蔣曉威綜述,喬樹賓審校
綜述
心臟淋巴系統(tǒng)及研究進(jìn)展
蔣曉威綜述,喬樹賓審校
人體淋巴系統(tǒng)在維持組織液體平衡、免疫監(jiān)測(cè)及大分子物質(zhì)回流等方面起著非常重要的作用。本文將在既往心臟淋巴管研究的基礎(chǔ)上,結(jié)合目前研究心臟淋巴管的新技術(shù)新發(fā)現(xiàn),分為心臟淋巴系統(tǒng)解剖及功能與心臟疾病關(guān)系兩部分展開綜述。
綜述;心臟淋巴系統(tǒng);心肌梗死
關(guān)于心臟淋巴系統(tǒng)的相關(guān)研究較少,隨著現(xiàn)在科學(xué)技術(shù)的發(fā)展,越來(lái)越多的新技術(shù)揭示心臟淋巴管在心臟疾病的病理生理過(guò)程中有著非常重要作用。本文將系統(tǒng)總結(jié)相關(guān)方面進(jìn)展,為進(jìn)一步研究提供理論基礎(chǔ)。
心臟淋巴管主干與冠狀動(dòng)脈主干伴行,淋巴管內(nèi)皮細(xì)胞起源于胚胎時(shí)期淋巴管內(nèi)皮透明質(zhì)酸受體-1(Lyve-1)陽(yáng)性細(xì)胞[1],分化成熟形成淋巴管分布于心臟心內(nèi)膜下、心肌層及心外膜下。心室心尖部是心臟淋巴系統(tǒng)的起源點(diǎn),淋巴管始于心臟內(nèi)膜下,穿過(guò)心臟肌層于心外膜下匯合成淋巴集合干,與冠狀動(dòng)脈相伴移行,分為右支與左支,心臟左冠狀集合干收集前室間干、頓緣干分布區(qū)域的心肌淋巴液,右冠狀集合干收集心臟右側(cè)淋巴液,根據(jù)左右優(yōu)勢(shì)冠狀動(dòng)脈不同,后室間干匯入左右冠狀集合干,左冠狀集合干上升至肺動(dòng)脈主干后面,最終匯入右靜脈角,右冠狀集合干經(jīng)過(guò)主動(dòng)脈前面最終匯入左側(cè)靜脈角[2]。淋巴管有類似于血管系統(tǒng)的瓣膜,主要存在于淋巴集合干,保證淋巴液?jiǎn)蜗蛄鲃?dòng),瓣膜的形成與Prox-1(看家基因prospero簡(jiǎn)稱)密切相關(guān)[3]。正常心臟心肌病理切片上淋巴管數(shù)量明顯少于毛細(xì)血管,淋巴管與心肌細(xì)胞的比值為1:10,遠(yuǎn)小于毛細(xì)血管與心肌細(xì)胞的比值1:1[4];并且淋巴管上無(wú)自主神經(jīng)支配[5],其功能主要受局部代謝產(chǎn)物的調(diào)節(jié)。淋巴管內(nèi)皮細(xì)胞相互之間非緊密連接,但是淋巴內(nèi)皮細(xì)胞與心肌組織連接緊密[5],保證了最大效率的引流心肌間質(zhì)代謝產(chǎn)物及炎癥免疫刺激因子。
心臟淋巴管流體動(dòng)力學(xué):心臟淋巴液呈離心方向流動(dòng),心臟收縮與舒張運(yùn)動(dòng)提供淋巴液流動(dòng)的“泵”功能,引流至心外膜淋巴管,主要經(jīng)過(guò)主動(dòng)脈旁淋巴結(jié)和氣管旁淋巴結(jié)至胸導(dǎo)管[6]。心臟淋巴系統(tǒng)轉(zhuǎn)運(yùn)功能狀態(tài)與淋巴管直徑(>5 μm)的相關(guān)性明顯強(qiáng)于毛細(xì)淋巴管密度[4],這種直徑>5 μm的淋巴管,其開口通常為圓形或橢圓形,有較強(qiáng)的引流淋巴液的功能。心臟淋巴系統(tǒng)的第二個(gè)“泵”是淋巴管規(guī)律收縮,刺激淋巴管規(guī)律收縮的因子包括低氧分壓、內(nèi)源性一氧化氮及激活三磷酸腺苷(ATP)敏感鉀通道物質(zhì)。心臟淋巴系統(tǒng)維持心臟液體平衡,將細(xì)胞間質(zhì)中的大分子物質(zhì),如蛋白質(zhì)、炎癥免疫因子等物質(zhì)重新回到血液循環(huán)中[7],如果有心臟淋巴功能不全持續(xù)的炎癥因子刺激成纖維母細(xì)胞方面膠原,過(guò)多膠原沉積導(dǎo)致心臟纖維化,最終將進(jìn)展到心功能不全[8]。
目前檢測(cè)淋巴管的方法包括分子免疫組化、淋巴管造影技術(shù)。微淋巴管使用免疫組化技術(shù)標(biāo)記,常用的標(biāo)記物包括:Prox-1、血管內(nèi)皮生長(zhǎng)因子受體(VEGFR)-3、淋巴管內(nèi)皮透明質(zhì)酸受體(lymphatic vessel endothelial hyaluronan receptor,Lyve-1)、腎小球足突細(xì)胞膜黏蛋白(podoplanin)、VEGFR-3、叉頭框C2(FOXC2)、趨化因子( CCL)21等[9-11];心臟淋巴管位置不一樣,所表達(dá)標(biāo)記物有區(qū)別:心外膜下淋巴管免疫組化Lyve-1/VEGFR-3/podoplanin陽(yáng)性,淋巴管直徑>20μm;而中層心肌80%淋巴管Lyve-1標(biāo)記陽(yáng)性,podoplanin陰性,淋巴管直徑<5 μm,podoplanin陽(yáng)性淋巴管較少。淋巴管造影可反映淋巴管的功能,目前心臟淋巴管造影技術(shù)包括:亞甲藍(lán)染料心尖注射、淋巴管墨汁造影及量子熒光造影[4]。
臨床上心臟淋巴系統(tǒng)功能不全的常見(jiàn)原因包括:心肌缺血、心室顫動(dòng)、肺動(dòng)脈高壓及腔靜脈高壓等[12,13],其機(jī)制較為復(fù)雜,一方面致病因素使得心臟舒張功能和(或)收縮功能不全,導(dǎo)致右心靜水壓升高,影響靜脈及淋巴管回流;另一方面中性粒細(xì)胞、巨噬細(xì)胞、淋巴細(xì)胞、炎癥因子、免疫復(fù)合物及氧自由基浸潤(rùn)心肌,清除壞死組織,刺激血管新生,同時(shí)導(dǎo)致心臟血管變薄、功能紊亂,刺激成纖維細(xì)胞方面膠原沉積于細(xì)胞間質(zhì),形成心臟纖維化,影響心臟功能,最終發(fā)展為慢性心力衰竭[14],此外,許多炎癥因子、氧自由基進(jìn)一步損害淋巴管功能,導(dǎo)致淋巴回流損傷、心肌水腫及心肌慢性炎癥刺激[15],進(jìn)一步加重心臟功能不全,與淋巴管功能不全形成惡性循環(huán)。手術(shù)構(gòu)建心臟淋巴管急性閉塞動(dòng)物模型,分析心肌病理,發(fā)現(xiàn)心肌水腫、炎癥細(xì)胞浸潤(rùn),長(zhǎng)期心臟淋巴管閉塞將對(duì)心臟功能造成慢性損傷[16]。
冠狀動(dòng)脈粥樣斑塊:心臟淋巴系統(tǒng)既可以促進(jìn)冠狀動(dòng)脈粥樣硬化斑塊形成,也可以預(yù)防冠狀動(dòng)脈粥樣硬化斑塊,可能取決于動(dòng)脈內(nèi)皮細(xì)胞的完整性。冠狀動(dòng)脈內(nèi)皮細(xì)胞不完整時(shí),暴露的抗原被血液/局部樹狀突細(xì)胞識(shí)別[17],在趨CCL19、CCL21的作用下,與樹狀突細(xì)胞上的趨化因子受體7(CCR7)結(jié)合,激活的樹狀突細(xì)胞從斑塊轉(zhuǎn)移至心臟淋巴結(jié)[18],進(jìn)一步活化心臟淋巴結(jié)中T淋巴細(xì)胞,T淋巴細(xì)胞轉(zhuǎn)運(yùn)至動(dòng)脈斑塊,造成斑塊中Th細(xì)胞亞群失平衡[19],使動(dòng)脈壁處于持續(xù)慢性炎癥刺激,在動(dòng)脈外膜形成具有免疫反應(yīng)功能的動(dòng)脈三級(jí)淋巴器官[20]。然而也有實(shí)驗(yàn)表明冠狀動(dòng)脈動(dòng)脈周圍淋巴管參與動(dòng)脈粥樣斑塊膽固醇逆轉(zhuǎn)運(yùn)過(guò)程[21,22],主要是將巨噬細(xì)胞來(lái)源的泡沫細(xì)胞經(jīng)過(guò)淋巴管轉(zhuǎn)運(yùn)出動(dòng)脈壁[23],維持動(dòng)脈壁脂質(zhì)代謝平衡,故淋巴管缺乏[24]或血管內(nèi)皮生長(zhǎng)因子(VEGF)-C缺乏[22]的動(dòng)脈更容易形成動(dòng)脈粥樣斑塊。綜上所述,我們猜測(cè)心臟淋巴管具有兩種機(jī)制參與冠狀動(dòng)脈粥樣斑塊的形成,冠狀動(dòng)脈內(nèi)皮完整性破壞同時(shí)伴有心臟淋巴結(jié)(縱隔淋巴結(jié))腫大的患者,其冠狀動(dòng)脈斑塊的形成可能與心臟淋巴管介導(dǎo)的免疫反應(yīng)相關(guān);而在內(nèi)皮功能完整的動(dòng)脈壁中心臟淋巴管可能通過(guò)排出多余的脂質(zhì)(泡沫細(xì)胞)達(dá)到預(yù)防動(dòng)脈粥樣斑塊形成的作用。2016年日本報(bào)道了一例Ig-G4相關(guān)性疾病[25]累及冠狀動(dòng)脈導(dǎo)致心肌梗死的患者,冠狀動(dòng)脈內(nèi)皮嚴(yán)重破壞同時(shí)伴有縱隔淋巴結(jié)腫大,冠狀動(dòng)脈光學(xué)相干斷層成像(OCT)檢查發(fā)現(xiàn)冠狀動(dòng)脈明顯的斑塊破裂、血栓及鈣化形成。
心肌梗死:心臟淋巴系統(tǒng)功能是影響心肌梗死后心臟功能的重要因素,外源性VEGF-C通過(guò)刺激心臟新生淋巴管可以明顯減少心肌梗死面積及改善心臟功能。動(dòng)物研究表明心肌梗死后不同時(shí)期心臟淋巴管的演變[3]:心肌梗死24 h至21天內(nèi),VEGFR-3、Lyve1、Prox-1表達(dá)明顯增加,其中VEGFR-3在心肌梗死后第4天達(dá)到峰值,心肌梗死7天以后形成明顯的VEGFR-3陽(yáng)性淋巴管,心肌梗死后第14天,位于損傷梗死區(qū)與疤痕區(qū)交界處的淋巴管直徑、密度明顯增加,與VEGF-C和VEGFR-3保持較高水平相關(guān)。心肌梗死后VEGF-C的主要來(lái)源是炎癥因子和滲透壓改變對(duì)巨噬細(xì)胞的刺激產(chǎn)生[26,27]。VEGF-C是心臟淋巴管新生不可缺少的物質(zhì)[28],與FOXC2一起作用于淋巴管內(nèi)皮RAS/ERK信號(hào)通路[29],刺激淋巴管新生。心肌梗死后會(huì)產(chǎn)生并動(dòng)員單核細(xì)胞參與的炎癥反應(yīng)并介導(dǎo)心臟免疫損傷[30],此時(shí)心肌梗死后心臟淋巴管的代償功能可以通過(guò)新生淋巴管改善心肌微環(huán)境,新生淋巴管及時(shí)清除心肌梗死區(qū)壞死組織,并動(dòng)員巨噬細(xì)胞吞噬炎癥因子[31],減輕心肌組織水腫,減少心肌壞死面積,改善心臟功能。2016年Circulation發(fā)表文章[32],認(rèn)為與氯吡格雷相比,替格瑞洛治療心肌梗死患者,因其減輕心臟心肌梗死后心肌水腫而其治療效果好于氯吡格雷治療組,認(rèn)為機(jī)制與替格瑞洛可通過(guò)增加局部缺血心肌組織腺苷濃度來(lái)減輕心肌水腫相關(guān);腺苷可調(diào)節(jié)心臟淋巴管功能,我們猜測(cè)替格瑞洛可能通過(guò)腺苷改善心臟淋巴系統(tǒng)轉(zhuǎn)運(yùn)功能來(lái)進(jìn)一步改善心肌梗死患者的預(yù)后。
外源VEGF-C可改善心肌梗死后心臟功能。心肌梗死動(dòng)物模型實(shí)驗(yàn)[4]證實(shí)心肌梗死后即使內(nèi)源性VEGF-C生成增加,但是缺乏管徑相對(duì)較大的淋巴管(15~50 μm),淋巴管轉(zhuǎn)運(yùn)功能仍然處于相對(duì)不足,心肌水腫及炎癥反應(yīng)不能及時(shí)緩解。一般情況下心肌梗死后心臟水腫可持續(xù)6~12個(gè)月[33,34],而外源性VEGF-C[3]可加強(qiáng)心臟淋巴管轉(zhuǎn)運(yùn)功能,明顯縮短心肌梗死后心肌水腫時(shí)期及降低炎癥反應(yīng)強(qiáng)度。但是限于VEGFR-3治療的潛在不良反應(yīng),臨床上尚未實(shí)踐。動(dòng)物實(shí)驗(yàn)用VEGFR-3治療心肌梗死后小鼠[35],相比對(duì)照組小鼠,VEGFR-3可明顯增加心肌梗死瘢痕區(qū)及缺血損傷區(qū)新生淋巴管,維持心臟完整性及射血功能。
心肌纖維化:心臟淋巴管功能不全促進(jìn)心臟纖維化進(jìn)程。 Kong等[36]通過(guò)隨機(jī)結(jié)扎兔子心臟淋巴管干模擬心臟淋巴管功能不全,病理檢查發(fā)現(xiàn)實(shí)驗(yàn)組Ⅰ型膠原、Ⅲ型膠原沉積明顯增加,出現(xiàn)心肌纖維化,影響心臟射血功能。心臟淋巴管結(jié)扎后可激活腫瘤壞死因子-α(TNF-alpha)[37],心臟組織中的樹狀突細(xì)胞在趨化因子的作用下將抗原從心肌呈遞給縱隔淋巴結(jié)(心臟淋巴結(jié))中的T細(xì)胞[38],縱隔淋巴結(jié)中的CD4、INF-γ陽(yáng)性Foxp3陰性T細(xì)胞轉(zhuǎn)移至心肌組織中[39-41],通過(guò)細(xì)胞信號(hào)傳導(dǎo),刺激心肌成纖維細(xì)胞,增加前膠原物質(zhì)沉積,促進(jìn)心肌纖維化[41]。故T細(xì)胞在心肌纖維化過(guò)程中有重要作用。房曉楠等[42]系統(tǒng)的總結(jié)了不同T細(xì)胞亞群在心肌纖維化過(guò)程中的作用。心肌纖維化心臟功能不全程度與縱隔淋巴結(jié)形態(tài)也密切相關(guān),特別是隆突下淋巴結(jié)及氣管旁淋巴結(jié)[43],可從形態(tài)學(xué)上反映心力衰竭情況。
心律失常:心臟淋巴系統(tǒng)與心房顫動(dòng)、房室傳導(dǎo)阻滯、室性心動(dòng)過(guò)速等心律失常密切關(guān)系。心臟心包周圍分布脂肪組織,這些脂肪組織中含從心臟引流而來(lái)的淋巴管,胸外科手術(shù)時(shí)保留主動(dòng)脈脂肪墊可預(yù)防心房顫動(dòng)的發(fā)生,認(rèn)為可能與脂肪墊與竇房結(jié)的淋巴回流相關(guān)[16]。房室結(jié)周圍也分布豐富的淋巴管,急性下壁心肌梗死患者,部分患者出現(xiàn)可逆的三度房室傳導(dǎo)阻滯,可能與后室間隔心肌梗死區(qū)域淋巴液引流至房室結(jié)并對(duì)其功能造成抑制作用相關(guān);JACC報(bào)道[44],12例心功能正常,持續(xù)性單形室性心動(dòng)過(guò)速合并縱隔淋巴結(jié)腫大的患者,射頻消融及抗心律失常藥物治療效果均不佳,通過(guò)隨機(jī)臨床干預(yù)后,發(fā)現(xiàn)針對(duì)淋巴結(jié)腫大病因(結(jié)核或肺結(jié)節(jié)?。┑闹委熀?,心律失常治療成功率較高。
心臟移植:心臟淋巴管在心臟移植預(yù)后中表現(xiàn)為雙重作用。心臟移植后的免疫排斥反應(yīng)是影響移植術(shù)后成功與否的重要因素,有心臟移植動(dòng)物實(shí)驗(yàn)證實(shí)[45],淋巴管參與心臟移植后的免疫排斥反應(yīng),通過(guò)特殊處理微粒靶向投放免疫抑制劑他克莫司于相應(yīng)淋巴結(jié)可抑制心臟淋巴管的生成[46],抑制免疫反應(yīng),改善疾病預(yù)后。同時(shí)外科心臟移植后因未行淋巴系統(tǒng)重建,晚期心肌纖維化的發(fā)生率仍然很高。
心臟缺血性疾病、感染性心內(nèi)膜炎、終末期心力衰竭患者伴有心臟淋巴管新生,但新生的淋巴管遠(yuǎn)遠(yuǎn)不能代償心肌水腫、蛋白沉積、免疫刺激等對(duì)心臟造成的損傷[47,48]。由于心臟淋巴系統(tǒng)功能不全,導(dǎo)致心肌水腫、心肌纖維化,影響心臟收縮與舒張功能、心律失常發(fā)生,動(dòng)物實(shí)驗(yàn)證實(shí)[4],促進(jìn)淋巴管新生可促進(jìn)心功能恢復(fù)、逆轉(zhuǎn)纖維化、穩(wěn)定心電,故淋巴再生技術(shù)[46]或靶向治療有望成為心臟疾患新型的治療靶點(diǎn)。
[1] Wilting J, Buttler K, Schulte I, et al. The proepicardium delivers hemangioblasts but not lymphangioblasts to the developing heart. Dev Biol, 2007, 305: 451-459.
[2] Aspelund A, Robciuc MR, Karaman S, et al. Lymphatic system in cardiovascular medicine. Circ Res, 2016, 118: 515-530.
[3] Klotz L, Norman S, Vieira JM, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature, 2015, 522: 62-67.
[4] Henri O, Pouehe C, Houssari M, et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation,2016, 133: 1484-1497.
[5] Ohhashi T, Mizuno R, Ikomi F, et al. Current topics of physiology and pharmacology in the lymphatic system. Pharmacol Ther, 2005, 105:165-188.
[6] Miller AJ. The grossly invisible and generally ignored lymphatics of the mammalian heart. Med Hypotheses, 2011, 76: 604-606.
[7] Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res, 2010, 87: 198-210.
[8] Davis KL, Laine GA, Geissler HJ, et al. Effects of myocardial edema on the development of myocardial interstitial fibrosis. Microcirculation,2000, 7: 269-280.
[9] Buttler K, Ezaki T, Wilting J. Proliferating mesodermal cells in murine embryos exhibiting macrophage and lymphendothelial characteristics.BMC Dev Biol, 2008, 8: 43.
[10] Akishima Y, Ito K, Zhang L, et al. Immunohistochemical detection of human small lymphatic vessels under normal and pathological conditions using the LYVE-1 antibody. Virchows Arch, 2004, 444:153-157.
[11] Kahn HJ, Bailey D, Marks A. Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi's sarcoma and a subset of angiosarcomas. Mod Pathol, 2002, 15: 434-440.
[12] Mehlhorn U, Geissler HJ, Laine GA, et al. Myocardial fluid balance.Eur J Cardiothorac Surg, 2001, 20: 1220-1230.
[13] Mehlhorn U, Geissler HJ, Laine GA, et al. Role of the cardiac lymph system in myocardial fluid balance. Eur J Cardiothorac Surg, 2001, 20:424-427.
[14] Mann DL. Inflammatory mediators and the failing heart: past, present,and the foreseeable future. Circ Res, 2002, 91: 988-998.
[15] Aldrich MB, Sevick-Muraca EM. Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine, 2013, 64: 362-369.
[16] Lupinski RW. Aortic fat pad and atrial fibrillation: cardiac lymphatics revisited. ANZ J Surg, 2009, 79: 70-74.
[17] Shimada K. Immune system and atherosclerotic disease:heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis. Circ J, 2009, 73: 994-1001.
[18] Schieffer B, Luchtefeld M. Emerging role of chemokine receptor 7 in atherosclerosis. Trends Cardiovasc Med, 2011, 21: 211-216.
[19] 萬(wàn)軍, 石磊, 吉慶偉, 等. Th22型免疫反應(yīng)在動(dòng)脈粥樣硬化疾病中的動(dòng)態(tài)變化. 中國(guó)循環(huán)雜志, 2016, 31: 454-458.
[20] Hu D, Mohanta SK, Yin C, et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity, 2015, 42:1100-1115.
[21] Huang LH, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front Pharmacol, 2015, 6: 182.
[22] Martel C, Li W, Fulp B, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest, 2013,123: 1571-1579.
[23] Peters W, Charo IF. Involvement of chemokine receptor 2 and its ligand, monocyte chemoattractant protein-1, in the development of atherosclerosis: lessons from knockout mice. Curr Opin Lipidol, 2001,12: 175-180.
[24] Vuorio T, Nurmi H, Moulton K, et al. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler Thromb Vasc Biol, 2014, 34: 1162-1170.
[25] Hourai R, Miyamura M, Tasaki R, et al. A case of IgG4-related lymphadenopathy, pericarditis, coronary artery periarteritis and luminal stenosis. Heart Vessels, 2016, 31: 1709-1713.
[26] Kataru RP, Jung K, Jang C, et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood, 2009, 113: 5650-5659.
[27] Wiig H, Schroder A, Neuhofer W, et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest,2013, 123: 2803-2815.
[28] Bui HM, Enis D, Robciuc MR, et al. Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD. J Clin Invest, 2016, 126: 2167-2180.
[29] Fatima A, Wang Y, Uchida Y, et al. Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation.J Clin Invest, 2016, 126: 2437-2451.
[30] Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med, 2007, 204: 3037-3047.
[31] Huggenberger R, Siddiqui SS, Brander D, et al. An important role of lymphatic vessel activation in limiting acute inflammation. Blood,2011, 117: 4667-4678.
[32] Vilahur G, Gutierrez M, Casani L, et al. Protective effects of ticagrelor on myocardial injury after infarction. Circulation, 2016, 134: 1708-1719.
[33] Nilsson JC, Nielsen G, Groenning BA, et al. Sustained postinfarction myocardial oedema in humans visualised by magnetic resonance imaging. Heart, 2001, 85: 639-642.
[34] Manrique A, Gerbaud E, Derumeaux G, et al. Cardiac magnetic resonance demonstrates myocardial oedema in remote tissue early after reperfused myocardial infarction. Arch Cardiovasc Dis, 2009,102: 633-639.
[35] Nurro J, Halonen PJ, Kuivanen A, et al. AdVEGF-B186 and AdVEGF-DDeltaNDeltaC induce angiogenesis and increase perfusion in porcine myocardium. Heart, 2016, 102: 1716-1720.
[36] Kong D, Kong X, Wang L. Effect of cardiac lymph flow obstruction on cardiac collagen synthesis and interstitial fibrosis. Physiol Res, 2006,55: 253-258.
[37] Tanaka H, Yamamoto N, Suzuki M, et al. Insufficient lymph drainage causes abnormal lipid accumulation and vein wall degeneration. Ann Vasc Dis, 2016, 9: 277-284.
[38] Wolkow PP, Drabik L, Toton-Zuranska J, et al. Polymorphism in the chemokine receptor 7 gene (CCR7) is associated with previous myocardial infarction in patients undergoing elective coronary angiography. Int J Immunogenet, 2016, 43: 218-225.
[39] Bansal SS, Ismahil MA, Goel M, et al. Activated T lymphocytes are essential drivers of pathological remodeling inischemic heart failure.Circ Heart Fail, 2017, 10: e3688.
[40] Ramos GC, van den Berg A, Nunes-Silva V, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci USA, 2017, 114:E2420-E2429.
[41] Nevers T, Salvador AM, Grodecki-Pena A, et al. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ Heart Fail, 2015, 8: 776-787.
[42] 房曉楠, 張榮成, 張健. T細(xì)胞免疫調(diào)節(jié)機(jī)制在心力衰竭心肌纖維化中的作用. 中國(guó)循環(huán)雜志, 2015, 30: 508-510.
[43] Chabbert V, Canevet G, Baixas C, et al. Mediastinal lymphadenopathy in congestive heart failure: a sequential CT evaluation with clinical and echocardiographic correlations. Eur Radiol, 2004, 14: 881-889.
[44] Thachil A, Christopher J, Sastry BK, et al. Monomorphic ventricular tachycardia and mediastinal adenopathy due to granulomatous infiltration in patients with preserved ventricular function. J Am Coll Cardiol, 2011, 58: 48-55.
[45] Dashkevich A, Raissadati A, Syrjala SO, et al. Ischemia-reperfusion injury enhanceslymphatic endothelial VEGFR3 and eejection in cardiac allografts. Am J Transplant, 2016, 16: 1160-1172.
[46] Azzi J, Yin Q, Uehara M, et al. Targeted delivery of immunomodulators to lymph nodes. Cell Rep, 2016, 15: 1202-1213.
[47] Dashkevich A, Bloch W, Antonyan A, et al. Morphological and quantitative changes of the initial myocardial lymphatics in terminal heart failure. Lymphat Res Biol, 2009, 7: 21-27.
[48] Kholova I, Dragneva G, Cermakova P, et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur J Clin Invest, 2011, 41: 487-497.
2017-04-02)
(編輯: 梅平)
100037 北京市,北京協(xié)和醫(yī)學(xué)院 中國(guó)醫(yī)學(xué)科學(xué)院 國(guó)家心血管病中心 阜外醫(yī)院 冠心病診治中心
蔣曉威 博士研究生 主要研究方向?yàn)楣谛牟『头屎裥托募〔?Email:825830765@qq.com 通訊作者: 喬樹賓 Email:qsbfw@sina.com
R541.4
A
1000-3614(2017)11-1141-04
10.3969/j.issn.1000-3614.2017.11.028