• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of aromatic impurities in liquefied petroleumgas by solid-phase extraction sampling coupled withgas chromatography-mass spectrometry

    2017-01-09 11:56:48LIHaiFangGAOCuihuaLINJinMing100084
    色譜 2017年1期
    關(guān)鍵詞:石油氣苯乙烯標(biāo)準(zhǔn)偏差

    LI Hai-Fang, GAO Cuihua, LIN Jin-Ming(,,,100084,)

    Special issue for commemorating Professor ZOU Hanfa (Ⅱ)·Article

    Investigation of aromatic impurities in liquefied petroleumgas by solid-phase extraction sampling coupled withgas chromatography-mass spectrometry

    LI Hai-Fang, GAO Cuihua, LIN Jin-Ming*
    (BeijingKeyLaboratoryofMicroanalyticalMethodsandInstrumentation,DepartmentofChemistry,TsinghuaUniversity,Beijing100084,China)

    A dynamic solid-phase extraction system for sampling and synchronous preconcentration of aromatic impurities from liquefied petroleum gas (LPG) with graphitized carbon black (GCB) sorbents was constructed. The target aromatics (benzene, toluene, xylenes, styrene and naphthalene) were rapidly collected from LPG flow and analyzed with gas chromatography-mass spectrometry. Compared with C18 and poly (styrene-divinylbenzene) copolymer sorbents, the tandem packed GCB cartridges presented the highest extraction efficiency for capturing aromatics from LPG. The sampling efficiency, reproducibility and storage stability of aromatics on the adsorption GCB cartridge were evaluated. The quantification curves of eight aromatics in nitrogen simulative gas flow were linear in the range of 15-1 000 μg/m3. The developed sampling method presented good advantages of high recoveries (92.9%-109.0%), low method detection limits (1.0-6.2 μg/m3), together with excellent precision (relative standard deviations: 0.6%-5.8%) and accuracy (relative errors: 0.8%-8.2%), respectively.

    gas chromatography-mass spectrometry (GC-MS); solid-phase extraction (SPE); graphitized carbon black (GCB); liquefied petroleum gas (LPG); aromatics; sampling

    The volatile organic compounds (VOCs) as important air pollutants have attracted more and more concerns in the world. Some studies presented that the chemical composition of VOCs emissions varied with different fuels, industries and living regions [1,2]. Liquefied petroleum gas (LPG) is one of the commonly used fuel sources for heating appliances, vehicles and even cooking purposes. There are some organic residues especially aromatics in LPG besides the main component of propane [3-7]. The aromatic residues will produce more toxic sub-aromatics after high temperature firing and cause secondary environmental pollution. Some investigation results have been reported on the impacts of LPG on air pollution and the obtained results were anxious [8-10]. To monitor organic residue levels in LPG and guide the refining improvement to reduce secondary pollution is important. Up to now, few references are available for directly and accurately monitoring aromatics in LPG [11]. The American ASTM D2158-05 standard detection method of organic residues in LPG adopted solvent adsorption for sampling [12].

    For monitoring trace aromatics from complex co-existing matrices in LPG, efficient sample enrichment procedure is required before chromatography or GC-MS analysis. Solid phase extraction (SPE) is a simple, convenient and cost-effective technique, which is widely used for liquid sample extraction and preconcentration. For solid and airborne particulate matrix, analytes always need to be devolved into solution firstly before SPE extraction [13-16]. SPE has been rarely used to extract analytes from gas samples directly [17-19], and the absorbents were essential for gas sampling [20-22]. Graphitized carbon black (GCB), produced by heating carbon black to 2 700-3 000 ℃ in an inert atmosphere, is a good carbon-based SPE sorbents [23-25]. The hexagonal structure of graphite surface makes it show a selective adsorption to aromatic compounds. Compared with other sorbent materials, two advantages of GCB adsorbents are outstanding for adsorption of aromatics from gas. Firstly, the excellent Van der Waals adhesion and non-covalentπ-πstacking interactions improve adsorption capacity for both non-polar and weakly polar organic compounds bearing aromatic moieties [26]. Secondly, the dry GCB sorbent still presents excellent adsorption capability which is very important for direct gas sampling [17].

    In this work, a GCB sorbent-based flow-through sampling method for preconcentration of trace aromatics from LPG is proposed. The collected aromatics were rapidly characterized and quantified by gas chromatography-mass spectrometry (GC-MS) analysis. The breakthrough volume, extraction ability and reprodu-cibility of the GCB sorbent for extraction of aromatics were examined. The accurate concentrations of aromatics given by this GCB method have significance for improvement industrial processes. The assembled GCB sampling cartridges with caps and stoppers were designed for convenient long-time storage and transportation. The developed flow-through GCB-based sorption technique has the potential to be applied to the analysis of other fuel gases.

    1 Experimental

    1.1 Chemicals and reagents

    Seven standard substances including benzene (99.5%), toluene (99.5%),o-xylene (99.8%),m-xylene (99.2%),p-xylene (99.0%), styrene (99.7%) and naphthalene (99.8%) dissolved in methanol were obtained from AccuStandard (USA). The mass concentration of each compound in the stock mixture solution was 2 000 mg/L. High-purity indene (98%) was also purchased from AccuStandard and used for chromatographic analysis directly. The standard solutions were stored at -20 ℃.

    All organic solvents including methanol, dichloromethane, andn-hexane were of HPLC grade and obtained from J. T. Baker (USA). The graphitized carbon black sorbents (40-60 μm in size) and C18 cartridges (250 mg, 6 mL) were all supplied by Agela Technologies (China). Poly (styrene-divinylbenzene) copolymer (PS-DVB) disks (47 mm diameter, ca. 0.50 mm thickness) were obtained from Empore (USA).

    Fig. 1 Schematic diagram of GCB adsorbents sampling line The glass buffer bottle was connected between the GCB cartridge and LPG tank to obtain a stable flow path. 1#cartridge was for sampling and 2#cartridge was for monitoring breakthrough. R1, R2, R3and R4were different substituent groups of aromatic ring. The gas flow line was connected through the polytetrafluoroethylene (PTFE) tubes.

    1.2 Sample preparation

    The LPG flow-through sampling setup is illustrated in Fig. 1. The two packed GCB cartridges were connected in series, with the 1#cartridge for sampling and the 2#cartridge for monitoring gas breakthrough. A glass buffer bottle was connected between the GCB cartridge and LPG tank to obtain a stable flow path. The GCB cartridges were prepared by packing 250 mg amount of GCB sorbents into empty polytetrafluoroethylene (PTFE) cartridges with holding spacer. Before sampling, the packed GCB cartridges were conditioned twice by 5 mL dichloromethane to remove organic contaminants. Then flow-through sampling was carried out in a passive mode and the flow rate was regulated by a flow meter. The total volume of 4 L LPG was sampled at 200 mL/min flow rate.

    After sampling, the double ends of the GCB cartridges were sealed with custom-built stoppers and caps (silicone rubber) and the cartridges were stored in a refrigerator. Just before GC-MS analysis, the sampled GCB cartridges were eluted by 2 mL dichloromethane for analysis. A control GCB cartridge without sampling was used as blank, which was handled and prepared similarly to the sampling GCB cartridge.

    The PS-DVB disk was placed on a sampler supported by a stainless steel net and two teflon rings. After sampling, the disk was transferred to a 10 mL centrifuge tube and 5 mL dichlorome-thane was added. Then the centrifuge tube was sealed, sonicated and centrifuged to remove particulate matters from the upper supernatant. The operations of C18 cartridge sampling and pretreatment were the same to the process of GCB cartridge extraction.

    1.3 GC-MS procedure

    The aromatics determination was carried out by using the GC/MS QP 2010 instrument (Shimadzu, Japan). An RTX-50 fused silica capillary column (30 m×0.25 mm i. d. with 0.25 μm thickness coating, Restek Corporation, USA) was used for GC separation. The optimized separation program was performed by starting at 40 ℃ for 3 min, increasing to 220 ℃ at 10 ℃/min speed and keeping for 2 min. The carrier gas was helium (99.999%) at 1.0 mL/min flow rate. The sample (2.0 μL) was injected at the split ratio of 1∶10. Detection of the targets was performed by the electron impact ionization (EI) with selected ion monitoring (SIM) mode.

    1.4 Storage stabilities of aromatics on GCB adsorbents

    Each aromatic standard (20.0 ng) was spiked to the blank GCB cartridge (18 cartridges in total). The aromatics collected in the three parallel cartridges were analyzed immediately after spiking as the control value at time zero. The remaining sampled cartridges were covered with assembling stoppers and caps, and stored at 4 ℃ until analysis. Every three samplers as one group were analyzed periodically in 1, 2, 3, 5 and 7 d.

    Fig. 2 TIC of eight aromatics at 1.0 mg/L in standard mixture Peaks: 1. benzene; 2. toluene; 3. m/p-xylene; 4. o-xylene; 5. styrene; 6. indene; 7. naphthalene. Mass spectra of m-xylene and p-xylene are different.

    2 Results and discussion

    2.1 GC-MS analysis

    Total ion chromatogram (TIC) of the standard solution containing eight aromatics is shown in Fig. 2. The separation was completed within 15 min. For the overlappingm-xylene andp-xylene, detection and quantification were not compromised by overlapping retention times since their compound-specific target and reference ions produced clearly consistent signals in the MS [27] as shown in Fig. 2.

    The linearity for the eight aromatics is calculated by five mass concentration levels of standards covering the range of 0.03-2.0 mg/L, which were equivalent to the mass concentration of aromatics from 15 to 1 000 μg/m3in 4 L LPG. Good quantitative linearity of individual aromatic target could be obtained with correlation coefficients (r2) varying from 0.993 4 to 0.999 5.

    2.2 Optimization of the sorbents and eluting solvents.

    Fig. 3 Comparison of the recoveries of GCB, C18 and PS-DVB adsorbents for aromatics (n=3) Conditions: 25 μL standard mixture solution (1.0 mg/L of each aromatic), sampling for 20 min at a flow rate of 200 mL/min.

    In this work, GCB, C18 cartridges and the PS-DVB disks were tested for aromatics sampling. All the experiments were performed by spiking 20 μL standard aromatics at 1.0 mg/L mass concentration into 4 L high-purity nitrogen. The adsorption efficiency was evaluated with the ratio of measured adsorption value of aromatics on sorbents and the spiked amount, i. e., adsorption recovery. The average recoveries of C18 cartridge and PS-DVB disk were all below 80% as shown in Fig. 3. The strong adsorption ability of PS-DVB to aromatics because that theπ-πinteraction makes it difficult to release the targets and restricts the extraction recoveries. The good recoveries of GCB sorbents demonstrated the proper ability to selectively adsorb and release aromatics during the sampling and eluting procedures [28].

    It is well known that benzene solvent class, chlorinated, alcohols and hexane are good elution solvents for hydrophobic compounds in sample pretreatment. In this experiment, benzene solvent class was out of consideration since the preconcentration targets were aromatics. Dichlorome-thane is lower toxic than the three carbon tetrachloride and carbon tetrachloride. So dichloromethane, methanol andn-hexane were tried as elution solvents due to their low toxicity and different physical properties. The impacts on the adsorption recoveries are given in Fig. 4. It is observed that the best recoveries could be obtained with dichloromethane as eluent.

    Fig. 4 Effects of different elution solvents on therecoveries of aromatics for GCB preconcentration (n=3) Conditions: 25 μL standard mixture solution (1.0 mg/L of each aromatics), sampling for 20 min at a flow rate of 200 mL/min.

    2.3 Retention and breakthrough efficiency of aromatics in sampling

    As to gas sampling, complete retention during sampling (no breakthrough or back-diffusion) is essential. The breakthrough experiment could be performed by purging the standard aromatics from solution in custom-built vials with nitrogen gas flow [29,30]. An amount of 20 μL of mixed aromatics solution containing 20.0 ng of each aromatic hydrocarbon was spiked into a vial which was designed with a low-level inlet and a high-level outlet for gas flow in and out. Two blank GCB cartridges were connected for sampling and monitoring breakthrough, respectively. The vial was connected between the nitrogen container and the sampling GCB cartridges. When nitrogen gas passed through the vial, the mixed aromatics were evaporated into the gas flow and adsorbed on the GCB cartridges.

    In order to allow a slow and continuous releasing of aromatics, the inlet and outlet of the vial should be as small as possible. The spiked aromatics solution was totally evaporated with nitrogen purging for 20 min at a flow rate of 200 mL/min. The adsorbed extract in 2#monitoring cartridge (MS2) and in 1#sampling cartridge (MS1) was analyzed separately. It was reported that the 300 mg carbograph packed tube presented a breakthrough volume of 16 L/g for benzene [17].

    Similarly, to correct the possible presence of the target aromatics in the purging gas, a same nitrogen purging program was taken without spiking aromatics in the vial. The eluent of the cartridge was also detected as the background valueMblank. The retention efficiency of sampling aromatics on 1#sampling cartridge was calculated by the following Equation (1).

    (1)

    whereMS1andMblankare the means (n=3) of the detected aromatic concentrations, andMspikedis the spiked concentration, respectively. As can be seen in Table 1, the retention efficiencies of the aromatics on the sampling GCB cartridge ranged from 96.4% to 102.1%. The breakthrough was estimated by the leakage amount of aromatics on the 2#monitoring cartridge. It was found that the spiked amount of 20.0 ng of each aromatic was not up to the breakthrough volume.

    Table 1 Retention efficiencies of aromatics on GCB sampling cartridge

    *The spiked concentration of each aromatic before sampling was set to 100%.

    2.4 Storage stability

    The retaining ability of extraction sorbents on adsorbents over long-time transportation is an important factor, because sampling sites are always far away from the analytical laboratory. Since the aromatics are volatile, the storage stability of GCB sampling cartridge needs to be testified. The GCB cartridges loaded with aromatics were wrapped with assembled stoppers and caps, then stored at 4 ℃. All of the aromatics had no significant loss over 7 days storage as listed in Table 2. Therefore, GCB sampling and storage is promising for remote sites.

    Table 2 Storage stability of adsorbed aromatics on the GCB cartridge

    *The concentration of each aromatic just before storage (time: 0 d) was set at 100%. The values are average from three repetitive runs.

    2.5 Method detection limits

    Method detection limits (MDLs) were calculated as three times the standard deviation determined from three repetitive runs of the lowest aromatic concentration by nitrogen purging experiments. The MDL values were given by conversion the spiked aromatics amounts to the gas concentration in 4 L sampling volume. As in Table 3, the values range from 1.0 to 6.2 μg/m3, and the MDL of toluene is the lowest.

    2.6 Application to real samples

    The precision and accuracy of the flow-through sampling method were valuated by purging experiments, which were similar to the purging operation in Section 2.3 except that nitrogen gas was replaced by LPG. The mixed aromatics solution containing 20.0 ng amount of each of aromatic hydrocarbon was spiked into the vial and was purged for 20 min at 200 mL/min LPG flow rate. Accordingly, another control GCB cartridge was directly purged by LPG. The precision was evaluated by RSDs with replicate assays, and the accuracy was evaluated by the relative errors (REs) of the assayed samples to their spiked concentrations. In addition, the precision and accuracy for lower concentration of aromatics were also estimated by purging 5 μL of the mixed aromatics stock solution containing 5.0 ng amount of each aromatic hydrocarbon. The precision and accuracy of GCB sampling method are listed in Table 3. For all the aromatics, the RSDs ranged from 0.6% to 5.8%, and the REs ranged from 0.8% to 8.2%. It proved that GCB sorbents were suitable for sampling aromatics from LPG.

    Table 3 Precision, accuracy and MDL of the samplingmethod and the measured mass concentration of aromatics in LPG

    a. The amounts of aromatics spiked on the adsorbents. b. The RSDs of five parallel spiked samples. c. The difference between the detection value and the spiked concentration relative to the spiked mass concentrations. MC: mass concentration. -: not detected.

    Finally, the proposed dynamic GCB-based sampling method was applied to preconcentration of trace aromatics in LPG. A total volume of 4 L LPG was sampled at 200 mL/min flow rate at room temperature. The extract was eluted from GCB cartridge by 2 mL dichloromethane. As shown in Fig. 5, the aromatics (benzene, toluene,o/m/p-xylene, styrene and naphthalene) except for indene are observed in the LPG. The aromatics in LPG are just at trace levels ranging from 16 to 868 ng/m3in Table 3.

    Fig. 5 SIM chromatogram of the aromatics collected from 4 L LPG Peaks: 1. benzene; 2. toluene; 3. m/p-xylene; 4. o-xylene; 5. styrene; 6. naphthalene.

    3 Conclusions

    In this paper, a GCB-based sampling system for preconcentration of trace aromatics from LPG has been demonstrated. The GCB-packed cartridge presented practical utility for sampling the aromatics in flow gas with high efficiency and good reproducibility. The aromatics at nanogram levels in LPG were found. Furthermore, the outstanding storage stability of GCB benefits remote sampling. This solid sorbents based direct adsorption strategy provides a feasible way to develop rapid and simple fuel gas sampling methodologies.

    [1] Zhang Y, Wang X, Zhang Z, et al. Atmos Environ, 2013, 79: 110

    [2] Zhao B, Zhang S, Zhou Y, et al. Microchem J, 2015, 119: 140

    [3] Lai C H, Chang C C, Wang C H, et al. Atmos Environ, 2009, 43: 1456

    [4] Avgidou M S, Kaldis S P, Sakellaropoulos G P. J Membrane Sci, 2004, 233: 21

    [5] Choi S, Oh S H, Kim Y S, et al. Surv Asia, 2006, 10: 110

    [6] Zhuang Q, Yodotani J, Kato M. Fuel, 2005, 84: 443

    [7] Zhang K, Wang J Z, Liang B, et al. Environ Pollut, 2011, 159: 1510

    [8] Gasca J, Ortiz E, Castillo H, et al. Atmos Environ, 2004, 38: 3517

    [9] Adam T W, Astorga C, Clairotte M, et al. Atmos Environ, 2011, 45: 2842

    [10] Lim M C H, Ayoko G A, Morawska L Z. Atmos Environ, 2007, 41: 150

    [11] Huang Y, Ling Z H, Lee S C, Atmos Environ, 2015, 122: 809

    [12] American Society for Testing and Materials (ASTM). Standard Test Method for Residues in Liquefied Petroleum (LP) Gases. [2016-08-05]. http://www.astm.org/DATABASE.CART/HISTORICAL/D2158-05.htm

    [13] Wu J M, Hu R K, Yue J Q, et al. J Chromatogr A, 2009, 1216: 1053

    [14] Dabrowska H, Dabrowski L, Biziuk M, et al. J Chromatogr A, 2003, 1003: 29

    [15] Gosetti F, Chiuminatto U, Mazzucco E, et al. J Chromatogr A, 2011, 1218: 6308

    [16] Li K, Li H-F, Liu L-B, et al. J Chromatogr A, 2007, 1154: 74

    [17] Mangani F, Lattanzi L, Maione M. Chromatographia, 1998, 47: 57

    [18] Batlle R, Carlsson H, Tollback P, et al. Anal Chem, 2003, 75: 3137

    [19] Criado M R, Pereiro I R, Torrijos R C. J Chromatogr A, 2002, 963: 65

    [20] Woolfenden E. J Chromatogr A, 2010, 1217: 2674

    [21] Woolfenden E. J Chromatogr A, 2010, 1217: 2685

    [22] Lv L, Huang C, Lei Z, et al. Sep Purif Technol, 2014, 125: 247

    [23] Shariatgorji M, Amini N, Thorsen G, et al. Anal Chem, 2008, 80: 5515

    [24] Amini N, Shariatgorji M, Crescenzi C, et al. Anal Chem, 2010, 82: 290

    [25] Mastrogiacomo A R, Ottaviani M F, Pierini E, et al. Chromatographia, 2002, 55: 345

    [26] Boonjob W, Miro M, Segundo M A, et al. Anal Chem, 2011, 83: 5237

    [27] Elke K, Jermann E, Begerow J, et al. J Chromatogr A, 1998, 826: 191

    [28] Young C R, Menegazzo N, Riley A E. Anal Chem, 2011, 83: 6141

    [29] Yoshida T, Matsunaga I, Oda H. J Chromatogr A, 2004, 1023: 255

    [30] Yoshida T. J Chromatogr A, 2009, 1216: 5069

    李海芳, 高翠華, 林金明*
    (清華大學(xué)化學(xué)系, 微量分析與儀器研制北京市重點(diǎn)實(shí)驗(yàn)室, 北京 100084)

    建立石墨化碳(GCB)為吸附劑的動(dòng)態(tài)采樣系統(tǒng),可實(shí)現(xiàn)液化石油氣(LPG)中芳烴雜質(zhì)的采樣和同步萃取富集。LPG中的芳烴雜質(zhì)(苯、甲苯、二甲苯、苯乙烯和萘)被快速捕集后,進(jìn)行氣相色譜-質(zhì)譜(GC-MS)定性定量分析。與C18和苯乙烯二乙烯苯吸附劑(PS-DVB)相比,GCB填充柱對(duì)芳烴雜質(zhì)的萃取效率最高。評(píng)價(jià)了基于GCB填充柱采樣的吸附效率、重現(xiàn)性和貯存穩(wěn)定性。采樣和分析方法對(duì)氮?dú)饽M氣流中8種芳烴的定量分析線性范圍為15~1 000 μg/m3。所開(kāi)發(fā)的方法具有回收率高(92.9%~109.0%)、檢出限低(1.0~6.2 μg/m3)、準(zhǔn)確性好(相對(duì)標(biāo)準(zhǔn)偏差為0.6%~5.8%)和準(zhǔn)確度高(標(biāo)準(zhǔn)偏差為0.8%~8.2%)等優(yōu)點(diǎn)。

    氣相色譜-質(zhì)譜;固相萃取;石墨化碳;液化石油氣;芳烴;采樣

    10.3724/SP.J.1123.2016.08026

    Foundation item: National Natural Science Foundation of China (Nos. 21275088, 81373373, 21435002).

    O658

    : AArticle IC:1000-8713(2017)01-0047-07

    固相萃取采樣和氣相色譜-質(zhì)譜檢測(cè)液化石油氣中的芳烴雜質(zhì)

    *Received date: 2016-08-23

    *Corresponding author. Tel: +86-10-62797463; Fax: +86-10-62797463. E-mail: jmlin@mail.tsinghua.edu.cn.

    猜你喜歡
    石油氣苯乙烯標(biāo)準(zhǔn)偏差
    傾斜改正在連續(xù)重力數(shù)據(jù)預(yù)處理中的應(yīng)用
    加強(qiáng)對(duì)瓶裝液化石油氣加臭劑的安全監(jiān)管
    液化石油氣氣瓶先燃后爆的模擬分析
    液化石油氣儲(chǔ)罐失效分析與預(yù)防
    互感器檢定裝置切換方式研究
    苯乙烯裝置塔系熱集成
    我國(guó)首制超大型全冷式液化石油氣運(yùn)輸船交付
    中國(guó)8月苯乙烯進(jìn)口量26萬(wàn)t,為16個(gè)月以來(lái)最低
    關(guān)于垂準(zhǔn)儀一測(cè)回垂準(zhǔn)測(cè)量標(biāo)準(zhǔn)偏差檢測(cè)方法的探討
    制何首烏中二苯乙烯苷對(duì)光和熱的不穩(wěn)定性
    中成藥(2014年11期)2014-02-28 22:29:49
    国产黄片美女视频| 18禁裸乳无遮挡免费网站照片| 久久九九热精品免费| 真人一进一出gif抽搐免费| 亚洲人与动物交配视频| 国产v大片淫在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 日本一本二区三区精品| 丁香六月欧美| 久久久久国产精品人妻aⅴ院| 精品国产亚洲在线| 亚洲一区二区三区色噜噜| 国产av在哪里看| www.色视频.com| 国产一区二区亚洲精品在线观看| 女人十人毛片免费观看3o分钟| 性色avwww在线观看| av女优亚洲男人天堂| 欧美成人免费av一区二区三区| 观看免费一级毛片| 热99re8久久精品国产| 99久国产av精品| 亚洲av成人精品一区久久| 国产精品亚洲美女久久久| 国产老妇女一区| 日本免费一区二区三区高清不卡| 精华霜和精华液先用哪个| 少妇的逼好多水| 狠狠狠狠99中文字幕| 99国产精品一区二区蜜桃av| 亚洲人与动物交配视频| 性色av乱码一区二区三区2| 成年女人永久免费观看视频| 欧美xxxx黑人xx丫x性爽| 精品人妻熟女av久视频| 亚洲天堂国产精品一区在线| 免费观看精品视频网站| 欧美不卡视频在线免费观看| 日韩免费av在线播放| 在线观看一区二区三区| 国产黄a三级三级三级人| 久久6这里有精品| 国产亚洲精品久久久com| 午夜激情福利司机影院| 别揉我奶头 嗯啊视频| 窝窝影院91人妻| 国产白丝娇喘喷水9色精品| 亚洲精品在线美女| 日韩成人在线观看一区二区三区| 五月玫瑰六月丁香| 91久久精品国产一区二区成人| 欧美色视频一区免费| 欧美成人免费av一区二区三区| 日日夜夜操网爽| 人妻制服诱惑在线中文字幕| 麻豆久久精品国产亚洲av| 婷婷色综合大香蕉| 少妇的逼好多水| 亚洲精华国产精华精| 男人舔女人下体高潮全视频| 亚洲精品日韩av片在线观看| 亚洲av日韩精品久久久久久密| 午夜免费激情av| 精品午夜福利视频在线观看一区| 免费人成在线观看视频色| 欧美日韩国产亚洲二区| 亚洲中文字幕一区二区三区有码在线看| 美女大奶头视频| 麻豆国产97在线/欧美| 狠狠狠狠99中文字幕| 好男人在线观看高清免费视频| 国产精品久久电影中文字幕| 欧美日本视频| 日本黄大片高清| 男人舔女人下体高潮全视频| 久久久久久大精品| 免费观看的影片在线观看| 久久精品国产99精品国产亚洲性色| 亚洲在线自拍视频| 国产精品一区二区三区四区免费观看 | 精品一区二区三区人妻视频| 一进一出好大好爽视频| 我要搜黄色片| 久9热在线精品视频| 内地一区二区视频在线| 国产熟女xx| 亚洲 欧美 日韩 在线 免费| 最新中文字幕久久久久| 18禁在线播放成人免费| 99精品久久久久人妻精品| 99热这里只有是精品在线观看 | 老司机福利观看| 好男人在线观看高清免费视频| 一级作爱视频免费观看| 毛片女人毛片| 午夜精品在线福利| 精品欧美国产一区二区三| 久久午夜亚洲精品久久| 最新在线观看一区二区三区| 国产亚洲精品综合一区在线观看| 我的老师免费观看完整版| 久久精品夜夜夜夜夜久久蜜豆| 亚洲最大成人av| 1024手机看黄色片| 国产aⅴ精品一区二区三区波| 99国产精品一区二区三区| 波多野结衣高清无吗| 日本精品一区二区三区蜜桃| 亚洲精华国产精华精| 一级av片app| 中文字幕av在线有码专区| 精品国产亚洲在线| 日韩欧美三级三区| 色精品久久人妻99蜜桃| 极品教师在线视频| 在线观看舔阴道视频| 三级国产精品欧美在线观看| 国产欧美日韩一区二区三| 丝袜美腿在线中文| 国产精品亚洲av一区麻豆| 国产激情偷乱视频一区二区| 国产极品精品免费视频能看的| eeuss影院久久| 免费看美女性在线毛片视频| 午夜激情福利司机影院| 亚洲av电影不卡..在线观看| 亚洲无线观看免费| 波多野结衣高清无吗| 亚洲精品粉嫩美女一区| 偷拍熟女少妇极品色| 十八禁人妻一区二区| 亚洲美女搞黄在线观看 | 狠狠狠狠99中文字幕| 97超级碰碰碰精品色视频在线观看| 国产探花在线观看一区二区| 全区人妻精品视频| 淫妇啪啪啪对白视频| 变态另类成人亚洲欧美熟女| 亚洲成人中文字幕在线播放| 欧美一区二区亚洲| 国产精品亚洲av一区麻豆| 亚洲成av人片在线播放无| 每晚都被弄得嗷嗷叫到高潮| 亚洲熟妇中文字幕五十中出| 男插女下体视频免费在线播放| 99久久成人亚洲精品观看| 国产免费男女视频| 日本与韩国留学比较| 亚洲av电影在线进入| 午夜精品久久久久久毛片777| 精品日产1卡2卡| 精品国内亚洲2022精品成人| 动漫黄色视频在线观看| 九九久久精品国产亚洲av麻豆| 男女之事视频高清在线观看| 如何舔出高潮| 亚洲国产精品合色在线| 午夜福利在线在线| 久久人人爽人人爽人人片va | 亚洲人与动物交配视频| av专区在线播放| 亚洲一区二区三区色噜噜| 国产私拍福利视频在线观看| 欧美色视频一区免费| 人妻丰满熟妇av一区二区三区| 一个人看视频在线观看www免费| 精品久久久久久,| 国产精品爽爽va在线观看网站| 国模一区二区三区四区视频| 日本在线视频免费播放| 黄色日韩在线| 精品乱码久久久久久99久播| 久久天躁狠狠躁夜夜2o2o| 校园春色视频在线观看| 精品福利观看| 男人舔女人下体高潮全视频| 老鸭窝网址在线观看| 免费黄网站久久成人精品 | 床上黄色一级片| 欧美色视频一区免费| 啦啦啦韩国在线观看视频| 日本免费一区二区三区高清不卡| 亚洲最大成人av| 在线看三级毛片| 久久久久久久久中文| 久久精品人妻少妇| 国产三级黄色录像| 久久久国产成人免费| 淫妇啪啪啪对白视频| 亚洲 欧美 日韩 在线 免费| 亚洲av免费在线观看| 亚洲av免费高清在线观看| 十八禁国产超污无遮挡网站| 一区二区三区激情视频| 精品久久国产蜜桃| 熟女人妻精品中文字幕| 可以在线观看毛片的网站| 97碰自拍视频| 最近视频中文字幕2019在线8| 可以在线观看的亚洲视频| 免费人成在线观看视频色| 欧美一区二区精品小视频在线| 波多野结衣高清作品| 麻豆国产av国片精品| 欧美最黄视频在线播放免费| 久久久久久九九精品二区国产| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 国产精品久久电影中文字幕| 99视频精品全部免费 在线| 美女高潮喷水抽搐中文字幕| 给我免费播放毛片高清在线观看| 特大巨黑吊av在线直播| 国产成人a区在线观看| 日本在线视频免费播放| 小蜜桃在线观看免费完整版高清| 91字幕亚洲| 成人特级av手机在线观看| 久久午夜亚洲精品久久| 国产成人啪精品午夜网站| 网址你懂的国产日韩在线| 香蕉av资源在线| 在线观看午夜福利视频| 免费在线观看日本一区| 91字幕亚洲| 国产精品爽爽va在线观看网站| xxxwww97欧美| 国产精品国产高清国产av| avwww免费| 18美女黄网站色大片免费观看| 国产激情偷乱视频一区二区| 色综合亚洲欧美另类图片| 亚洲欧美激情综合另类| 变态另类成人亚洲欧美熟女| or卡值多少钱| 国产大屁股一区二区在线视频| 亚洲 国产 在线| 国产一区二区三区在线臀色熟女| 最新在线观看一区二区三区| 伦理电影大哥的女人| 精品一区二区免费观看| 成年人黄色毛片网站| 脱女人内裤的视频| 动漫黄色视频在线观看| 亚洲最大成人av| 91麻豆av在线| 国产乱人伦免费视频| 十八禁网站免费在线| 国产美女午夜福利| 亚洲中文日韩欧美视频| 自拍偷自拍亚洲精品老妇| 一个人免费在线观看的高清视频| 欧美成人免费av一区二区三区| 亚洲人成网站在线播放欧美日韩| 哪里可以看免费的av片| 女人被狂操c到高潮| 国产乱人伦免费视频| 国产精品一区二区三区四区久久| 免费在线观看亚洲国产| 国产精品一区二区三区四区免费观看 | 高清毛片免费观看视频网站| 亚洲成av人片在线播放无| 男女下面进入的视频免费午夜| 男插女下体视频免费在线播放| 少妇的逼水好多| 一级a爱片免费观看的视频| 高清毛片免费观看视频网站| 91九色精品人成在线观看| 深夜精品福利| 蜜桃久久精品国产亚洲av| 一区二区三区激情视频| 综合色av麻豆| 欧美成人免费av一区二区三区| 一级黄色大片毛片| 97超视频在线观看视频| 美女 人体艺术 gogo| 伊人久久精品亚洲午夜| 他把我摸到了高潮在线观看| 欧美日韩福利视频一区二区| 搞女人的毛片| 97人妻精品一区二区三区麻豆| 在线观看午夜福利视频| 成人精品一区二区免费| 久久这里只有精品中国| 免费在线观看成人毛片| 老熟妇乱子伦视频在线观看| 国产av不卡久久| 麻豆av噜噜一区二区三区| 99视频精品全部免费 在线| 久久久久久大精品| 国产成人欧美在线观看| 亚洲人成网站在线播放欧美日韩| 极品教师在线免费播放| 午夜久久久久精精品| 在线观看av片永久免费下载| 69av精品久久久久久| 亚洲三级黄色毛片| 美女免费视频网站| 国产真实乱freesex| 亚洲av五月六月丁香网| 久久久久久国产a免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲电影在线观看av| 变态另类丝袜制服| 人妻久久中文字幕网| 一级黄色大片毛片| 人人妻,人人澡人人爽秒播| 少妇高潮的动态图| 看十八女毛片水多多多| 免费av毛片视频| 日本免费a在线| 97超级碰碰碰精品色视频在线观看| 搡老熟女国产l中国老女人| 国产真实伦视频高清在线观看 | 国产探花极品一区二区| 午夜a级毛片| 亚洲五月天丁香| 男人狂女人下面高潮的视频| 老司机深夜福利视频在线观看| 久久国产乱子免费精品| 美女xxoo啪啪120秒动态图 | 久久久久久久久中文| 91字幕亚洲| 黄色视频,在线免费观看| 国产欧美日韩一区二区精品| 国产大屁股一区二区在线视频| 三级男女做爰猛烈吃奶摸视频| 日韩中字成人| 成人特级av手机在线观看| 国产美女午夜福利| 国产精品野战在线观看| 欧美+亚洲+日韩+国产| 欧美一区二区国产精品久久精品| 国产精品美女特级片免费视频播放器| 日韩大尺度精品在线看网址| 999久久久精品免费观看国产| 色综合亚洲欧美另类图片| 久久天躁狠狠躁夜夜2o2o| 一卡2卡三卡四卡精品乱码亚洲| 天天一区二区日本电影三级| 久久久成人免费电影| 一级毛片久久久久久久久女| 性欧美人与动物交配| 伊人久久精品亚洲午夜| 九九久久精品国产亚洲av麻豆| 在线观看一区二区三区| 两个人的视频大全免费| 18禁黄网站禁片免费观看直播| 舔av片在线| 日韩免费av在线播放| 精品乱码久久久久久99久播| 欧美成人a在线观看| 中文字幕免费在线视频6| 日本 欧美在线| 国产成人aa在线观看| 久久久久久久久中文| 亚洲成人中文字幕在线播放| 观看美女的网站| 一级黄片播放器| 午夜免费男女啪啪视频观看 | 亚洲电影在线观看av| 无遮挡黄片免费观看| www日本黄色视频网| 国产精品久久久久久人妻精品电影| 久9热在线精品视频| 国产欧美日韩精品一区二区| 男人舔奶头视频| 国产高清视频在线观看网站| 国产真实乱freesex| 18+在线观看网站| 搡老岳熟女国产| 久99久视频精品免费| 欧美日韩综合久久久久久 | 九九在线视频观看精品| 搡老妇女老女人老熟妇| 免费av观看视频| 久久国产乱子免费精品| 一本一本综合久久| 久久久久国产精品人妻aⅴ院| 国产黄a三级三级三级人| 国产精品永久免费网站| 日韩欧美精品v在线| 日韩 亚洲 欧美在线| 中文亚洲av片在线观看爽| 变态另类丝袜制服| 中文在线观看免费www的网站| 亚洲美女黄片视频| 午夜激情欧美在线| 三级国产精品欧美在线观看| 一本久久中文字幕| 国产精品一区二区三区四区免费观看 | 国产成年人精品一区二区| 高清在线国产一区| 一a级毛片在线观看| 最新在线观看一区二区三区| 熟女电影av网| 亚洲最大成人手机在线| 每晚都被弄得嗷嗷叫到高潮| 无人区码免费观看不卡| 亚洲精品在线观看二区| 如何舔出高潮| 久久精品久久久久久噜噜老黄 | 伊人久久精品亚洲午夜| 亚洲七黄色美女视频| 亚洲国产精品合色在线| 中国美女看黄片| 日本成人三级电影网站| www.www免费av| 国产极品精品免费视频能看的| 1024手机看黄色片| 此物有八面人人有两片| 欧美3d第一页| 男人舔女人下体高潮全视频| 国产aⅴ精品一区二区三区波| 深夜精品福利| 精品久久久久久久人妻蜜臀av| 国产一区二区三区在线臀色熟女| 国产探花极品一区二区| 18美女黄网站色大片免费观看| 亚洲成人免费电影在线观看| 久9热在线精品视频| 三级国产精品欧美在线观看| 午夜激情福利司机影院| 亚洲精品日韩av片在线观看| 精品久久久久久久久久久久久| 久久精品国产清高在天天线| 看免费av毛片| 综合色av麻豆| 亚洲va日本ⅴa欧美va伊人久久| 久久6这里有精品| 免费av不卡在线播放| 中国美女看黄片| 亚洲中文字幕一区二区三区有码在线看| 久久久国产成人免费| 亚洲成人久久性| 国产人妻一区二区三区在| 成人国产一区最新在线观看| 国产精品亚洲av一区麻豆| 男女下面进入的视频免费午夜| 欧美高清成人免费视频www| 免费在线观看影片大全网站| 熟女人妻精品中文字幕| 午夜福利18| 色综合欧美亚洲国产小说| 精品国产三级普通话版| 成人美女网站在线观看视频| 一个人免费在线观看的高清视频| 久久久久国产精品人妻aⅴ院| 中国美女看黄片| 精品一区二区三区人妻视频| 精品无人区乱码1区二区| 最好的美女福利视频网| 精品99又大又爽又粗少妇毛片 | 成人无遮挡网站| 全区人妻精品视频| 无人区码免费观看不卡| 国产一区二区在线观看日韩| 国产色爽女视频免费观看| 琪琪午夜伦伦电影理论片6080| 国产午夜精品论理片| 久久久久久久精品吃奶| 不卡一级毛片| 两人在一起打扑克的视频| www日本黄色视频网| 亚洲天堂国产精品一区在线| 国产一区二区亚洲精品在线观看| 内射极品少妇av片p| 久久亚洲真实| 亚洲第一区二区三区不卡| 少妇人妻精品综合一区二区 | 精品人妻熟女av久视频| 精品久久久久久,| 久久伊人香网站| 国产高清视频在线观看网站| 搡老熟女国产l中国老女人| 亚洲国产精品成人综合色| 精品一区二区三区视频在线观看免费| 无人区码免费观看不卡| 一区福利在线观看| 日本一本二区三区精品| 露出奶头的视频| 亚洲最大成人中文| 给我免费播放毛片高清在线观看| 99国产极品粉嫩在线观看| 亚洲av电影不卡..在线观看| 亚洲自偷自拍三级| 欧美+日韩+精品| 夜夜爽天天搞| 国产高潮美女av| 一级av片app| 国产精品一及| 日韩欧美在线乱码| 女人十人毛片免费观看3o分钟| 久久国产精品影院| 午夜精品久久久久久毛片777| 日本与韩国留学比较| 色尼玛亚洲综合影院| 九色成人免费人妻av| 搞女人的毛片| 男插女下体视频免费在线播放| 在线观看av片永久免费下载| 午夜福利成人在线免费观看| 亚洲av美国av| 国产成+人综合+亚洲专区| 欧美黑人巨大hd| 欧美一区二区精品小视频在线| 男人狂女人下面高潮的视频| 亚洲av免费在线观看| 在线播放无遮挡| 色精品久久人妻99蜜桃| 亚洲 国产 在线| 蜜桃亚洲精品一区二区三区| 国产高清视频在线观看网站| 欧美乱色亚洲激情| 亚洲最大成人手机在线| 少妇人妻一区二区三区视频| 国产成人啪精品午夜网站| 丰满的人妻完整版| 国产av麻豆久久久久久久| 日本免费a在线| 在线天堂最新版资源| 免费在线观看成人毛片| 国产欧美日韩一区二区三| 赤兔流量卡办理| 色播亚洲综合网| 免费在线观看影片大全网站| 免费看日本二区| 精品乱码久久久久久99久播| 亚洲,欧美,日韩| 桃红色精品国产亚洲av| 欧美日本亚洲视频在线播放| 97超级碰碰碰精品色视频在线观看| 日韩欧美一区二区三区在线观看| 国产精品野战在线观看| 久久6这里有精品| 一进一出抽搐gif免费好疼| 蜜桃亚洲精品一区二区三区| 国产高清视频在线观看网站| 国产精品乱码一区二三区的特点| 亚洲欧美日韩高清专用| av国产免费在线观看| 怎么达到女性高潮| 国产高清有码在线观看视频| 91久久精品电影网| 99热这里只有精品一区| 成人特级av手机在线观看| 国语自产精品视频在线第100页| 亚洲人与动物交配视频| 久久婷婷人人爽人人干人人爱| 麻豆一二三区av精品| 国产精品久久视频播放| 人人妻,人人澡人人爽秒播| 中文字幕人妻熟人妻熟丝袜美| 国产精品自产拍在线观看55亚洲| 亚洲精品一卡2卡三卡4卡5卡| 99热6这里只有精品| 草草在线视频免费看| 免费一级毛片在线播放高清视频| 久久亚洲真实| 97碰自拍视频| 老女人水多毛片| 日韩欧美免费精品| 亚洲一区二区三区色噜噜| 99久国产av精品| 精品久久久久久久久av| 噜噜噜噜噜久久久久久91| 免费av不卡在线播放| 日本撒尿小便嘘嘘汇集6| 在线免费观看的www视频| 两性午夜刺激爽爽歪歪视频在线观看| 好男人在线观看高清免费视频| 色噜噜av男人的天堂激情| 精品久久久久久久人妻蜜臀av| 97热精品久久久久久| 人人妻,人人澡人人爽秒播| 国产综合懂色| 最近中文字幕高清免费大全6 | 日本与韩国留学比较| 久久久久久久亚洲中文字幕 | 永久网站在线| 人妻久久中文字幕网| 久久久久久国产a免费观看| 在线观看66精品国产| 国产69精品久久久久777片| 欧美黄色片欧美黄色片| 久久久久国产精品人妻aⅴ院| 国产成人aa在线观看| 亚洲av.av天堂| 国产精品99久久久久久久久| 久久午夜亚洲精品久久| 在线观看一区二区三区| 9191精品国产免费久久| 岛国在线免费视频观看| 久久热精品热| 亚洲第一电影网av| 一个人免费在线观看电影| 日本黄大片高清| 国产久久久一区二区三区| 欧美性猛交╳xxx乱大交人| 精品国产亚洲在线| 成人亚洲精品av一区二区| 噜噜噜噜噜久久久久久91| 亚洲第一区二区三区不卡| 国产精品久久电影中文字幕| 中文字幕熟女人妻在线| 999久久久精品免费观看国产| 亚洲久久久久久中文字幕| 听说在线观看完整版免费高清| 亚洲国产高清在线一区二区三| 老司机午夜福利在线观看视频| 丰满乱子伦码专区| 亚洲中文字幕日韩| 亚洲人成网站在线播| 我要看日韩黄色一级片| 悠悠久久av|