• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    腦膠質(zhì)瘤診斷的分子遺傳學研究進展

    2017-09-03 10:20:27占昌友
    轉(zhuǎn)化醫(yī)學電子雜志 2017年7期
    關鍵詞:室管膜星形母細胞

    官 娟,占昌友

    (復旦大學基礎醫(yī)學院藥理系,上海200033)

    腦膠質(zhì)瘤診斷的分子遺傳學研究進展

    官 娟,占昌友

    (復旦大學基礎醫(yī)學院藥理系,上海200033)

    膠質(zhì)瘤是中樞神經(jīng)系統(tǒng)中最常見的惡性腫瘤,全基因組分子圖譜已揭示不同類型膠質(zhì)瘤的遺傳學和表觀分子生物學特征.2016年世界衛(wèi)生組織在經(jīng)典的組織病理學診斷基礎上,將分子標志物納入膠質(zhì)瘤的分類中,為膠質(zhì)瘤的診斷提供了一套新的金標準,有望對臨床上膠質(zhì)瘤的干預和預后產(chǎn)生重要意義.

    膠質(zhì)瘤;分子遺傳學;生物標志物;診斷

    0 前言

    膠質(zhì)瘤占所有原發(fā)性惡性腦腫瘤的80%,在美國膠質(zhì)瘤年發(fā)病率為6/100000[1-2].2007年世界衛(wèi)生組織(WHO)根據(jù)膠質(zhì)瘤的組織學特征將其分為Ⅰ~Ⅳ四個等級,其中Ⅰ級腫瘤生長非常緩慢,手術切除有治愈的可能,Ⅱ級和Ⅲ級惡性程度較高,預后較差,而Ⅳ級惡性程度最高,中位生存期只有14~16個月[1,3].組織形態(tài)學分類一度成為臨床上膠質(zhì)瘤診斷的金標準,但膠質(zhì)瘤組織形態(tài)類型繁多,各類型的臨床表現(xiàn)、分子標志物、治療策略、預后不盡相同,不同觀察者對腫瘤分級也存在偏差[4].2016年,世界衛(wèi)生組織在2007版形態(tài)學分類方法的基礎上將生物標志物納入膠質(zhì)瘤分類系統(tǒng)中,規(guī)定:結(jié)合組織形態(tài)學、WHO分級和生物標志三個層次對膠質(zhì)瘤做出綜合診斷,有利于臨床醫(yī)生對膠質(zhì)瘤的臨床表現(xiàn)和預后評估作出精準判斷[5].本文將對2016版WHO分類系統(tǒng)中主要類型膠質(zhì)瘤的相關生物標志物進行綜述.

    1 WHOⅠ級

    1.1 纖維性星形膠質(zhì)細胞瘤(pilocytic astrocytoma)

    纖維性星形膠質(zhì)細胞瘤的主要特征是遺傳學改變導致MAPK信號通路激活[6],位于染色體7q上的BRAF和KIAA1549基因融合,是預后良好的生物標志物[7].該類型膠質(zhì)瘤常伴有 MAPK信號通路中RAF1,PTPN11,NTRK2等基因的融合或 BRAF,KRAS,F(xiàn)GFR1,NF1基因突變[6](表1).而非MAPK信號通路中基因突變并不多見,因此,該型細胞瘤是一種“單信號通路疾病”.毛細胞粘液樣細胞瘤(pilo?myxoid astrocytoma)是纖維性星形細胞瘤的罕見變型體,術后易局部復發(fā)、可沿脊髓傳播[4].

    1.2 室管膜下的巨細胞型星形膠質(zhì)細胞瘤(sub?ependymal giant?cell astrocytoma) 室管膜下的巨細胞型星形細胞瘤與結(jié)節(jié)性硬化復合體(tuberous sclerosis complex,TSC)的形成密切相關,基因突變和等位基因的缺失導致錯構(gòu)瘤蛋白(hamartin,TSC1)或薯球蛋白(tuberin,TSC2)表達缺失,最終導致mTOR信號通路激活[8](表1).

    1.3 星形增生性室管膜細胞瘤(subependymoma)室管膜細胞瘤具有9種不同的亞型,主要分布于幕上、顱后窩和脊髓,各有3種不同的亞型[9].其中星形細胞增生性室管膜瘤在這3個部位均有發(fā)生,愈后較好.

    2 WHOⅡ、Ⅲ級

    WHOⅢ級膠質(zhì)瘤多由Ⅱ級膠質(zhì)瘤發(fā)展而來,在此不再分開贅述.

    表1 各類腦膠質(zhì)瘤的生物標志物

    2.1 星形膠質(zhì)細胞瘤(astrocytic gliomas) IDH是膠質(zhì)瘤發(fā)病過程中突變最早的基因[10],但只有 IDH基因突變并不能導致膠質(zhì)瘤的發(fā)生[11].IDH突變的星形膠質(zhì)細胞瘤常伴有TP53和ATRX基因的突變.ATRX位于性染色體Xq21.1[12-14],編碼染色體重組調(diào)節(jié)因子,它的突變導致細胞核表達的ATRX的缺失,致使端粒功能障礙和廣泛的基因組失穩(wěn)[15],容易導致彌漫性星形膠質(zhì)瘤(WHOⅡ)轉(zhuǎn)變?yōu)橥诵行孕切文z質(zhì)瘤(anaplastic astrocytoma)(WHOⅢ),IDH基因二次突變,并伴有染色體9p21缺失[16](表1).

    2.2 少突神經(jīng)膠質(zhì)瘤(oligodendrogliomas) 少突神經(jīng)膠質(zhì)瘤伴有IDH基因突變和染色1p和19q共缺失.絕大多數(shù)的少突神經(jīng)膠質(zhì)瘤 TERT啟動子區(qū)TERT基因編碼的端粒酶反轉(zhuǎn)錄酶與染色體端粒酶mRNA共同維持端粒的長度和結(jié)構(gòu),位于染色體5p15.33.正常細胞中,細胞每分裂一次,端粒會縮短50~100 bp,逐漸失去DNA保護功能,細胞老化,凋亡.在膠質(zhì)瘤細胞中,TERT基因突變,端粒酶活性不減弱,端粒不縮短,細胞失去老化和凋亡的能力,不斷進行分裂[17],最終導致腫瘤的發(fā)生.約2/3的患者伴有CIC突變,介導轉(zhuǎn)錄抑制酶的同系物 Drosophila capicua失活.約1/3的患者伴有FUBR1突變,F(xiàn)UBR1可編碼上游的結(jié)合蛋白,調(diào)節(jié)MYC的表達[18].這些基因的突變可促使該類型的膠質(zhì)瘤進一步惡化,發(fā)展為WHOⅢ級,并伴有染色體9p21缺失[19],轉(zhuǎn)錄因子TF12突變,最終導致MYC信號通路的激活[20](表1).

    2.3 多形性黃色星形細胞瘤(pleomorphic xanthoas?trocytoma,PXA) PXA與BRAF?600突變有關,常伴有純合子CDKN2A缺失及p16INK4A表達減少.基因的突變常導致PXA(WHOⅡ)發(fā)展為退行性型PXA(WHOⅢ)[21-23](表1).

    2.4 室管膜細胞瘤(ependymomas) 室管膜細胞瘤中,兒童有 2/3的幕上室管膜細胞瘤(supratentorial ependymomas)有基因重排現(xiàn)象:NF?κB亞基RELA和C11orf95融合,致使 NF?κB轉(zhuǎn)錄異常,愈后較差,YAP1融合的患者較少見,但愈后較好.發(fā)生與顱后窩上的腫瘤有兩種類型:PF?A型和PF?B型,前者染色體較穩(wěn)定,愈后較差;后者染色體不穩(wěn)定,愈后相對較好.發(fā)生于脊髓的膠質(zhì)瘤多伴有NF2基因的突變,而粘液乳頭狀室管膜細胞瘤常伴有多個染色體的畸變,愈后較差(表1).

    3 WHOⅣ級

    3.1 膠質(zhì)母細胞瘤(glioblastoma) 根據(jù)IDH基因是否突變,可將膠質(zhì)母細胞瘤分為兩大類型:IDH基因未突變型膠質(zhì)母細胞瘤和IDH突變型膠質(zhì)母細胞瘤.IDH基因未突變的膠質(zhì)母細胞瘤在中老年較常見,惡性程度最高,病程一般小于3個月[4].在年齡大于55歲的患者中,若膠質(zhì)瘤的發(fā)病位置在非中線位置(nonmidline locations)且 R132H陰性,可確診為IDH未突變型膠質(zhì)母細胞瘤.而年齡小于55歲的膠質(zhì)瘤患者,需排除IDH基因突變,方可確診為IDH基因未突變的膠質(zhì)母細胞瘤[4].患者常具有以下幾個特征:7號染色體增益;10號染色體變?yōu)閱误w;PTEN突變或純合子缺失;CDKN2A和CKN2B純合子缺失;TERT啟動子突變[24](表1).

    IDH基因突變的膠質(zhì)母細胞瘤約占10%左右,常見于青壯年[4],可由各種WHOⅡ和Ⅲ級中的原發(fā)性膠質(zhì)瘤發(fā)展而來.其基因圖譜與IDH突變的星形膠質(zhì)瘤極為相似,伴有 TP53和 ATRX基因突變及G?CIMP,但其DNA甲基化水平較低,愈后較IDH基因未突變的好[25](表1).

    3.2 彌漫性中線膠質(zhì)瘤(H3?K27M?mutant diffuse midline glioma) H3?K27M突變的彌漫性中線細胞瘤,發(fā)病位置主要集中于丘腦、腦干和脊髓.該類型的腫瘤中常見于編碼組蛋白?H3的基因 H3F3A或HIST1H3B/C中K27M突變,通過破壞PRC2的募集和抑制組蛋白?賴氨酸?N甲基轉(zhuǎn)移酶EZH2的活性使細胞內(nèi)三甲基化的H3K27減少.該類型膠質(zhì)瘤常伴有TP53和PPM1D基因突變和PDGFRA,MYC,MYCN,CDK4,CDK6等原癌基因的增殖[13,26-27].

    4 對術后治療有指導價值的生物標志物

    4.1 啟動子MGMT甲基化增加MGMT是一種修復6O甲基鳥嘌呤的酶,位于染色體10q26,可作為甲基轉(zhuǎn)移酶和甲基受體蛋白,將烷化劑作用下形成的6O位甲基化鳥嘌呤上的甲基移除到自身的活性半胱氨基酸殘基上,修復損傷的DNA,同時自身不可逆失活為烷基化MGMT,在修復DNA烷基化損傷的過程中至關重要.但MGMT修復DNA損傷的同時,阻止化療藥物形成的二級損傷導致了烷化劑耐藥性.測定MGMT水平或MGMT啟動子甲基化狀態(tài)可預測腫瘤對烷化劑化療藥物的藥敏性,為實現(xiàn)個體化化療提供理論和實踐依據(jù),也可用于膠質(zhì)瘤患者愈后評估[28].

    4.2 1p/19q共缺失染色體1p/19q聯(lián)合缺失是由染色體不平衡異位構(gòu)成[29-30],少突膠質(zhì)細胞瘤常伴有IDH突變和染色體1p/1q共缺失.95%以上的少突膠質(zhì)瘤細胞存在啟動子TERT區(qū)突變.臨床對照試驗結(jié)果顯示:染色體1p/19生物標志物是臨床上實施PVC方案的指標,且患者生存期較長,預后良好[31-32].

    4.3 新出現(xiàn)的輔助術后治療的分子標志物BRAF?V600E突變極有希望會成為適用于BRAF抑制劑治療的分子標記物[33],檢測IDH基因是否突變有助于判斷該類型的膠質(zhì)瘤是否適用于IDH突變抑制劑治療,或判斷臨床中是否適用于靶向IDH1?R132H的疫苗治療[13].靶向EGFR或EGFRvIII的治療方法也需要檢測是否有EGFR增殖或EGFRvIII陽性[34-36].其他分子生物標記物如:FGFR?TACC融合,可以判斷是否適用于FGFR抑制劑的治療[37-38].

    5 結(jié)語

    將分子標志物納入膠質(zhì)瘤的分型中,拓寬了膠質(zhì)瘤的診斷和治療前景,臨床上結(jié)合組織形態(tài)和遺傳學改變對膠質(zhì)瘤做出“綜合性”診斷,使得病理診斷更接近膠質(zhì)瘤的生物學特征,指導膠質(zhì)瘤的精準治療.

    [1]Gilbert MR,Wang M,Aldape KD,et al.Dose?dense temozolomide for newly diagnosed glioblastoma:a randomized phaseⅢclinical trial[J].J Clin Oncol,2013,31(32):4085-4091.

    [2]Ostrom QT,Gittleman H,F(xiàn)ulop J,et al.CBTRUS statistical report:primary brain and central nervous system tumors diagnosed in the United States in 2008-2012[J].J Neurooncol,2015,17 Suppl 4:iv1-iv62.

    [3]Chinot OL,Wick W,Mason W,et al.Bevacizumab plus radiothera?py?temozolomide for newly diagnosed glioblastoma[J].N Engl J Med,2014,370(8):709-722.

    [4] Reifenberger G,Wirsching HG,Knobbe?Thomsen CB,et al.Advances in the molecular genetics of gliomas?implications for classi?fication and therapy[J].Nat Rev Clin oncol,2016.

    [5]Malzkorn B,Reifenberger G.Practical implications of integrated glioma classification according to the World Health Organization classification of tumors of the central nervous system 2016[J].Curr Opin Oncol,2016,28(6):494-501.

    [6]Jones DT,Hutter B,J?ger N,et al.Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma[J].Nat Genet,2013,45(8):927-932.

    [7]Hawkins C,Walker E,Mohamed N,et al.BRAF?KIAA1549 fusion predicts better clinical outcome in pediatric low?grade astrocytoma[J].Clin Cancer Res,2011,17(14):4790-4798.

    [8]Chan JA,Zhang H,Roberts PS,et al.Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas:biallelic inactivation of TSC1 or TSC2 leads to mTOR activation[J].J Neuropathol Exp Neurol,2004,63(12):1236-1242.

    [9]Pajtler KW,Witt H,Sill M,et al.Molecular classification of ependymal tumors across all CNS compartments,histopathological grades,and age groups[J].Cancer Cell,2015,27(5):728-743.

    [10]Suzuki H,Aoki K,Chiba K,et al.Mutational landscape and clonal architecture in grade II and III gliomas[J].Nat Genet,2015,47(5):458-468.

    [11]Sasaki M,Knobbe CB,Munger JC,et al.IDH1(R132H)mutation increases murine haematopoietic progenitors and alters epigenetics[J].Nature,2012,488(7413):656-659.

    [12]Wiestler B,Capper D,Sill M,et al.Integrated DNA methylation and copy?number profiling identify three clinically and biologically relevant groups of anaplastic glioma[J].Acta Neuropathol,2014,128(4):561-571.

    [13]Schwartzentruber J,Korshunov A,Liu XY,et al.Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblas?toma[J].Nature,2012,482(7384):226-231.

    [14]Wiestler B,Capper D,Holland?Letz T,et al.ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis[J].Acta Neuropathol,2013,126(3):443-451.

    [15]Abedalthagafi M,Phillips JJ,Kim GE,et al.The alternative lengthe?ning of telomere phenotype is significantly associated with loss of ATRX expression in high?grade pediatric and adult astrocytomas:a multi?institutional study of 214 astrocytomas[J].Mod Pathol,2013,26(11):1425-1432.

    [16]Watson LA,Goldberg H,Bérubé NG.Emerging roles of ATRX in cancer[J].Epigenomics,2015,7(8):1365-1378.

    [17]Willeit P,Willeit J,Mayr A,et al.Telomere length and risk of inci?dent cancer and cancer mortality[J].JAMA,2010,304(1):69-75.

    [18]Bettegowda C,Agrawal N,Jiao Y,et al.Mutations in CIC and FUBP1 contribute to human oligodendroglioma[J].Science,2011,333(6048):1453-1455.

    [19]Alentorn A,Dehais C,Ducray F,et al.Allelic loss of 9p21.3 is a prognostic factor in 1p/19q codeleted anaplastic gliomas[J].Neurology,2015,85(15):1325-1331.

    [20]Labreche K,Simeonova I,Kamoun A,et al.TCF12 is mutated in anaplastic oligodendroglioma[J].Nat Commun,2015,6:7207.

    [21]Weber RG,Hoischen A,Ehrler M,et al.Frequent loss of chromo?some 9,homozygous CDKN2A/p14(ARF)/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas[J].Oncogene,2007,26(7):1088-1097.

    [22]Schindler G,Capper D,Meyer J,et al.Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra?cerebellar pilocytic astrocytoma[J].Acta Neuropathol,2011,121(3):397-405.

    [23]Koelsche C,Sahm F,W?hrer A,et al.BRAF?mutated pleomorphic xanthoastrocytoma is associated with temporal location,reticulin fiber deposition and CD34 expression[J].Brain Pathol,2014,24(3):221-229.

    [24]Aldape K,Zadeh G,Mansouri S,et al.Glioblastoma:pathology,molecular mechanisms and markers[J].Acta Neuropathol,2015,129(6):829-848.

    [25] Ceccarelli M,Barthel FP,Malta TM,et al.Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma[J].Cell,2016,164(3):550-563.

    [26]Wu G,Broniscer A,McEachron TA,et al.Somatic histone H3 alter?ations in pediatric diffuse intrinsic pontine gliomas and non?brainstem glioblastomas[J].Nat Genet,2012,44(3):251-253.

    [27]Buczkowicz P,Hoeman C,Rakopoulos P,et al.Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations[J].Nat Genet,2014,46(5):451-456.

    [28]楊燕武,毛 慶.膠質(zhì)瘤診斷和預后標志物的研究進展[J].中國神經(jīng)腫瘤雜志,2012,10(1):45-50.

    [29]Griffin CA,Burger P,Morsberger L,et al.Identification of der(1;19)(q10;p10)in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss[J].J Neuropathol Exp Neurol,2006,65(10):988-994.

    [30]Jenkins RB,Blair H,Ballman KV,et al.A t(1;19)(q10;p10)mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma[J].Cancer Res,2006,66(20):9852-9861.

    [31]van den Bent MJ,Brandes AA,Taphoorn MJ,et al.Adjuvant procar?bazine,lomustine,and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma:long?term follow?up of EORTC brain tumor group study 26951[J].J Clin Oncol,2013,31(3):344-350.

    [32]Cairncross G,Wang M,Shaw E,et al.PhaseⅢtrial of chemoradio?therapy for anaplastic oligodendroglioma:long?term results of RTOG 9402[J].J Clin Oncol,2013,31(3):337-343.

    [33]Preusser M,Bienkowski M,Birner P.BRAF inhibitors in BRAF?V600 mutated primary neuroepithelial brain tumors[J].Expert Opin Investig Drugs,2016,25(1):7-14.

    [34]Sampson JH,Heimberger AB,Archer GE,et al.Immunologic escape after prolonged progression?free survival with epidermal growth factor receptor variantⅢ peptide vaccination in patients with newly diag?nosed glioblastoma[J].J Clin Oncol,2010,28(31):4722-4729.

    [35]Phillips AC,Boghaert ER,Vaidya KS,et al.ABT?414,an antibody?drug conjugate targeting a tumor?selective EGFR epitope[J].Mol Cancer Ther,2016,15(4):661-669.

    [36]Schuster J,Lai RK,Recht LD,et al.A phase II,multicenter trial of rindopepimut(CDX?110)in newly diagnosed glioblastoma:the ACT III study[J].Neuro Oncol,2015,17(6):854-861.

    [37]Singh D,Chan JM,Zoppoli P,et al.Transforming fusions of FGFR and TACC genes in human glioblastoma[J].Science,2012,337(6099):1231-1235.

    [38]Di Stefano AL,F(xiàn)ucci A,F(xiàn)rattini V,et al.Detection,characterization,and inhibition of FGFR?TACC fusions in IDH wild?type glioma[J].Clin Cancer Res,2015,21(14):3307-3317.

    Research progress on molecular genetics in the diagnosis of glioma

    GUAN Juan,ZHAN Chang?You
    Department of Pharmacology,School of Basic Medical Sciences,F(xiàn)udan University,Shanghai 200033,China

    Gliomas are among the most frequent malignant tumors in central nervous system.Genome?wide molecular?profi?ling studies have revealed the characteristics of genetic alteration and epigenetic profile associated with different types of gliomas.In 2016,the WHO classification of central nervous system tumors has been revised,in which molecular biomarkers have been incor?porated based on classic histology for the categorization of gliomas.Those biomarkers would serve as a gold standard in the diagnosis of glioma and guide precise therapy and evaluation of prognosis in clinical practice.

    glioma;molecular genetics;biomarker;diagnosis

    R739.41

    A

    2095?6894(2017)07?07?04

    2017-04-22;接受日期:2017-05-05

    國家自然科學基金(81673361)

    官 娟.博士生.研究方向:靶向藥物遞送.E?mail:16111010088@fudan.edu.cn

    占昌友.研究員,青年千人.研究方向:靶向藥物遞送.E?mail:cyzhan@fudan.edu.cn

    猜你喜歡
    室管膜星形母細胞
    成人幕上髓母細胞瘤1例誤診分析
    星形諾卡菌肺部感染1例并文獻復習
    傳染病信息(2022年2期)2022-07-15 08:55:02
    新生兒顱內(nèi)室管膜下病變彩色多普勒超聲特征分析
    大醫(yī)生(2021年14期)2021-10-29 04:09:54
    頂骨炎性肌纖維母細胞瘤一例
    談談母細胞瘤
    帶有未知內(nèi)部擾動的星形Euler-Bernoulli梁網(wǎng)絡的指數(shù)跟蹤控制
    鞍區(qū)巨大不典型室管膜瘤誤診垂體瘤1例
    T2-MRI全域直方圖鑒別兒童后顱窩星形細胞瘤和室管膜瘤的價值
    預防小兒母細胞瘤,10個細節(jié)別忽視
    一類強α次殆星形映照的增長和掩蓋定理
    闸北区| 图片| 堆龙德庆县| 滦平县| 建平县| 岫岩| 高平市| 襄汾县| 渭源县| 梨树县| 密山市| 来宾市| 美姑县| 五指山市| 建德市| 五大连池市| 越西县| 剑河县| 乌拉特后旗| 福贡县| 衡水市| 司法| 通山县| 台南县| 凤阳县| 定远县| 杂多县| 彩票| 灯塔市| 庆安县| 东海县| 阿拉善左旗| 衡东县| 竹山县| 图木舒克市| 鄯善县| 安达市| 顺平县| 丹凤县| 彭州市| 武邑县|