徐小珊,涂艷陽
(第四軍醫(yī)大學唐都醫(yī)院實驗外科,陜西西安710038)
·綜述·
膠質(zhì)瘤對替莫唑胺的耐藥性機制研究進展
徐小珊,涂艷陽
(第四軍醫(yī)大學唐都醫(yī)院實驗外科,陜西西安710038)
目前,臨床上針對膠質(zhì)瘤的標準治療方案為手術(shù)切除聯(lián)合放化療.替莫唑胺(TMZ)是一種新型的口服烷化劑,由于它能穿過血腦屏障到達患者的腫瘤病灶,發(fā)揮持久的治療作用,被廣泛用于膠質(zhì)瘤的聯(lián)合治療.但是,由于替莫唑胺耐藥性的產(chǎn)生,使得患者的生存期縮短,預(yù)后差.這種耐藥性產(chǎn)生的機制十分復雜,主要包括DNA修復酶的激活,表皮生長因子受體(EGFR)和半乳凝素?1的過表達,p53,雙微體 2(Mdm2),磷酸酶及張力蛋白同源基因(PTEN)以及miRNAs的異常調(diào)控.因此,探討膠質(zhì)瘤對替莫唑胺耐藥性的產(chǎn)生機制以及如何有效地降低替莫唑胺耐藥性,提高其療效已經(jīng)成為一個迫切需要解決的問題.本文將介紹GBM對TMZ耐藥的主要機制,以期為膠質(zhì)瘤的臨床治療提供充足的理論依據(jù).
替莫唑胺;耐藥性;膠質(zhì)瘤
膠質(zhì)瘤是一種原發(fā)性腦腫瘤,其惡性程度高,約占所有原發(fā)性神經(jīng)系統(tǒng)腫瘤的30%.致死率在35歲以下的全部惡性腫瘤中居第二位.其中,多形性膠質(zhì)母細胞瘤(glioblastoma multiform,GBM)又占腦膠質(zhì)瘤的一半以上,其惡性程度最高,每年的發(fā)病率約為百萬分之五.因為GBM生長快速,侵襲性強,僅靠手術(shù)很難完全切除,這使得腦膠質(zhì)瘤極易在術(shù)后復發(fā)[1-2].據(jù)有效數(shù)據(jù)統(tǒng)計,原發(fā)性的GBM多發(fā)于年齡大于55歲的患者,而繼發(fā)性的GBM多發(fā)于年齡在55歲以下的患者,大多是由低級別的膠質(zhì)瘤發(fā)展而來,只占GBM的10%左右[3].目前,對膠質(zhì)瘤的治療主要是手術(shù)切除聯(lián)合放化療,臨床實踐證明化療可以有效提高惡性膠質(zhì)瘤患者的生存時間與生存率.
替莫唑胺(temozolomide,TMZ)是一種口服烷化劑,能穿過血腦屏障直達病灶,是臨床上化療腦膠質(zhì)瘤的一線常用藥物之一[4].TMZ通過攻擊腫瘤細胞的DNA,致使DNA烷基化受損,損傷的部位主要在N7,N3,O6位的鳥嘌呤以及O3位腺嘌呤上,DNA烷基化受損以后會產(chǎn)生交聯(lián),從而誘導癌細胞死亡[5].有研究表明,用TMZ治療人腦膠質(zhì)瘤的有效率約為45%[6].其中,腦膠質(zhì)瘤對TMZ產(chǎn)生耐藥性是導致化療失敗的最主要原因.
有文獻研究[7]發(fā)現(xiàn),腦膠質(zhì)瘤產(chǎn)生TMZ耐藥性不是由單一因素影響導致的,主要還包括DNA損傷修復,腫瘤細胞中促癌與抑癌基因的表達,化療藥物刺激后機體的應(yīng)急反應(yīng)以及藥物對組織的滲透性等方面.本文主要針對近年來關(guān)于膠質(zhì)瘤對TMZ耐藥性產(chǎn)生的機制進行整理與綜述.
TMZ是一種僅在酸性pH下穩(wěn)定存在的咪唑并四嗪類烷化劑[8].該藥進入體循環(huán)以后快速轉(zhuǎn)化為活性化合物3?甲基?(三嗪?1?)咪唑?4?甲酰胺(MTIC),MTIC隨后與水反應(yīng)生成5?氨基咪唑?4?甲酰胺(AIC)和高反應(yīng)性甲基重氮陽離子(半衰期=0.4 s).該不穩(wěn)定的陽離子可以通過甲基轉(zhuǎn)移引發(fā)TMZ的細胞毒性反應(yīng)[9].該細胞毒性反應(yīng)主要發(fā)生在DNA分子N7,N3,O6位的鳥嘌呤以及O3位腺嘌呤上,雖然O6位上的烷基化只占所有甲基化總數(shù)的5%左右,但是它是引起TMZ產(chǎn)生細胞毒性的最主要原因[10].比較而言,N7,N3位上的烷基化相對頻繁,約占烷基化總數(shù)的80%~85%和8%~18%[11].
隨著時間的推移,腦膠質(zhì)瘤細胞對TMZ引起的損傷產(chǎn)生抵抗.這個抗性的產(chǎn)生與多個機制有關(guān),如DNA修復機制,表皮生長因子受體(epidermal growth factor receptor,EGFR)的過表達,galectin?1和雙微體2(murine double minute 2,Mdm2)的表達,p53突變以及磷酸酶和張力蛋白同源物(phosphatase and tensin homolog,PTEN)的表達.此外,TMZ對腦膠質(zhì)瘤耐藥性的產(chǎn)生與microRNA(miRNA)表達譜的改變也有一定的相關(guān)性.
2.1 DNA修復機制
2.1.1 MGMT GBM抗性的主要機理涉及甲基鳥嘌呤甲基轉(zhuǎn)移酶(MGMT),一種修復DNA的酶.MGMT相對分子質(zhì)量為22 kDa,它不僅可以除去連接到O6位鳥嘌呤中的甲基,而且可以除去其它烷基如乙基、異丙基和丁基[12].比較而言,MGMT除去甲基比其他烷基的速度要快得多[12].通過除去O6位鳥嘌呤上的甲基,可以直接修復由TMZ引起的病變[13].MGMT作為一種自殺式的修復酶,當其修復DNA上的甲基時,其145位催化中心上的半胱氨酸殘基發(fā)生改變,從而導致其失活[14].隨后MGMT被蛋白酶體降解,不再循環(huán)發(fā)揮作用[15].在不同類型的腫瘤中MGMT的表達水平有所不同[16].MGMT基因不常發(fā)生突變或缺失[17].MGMT的表達水平與MGMT啟動子的甲基化相關(guān).一些研究表明,MGMT的表達水平與多鳥嘌呤胞嘧啶(CpG)的甲基化概率成反比[17].MGMT基因的沉默是通過其CpG島啟動子上的高度甲基化來完成的[18].有數(shù)據(jù)統(tǒng)計,約有45%的新患GBM的患者呈現(xiàn)出MGMT啟動子的甲基化,因此他們對TMZ的治療反應(yīng)更好[19].能夠抑制MGMT活性的治療分子如O6?芐基鳥嘌呤(O6?BG)和O6?(4?溴苯基)鳥嘌呤已被用于TMZ治療前的預(yù)治療中[11,20-21].在體內(nèi)和體外實驗的研究中,這些化合物通過與MGMT作用降低細胞中MGMT的含量,從而達到增強TMZ治療活性的目的.它們主要通過將芐基或溴苯基共價轉(zhuǎn)移到MGMT的活性半胱氨酸殘基上,引起該酶的不可逆失活,從而發(fā)揮效應(yīng).盡管這些偽底物使得TMZ治療的有效性提高,但它們對正常細胞,特別是骨髓細胞的高毒性導致這些分子不能被廣泛應(yīng)用在臨床治療中[19].
2.1.2 MMR DNA錯配修復(MMR)是一個修復DNA合成過程中產(chǎn)生核苷酸堿基錯配的系統(tǒng)[11].在沒有MGMT存在的情況下,O6?MG持續(xù)存在,并且與胸腺嘧啶配對.所得到的O6?MG/T可以被MMR識別,隨后新合成的鏈被切除,但是O6?MG鏈保持完好無損.當產(chǎn)生另一條鏈時,重復該修復周期.胸腺嘧啶插入和切除的無效循環(huán)導致細胞周期停滯和凋亡[11,23].由MMR蛋白復合物突變引起MMR途徑受損,從而導致MMR對TMZ誘導的O6?MG加合物識別和修復失敗.這些突變導致DNA錯配繼續(xù)復制并允許細胞周期進行,使得TMZ治療效果降低[24].而且,這些突變可能在細胞周期中存在或在TMZ治療過程中獲得[25].鑒于其重要性,我們應(yīng)制定恢復MMR系統(tǒng)的策略,以期提高TMZ的療效.
2.1.3 BER 該系統(tǒng)含有多種蛋白質(zhì)和酶,能夠修復多種因素導致的DNA損傷,如氧化劑,電離輻射或烷化劑[26-27].其中,BER系統(tǒng)中對DNA損傷起主要修復作用的一種酶是多聚(ADP?核糖)聚合酶?1(PARP?1).該酶與DNA結(jié)合后以NAD+作為底物,開始合成ADP?核糖聚合鏈(PAR),其能夠招募BER復合蛋白(XRCC1,DNA聚合酶,連接酶,皮瓣核酸內(nèi)切酶1)進行DNA修復[28].
BER途徑可以修復由TMZ造成的N3和N7位甲基化[11,23,29].如果不修復的話,N3位病變能夠引起致命性的損傷[11,30].這些由TMZ引起的超過90%以上的甲基化都可以迅速被BER途徑修復.因此,當BER途徑的成員發(fā)生突變時TMZ引起的細胞毒性會增強.因此,利用PARP抑制劑限制BER的活性有望成為增強TMZ臨床治療效果的策略[31].與O6位上的甲基化相比,N7和N3位上的甲基化水平更高,盡管如此,在TMZ耐藥中BER發(fā)揮的作用不如MMR或MGMT重要.
2.2 EGFR和半乳凝素?1的過表達
2.2.1 EGFR EGFR,相對分子質(zhì)量為170 kDa,它作為一個受體分子,在腫瘤發(fā)展中通過刺激細胞增殖、遷移、血管生成促使細胞對化療產(chǎn)生抵抗[32].配體與野生型EGFR結(jié)合將導致以下信號通路被激活:Ras/Raf/MAPK(有絲分裂原激活激酶)[33]或PI3K/AKT/mTOR[34].這些信號途徑在GBM中被強烈激活后會導致細胞的自噬抑制和凋亡減少,從而使TMZ的效力減弱[35].
在原發(fā)性的GBM中,EGFR基因擴增是最常見的遺傳改變,其發(fā)生率為40%[36],而且在這些原發(fā)性的GBM中,大約有一半的腫瘤都攜帶重排EGFR的基因,這導致在這些腫瘤中表達野生型EGFR以及突變的EGFR[37].在腦膠質(zhì)母細胞瘤中,EGFR突變體Ⅲ(EGFRvⅢ)是EGFR受體中最常見的突變體,其具有一定的結(jié)構(gòu)特征,胞外結(jié)構(gòu)域中缺失了267個氨基酸,這導致受體與具有組成型酪氨酸激酶活性的配體不能結(jié)合.
臨床上已經(jīng)開發(fā)了一種治療分子來抑制EGFR信號通路.例如,西妥昔單抗1,一種可以特異性結(jié)合EGFR的單克隆抗體.它可以抑制下游信號轉(zhuǎn)導途徑[38].西妥昔單抗能夠識別野生型EGFR和EGFR?vIII受體并與之結(jié)合,引起細胞增殖受到抑制.但是,在臨床治療中使用西妥昔單抗治療GBM的結(jié)果令人失望,患者的中位生存期只有五個月[39].目前,以TMZ和西妥昔單抗結(jié)合放療治療原發(fā)性GBM的Ⅰ/Ⅱ期臨床試驗正在進行[40].此外,吉非替尼1和厄洛替尼1作為酪氨酸激酶抑制劑(TKIs)也被用于抑制EGFR信號通路的激活.它們通過與細胞質(zhì)中ATP結(jié)構(gòu)域結(jié)合阻斷EGFR磷酸化,從而抑制EGFR介導的下游途徑活化[41].這些分子在針對GBM患者治療的臨床試驗(Ⅰ期和Ⅱ期)中已經(jīng)進行了測試[42-43].雖然使用吉非替尼或厄洛替尼1聯(lián)合放射治療可以適度延長患者生存時間,但是結(jié)果并不令人滿意[44-45].有研究對TKIs和TMZ的關(guān)聯(lián)性進行了評估,結(jié)果顯示與放射治療聯(lián)合運用后接受TMZ治療的患者中位生存期確實得到了改善,但只有一小部分患者的疾病發(fā)展可被控制.實際上,GBM患者的治療結(jié)果與 PTEN的存在相關(guān)[39].而且,有文獻報道,MGMT啟動子甲基化水平高和具備完整PTEN的患者具有更顯著的生存優(yōu)勢[43].
2.2.2 半乳糖凝集素?1 該蛋白屬于凝集素家族的一員,它含有一個對β?半乳糖苷高親和力的碳水化合物識別結(jié)構(gòu)域(carbohydrate recognition domain,CRD)[46-47].半乳糖凝集素?1嵌入細胞膜,在細胞內(nèi)外都有部分結(jié)構(gòu)暴露,其位于細胞內(nèi)和細胞外的結(jié)構(gòu)功能不同,主要依賴于蛋白質(zhì)?蛋白質(zhì)相互作用.其細胞外活性取決于其本身的凝集素活性[48].星形細胞瘤的惡性程度與半乳糖凝集素?1的表達水平之間呈現(xiàn)出一定的相關(guān)性[49].
半乳糖凝集素?1是一種缺氧調(diào)節(jié)蛋白,是由缺氧刺激產(chǎn)生和分泌的[50].半乳糖凝集素已被證明在癌癥生物學的多個方面發(fā)揮重要作用:通過和整合素以及細胞外基質(zhì)部分相互作用來影響細胞的遷移[51];通過調(diào)節(jié)ORP150,一種控制血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)的成熟和分泌的因子[52],來刺激血管以及轉(zhuǎn)移灶的形成[53];通過與Ras蛋白相互作用[54-55]以及調(diào)控 p53在核內(nèi)的遷移[54]影響化療和放療的抗性.此外,半乳糖凝集素?1通過促進凋亡來發(fā)揮抑制T細胞效應(yīng)子功能,允許腫瘤細胞逃避免疫系統(tǒng)[50,56].鑒于其在化療和放療抗性中的重要作用,考慮了通過不同策略靶向半乳糖凝集素?1來提高膠質(zhì)瘤患者的治療效果.例如,合成乳果糖作為一種β?半乳糖苷對半乳糖凝集素?1的CRD域具有較高的親和性[57].半乳甘露聚糖1能夠在不同于CRD的位點與半乳糖凝集素?1結(jié)合,從而發(fā)揮抑制作用[58].且半乳甘露聚糖1經(jīng)FDA批準用于治療結(jié)腸直腸癌,并獲得了很好的結(jié)果.但是,必須進行更多的調(diào)查以評估其對GBM的影響.
2.3 p53和Mdm2在人體內(nèi)部,p53是由TP53編碼的腫瘤抑制蛋白,當細胞處于應(yīng)急狀態(tài),比如DNA受到損傷時,可導致細胞生長暫時或永久停止[59-60].某些頻繁的TP53突變導致其腫瘤抑制功能喪失,且p53突變蛋白大量累積.野生型p53由于Mdm2的抑制作用其在正常條件下具有較短的半衰期[60],但在癌細胞中,這個p53突變體的半衰期不經(jīng)歷這種抑制并累積到很高的水平[61].除了TP53基因的突變促進腫瘤細胞生長和放化療抗性之外[62],Mdm2作為一個在GBM中經(jīng)常擴增的基因[63],其過表達也會導致p53的功能喪失[64].
由于p53缺失在膠質(zhì)瘤發(fā)生發(fā)展以及抗癌藥物的抗性中發(fā)揮關(guān)鍵作用,目前正在研究多種策略以恢復p53的作用.其中用以恢復p53功能和抑制p53?Mdm2相互作用的基因治療是最重要的[65].因為基因治療可以直接將野生型p53傳遞到癌細胞中.有文獻報道,用p53的腺病毒感染細胞可以改善復發(fā)性惡性膠質(zhì)瘤患者的預(yù)后[66].由于Mdm2在膠質(zhì)瘤中過度表達,靶向Mdm2與p53的相互作用也是一種潛在的癌癥治療策略[67].用p53?Mdm2結(jié)合抑制劑處理細胞也會導致野生型p53蛋白穩(wěn)定和積累[68],之中有代表性的分子之一Nutlin?3已經(jīng)進入人們的視野,并且在臨床前研究中得到了關(guān)注.Nutlin?3能夠在p53的結(jié)合域競爭性的結(jié)合Mdm2有關(guān),這一結(jié)果導致p53游離出來從而被激活[65,68].p53?Mdm2結(jié)合抑制劑的主要限制作用僅在表達野生型p53的癌細胞中有效,在表達突變型p53的細胞中沒有此種作用.此外,重要的是應(yīng)該考慮該抑制劑可能導致的毒性作用,以及在表達p53野生型的細胞中引起p53的過表達[69].
2.4 PTENPTEN是一種腫瘤生長抑制酶,由于它在GBM中經(jīng)常突變導致腫瘤細胞增殖能力加強[70-71].PTEN通過抑制PI3K和Mdm2的轉(zhuǎn)錄保護野生型p53免于滅活和降解[72].而且,p53能夠通過與PTEN啟動子結(jié)合來增強PTEN基因轉(zhuǎn)錄而增加PTEN活性[73].此外,PTEN具有增強TP53基因轉(zhuǎn)錄活性的功能,它可以通過與p53結(jié)合來提高p53的穩(wěn)定性[74].在PTEN缺失或突變的腫瘤中,恢復野生型PTEN的表達可以抑制腫瘤細胞的致瘤性,促進凋亡,并增加癌細胞的化療敏感性[72,75].這表明野生型PTEN和野生型p53的關(guān)聯(lián)可以增強腫瘤細胞對抗癌藥物的敏感性,特別是對TMZ.
2.5 miRNAs在癌癥的發(fā)展進程中,miRNA作為一類新型致癌基因或抑癌基因,發(fā)揮著重要的作用[76].一些研究表明,異常的miRNA表達可能影響TMZ對GBM的敏感性[77],例如,在TMZ耐藥細胞株中miR?21,miR?195,miR?455?3p和 miR?10a?被上調(diào)[78-79].相反的,有些miRNA在腫瘤細胞中被下調(diào),如實驗驗證miR?145在GBM腫瘤細胞中下調(diào),這增強了TMZ的抗性[80].鑒于miRNA在癌癥發(fā)展中的雙面性,我們可以利用miRNA來開發(fā)新的治療策略,使用反義寡核苷酸或miRNA敲除手段使促癌miR?NA可以下調(diào)[81-82],而用 miRNA模擬物代替抑癌miRNA使其表達上調(diào)[83],以其達到改善癌癥患者生存的目的.
腦膠質(zhì)瘤對TMZ的耐藥性不是受單一因素的影響.通過針對相關(guān)分子的進一步研究,可以推進臨床個體化治療的方案實行.相較于傳統(tǒng)療法而言,個體化的化療方案可以降低膠質(zhì)瘤對藥物的耐藥性,增加療效,改善患者的預(yù)后,同時,探討膠質(zhì)瘤對TMZ耐藥性機制進展有助于找到某些導致腫瘤復發(fā)的新靶點,為膠質(zhì)瘤的治療提供有效的新方案.
[1]Dolecek TA,Propp JM,Stroup NE,et al.CBTRUS statistical report:primary brain and central nervous system tumors diagnosed in the United States in 2005-2009[J].Neuro Oncol,2012,14 Suppl 5:v1-49.
[2]鄭立影,呂 紅,林賦桂,等.腦膠質(zhì)瘤治療策略及其研究進展[J].吉林醫(yī)藥學院學報,2016,37(1):50-53.
[3]Ohgaki H,Dessen P,Jourde B,et al.Genetic pathways to glioblasto?ma a population?based study[J].Cancer Res,2004,64(19):6892.
[4]王永峰.我和替莫唑胺二十年[J].現(xiàn)代藥物與臨床,2013, 28(4):648-660.
[5]Fukai J,Koizumi F,Nakao N.Enhanced anti?tumor effect of zole?dronic acid combined with temozolomide against human malignant glioma cell expressing O6?methylguanine DNA methyltransferase[J].Plos One,2014,9(8):e104538.
[6]Cavaliere R,Wen PY,Schiff D.Novel therapies for malignant gliomas[J].Neurol Clin,2007,25(4):1141-1171.
[7]Weller M,Stupp R,Reifenberger G,et al.MGMT promoter methyl?ation in malignant gliomas:ready for personalized medicine[J].Nat Rev Neurol,2010,6(1):39-51.
[8]Pletsas D,Garelnabi EAE,Li L,et al.Synthesis and Quantitative Structure?Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6?Methylguanine?DNA?methyltransferase,DNA Mismatch Repair,and p53[J].J Med Chem,2013,56(17):7120-7132.
[9]Friedman HS,Kerby T,Calvert H.Temozolomide and treatment of malignant glioma[J].Clin Cancer Res,2000,6(7):2585-2597.
[10]Drabl?s F,F(xiàn)eyzi E,Aas PA,et al.Alkylation damage in DNA and RNA??repair mechanisms and medical significance[J].DNA Repair,2004,3(11):1389-1407.
[11]Zhang J,Stevens MF,Bradshaw TD.Temozolomide:mechanisms of action,repair and resistance[J].Curr Mol Pharmacol,2012,5(1):102-114.
[12]Kaina B,Christmann M,Naumann S,et al.MGMT:key node in the battle against genotoxicity,carcinogenicity and apoptosis induced by alkylating agents[J].DNA Repair(Amst),2007,6(8):1079-1099.
[13]Park CK,Kim JE,Ji YK,et al.The changes in MGMT promoter methylation status in Initial and recurrent glioblastomas?translational Oncology[J].Transl Oncol,2012,5(5):393-397.
[14]Tubbs JL,Pegg AE,Tainer JA.DNA binding,nucleotide flipping,and the helix?turn?helix motif in base repair by O6?alkylguanine?DNA alkyltransferase and its implications for cancer chemotherapy[J].DNA Repair(Amst),2007,6(8):1100-1115.
[15]Xuwelliver M,Pegg AE.Degradation of the alkylated form of the DNA repair protein,O(6)?alkylguanine?DNA alkyltransferase[J].Carcinogenesis,2002,23(5):823.
[16]Howell SR.Inactivation of the DNA?repair gene MGMT and the clini?cal response of gliomas to alkylating agents[J].N Engl J Med,2000,343(19):1350-1354.
[17]Bhakat KK,Mitra S.CpG methylation?dependent repression of the human O6?methylguanine?DNA methyltransferase gene linked to chromatin structure alteration.[J].Carcinogenesis,2003,24(8):1337-1345.
[18]Silber JR,Bobola MS,Blank A,et al.O(6)?methylguanine?DNA methyltransferase in glioma therapy:promise and problems.[J].Biochim Biophys Acta,2012,1826(1):71-82.
[19]Hegi ME,Diserens AC,Gorlia T,et al.MGMT gene silencing and benefit from temozolomide in glioblastoma[J].N Engl J Med,2005,352(10):997-1003.
[20]Kaina B,Margison GP,Christmann M.Targeting O6?methylguanine?DNA methyltransferase with specific inhibitors as a strategy in cancer therapy[J].Cell Mol Life Sci,2010,67(21):3663-3681.
[21]Verbeek B,Southgate TD,Gilham DE,et al.O6?Methylguanine?DNA methyltransferase inactivation and chemotherapy[J].Br Med Bull,2008,85:17-33.
[22]Hansen WK,Kelley MR.Review of Mammalian DNA Repair and Translational Implications[J].J Pharmacol Exp Ther,2000,295(1):1-9.
[23]Fu D,Calvo JA,Samson LD.Balancing repair and tolerance of DNA damage caused by alkylating agents.[J].Nat Rev Cancer,2012,12(2):104-120.
[24]Liu L,Markowitz S,Gerson SL.Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3?bis(2?chloroethyl)nitrosourea[J].Cancer Res,1996,56(23):5375-5379.
[25]Yip S,Miao J,Cahill DP,et al.MSH6 mutations arise in glioblasto?mas during temozolomide therapy and mediate temozolomide resist?ance[J].Clin Cancer Res,2009,15(14):4622-4629.
[26]Almeida KH,Sobol RW.A unified view of base excision repair:lesion?dependent protein complexes regulated by post?translational modification[J].DNA Repair(Amst),2007,6(6):695-711.
[27]Wood RD,Mitchell M,Sgouros J,et al.Human DNA repair genes[J].Science,2001,291(5507):1284-1289.
[28]Malanga M,Althaus FR.The role of poly(ADP?ribose)in the DNA damage signaling network[J].Biochem Cell Biol,2005,83(3):354-364.
[29]Denny BJ,Wheelhouse RT,Stevens MF,et al.NMR and molecular modeling investigation of the mechanism of activation of the antitu?mor drug temozolomide and its interaction with DNA[J].Biochem?istry,1994,33(31):9045-9051.
[30] Horton JK,Wilson SH.Hypersensitivity phenotypes associated with genetic and synthetic inhibitor?induced base excision repair deficiency[J].DNA Repair(Amst),2007,6(4):530-543.
[31]Mu?oz?Gámez JA,López Viota J,Barrientos A,et al.Synergistic cytotoxicity of the poly(ADP?ribose)polymerase inhibitor ABT?888 and temozolomide in dual?drug targeted magnetic nanoparticles[J].Liver Int,2015,35(4):1430-1441.
[32]Huang PH,Xu AM,White FM.Oncogenic EGFR signaling networks in glioma[J].Sci Signal,2009,2(87):re6.
[33]Guha A,F(xiàn)eldkamp MM,Lau N,et al.Proliferation of human malig?nant astrocytomas is dependent on Ras activation[J].Oncogene,1997,15(23):2755-2765.
[34]Narita Y,Nagane M,Mishima K,et al.Mutant epidermal growth factor receptor signaling down?regulates p27 through activation of the phosphatidylinositol 3?kinase/Akt pathway in glioblastomas[J].Cancer Res,2002,62(22):6764-6769.
[35]Furuta S,Hidaka E,Ogata A,et al.Ras is involved in the negative control of autophagy through the class I PI3?kinase[J].Oncogene,2004,23(22):3898-3904.
[36]Ekstrand AJ,James CD,Cavenee WK,et al.Genes for epidermal growth factor receptor,transforming growth factor alpha,and epidermal growth factor and their expression in human gliomas in vivo[J].Cancer Res,1991,51(8):2164-2172.
[37]Lo HW.EGFR?targeted therapy in malignant glioma:novel aspects and mechanisms of drug resistance[J].Curr Mol Pharmacol,2010, 3(1):37-52.
[38]Weiner LM,Surana R,Wang S.Monoclonal antibodies:versatile platforms for cancer immunotherapy[J].Nat Rev ImmunoL,2010,10(5):317-327.
[39]Neyns B,Sadones J,Joosens E,et al.Stratified phase II trial of cetuximab in patients with recurrent high?grade glioma.[J].Ann Oncol,2009,20(9):1596.
[40]Combs SE,Heeger S,Haselmann R,et al.Treatment of primary glioblastoma multiforme with cetuximab,radiotherapy and temozolo?mide(GERT)?phase I/II trial:study protocol[J].BMC Cancer,2006,6:133.
[41]Brandes AA,F(xiàn)ranceschi E,Tosoni A,et al.Epidermal growth factor receptor inhibitors in neuro?oncology:hopes and disappointment[J].Clin Cancer Res,2008,14(4):957-960.
[42]Brown PD,Krishnan S,Sarkaria JN.et al.Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme:North Central Cancer Treatment Group Study N0177[J].J Clin Oncol,2008,26(34):5603-5609.
[43]Prados MD,Chang SM,Butowski N,et al.Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma[J].J Clin Oncol,2009,27(4):579-584.
[44]Chakravarti A,Wang M,Robins HI,et al.RTOG 0211:A Phase 1/2 study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients[J].Int J Radiat Oncol Biol Phys,2013,85(5):1206-1211.
[45]Uhm JH,Ballman KV,Wu W,et al.Phase II evaluation of gefitinib in patients with newly diagnosed Grade 4 astrocytoma:Mayo/North central cancer treatment group study N0074[J].Int J Radiat Oncol Phys,2011,80(2):347-353.
[46]Lefranc F,Rynkowski M,Dewitte O,et al.Present and potential future adjuvant issues in high?grade astrocytic glioma treatment[J].Adv Tech Stand Neurosurg,2009,34:3-35.
[47]Saussez S,Camby I,Toubeau G,et al.Galectins as modulators of tumor progression in head and neck squamous cell carcinomas[J].Head Neck,2007,29(9):874-884.
[48]Camby I,Le Mercier M,Lefranc F,et al.Galectin?1:a small protein with major functions[J].Glycobiology,2006,16(11):137R-157R.
[49]Verschuere T,Vleeschouwer SD,Lefranc F,et al.Galectin?1 and immunotherapy for brain cancer[J].Expert Rev Neurother,2014,11(4):533-543.
[50]Le QT,Shi G,Cao H,et al.Galectin?1:a link between tumor hypoxia and tumor immune privilege[J].J Clin Oncol,2005,23(35):8932-8941.
[51]Camby I,Decaestecker C,Lefranc F,et al.Galectin?1 knocking down in human U87 glioblastoma cells alters their gene expression pattern[J].Biochem Biophys Res Commun,2005,335(1):27-35.
[52]Rabinovich GA,Baum LG,Tinari N,et al.Galectins and their ligands:amplifiers,silencers or tuners of the inflammatory response[J].Trends Immunol,2002,23(6):313-320.
[53]Strik HM,Hoffmann A.Galectins in malignant gliomas:expression,functions,and possible therapeutic options[M].Galectins,2012:223-234.
[54]Le Mercier M,Lefranc F,Mijatovic T,et al.Galectin?1 involvement in glioma chemoresistance[J].Toxicol Appl Pharmacol,2008,229(2):172-183.
[55]Paz A,Haklai R,Elad?Sfadia G,et al.Galectin?1 binds oncogenic H?Ras to mediate Ras membrane anchorage and cell transformation[J].Oncogene,2001,20(51):7486-7493.
[56]Rubinstein N,Alvarez M,Zwirner NW,et al.Targeted inhibition of galectin?1 gene expression in tumor cells results in heightened T cell?mediated rejection:A potential mechanism of tumor?immune privilege[J].Cancer Cell,2004,5(3):241-251.
[57]Rabinovich GA,Cumashi A,Bianco GA,et al.Synthetic lactulose amines:novel class of anticancer agents that induce tumor?cell apoptosis and inhibit galectin?mediated homotypic cell aggregation and endothelial cell morphogenesis[J].Glycobiology,2006,16(3):210-220.
[58]Miller MC,Klyosov A,Mayo KH.The α?galactomannan Davanat binds galectin?1 at a site different from the conventional galectin carbohydrate binding domain[J].Glycobiology,2009,19(9):1034-1045.
[59]Lotem J,Peled?kamar M,Groner Y,et al.Cellular oxidative stress and the control of apoptosis by wild?type p53,cytotoxic compounds,and cytokines[J].Proc Natl Acad Sci U S A,1996,93(17):9166-9171.
[60]Shangary S,Wang S.Small?molecule inhibitors of the MDM2?p53 protein?protein interaction to reactivate p53 function: a novel approach for cancer therapy[J].Annu Rev Pharmacol Toxicol,2009,49:223-241.
[61]Olivier M,Petitjean A,F(xiàn)romentel CDC,et al.TP53,Mutations in Human Cancers:Selection versus Mutagenesis[M].Springer US,2010:1-18.
[62]Burton EC,Lamborn KR,F(xiàn)orsyth P,et al.Aberrant p53,mdm2,and proliferation differ in glioblastomas from long?term compared with typical survivors[J].Clin Cancer Res,2002,8(1):180-187.
[63]Freedman DA,Wu L,Levine AJ.Functions of the MDM2 oncopro?tein[J].Cell Mol Life Sci,1999,55(1):96-107.
[64]Shchors K,Persson AI,Rostker F,et al.Using a preclinical mouse model of high?grade astrocytoma to optimize p53 restoration therapy[J].Proc Natl Acad Sci U S A,2013,110(16):E1480-e1489.
[65]Hong B,van den Heuvel AP,Prabhu VV,et al.Targeting tumor suppressor p53 for cancer therapy:strategies,challenges and oppor?tunities[J].Curr Drug Targets,2014,15(1):80-89.
[66]Zhu JX,Li ZM,Geng FY,et al.[Treatment of recurrent malignant gliomas by surgery combined with recombinant adenovirus?p53 in?jection][J].Zhonghua Zhong Liu Za Zhi,2010,32(9):709-712.
[67]Wang AL,Liu ZX,Li G,et al.Expression and significance of P53 protein and MDM?2 protein in human gliomas[J].Clin Med(Engl),2011,124(16):2530-2533.
[68]Vassilev LT,Vu BT,Graves B,et al.In vivo activation of the p53 pathway by small?molecule antagonists of MDM2[J].Science,2004,303(5659):844-848.
[69]Ringshausen I,O'Shea CC,F(xiàn)inch AJ,et al.Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo[J].Cancer Cell,2006,10(6):501-514.
[70]Elhag R,Mazzio EA,Soliman KF.The effect of silibinin in enhan?cing toxicity of temozolomide and etoposide in p53 and PTEN?mutated resistant glioma cell lines[J].Anticancer Res,2015,35(3):1263-1269.
[71]Knobbe CB,Merlo A,Reifenberger G.Pten signaling in gliomas[J].Neuro Oncol,2002,4(3):196-211.
[72]Mayo LD,Dixon JE,Durden DL,et al.PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy[J].Biol Chem,2002,277(7):5484-5489.
[73]Stambolic V,Macpherson D,Sas D,et al.Regulation of PTEN transcription by p53[J].Mol Cell,2001,8(2):317-325.
[74]Freeman DJ,Li AG,Li HH,et al.PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase?dependent and independent mechanisms[J].Cancer Cell,2003,3(2):117-130.
[75]Li SZ,Qiao SF,Zhang JH,et al.Quercetin increase the chemosensitivity of breast cancer cells to doxorubicin via PTEN/Akt pathway[J].Anticancer Agents Med Chem,2015,15(9):1185-1189.
[76]Babashah S,Soleimani M.The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis[J].Eur J Cancer,2011,47(8):1127-1137.
[77]Mizoguchi M,Guan Y,Yoshimoto K,et al.Clinical implications of microRNAs in human glioblastoma[J].Front Oncol,2013,3:19.
[78]Shi L,Chen J,Yang J,et al.MiR?21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl?2 ratio and caspase?3 activity[J].Brain Res,2010,1352:255-264.
[79]Ujifuku K,Mitsutake N,Takakura S,et al.miR?195,miR?455?3p and miR?10a(?)are implicated in acquired temozolomide resistance in glioblastoma multiforme cells[J].Cancer Lett,2010,296(2):241-248.
[80]Yang YP,Chien Y,Chiou GY,et al.Inhibition of cancer stem cell?like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane?short branch PEI[J].Biomaterials,2012,33(5):1462-1476.
[81]Ebert MS,Neilson JR,Sharp PA.MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells[J].Nat Methods,2007,4(9):721-726.
[82]Esau CC.Inhibition of microRNA with antisense oligonucleotides[J].Methods,2008,44(1):55-60.
[83]Chistiakov DA,Chekhonin VP.Contribution of microRNAs to radio?and chemoresistance of brain tumors and their therapeutic potential[J].Eur J Pharmacol,2012,684(1-3):8-18.
Research advances on the mechanism of glioma resistance to temozolomide
XU Xiao?Shan,TU Yan?Yang
Department of Experimental Surgery,Tangdu Hospital,F(xiàn)ourth Military Medical University,Xi'an 710038,China
At present,the standard treatment strategy for glioma is surgical resection combined with radiotherapy and chemothera?py.Temozolomide(TMZ)is a novel oral alkylating agent that is widely used in the combined treatment of gliomas.Because it could pass through the blood?brain barrier to reach the patient's tumor lesions and play a lasting therapeutic effect.However,the survival time of glioma patients is short and the prognosis is poor due to the drug resistance of temozolomide.The mechanism of this drug resistance is very complex,including the activation of DNA repair enzymes,the overexpression of EGFR(epidermal growth factor receptor) and galactinin?1,the abnormal regulation of p53,Mdm2(mouse bimodal 2),PTEN(phosphatase and tonic protein homologs)and miRNAs.Therefore,we need a better un?derstanding of the mechanism of glioma resistance to temozolo?mide,which will help us to find a solution to reduce the resistance of temozolomide and improve the efficacy of chemotherapy drugs.
temozolomide;drug resistance;glioma
R739.41
A
2095?6894(2017)07?55?06
2017-05-24;接受日期:2017-06-06
國家自然科學基金(81572983);陜西省社會發(fā)展科技攻關(guān)項目 (2015SF027);唐 都 醫(yī) 院 創(chuàng) 新 發(fā) 展 基 金 資 助 項 目(2016JCYJ013)
徐小珊.碩士.E?mail:275720539@qq.com
涂艷陽.博士,副教授,副主任醫(yī)師.E?mail:tu.fmmu@gmail.com