相還原 N2O的反應(yīng)在所研究的溫度范圍(298.15~1500 K)內(nèi)反應(yīng)速率較快,反應(yīng)活化能為 43.55 kJ·mol?1,Arrhenius表達(dá)式為1.24×1010exp(?5238.15/T)。
煤焦;異相還原;N2O;吸附;熱力學(xué);反應(yīng)動(dòng)力學(xué)
N2O是一種危害性極強(qiáng)的溫室氣體,可通過(guò)消耗平流層中的臭氧破壞臭氧層[1]。燃煤電站N2O排放主要來(lái)自循環(huán)流化床機(jī)組,燃煤循環(huán)流化床N2O的排放量為50~200 ml·m?3,最高可達(dá)400 ml·m?3[2-4]。
為控制循環(huán)流化床中N2O排放,國(guó)內(nèi)外學(xué)者對(duì)此進(jìn)行了大量的實(shí)驗(yàn)研究。侯海盟等[5]通過(guò)研究循環(huán)流化床污泥燃燒特性試驗(yàn)發(fā)現(xiàn),城市污泥同煤混燃有助于減少燃燒城市污泥的N2O排放。Shen等[6]研究了生物質(zhì)與煤粉摻燒條件下氮氧化物的排放特性,研究表明摻燒可以明顯降低N2O排放,且金屬氧化物對(duì)低N2O排放有益。Wang等[7]在富氧燃燒的實(shí)驗(yàn)中得出,煤焦對(duì)N2O的還原貢獻(xiàn)大于金屬氧化物。Li等[8]研究了運(yùn)行參數(shù)對(duì)N2O排放的影響,提高燃燒溫度和整體的氧氣濃度有助于降低 N2O排放。Noda等[9]采用同位素標(biāo)記手段研究了煤焦還原N2O生成N2的反應(yīng),研究發(fā)現(xiàn)還原反應(yīng)過(guò)程中焦炭表面的氮組分對(duì)還原 N2O作用不大,主要是N2O會(huì)進(jìn)攻碳基表面的自由位點(diǎn)進(jìn)而發(fā)生還原反應(yīng)。由各學(xué)者的研究結(jié)論可以總結(jié)出煤焦在還原N2O的過(guò)程中起到了重要作用,且溫度升高有助于該還原反應(yīng)的進(jìn)行。
目前對(duì)于煤焦異相還原 N2O的研究主要依靠實(shí)驗(yàn)手段,對(duì)于微觀機(jī)理的理論研究不夠,異相反應(yīng)過(guò)程中的反應(yīng)路徑和過(guò)渡態(tài)結(jié)構(gòu)仍不清楚,因此需要對(duì)煤焦異相還原N2O進(jìn)行理論研究,進(jìn)一步揭示反應(yīng)的微觀機(jī)理。量子化學(xué)方法是研究化學(xué)反應(yīng)微觀機(jī)理的有效手段,可計(jì)算反應(yīng)過(guò)渡態(tài)結(jié)構(gòu)分析反應(yīng)過(guò)程,被廣泛應(yīng)用于涉及碳基的微觀機(jī)理的研究[10-13]。因此,本文采用量子化學(xué)方法研究煤焦異相還原N2O的反應(yīng)過(guò)程,計(jì)算反應(yīng)過(guò)程過(guò)渡態(tài)明確反應(yīng)路徑,并進(jìn)行動(dòng)力學(xué)和熱力學(xué)分析,揭示煤焦異相還原N2O的反應(yīng)機(jī)理。
1.1 模型選擇
Zhou等[11]和王子劍等[14]分別以單個(gè)碳原子模型和苯環(huán)簇碳基模型研究了煤焦異相還原NO的反應(yīng)機(jī)理。屈文麒等[15]和高正陽(yáng)等[16]均采用六環(huán)扶手型苯環(huán)簇結(jié)構(gòu)模型分別研究了CO和CO2對(duì)碳基吸附汞的影響機(jī)理。為對(duì)比不同模型對(duì)反應(yīng)機(jī)理研究的影響,本文采用六環(huán)扶手型苯環(huán)簇結(jié)構(gòu)和單一碳原子兩種模型模擬煤焦表面。對(duì)于苯環(huán)簇結(jié)構(gòu),留出6個(gè)未飽和的碳原子模擬活性位,其他位置碳原子利用H原子封閉。具體模型結(jié)構(gòu)如圖1所示。
圖1 煤焦表面模型Fig.1 Model of char surface
1.2 理論方法
結(jié)構(gòu)優(yōu)化和頻率分析計(jì)算采用密度泛函理論中的B3PW91方法和6-31G(d)基組,該方法對(duì)于氣固非均相反應(yīng)的計(jì)算效果較好[17],能量計(jì)算中采用雙雜化泛函中的B2PLYP方法和def2tzvp全電子基組。能量計(jì)算中均考慮了零點(diǎn)能矯正,零點(diǎn)能矯正為經(jīng)過(guò)頻率矯正計(jì)算得到[18]。反應(yīng)中的過(guò)渡態(tài)結(jié)構(gòu)有且僅有一個(gè)虛頻,虛頻振動(dòng)方向指向反應(yīng)方向,并對(duì)過(guò)渡態(tài)結(jié)構(gòu)進(jìn)行路徑分析驗(yàn)證從而確保反應(yīng)過(guò)程的正確性。計(jì)算程序?yàn)镚aussian 09[19]。
經(jīng)典過(guò)渡態(tài)理論的反應(yīng)速率常數(shù)計(jì)算公式如下[20]
式中,Γ為量子隧道修正系數(shù);Eb為反應(yīng)勢(shì)壘,kJ·mol?1;R為氣體摩爾常數(shù),J·mol?1·K?1;T為溫度,K;kB為Boltzmann常數(shù),J·K?1;h為普朗克常數(shù),J·s;QTS、QA、QB依次為過(guò)渡態(tài)TS、反應(yīng)物A和反應(yīng)物B的配分函數(shù)。
式中,vm為反應(yīng)路徑振動(dòng)的頻率,cm?1;c為光速,m·s?1。
平衡常數(shù)計(jì)算公式如下[21]
式中,GA和GB分別為反應(yīng)物和產(chǎn)物的Gibbs自由能,kJ·K?1;K為平衡常數(shù)。
2.1 反應(yīng)過(guò)程
對(duì)于單個(gè)碳原子模型異相還原N2O的反應(yīng),經(jīng)歷1個(gè)過(guò)渡態(tài)和1個(gè)中間體最終生成產(chǎn)物N2和CO,反應(yīng)過(guò)程和能量變化如圖2所示。
圖2 反應(yīng)過(guò)程能量變化(單個(gè)碳原子模型)Fig.2 Geometrical structures and relative energies of stationary points(single carbon atom model)
對(duì)于六環(huán)苯環(huán)簇碳基模型異相還原 N2O的反應(yīng),經(jīng)歷3個(gè)過(guò)渡態(tài)和兩個(gè)中間體,還原N2O生成N2,反應(yīng)過(guò)程和能量變化如圖3所示,反應(yīng)中涉及到的各駐點(diǎn)結(jié)構(gòu)如圖4所示。首先N2O吸附在碳基表面,C(1)—O距離縮短,由2.357 ?(TS1)(1 ?=0.1 nm, 后同)變?yōu)?.330 ?(IM1);C(2)—N距離縮短,由2.279 ?(TS1)變?yōu)?.379 ?(IM1);在吸附過(guò)程中碳基表面使得N2O活化,N2O中的N═N鍵有所拉長(zhǎng),由1.209 ?(TS1)變?yōu)?.247 ?(IM1)。隨后N2O在碳基表面發(fā)生還原反應(yīng),N—O鍵拉長(zhǎng),由1.497 ?(IM1)變?yōu)?.063 ?(TS2)再變到3.200 ?(IM2)。最后N2脫離碳基表面,C(2)—N鍵長(zhǎng)拉長(zhǎng),由1.324 ?(IM2) 變?yōu)?.408 ?(TS3),實(shí)現(xiàn)N2在碳基表面的脫附。
圖3 反應(yīng)過(guò)程能量變化(六環(huán)苯環(huán)簇碳基模型)Fig.3 Geometrical structures and relative energies of stationary points(six rings carbonaceous cluster model)
圖4 各駐點(diǎn)結(jié)構(gòu)Fig.4 Geometrical structures of stationary points
對(duì)比兩種模型下的反應(yīng)機(jī)理,單個(gè)碳原子模型下的反應(yīng)勢(shì)壘為298.8 kJ·mol?1,六環(huán)扶手型苯環(huán)簇碳基模型下的反應(yīng)勢(shì)壘為151.9 kJ·mol?1,不同模型下的反應(yīng)過(guò)程和勢(shì)壘均差異顯著,不同模型對(duì)結(jié)果影響較大,單個(gè)碳原子無(wú)法體現(xiàn)N2O氣體分子在煤焦表面的吸附和脫吸附過(guò)程,相比真實(shí)情況相差較多,因此本文對(duì)六環(huán)扶手型苯環(huán)簇碳基模型下的反應(yīng)過(guò)程進(jìn)行深入的研究分析,進(jìn)而深刻地解釋煤焦異相還原N2O的反應(yīng)機(jī)理。
2.2 熱力學(xué)分析
對(duì)于可逆反應(yīng)來(lái)說(shuō),進(jìn)行熱力學(xué)分析可以得到反應(yīng)性質(zhì)和反應(yīng)平衡常數(shù),有助于全面理解化學(xué)反應(yīng)。循環(huán)流化床的爐內(nèi)溫度在950~1250 K之間[6],因此本文在298.15~1500 K變化范圍計(jì)算并分析異相還原反應(yīng)的熱力學(xué)參數(shù),如表1所示。
表1 不同溫度下的熱力學(xué)參數(shù)Table 1 Thermodynamic parameters at different temperatures
分析表 1中數(shù)據(jù)可得,不同溫度下反應(yīng)的ΔH<0,說(shuō)明反應(yīng)在研究溫度范圍內(nèi)均為放熱反應(yīng);隨溫度升高,ΔH的絕度值有所減小,說(shuō)明隨溫度升高反應(yīng)的放熱量略有減少。不同溫度下 ΔG<0,說(shuō)明反應(yīng)在研究范圍內(nèi)均可以自發(fā)發(fā)生;隨溫度升高,ΔG的絕對(duì)值有所減小,說(shuō)明隨溫度升高反應(yīng)的自發(fā)性略有減少。
平衡常數(shù)可以衡量平衡狀態(tài)下反應(yīng)進(jìn)行的程度,是分析可逆化學(xué)反應(yīng)的重要參數(shù)。根據(jù)表1中數(shù)據(jù)和平衡常數(shù)計(jì)算公式,計(jì)算不同溫度下的平衡常數(shù),如圖5所示。
分析圖5曲線可得,平衡常數(shù)在298.15~1500 K范圍內(nèi)始終大于 105,說(shuō)明反應(yīng)基本可以完全進(jìn)行,可以認(rèn)為是單向反應(yīng)[19]。煤焦異相還原N2O的反應(yīng)從熱力學(xué)的角度上不但可以自發(fā)進(jìn)行,而且在實(shí)際循環(huán)流化床運(yùn)行溫度范圍內(nèi)可以完全進(jìn)行,可看作單向反應(yīng)。
圖5 不同溫度下的平衡常數(shù)Fig.5 Equilibrium constants at different temperatures
2.3 動(dòng)力學(xué)分析
根據(jù)經(jīng)典過(guò)渡態(tài)理論計(jì)算煤焦異相還原 N2O反應(yīng)不同溫度下的反應(yīng)速率常數(shù),如圖6所示。
由圖6曲線可得,各步反應(yīng)的化學(xué)反應(yīng)速率常數(shù)隨溫度升高而增大,但各步反應(yīng)隨溫度升高的增長(zhǎng)快慢不同。N2O在煤焦表面的吸附過(guò)程(R→IM1)在研究溫度范圍內(nèi)反應(yīng)速率常數(shù)隨溫度變化明顯且始終較大,該步的反應(yīng)勢(shì)壘為33.2 kJ·mol?1,說(shuō)明N2O在煤焦表面的吸附反應(yīng)容易發(fā)生且速率較快。
根據(jù)穩(wěn)態(tài)近似理論,假設(shè)反應(yīng)過(guò)程中的中間體處于穩(wěn)態(tài)[20],計(jì)算煤焦還原N2O總體反應(yīng)的反應(yīng)速率常數(shù),計(jì)算公式如下
圖6 不同溫度下的反應(yīng)速率常數(shù)Fig.6 Reaction rate constants at different temperatures
根據(jù)總體反應(yīng)速率公式繪制不同溫度下總體反應(yīng)速率常數(shù),如圖7所示。由圖7曲線可得,總體反應(yīng)速率常數(shù)隨溫度升高而增大,這同各實(shí)驗(yàn)結(jié)論一致[5-9],且在研究溫度范圍內(nèi)始終保持較大的數(shù)值,說(shuō)明煤焦異相還原N2O的反應(yīng)速率較快。
圖7 不同溫度下的總體反應(yīng)速率常數(shù)Fig.7 Overall reaction rate constants at different temperatures
對(duì)圖6和圖7中反應(yīng)速率曲線進(jìn)行擬合,得到各步反應(yīng)和總體反應(yīng)的 Arrhenius方程和動(dòng)力學(xué)參數(shù),如表 2所示??傮w反應(yīng)的活化能為 43.55 kJ·mol?1,數(shù)值較小,反應(yīng)容易發(fā)生。
表2 各步反應(yīng)動(dòng)力學(xué)參數(shù)Table 2 Kinetic parameters for reaction steps
(1)不同模型下煤焦還原N2O反應(yīng)的勢(shì)壘差異顯著,單個(gè)碳原子無(wú)法體現(xiàn)N2O分子在煤焦表面的吸附和脫附過(guò)程,不適于作為煤焦模型研究煤焦異相還原N2O的反應(yīng),六環(huán)苯環(huán)簇碳基模型可以成功地研究煤焦異相還原N2O的反應(yīng)。
(2)煤焦異相還原N2O的反應(yīng)共經(jīng)歷3個(gè)過(guò)渡態(tài)和兩個(gè)中間體將N2O還原成N2,N2O分子在煤焦表面的吸附反應(yīng)的活化能為51.01 kJ·mol?1,說(shuō)明煤焦表面吸附N2O過(guò)程容易進(jìn)行。
(3)熱力學(xué)分析表明,煤焦異相還原N2O的反應(yīng)在所研究的溫度范圍內(nèi)均為放熱反應(yīng),可以自發(fā)發(fā)生,反應(yīng)平衡常數(shù)大于 105,可以完全進(jìn)行,認(rèn)為是單向反應(yīng)。
(4)動(dòng)力學(xué)分析表明,煤焦異相還原N2O的反應(yīng)在所研究的溫度范圍內(nèi)反應(yīng)速率較快,反應(yīng)活化能為 43.55 kJ·mol?1,Arrhenius表達(dá)式為 1.24× 1010exp(?5238.15/T)。
[1]謝建軍, 楊學(xué)民, 張磊, 等. 循環(huán)流化床燃煤過(guò)程N(yùn)O、N2O和SO2的排放行為研究[J]. 燃料化學(xué)學(xué)報(bào), 2006, 34(2): 151-159. XIE J J, YANG X M, ZHANG L, et al. Behavior of NO, N2O and SO2emissions during coal combustion in a circulating fluidized bed combustor[J]. Journal of Fuel Chemistry and Technology, 2006, 34(2): 151-159.
[2]吳曉蔚, 朱法華, 楊金田, 等. 火力發(fā)電行業(yè)溫室氣體排放因子測(cè)算[J]. 環(huán)境科學(xué)研究, 2010, 23(2): 170-176. WU X W, ZHU F H, YANG J T, et al. Measurements of emission factors of greenhouse gas(CO2, N2O) from thermal power plants in China[J]. Research of Environmental Sciences, 2010, 23(2): 170-176.
[3]DE LAS OBRAS-LOSCERTALES M, MENDIARA T, RUFAS A, et al. NO and N2O emissions in oxy-fuel combustion of coal in a bubbling fluidized bed combustor[J]. Fuel, 2015, 150: 146-153.
[4]沈來(lái)宏, 鈴木善三. 流化床燃燒石油焦 N2O排放特性[J]. 化工學(xué)報(bào), 2000, 51(5): 649-653. SHEN L H, YOSHIZO S. N2O formation and reduction in fluidized bed combustion of petroleum coke[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(5): 649-653.
[5]侯海盟, 李詩(shī)媛, 呂清剛, 等. 城市干化污泥循環(huán)流化床燃燒過(guò)程中 NO和 N2O的排放特性[J]. 工程熱物理學(xué)報(bào), 2012, 33(12): 2197-2201. HOU H M, LI S Y, Lü Q G, et al. Emission characteristics of NO and N2O during dried sewage sludge combustion in circulating fluidized bed[J]. Journal of Engineering Thermophysics, 2012, 33(12): 2197-2201.
[6]SHEN B X, MI T, LIU D C, et al. N2O emission under fluidized bed combustion condition[J]. Fuel Processing Technology, 2003, 84(1): 13-21.
[7]WANG C, DU Y, CHE D. Study on N2O reduction with synthetic coal char and high concentration CO during oxy-fuel combustion[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2323-2330.
[8]LI S, XU M, JIA L, et al. Influence of operating parameters on N2O emission in O2/CO2combustion with high oxygen concentration in circulating fluidized bed[J]. Applied Energy, 2016, 173: 197-209.
[9]NODA K, CHAMBRION P, KYOTANI T, et al. A study of the N2formation mechanism in carbon-N2O reaction by using isotope gases[J]. Energy & Fuels, 1999, 13(4): 941-946.
[10]信晶, 孫保民, 朱恒毅, 等. 煤焦邊緣模型異相還原NO的Mayer鍵級(jí)變化分析[J]. 煤炭學(xué)報(bào), 2014, 39(4): 771-775.XIN J, SUN B M, ZHU H Y, et al. Variation analysis of Mayer bond order during the heterogeneous reduction reaction between NO and char edge models[J]. Journal of China Coal Society, 2014, 39(4): 771-775.
[11]ZHOU Z, ZHANG X, ZHOU J, et al. A molecular modeling study of N2desorption from NO heterogeneous reduction on char[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(2): 158-166.
[12]朱恒毅, 孫保民, 信晶, 等. 富氧燃燒環(huán)境下CO對(duì)煤焦異相還原NO的量子化學(xué)研究[J]. 煤炭學(xué)報(bào), 2015, 40(7): 1641-1647. ZHU H Y, SUN B M, XIN J, et al. Quantum chemistry research on NO heterogeneous reduction by char with the participation of CO under oxy-fuel combustion atmosphere[J]. Journal of China Coal Society, 2015, 40(7): 1641-1647.
[13]ZHANG H, LIU J, WANG X, et al. Density functional theory study on two different oxygen enhancement mechanisms during NO-char interaction[J]. Combustion and Flame, 2016, 169: 11-18.
[14]王子劍, 劉豪, 趙然, 等. 高濃度CO2氣氛下煤焦異相還原NO的量子化學(xué)研究[J]. 燃燒科學(xué)與技術(shù), 2012, 18(1): 79-84. WANG Z J, LIU H, ZHAO R, et al. Quantum chemistry research on NO heterogeneous reduction by char under high CO2concentration atmosphere[J]. Journal of Combustion Science and Technology, 2012, 18(1): 79-84.
[15]屈文麒, 劉晶, 沈鋒華, 等. CO對(duì)碳基吸附汞的影響機(jī)理研究[J].工程熱物理學(xué)報(bào), 2013, 34(3): 550-553. QU W Q, LIU J, SHEN F H, et al. Effect of carbon monoxide on mercury adsorption on carbonaceous materials[J]. Journal of Engineering Thermophysics, 2013, 34(3): 550-553.
[16]高正陽(yáng), 呂少昆. 煙氣中 CO2對(duì)碳基吸附鉛的影響機(jī)理[J]. 動(dòng)力工程學(xué)報(bào), 2015, 35(10): 840-845. GAO Z Y, Lü S K. Effect of carbon dioxide in flue gas on lead adsorption over carbonaceous surface[J]. Journal of Chinese Society of Power Engineering, 2015, 35(10): 840-845.
[17]LIU J, CHENEY M A, WU F, et al. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces[J]. Journal of Hazardous Materials, 2011, 186(1): 108-113.
[18]GAO Z Y, LV S K, YANG W J, et al. Quantum chemistry investigation on the reaction mechanism of the elemental mercury, chlorine, bromine and ozone system[J]. Journal of Molecular Modeling, 2015, 21(6): 1-9.
[19]FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, revision D. 01[CP]. Wallingford, CT: Gaussian Inc., 2013.
[20]ZHANG H, LIU J, SHEN J, et al. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char (N)(char bound nitrogen) in coal combustion[J]. Energy, 2015, 82: 312-321.
[21]ALI M A, RAJAKUMAR B. Thermodynamic and kinetic studies of hydroxyl radical reaction with bromine oxide using density functional theory[J]. Computational & Theoretical Chemistry, 2011, 964: 283-290.
Heterogeneous reduction reaction of N2O by char
YU Yuexi1, GAO Zhengyang2, JI Peng2, LI Fangyong1, YANG Weijie2
(1Electric Power Science Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, Guangdong, China;2School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China)
Two different simplified models of coal char were applied to investigate heterogeneous reduction mechanism of N2O by char through density functional theory in quantum chemistry method. Structure and energy of reactants, intermediates and transition states were calculated so as to determine reaction process, and thermodynamic and kinetic analysis were conducted to reveal heterogeneous reaction mechanism. The results showed that the single carbon atom was not suitable as the model of heterogeneous reaction mechanism of N2O by char due to it cannot reflect the adsorption and desorption of N2O molecule in char surface. While the heterogeneous reaction mechanism of N2O by char can be well studied by six rings carbonaceous cluster model. Through three transition states and two intermediates, N2O was reduced to N2, and energy barrier of N2O adsorption on char surface was 51.01 kJ·mol?1, indicating that adsorption process was easy to happen. In addition, the heterogeneous reduction of N2O by char was exothermic and spontaneous reaction at temperature range of 298.15—1500 K, and reaction can take place in one direction owing to reaction equilibrium constant of greater than 105. Furthermore, the reaction was fast at temperature range of 298.15—1500 K, and reaction activationenergy was 43.55 kJ·mol?1with Arrhenius expression of 1.24×1010exp(?5238.15/T).
char; heterogeneous reduction; N2O; adsorption; thermodynamics; reaction kinetic
YANG Weijie, 18331121421@163.com
TQ 534
:A
:0438—1157(2017)01—0369—06
10.11949/j.issn.0438-1157.20160815
2016-06-14收到初稿,2016-09-27收到修改稿。
聯(lián)系人:楊維結(jié)。
:余岳溪(1976—),男,碩士,高級(jí)工程師。
南方電網(wǎng)科研項(xiàng)目(K-GD2014-173)。
Received date: 2016-06-14.
Foundation item: supported by the Research Project of Southern Power Grid (K-GD2014-173).