屠國偉, 任楊華, 史 懿, 馬國光, 郝光偉, 羅 哲*
1. 復(fù)旦大學(xué)附屬中山醫(yī)院重癥醫(yī)學(xué)科,上海 200032 2. 復(fù)旦大學(xué)上海醫(yī)學(xué)院,上海 200032 3. 復(fù)旦大學(xué)附屬中山醫(yī)院實驗研究中心,上海 200032
·綜 述·
肺泡巨噬細胞亞型與急性肺損傷
屠國偉1, 任楊華2, 史 懿3, 馬國光1, 郝光偉1, 羅 哲1*
1. 復(fù)旦大學(xué)附屬中山醫(yī)院重癥醫(yī)學(xué)科,上海 200032 2. 復(fù)旦大學(xué)上海醫(yī)學(xué)院,上海 200032 3. 復(fù)旦大學(xué)附屬中山醫(yī)院實驗研究中心,上海 200032
巨噬細胞是機體固有免疫的重要組成部分,其亞型(M1和M2)在特異性免疫應(yīng)答的誘導(dǎo)與調(diào)節(jié)以及疾病的發(fā)展和恢復(fù)中起關(guān)鍵作用。急性肺損傷(acute lung injury,ALI)和急性呼吸窘迫綜合征(acute respiratory distress syndrome,ARDS)是嚴重的呼吸系統(tǒng)疾病。在ALI中,M1增加并分泌促炎細胞因子,在抵御病原入侵的同時也對肺部產(chǎn)生了急性損傷作用。M2可根據(jù)誘導(dǎo)因素的不同及功能的差異再細分為M2a、M2b、M2c等亞型,其中M2a起促進損傷修復(fù)的作用,M2b和M2c主要起免疫調(diào)節(jié)和免疫抑制的作用,M2c也可促進組織修復(fù),有利于肺部損傷組織的愈合。M1與M2可以相互轉(zhuǎn)化。在ALI的病程中,M1和M2需要保持平衡才能有效地清除病原物質(zhì),促進損傷的修復(fù),而平衡的失調(diào)會導(dǎo)致ALI惡化,甚至進展為ARDS。本文主要針對巨噬細胞各亞型的特點及其與ALI的關(guān)系,M1和M2各自的極化和相互轉(zhuǎn)化以及影響各亞型在不同時期平衡的因素作一綜述。
巨噬細胞亞型;急性肺損傷;M1/M2平衡
巨噬細胞最早產(chǎn)生于胚胎發(fā)育時期的卵黃囊和肝前體細胞,后進入肺部并定居,形成肺泡巨噬細胞(alveolar macrophages,AM)。AM主要分布在肺泡腔內(nèi),占肺泡常駐細胞的80%,是體內(nèi)唯一能與空氣接觸的細胞群,是肺組織的首防線,可以分泌100多種炎性介質(zhì)介導(dǎo)炎癥反應(yīng),并參與組織損傷修復(fù)。AM還是免疫缺陷患者肺部感染重要的應(yīng)答細胞[1-2]。急性肺損傷(acute lung injury,ALI)是一類復(fù)雜的臨床癥狀群。在ALI過程中,急性炎癥反應(yīng)導(dǎo)致微血管損傷,肺血管內(nèi)皮和肺泡上皮通透性增加,導(dǎo)致蛋白質(zhì)滲透入肺泡中并引起水腫,進而引發(fā)急性呼吸功能障礙。急性呼吸窘迫綜合征(acute respiratory distress syndrome,ARDS)是ALI的重癥形式。多種因素可以導(dǎo)致ALI,如肺炎、胃食管反流、肺挫傷、脂肪和羊水栓塞、淹溺、吸入性損傷、肺移植術(shù)后再灌注損傷等直接因素和敗血癥、休克、心肺轉(zhuǎn)流術(shù)、急性胰腺炎、藥物過量、輸血、尿毒癥等間接因素[3]。
根據(jù)活化通路,將以經(jīng)典方式活化的巨噬細胞稱為經(jīng)典活化型(classical activated macrophage,M1),而以選擇性通路活化的巨噬細胞稱為替代活化型(alternative activated macrophage,M2)[4-6]。此外,也存在M4型、Mhem型、Mox型等罕見巨噬細胞亞型[7]。由于這些亞型與ALI的相關(guān)性研究較少,故本文不作闡述。在炎癥過程中,M1和M2參與調(diào)節(jié)固有免疫應(yīng)答及各種炎癥反應(yīng)。炎癥早期,多種介質(zhì)能夠誘導(dǎo)M1比例升高,這有利于病原微生物的清除;隨著炎癥發(fā)展,M2逐漸增多,占主導(dǎo)地位,從而抑制炎癥反應(yīng),促進損傷修復(fù)[8]。Duan等[4]和Gordon等[5]發(fā)現(xiàn),在ALI中,不同激活狀態(tài)的巨噬細胞可分別發(fā)揮促炎或抑炎作用;Johnston等[9]發(fā)現(xiàn),M1和M2分別在ALI的發(fā)病期和恢復(fù)期發(fā)揮重要作用。此外,有大量文獻[4, 10-18]表明,M1和M2在肺部的先后出現(xiàn)及其平衡在組織的損傷和修復(fù)過程中發(fā)揮重要作用。
M1與ALI的發(fā)生和進展有密切聯(lián)系。在由LPS誘導(dǎo)的ALI中,M1可以由Th1合成的促炎細胞因子[如γ-干擾素(IFN-γ)]通過旁分泌途徑誘導(dǎo)產(chǎn)生[9],也可以由初始巨噬細胞合成的IFN-β通過自分泌誘導(dǎo)而來[19]。該誘導(dǎo)過程主要依靠信號轉(zhuǎn)導(dǎo)子和轉(zhuǎn)錄激活子1(signal transducer and activator of transcription-1,STAT-1)依賴性通路完成[20-21]。受到信號分子刺激的初始巨噬細胞高表達白細胞介素-12(interleukin-12,IL-12)、IL-23,低表達IL-10,分泌TNF-α、IL-1β、IL-6等炎性細胞因子[19],合成誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)[9]、環(huán)氧化酶-2(cyclooxygenase-2,COX-2)、基質(zhì)金屬蛋白酶-9(matrix metalloproteinase-9,MMP-9)[22]、MMP-10[14]等與炎癥相關(guān)的酶。其中iNOS可促進NO等活性氧(reactive oxidative species,ROS)生成,在清除病原物質(zhì)的同時也加劇了對肺部的急性損傷作用。
Duan等[4]和Johnston等[9]分別在小鼠體內(nèi)誘導(dǎo)了ALI,發(fā)現(xiàn)實驗組小鼠肺泡M1表面的特征蛋白(如ICAM-1和CD40)在誘導(dǎo)第1天出現(xiàn)峰值,TNF-α和IL-6明顯增加;免疫組化方法顯示iNOS在第2天出現(xiàn)峰值,且第7天仍可被檢測到,說明M1對肺的損傷作用持續(xù)存在。STAT-1作為M1極化的關(guān)鍵蛋白,能夠加速ALI的惡化。給ALI小鼠注射STAT-1信號通路阻斷劑后,M1的極化受到抑制,ALI的病情也出現(xiàn)好轉(zhuǎn)[23]。研究[12]認為,STAT家族中的STAT-4也具有促炎作用。該研究在STAT-4基因敲除的小鼠ALI模型中發(fā)現(xiàn),支氣管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)中的促炎細胞因子(TNF-α、IL-1β、IL-6)減少而抑炎細胞因子IL-10增加,說明STAT4具有促進ALI發(fā)展和惡化的作用。
不同的MMP對炎癥具有不同的作用。MMP-3和MMP-9均具有促炎作用。Gill等[22]發(fā)現(xiàn),組織中MMP-3的抑制因子缺乏時,巨噬細胞傾向于向M1方向極化,促炎細胞因子分泌增加,肺部損傷加重;抑制MMP-3表達后肺部損傷有所減輕。Chen等[24]發(fā)現(xiàn),蘆丁可以抑制MMP-9的激活和下調(diào)巨噬細胞炎性蛋白-2(macrophage inflammatory protein,MIP-2)的表達,從而起到對ALI的治療作用。此外,M1的極化和相關(guān)細胞因子的分泌還受小RNA(microRNA,miRNA,miR)及相關(guān)反義寡核苷酸(antisense oligonucleotide,ASO)的調(diào)控。Ying等[25]增強小鼠miR-127的表達后,肺泡巨噬細胞傾向于向M1極化,同時促炎細胞因子的分泌顯著增加,肺部的炎癥損傷加重;而當敲除miR-127對應(yīng)的DNA片段后,M1基因表達也會發(fā)生障礙,導(dǎo)致M1/M2平衡向M2的偏移。然而,最新研究[18]表明,M1還可以通過表達雙調(diào)蛋白而對ALI產(chǎn)生一定的保護作用,提示M1和M2在ALI中有一定的功能交叉。
M2通常存在于胎盤、肺、睪丸、關(guān)節(jié)腔等部位。Th2細胞、嗜堿性粒細胞、嗜酸性粒細胞和巨細胞等分泌的IL-4和(或)IL-13可以誘導(dǎo)初始巨噬細胞極化為M2。該誘導(dǎo)過程通過STAT-6依賴性通路完成。相關(guān)研究[26]表明,在給予IL-4刺激后,STAT-6缺陷小鼠的M2的數(shù)量顯著低于STAT-6正常的小鼠。相對于M1,M2的IL-12 和IL-23表達量很低,但高表達抑炎因子IL-10、TGF-β、清道夫受體(scavenger receptor, SR, 即CD163)、甘露糖受體(mannose receptor,MR,即CD206)、半乳糖受體(galactose receptor)以及精氨酸酶1(arginase 1, Arg-1),從而抑制ALI的炎癥反應(yīng),促進肺部損傷組織的修復(fù)。另外,M2還可以特異性表達IL-1受體拮抗劑(IL-1Ra)、巨噬細胞替代激活相關(guān)趨化因子1(alternative macrophage activation-associated CC chemokine-1,AMAC-1)、巨噬細胞源性趨化因子(macrophage-derived chemokine,MDC)和胸腺激活調(diào)節(jié)趨化因子(thymus and activation-regulated chemokine,TARC)等,進一步促使巨噬細胞向M2極化,促進損傷修復(fù)。IL-4和IL-13可以抑制細胞的自噬作用,抑制NO合成并增強Arg-1的活性,抑制M1介導(dǎo)的病原殺傷作用[20],在ALI的恢復(fù)中具有重要意義。
利用條件基因敲除技術(shù)發(fā)現(xiàn),在小鼠體內(nèi),巨噬細胞促進纖維生成并參與瘢痕形成,證實M2能促進基質(zhì)重建。有研究[20]在IL-4受體缺陷鼠中證實,M2在血吸蟲感染過程中對器官具有保護作用,推測這可能與M2細胞抑制血吸蟲卵引起的炎癥反應(yīng)有關(guān)。Kambara等[27]在白喉毒素誘導(dǎo)的小鼠ALI中發(fā)現(xiàn),當體內(nèi)含CD206的M2減少時,小鼠肺部損傷較對照組更加嚴重,提示M2可能在保護肺組織方面發(fā)揮了積極的作用。呼吸道正常菌群在幫助機體抵抗流感病毒介導(dǎo)的ALI中發(fā)揮積極作用。Wang等[28]發(fā)現(xiàn),上呼吸道人工定植金黃色葡萄球菌的小鼠(實驗組)與未感染特定病原的小鼠(對照組)相比,肺泡M2數(shù)量在細菌定植早期明顯增多,提示上呼吸道正常菌群具有促進巨噬細胞極化為M2的作用;在感染流感病毒并發(fā)生ALI后,實驗組小鼠的疾病嚴重程度和死亡率較對照組降低,提示正常菌群可以通過增加M2的數(shù)量對肺產(chǎn)生一定的保護作用。在藥物研究方面,研究等[29-30]證實了糖皮質(zhì)激素(glucocorticoids,GC)的抑炎作用和對其他免疫細胞的調(diào)控作用。其發(fā)現(xiàn)GC治療48 h后,小鼠單核細胞中CD-163和Gr-1(單核細胞的一種表面標記)的表達上調(diào),IL-10特異性上調(diào),同時還下調(diào)了IL-6,但沒有發(fā)現(xiàn)TGF-β的上調(diào)。M2特征性細胞因子的增加和M1特征性細胞因子的減少可以從側(cè)面證實M2的抑炎作用。在miRNA的相關(guān)研究中,Guo等[31]利用miR-155的ASO有效地治療了ALI小鼠,其BALF中的蛋白質(zhì)、促炎細胞因子和細胞數(shù)量顯著減少,肺泡中分泌IL-10的類M2數(shù)量明顯增加,提示該ASO能促進巨噬細胞向M2極化,從而起到抑炎作用,促進ALI的恢復(fù)。
Mantovani等[32]和Mosser等[33]分別對M2進行進一步分類:由IL-4或IL-13誘導(dǎo)產(chǎn)生的巨噬細胞稱M2a;免疫復(fù)合物(immune complex,IC)與TLR或IL-1R配體誘導(dǎo)產(chǎn)生的巨噬細胞稱M2b;由IL-10和GC誘導(dǎo)單核細胞分化的巨噬細胞稱為M2c。目前大部分文獻中提到的M2如無特別說明均指M2a。近年來新定義的M2d亞型能特征性表達血管內(nèi)皮生長因子(vascularen-dothelialg rowth factor,VEGF),并分泌IL-10、CCL5、CXCL10、CXCL16等因子,該亞型與M1的腺苷依賴性轉(zhuǎn)變有關(guān),具體作用機制尚不明確[7,34]。不同M2亞型發(fā)揮不同的功能,M2a高表達CD68、CD163、CD206和Arg-1,主要參與和促進ALI過程中的體液免疫反應(yīng)和纖維化過程,同時分泌生長因子和一些細胞外基質(zhì)成分,促進ALI的修復(fù)并維持體液免疫反應(yīng)。M2b主要發(fā)揮免疫調(diào)節(jié)作用,與M2a共同介導(dǎo)體液免疫反應(yīng)。M2c在高表達CD68、CD163、CD206的同時,也表達幾丁質(zhì)酶-1(YM-1)、穿透素(pentraxin,PTX)和載脂蛋白(ApoE),主要調(diào)節(jié)和抑制免疫反應(yīng),在ALI的組織重建中發(fā)揮重要作用[35]。
Nelson等[36]在肺孢子蟲引發(fā)的ALI中發(fā)現(xiàn),IL-33可以促進M2a的活化,放大M2的極化作用;而M2a可以直接殺滅外源真菌孢子。Venosa等[17]在氮芥誘導(dǎo)的ALI小鼠中發(fā)現(xiàn),M2a和M2c在損傷早期共同發(fā)揮吞噬細胞碎片和拮抗M1損傷的作用;進展到慢性炎癥時,M2a和M2c促進基質(zhì)沉積、組織重建和纖維化進程。一般M2的促炎細胞因子如IL-1、TNF和IL-6分泌量低,但IC和LPS誘導(dǎo)的M2b有所不同,其仍可分泌大量的炎性因子,如TNF-α、IL-1、IL-10,而低分泌IL-12。因此,M2b能幫助小鼠抵御LPS毒性。Ohama等[37]和Tsuchimoto等[38]發(fā)現(xiàn),酗酒者肺部機會性感染和罹患腸道細菌性敗血癥的主要原因是持續(xù)性的酒精攝入導(dǎo)致巨噬細胞向M2b極化,從而使酗酒者肺部和腸道更易被感染。
M1/M2不是完全孤立的兩種細胞亞型。在受到外界致病因素的刺激后,AM的極性會因此發(fā)生變化。表型可塑性和功能多樣性是巨噬細胞的重要特征。一般認為極化巨噬細胞是其細胞活化后一系列功能狀態(tài)的極端,其分化受到各種微環(huán)境信號的誘導(dǎo)與調(diào)節(jié)[39]。極化的巨噬細胞能夠進一步對自身其他極化狀態(tài)產(chǎn)生影響,如M2能抑制M1抗原提呈和促炎因子的分泌,并通過分泌血管生成因子和成纖維因子促進損傷的肺組織愈合,從而使巨噬細胞的功能平衡。在特定條件下,肺泡已分化的M1和M2之間還可相互轉(zhuǎn)化。巨噬細胞是可塑性細胞,它能從激活的M1轉(zhuǎn)化為M2,也能從M2 轉(zhuǎn)化成M1。若M1與M2達到平衡,則可以使ALI減輕,肺組織得到修復(fù);若平衡失調(diào),某種激活方式過強,則ALI會發(fā)生惡化,甚至進一步發(fā)展為ARDS。如果M1激活過強,產(chǎn)生過量的促炎因子,則肺組織受損更嚴重;如果M2激活過強,產(chǎn)生過量的成纖維和血管生成因子,則能降低機體清除病原的能力,并導(dǎo)致肺組織纖維化和慢性肺炎的形成。因此,在各種因素的影響下,肺部的損傷和修復(fù)應(yīng)當被控制在M1的促炎反應(yīng)和M2的抑炎反應(yīng)相對平衡的狀態(tài)。
Mora等在研究肺纖維化的成因時發(fā)現(xiàn),皰疹病毒可以上調(diào)巨噬細胞Arg-1的表達,進而促進肺纖維化的發(fā)展[16]?;|(zhì)金屬蛋白酶家族中的MMP-28能抑制M1的促炎作用,并促進M2的極化,同時促進纖維化進程;此外,在博來霉素誘導(dǎo)的小鼠ALI模型中,MMP-28缺陷的小鼠中,M2比例減少,纖維化程度的減輕,說明MMP-28具有抑炎作用[13]。McMahan等[14]的實驗發(fā)現(xiàn),MMP-10能拮抗MMP-28,促進M1/M2平衡向M1移動,加重ALI的發(fā)展。Akbarshahi等[40]在急性胰腺炎合并ALI的小鼠模型中發(fā)現(xiàn),實驗組小鼠損傷早期CCL2表達量可以達到對照組的10倍,同時CCL2的增加促使M1/M2平衡向M2移動,24 h后由于M1中的CCR2(CCL2的受體)表達量增加,M1/M2平衡向M1移動。這可能也是大部分ALI患者病情惡化的原因之一。Meyer等[15]在研究阿奇霉素對囊性纖維化的治療作用時發(fā)現(xiàn),治療組細胞在給藥1 μg/mL后,促炎細胞因子(IL-1β、CCL2、TNF-α)表達明顯下降,提示阿奇霉素可以直接作用于M1,從而影響M1/M2的平衡,進而減輕了炎癥反應(yīng)。該團隊在前期的動物實驗中已證實阿奇霉素的抑炎作用[41]。Bao等[10]在研究人參皂苷對ALI的治療作用時發(fā)現(xiàn),給ALI小鼠腹腔注射人參皂苷可以降低BALF中促炎細胞因子的含量,同時檢測到M2的比例明顯升高且升高幅度與人參皂苷注射濃度呈正相關(guān)。小鼠ALI顯著好轉(zhuǎn),說明人參皂苷具有顯著的抑炎作用,并能使M1/M2平衡向M2移動,從而促進損傷的修復(fù)。Cho等[11]在研究間充質(zhì)干細胞(mesenchymal stem cells,MSCs)的治療作用時發(fā)現(xiàn),將巨噬細胞和MSCs共同培養(yǎng)可導(dǎo)致M1的特征標志物減少而使M2的特征標志物增多,提示MSCs具有調(diào)控M1/M2平衡向M2移動的能力,從而間接發(fā)揮一定的抑炎作用。因此,對巨噬細胞亞型誘導(dǎo)因素及其功能的研究有助于了解炎癥反應(yīng)的調(diào)節(jié)機制。
綜上所述,巨噬細胞的極化作用在ALI的發(fā)病過程中具有重要意義。從ALI的發(fā)病期到恢復(fù)期,不同的細胞因子或藥物可以使M1和M2出現(xiàn)不同的極性轉(zhuǎn)化,發(fā)揮各自的作用。其中,M1主導(dǎo)促炎作用,分泌一系列促炎細胞因子,促進ALI的發(fā)展;M2主導(dǎo)抑炎反應(yīng),拮抗M1的作用。有時兩者的作用又會有交叉,說明M1/M2在一定的條件下可以相互轉(zhuǎn)化。目前大多研究集中于M1/M2平衡向M2的移動,較少有研究詳細地闡釋該平衡向M1移動的因素。對M1/M2平衡在ALI中具體機制的研究,有利于臨床發(fā)現(xiàn)潛在的藥物作用靶點,從而提高藥物的研發(fā)效率。今后研究的熱點和難點將是ALI不同時期M1/M2的轉(zhuǎn)化方向及其機制,M1/M2平衡相關(guān)的信號轉(zhuǎn)導(dǎo)通路以及肺內(nèi)其他罕見巨噬細胞亞群對ALI的潛在影響。對巨噬細胞亞型與ALI相關(guān)性的研究也許能為今后ALI的預(yù)防和治療提供理論依據(jù)和研究方向。
[1] BRAY D H, SQUIRE S B, BAGDADES E, et al. Alveolar macrophage populations are distorted in immunocompromised patients with pneumonitis[J]. Eur Respir J, 1992, 5(5): 545-552.
[2] FORTHAL D N, PHAN T, LANDUCCI G. Antibody inhibition of cytomegalovirus: the role of natural killer and macrophage effector cells[J]. Transpl Infect Dis, 2001, 3 Suppl 2: 31-34.
[3] WARE L B, MATTHAY M A. The acute respiratory distress syndrome[J]. N Engl J Med, 2000, 342(18): 1334-1349.
[4] DUAN M, LI W C, VLAHOS R, et al. Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease[J]. J Immunol, 2012, 189(2): 946-955.
[5] GORDON S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3(1): 23-35.
[6] 李 康, 郭 強, 王翠妮, 等. M1和M2型巨噬細胞表型的比較分析[J]. 現(xiàn)代免疫學(xué), 2008, 28(3): 177-183.
[7] LABONTE A C, TOSELLO-TRAMPONT A C, HAHN Y S. The role of macrophage polarization in infectious and inflammatory diseases[J]. Mol Cells, 2014, 37(4): 275-285.
[8] KAHNERT A, SEILER P, STEIN M, et al. Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis[J]. Eur J Immunol, 2006, 36(3): 631-647.
[9] JOHNSTON L K, RIMS C R, GILL S E, et al. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury[J]. Am J Respir Cell Mol Biol, 2012, 47(4): 417-426.
[10] BAO S, ZOU Y, WANG B, et al. Ginsenoside Rg1 improves lipopolysaccharide-induced acute lung injury by inhibiting inflammatory responses and modulating infiltration of M2 macrophages[J]. Int Immunopharmacol, 2015, 28(1): 429-434.
[11] CHO D I, KIM M R, JEONG H Y, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages[J]. Exp Mol Med, 2014, 46: e70.
[12] FU C, JIANG L, XU X, et al. STAT4 knockout protects LPS-induced lung injury by increasing of MDSC and promoting of macrophage differentiation[J]. Respir Physiol Neurobiol, 2016, 223: 16-22.
[13] GHARIB S A, JOHNSTON L K, HUIZAR I, et al. MMP28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis[J]. J Leukoc Biol, 2014,95(1):9-18.
[14] MCMAHAN R S, BIRKLAND T P, SMIGIEL K S, et al. Stromelysin-2 (MMP10) Moderates Inflammation by Controlling Macrophage Activation[J]. J Immunol, 2016, 197(3): 899-909.
[15] MEYER M, HUAUX F, GAVILANES X, et al. Azithromycin reduces exaggerated cytokine production by M1 alveolar macrophages in cystic fibrosis[J]. Am J Respir Cell Mol Biol, 2009, 41(5): 590-602.
[16] MORA A L, TORRES-GONZLEZ E, ROJAS M, et al. Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis[J]. Am J Respir Cell Mol Biol, 2006, 35(4): 466-473.
[17] VENOSA A, MALAVIYA R, CHOI H, et al. Characterization of distinct macrophage subpopulations during nitrogen mustard-induced lung injury and fibrosis[J]. Am J Respir Cell Mol Biol, 2016, 54(3): 436-446.
[18] XU Y, MENG C, LIU G, et al. Classically activated macrophages protect against lipopolysaccharide-induced acute lung injury by expressing amphiregulin in mice[J]. Anesthesiology, 2016, 124(5): 1086-1099.
[19] AGGARWAL N R, KING L S, D'ALESSIO F R. Diverse macrophage populations mediate acute lung inflammation and resolution[J]. Am J Physiol Lung Cell Mol Physiol, 2014 ,306(8):L709-L725.
[20] LEOPOLD WAGER C M, WORMLEY F L JR. Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections[J]. Mucosal Immunol, 2014, 7(5): 1023-1035.
[21] PAGE C, GOICOCHEA L, MATTHEWS K, et al. Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection[J]. J Virol, 2012, 86(24): 13334-13349.
[22] LIU W, DONG M, BO L, et al. Epigallocatechin-3-gallate suppresses alveolar epithelial cell apoptosis in seawater aspiration-induced acute lung injury via inhibiting STAT1-caspase-3/p21 associated pathway[J]. Mol Med Rep, 2016, 13(1): 829-836.
[23] GILL S E, GHARIB S A, BENCH E M, et al. Tissue inhibitor of metalloproteinases-3 moderates the proinflammatory status of macrophages[J]. Am J Respir Cell Mol Biol, 2013, 49(5): 768-777.
[24] CHEN W Y, HUANG Y C, YANG M L, et al. Protective effect of rutin on LPS-induced acute lung injury via down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation[J]. Int Immunopharmacol, 2014, 22(2): 409-413.
[25] YING H, KANG Y, ZHANG H, et al. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway[J]. J Immunol, 2015, 194(3): 1239-1251.
[26] D'ALESSIO F R, CRAIG J M, SINGER B D, et al. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(8): L733-L746.
[27] KAMBARA K, OHASHI W, TOMITA K, et al. In vivo depletion of CD206+M2 macrophages exaggerates lung injury in endotoxemic mice[J]. Am J Pathol, 2015, 185(1): 162-171.
[28] WANG J, LI F, SUN R, et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages[J]. Nat Commun, 2013, 4: 2106.
[29] VARGA G, EHRCHEN J, TSIANAKAS A, et al. Glucocorticoids induce an activated, anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells[J]. J Leukoc Biol, 2008, 84(3): 644-650.
[30] EHRCHEN J, STEINMULLER L, BARCZYK K, et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes[J]. Blood, 2007, 109(3): 1265-1274.
[31] GUO Z, WEN Z, QIN A, et al. Antisense oligonucleotide treatment enhances the recovery of acute lung injury through IL-10-secreting M2-like macrophage-induced expansion of CD4+regulatory T cells[J]. J Immunol, 2013, 190(8): 4337-4348.
[32] MANTOVANI A, SICA A, SOZZANI S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004, 25(12): 677-686.
[33] MOSSER D M, EDWARDS J P. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-969.
[34] DULUC D, CORVAISIER M, BLANCHARD S, et al. Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages[J]. Int J Cancer, 2009, 125(2): 367-373.
[35] MARTINEZ F O, HELMING L, GORDON S. Alternative activation of macrophages: an immunologic functional perspective[J]. Annu Rev Immunol, 2009, 27: 451-483.
[36] NELSON M P, CHRISTMANN B S, WERNER J L, et al. IL-33 and M2a alveolar macrophages promote lung defense against the atypical fungal pathogen Pneumocystis murina[J]. J Immunol, 2011, 186(4): 2372-2381.
[37] OHAMA H, ASAI A, ITO I, et al. M2b macrophage elimination and improved resistance of mice with chronic alcohol consumption to opportunistic infections[J]. Am J Pathol, 2015, 185(2): 420-431.
[38] TSUCHIMOTO Y, ASAI A, TSUDA Y, et al. M2b monocytes provoke bacterial pneumonia and gut bacteria-associated sepsis in alcoholics[J]. J Immunol, 2015, 195(11): 5169-5177.
[39] VARIN A, GORDON S. Alternative activation of macrophages: immune function and cellular biology[J]. Immunobiology, 2009, 214(7): 630-641.
[40] AKBARSHAHI H, MENZEL M, POSARIC B M, et al. Enrichment of murine CD68+ CCR2+ and CD68+ CD206+ lung macrophages in acute pancreatitis-associated acute lung injury[J]. PLoS One, 2012, 7(10): e42654.
[41] LEGSSYER R, HUAUX F, LEBACQ J, et al. Azithromycin reduces spontaneous and induced inflammation in DeltaF508 cystic fibrosis mice[J]. Respir Res, 2006, 7: 134.
[本文編輯] 姬靜芳
Correlation between alveolar macrophage subtypes and acute lung injury
TU Guo-wei1, REN Yang-hua2, SHI Yi3, MA Guo-guang1, HAO Guang-wei1, LUO Zhe1*
1. Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China2. Shanghai Medical Collage, Fudan University, Shanghai 200032, China3. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
Macrophages are important components of the innate immune system. Two major subtypes, M1 and M2, play a key role in the induction and regulation of specific immune responses, and in the development and recovery of diseases. Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are a class of severe respiratory diseases. In ALI, M1 highly activates and releases proinflammatory cytokines, which produce acute lung injury damage such as pulmonary edema and increase vascular permeability while fighting against pathogen invasion. M2 can be further subdivided into M2a, M2b and M2c subtypes according to inducing factors and their respective functions. M2a plays a role in promoting injury repair. M2b and M2c mainly function in immune regulation and suppression. M2c can also promote tissue repair. M1 and M2 can be transformed into each other. In the course of ALI, the balance between M1 and M2 is important to remove pathogens and promote tissue repair. The imbalance between M1 and M2 will lead to ALI deterioration, and even progress to ARDS. The present paper reviews the characteristics of different subtypes of macrophages and their relationship with ALI, the polarization and mutual transformation of M1 and M2, and the factors that affect the balance of different subtypes at different stages.
macrophage subtypes; acute lung injury; M1/M2 balance
2016-08-14 [接受日期] 2017-04-20
國家自然科學(xué)基金(81500067),上海市自然科學(xué)基金(16ZR1405600),上海市衛(wèi)生和計劃生育委員會科研項目(20154Y011,201440333),中山醫(yī)院科研基金(2015ZSYXGG-01,2016ZSQN23). Supported by National Natural Science Foundation of China (81500067), Natural Science Foundation of Shanghai (16ZR1405600), Program of Health and Family Planning Commission of Shanghai (20154Y011,201440333) and the Research Funds of Zhongshan Hospital (2015ZSYXGG-01, 2016ZSQN23).
屠國偉,博士,主治醫(yī)師. E-mail: tu.guowei@zs-hospital.sh.cn
*通信作者(Corresponding author). Tel: 021-64041990-3659, E-mail: luo.zhe@zs-hospital.sh.cn
10.12025/j.issn.1008-6358.2017.20160807
R 563.1
A