• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A large eddy simulation of flows around an underwater vehicle model using an immersed boundary method

    2017-01-06 08:47:03ShizhoWngBeijiShiYuhngLiGuoweiHe

    Shizho Wng,Beiji Shi,b,Yuhng Li,b,Guowei He,b,?

    aThe State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    bSchool of Engineering Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    A large eddy simulation of flows around an underwater vehicle model using an immersed boundary method

    Shizhao Wanga,Beiji Shia,b,Yuhang Lia,b,Guowei Hea,b,?

    aThe State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    bSchool of Engineering Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    H I G H L I G H T S

    ·The velocity self-similarity of wake is predicted by using large-eddy simulation.

    ·Diffuse interface immersed boundary method is coupled with large eddy simulation.

    ·The flow solver with IB method shows nearly linear parallel scalabilities.

    A R T I C L E I N F O

    Article history:

    Received 2 November 2016

    Accepted 7 November 2016

    Available online 22 November 2016

    Underwater vehicle

    SUBOFF

    Immersed boundary method

    Large eddy simulation

    Adaptive mesh refinement

    A large eddy simulation(LES)of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0×105.An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries.The adaptive mesh refinement is utilized to resolve the flows near the hull.The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion.The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model.The present simulation captures the essential features of the vortex structures near the hull and in the wake. Both of the time-averaged pressure coefficients and streamwise velocity profiles obtained from the LES areconsistent with the characteristics of the flows pass an appended axisymmetric body.The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The modern underwater vehicles have untraditional appendages to achieve high maneuverability at intermediate to high Reynolds numbers[1,2].This raises two challenges for a full-scale simulation of the flows around the underwater vehicles:the first one is to handle the complex geometric and moving boundaries; the second one is to calculate the characteristics of viscous flows near the boundaries and in the wake[3,4].Recently,the immersed boundary(IB)method in combination with large eddy simulation has been developed to simulate turbulent flows with complex geometric and moving boundaries[5–7].The IB method is a nonbody conformal method and circumvents the generation of bodyfitting grids,where an artificial force is added to the Navier–Stokes equations to represent the boundary effect on flows,This method has been widely used in cardiovascular flows,bio-locomotion,and wind-turbines[8–10]with great successes.

    Recently,Posa and Balaras[11]have used the hybrid immersed boundary method and large eddy simulation to simulate the wake of an axisymmetric body with appendages.They choose a sharp interface IB method to simulate the turbulent wakes.The sharp interface IB method treats the boundaries on the Eulerian meshes by using complex local flow field reconstructions or the cut cell techniques,which are usually time consuming for a body with complex geometry.Instead of reconstructing the cell near boundaries,the diffuse interface IB method spreads the effects of solid boundaries onto a band of cells near boundaries.This method ensures the efficiency and robustness of the implementation. The diffuse interface IB method has been successfully utilized in laminar flows,but the grid resolution near the wall often limits its application to turbulent flows.The diffuse interface IBmethodcannotrefinethegridonlyalongthewallnormaldirection, since it is a non-body conformal method.The adaptive mesh refinement is an efficient way to locally refine the mesh,and can be utilized to reduce the number of mesh cells in the diffusive IB method.Furthermore,the diffusive IB method needs to be combinedwiththelargeeddysimulationtoavoidresolvingallflow structures in turbulence.However,the combinations of the diffuse interface IB method,adaptive mesh refinement,and large eddy simulationmightnotguaranteetheiraccuracyandefficiency,since they have different theoretical bases and numerical implement techniques.The simulations of turbulent flows with complex geometric boundaries are required to investigate the validation and efficiency of the combinations of the diffuse interface IB method,adaptive mesh refinement,and the large eddy simulation.

    Fig.1.DARPA SUBOFF with full appendages(a)and the Lagrangian mesh near the sail(b)and fins(c).

    The objective of the present work is to investigate the validation and efficiency of the hybrid diffuse interface IB method, adaptive mesh refinement and large eddy simulation for turbulent flows with complex geometric boundaries.The advantages and disadvantages of the method will also be reported.The simulated model is taken as the flows around an underwater vehicle.We will use the moving-least-squares reconstruction on a block structured mesh with the adaptive mesh refinement technique.We will first introduce the underwater vehicle model and the numerical method that will be used.The efficiency of our code will be discussed and numerical results will be presented.Finally,we will summarize the results and future work.

    In the present work,the DARPA SUBOFF is used as the underwater vehicle model.The model consists of an axisymmetric hull,a sail and four fins,as shown in Fig.1.The axisymmetric hull is composed of a bow forebody,a parallel middle body section,and a curved stern.The hull has a maximum diameterDand a lengthL/D=8.6.The details of the used model can be found in the Ref.[12].The appendages raise the challenges in both handling with the complex geometric boundaries and capturing the flow features(such as boundary layer,junction flows,tip flows,and their interactions),which provide a sufficient complex model for investigating the capability of the diffuse interface IB method in combination of large eddy simulation and the adaptive mesh refinement.

    Table 1 Strong scalability of the flow solver on a mesh of about 50 million cells.The notations‘Ncore’and‘Ncell’denote the number of cores and the number of cells, respectively.‘Tstep’denotes the wall-clock time cost per step.

    Table 2 Weak scalability of the flow solver with a mesh of about 0.26 million cells per core. The notations‘Ncore’and‘Ncell’denote the number of cores and the number of cells,respectively.‘Tstep’denotes the wall-clock time cost per step.

    The present work focuses on deep-submergence underwater vehicle,where the effects of free surface on the flows near the model are ignored.The flows around the model are governed by theNavier–Stokesequationsforsinglephaseincompressibleflows. The governing equations for large eddy simulation are given by where?ui(i=1,2,3)and?pare the filtered velocity components and pressure,respectively.The sub-grid stresses?τijis represented by the wall-adapting local eddy-viscosity model withCw= 0.6[13].fi(i=1,2,3)are the volume forces that represent the effects of boundaries on the flows in the IB method.Re is the Reynolds number.

    Equations(1)and(2)are discretized on a Cartesian Eulerian mesh and solved by using a projection method.The secondorder central difference is used for the spatial derivatives,and the second-order Adams–Bashforth method is used for the time advance.Figure 1 presents the Lagrangian mesh near the sail and fins on the SUBOFF.A diffuse interface IB method based on the moving-least-squares reconstruction is used to represent the effects of the model surface on flows.[14,15].The computational domain is[-4.3D,4.3D]×[-4.3D,4.3D]×[-2.6D,23.2D].The uniformupstreamflowboundaryconditionisusedattheinlet,and convective outflow boundary condition is used at the outlet.The non-slip boundary conditions are used on the immersed surfaces. The slip boundary conditions are used at the outer boundaries.A trip wire is located at the 0.25Ddownstream of the model nose. The Reynolds number based on the upstream flow velocity and the length of the model isReL=U∞L/ν=1.0×105,corresponding to a Reynolds number based on the maximum diameter ofReD=U∞D(zhuǎn)/ν≈ 1.16×104.HereU∞is the uniform free stream flow velocity andνis the kinematic viscosity of the fluid.

    In the present simulation,we utilize the block-structured mesh with adaptive mesh refinement.The parallel scalability of the flow solver is tested on meshes with different levels of refinement. Table 1 gives the wall-clock time cost of the flow solver on a mesh of about 50 million cells,which decreases as increasing the number of cores;Table 2 gives the wall-clock time cost of the flow solver on a mesh of about 0.26 million cells per core,which keeps nearly constant as increasing the number of cores.They show the strong and weak scalabilities of the parallel solver,respectively. In this letter,we report the preliminary results on the mesh of 50 million cells with a minimum grid length ofdh=0.0336. The minimum grid length is about 300 wall units,where the wall unit is estimated based on the turbulent boundary layer over a flat plate.The grid independence is checked to guarantee the sufficient resolution for the time-averaged pressure coefficient on the hull and the streamwise velocity profiles in the wake.It is worth to mention that the grid resolution is not fine enough to directly calculate the wall shear stress.A wall model is usually utilized to correctly obtain the wall shear stress in the LES with such a near-wallgridresolution.Wecalculatethetime-averagedpressure coefficient on the hull and the streamwise velocity profiles in the wake in the present letter.The simulations with wall models and the distribution of wall shear stress will be carried on in future.

    Fig.2.(Color Online)The snapshots of the instantaneous vorticity magnitude(a,c)and pressure(b)at the symmetric plane(x=0).The notations‘TV’and‘BL’denote‘Tip Vortex’and‘Boundary Layer’,respectively.

    Figure 2 plots the contours of vorticity magnitude and pressure at the symmetric plane(x=0).The essential features of flows can be observed,such as boundary layer,tip flows,shear layers and their interactions:(1)the pressure increases in front of the hull due to the decreasing velocities near the stagnation point at the nose;(2)the boundary layer develops from the stagnation point. The flow separates at the trip wire and reattaches to the hull in the rear of the trip wire;(3)the boundary layer and upstream flows interact with the leading edge of the sail,which causes a local pressure peak in front of the sail;(4)the tip flow origins from the top of the sail and moves downstream in the form of tip vortex;(5)the tip vortex(denoted as TV in Fig.2)interacts with the boundary layer(denoted as BL in Fig.2)in the middle of the hull;(6)the adverse pressure gradient occurs near the stern due to the contraction of hull and contributes to the boundary layer separation;(7)the boundary layer from the hull interacts with the fins,resulting in local pressure peaks in front of the fins;(8)the free shear layers shed from the fins and the hull are convected downstream into the wake;(9)the bimodal behavior of vorticity magnitudes can be observed in the wake,which is caused by the boundary layer separation and the interactions of the shear layers from both hull and fins.The pressure is consistent with the observed vortex structures[11,16,17],which can be found in the discussion on Fig.3.

    The distributions of the time-averaged pressure coefficients at the bottom and top meridians of the model are shown in Fig.3.The pressure coefficient is computed in terms of

    Fig.3.(Color Online)Time-averaged pressure coefficients on the top and bottom meridians of the model.

    where?p∞and 0.5ρU2∞are the static and dynamic pressures at the inlet,respectively.ρis the density of the fluid.The overall distribution of the time-averaged pressure coefficient is consistent with the experimental result of Jiménez et al.[16]and the numerical simulation of Posa and Balaras[11].The differences between the current simulation and the Refs.[11,16]are caused by the different Reynolds numbers.The Reynolds number in the present simulations isReL=U∞L/ν= 1.0× 105,which is only about 1/10 of those from the experiment(ReL=U∞L/ν= 1.1×106)[16]and the numerical simulation(ReL=U∞L/ν= 1.2×106)[11].The detailed features of the pressure coefficient are as follows:(1)the pressure coefficient has a maximum value at the stagnation point(z/L=0),and decreases sharply before it reaches the trip wire(0 <z/L< 0.03);(2)the pressure coefficient increases in the rear of the trip wire,and reaches a local maximum at the top meridian in front of the sail(0.03<z/L< 0.2).The present simulation has a lower pressure region right behind the trip wire.The low pressure is caused by the size of the trip wire,in addition to the low Reynolds number effects.The diameter of the trip wire in the present simulation is about 10 times as large as those in the previous experiment and numerical simulation[11,16],which ensures the boundary layer transition at a lower Reynolds number;(3)the pressure coefficient at the bottom meridian varies slowly in the middle of the hull(0.2 <z/L< 0.7),since there is a parallel section in the model;the pressure coefficient at the top meridian varies slowly only in the region 0.4<z/L< 0.7,because the wake of sail affects the pressure beforez/L=0.4;(4)The adversed pressure gradient appears near the stern(0.7 <z/L< 0.9). The pressure coefficient near the stern is higher than those in the Refs.[11,16].This is caused by the lower Reynolds number in the present simulation.The lower Reynolds number is corresponding to a thicker boundary layer along the hull.The thicker boundary layer reduces the effect of the geometry contraction of the hull; (5)the pressure coefficient reaches the local peak in front of the fins(z/L≈0.9),which corresponds to the interaction of boundary layers with fins.Notice that no fin is used in the experiment[16]. Instead, the full appendages are used in the present simulation.We also checked the effect of refinement levels on the distribution of pressure coefficients.The results show that the diffuse interface IB method reproduces the essential features of the distribution of pressure coefficient.

    Figure 4 plots the time-averaged streamwise velocity profiles in the wake.The time-averaged streamwise velocity is normalized bythelocaldefectvelocityu0andhalf-wakewidthl0,whichsatisfy the following power law[18],respectively,

    Fig.4.(Color Online)Self-similar behaviors of the time-averaged streamwise velocity profiles in the wake.The labels‘6D’,‘9D’,and‘12D’indicate the velocity profiles at 6D,9D,and 12D downstream from the model tail.

    whereA,B,andx0are the coefficients dependent on the behaviors of the flow.The coefficients in Eqs.(4)and(5)for the present simulations areA=0.902,B=0.245,andx0=1.908.The velocity defects at three different locations in the wake are selfsimilar,since they nearly collapse into one single curve at the scaled vertical distances.The time-averaged velocity profile in the side of the sail(y/l0>0)is lower than that in the experiment[16]. The lower time-averaged velocity profile is also reported by Posa and Balaras[11].This is caused by the blockage of the support in the experiment, since a long sail to support the model is used in the experiment.The time-averaged velocity defects without the effect of support are obtained by Jiménez et al.[16]and an analytical model for the axisymmetric wake provided by Pope[19]are also plotted in Fig.4.The velocity defects in the present simulation are consistent with the experimental and analytical results.

    In summary,the large eddy simulation of DARPA SUBOFF with the full appendages is performed by using a diffuse interface immersed boundary method.Particularly,the IB method is implemented through the moving-least-squares reconstruction and the block structured meshes with adaptive mesh refinement. The parallel scalabilities of the flow solver are tested on meshes at different levels of refinement with the total cells number varying from 50 million to 3.2 billion.It is shown that the parallel solver has the nearly linear strong and weak scalabilities for the present configuration.The numerical results provide the overall features of the flows near the hull surfaces and in the wake. The time-averaged pressure coefficients on the hull surface are consistent with the model configuration.The defects of time-averaged streamwise velocities exhibit the self-similarities as predicted by the power law.

    The diffuse interface IB method used in this work is robust and efficient for simulating intermediate Reynolds number flows aroundunderwatervehicles.However,itremainsagreatchallenge that the IB method is used to predict the shear stresses on hull surfaces.The shear stresses are dependent on the velocity gradients near surfaces so that the finer meshes in the wallnormal direction are needed.It is noted that the meshes in the IB method cannot be refined only in the wall-normal direction. Two possible approaches to overcome this defeat are to increase the grid numbers near wall and use the wall models.The nearly linear scalability of the present flow solver allows us to use tens of thousands of cores with billions of grid points in National Center of Supercomputer.Meanwhile,we will use the wall models for the IB method to reduce the computational cost and provide a feasible approach for the simulation-based studies of underwater vehicles.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11302238,11232011 and 11572331).The authors would like to acknowledge the support from the Strategic Priority Research Program(XDB22040104)and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDJ-SSW-SYS002)and the National Basic Research Program of China(973 Program 2013CB834100:Nonlinear science).

    [1]P.R. Bandyopadhyay, Trends in biorobotic autonomous undersea vehicles, IEEE J. Ocean. Eng. 30 (2005) 109–139

    [2]X.C. Wu, Y.W. Wang, C.G. Huang, et al., An effective CFD approach for marine-vehicle maneuvering simulation based on the hybrid reference frames method, Ocean Eng. 109 (2015) 83–92.

    [3]Y.Yang,D.I.Pullin,Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows,J.Fluid Mech.685(2011)146–164.

    [4]Y.M.Zhao,Y.Yang,S.Y.Chen,Vortex reconnection in the late transition in channel flow,J.Fluid Mech.802(2016)R4.http://dx.doi.org/10.1017/jfm. 2016.492.

    [5]J.M.Yang,E.Balaras,An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries,J.Comput. Phys.215(2006)12–40.

    [6]X.L.Yang,G.W.He,X.Zhang,Large-eddy simulation of flows past a flapping airfoil using immersed boundary method,Sci.China Phys.Mech.Astron.53 (2010)1101–1108.

    [7]C.Yan,W.X.Huang,G.X.Cui,et al.,A ghost-cell immersed boundary method for large eddy simulation of flows in complex geometries,Int.J.Comput.Fluid Dyn.29(2015)1–14.

    [8]C.S.Peskin,The immersed boundary method,Acta Numer.11(2001)479–517.

    [9]R.Mittal,G.Iaccarino,Immersed boundary methods,Annu.Rev.Fluid Mech. 37(2005)239–261.

    [10]F.Sotiropoulos,X.L.Yang,Immersed boundary methods for simulating fluid–structure interaction,Prog.Aerosp.Sci.65(2014)1–21.

    [11]A.Posa,E.Balaras,A numerical investigation of the wake of an axisymmetric body with appendages,J.Fluid Mech.792(2016)470–498.

    [12]N.C.Groves,T.T.Huang,M.S.Chang,Geometric Characteristics of the DARPA SUBOFF Models,Tech.Rep.No.DTRC/SHD-1298-01,David Taylor Research Center,Bethesda,MD,1989.

    [13]F.Nicoud,F.Ducros,Subgrid-scale stress modelling based on the square of the velocity gradient tensor,Flow Turbul.Combust.62(1999)183–200.

    [14]M.Vanella,P.Rabenold,E.Balaras,A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid–structure interaction problems,J.Comput.Phys.229(2010)6427–6449.

    [15]M.Vanella,E.Balaras,A moving-least-squares reconstruction for embeddedboundary formulations,J.Comput.Phys.228(2009)6617–6628.

    [16]J.M.Jiménez,R.T.Reynolds,A.J.Smits,The intermediate wake of a body of revolution at high Reynolds numbers,J.Fluid Mech.659(2010)516–539.

    [17]J.M.Jiménez,R.T.Reynolds,A.J.Smits,The effects of fins on the intermediate wake of a submarine model,J.Fluids Eng.132(2010)031102.

    [18]P.B.V.Johansson,W.George,M.Gourlay,Equilibrium similarity,effects of initial conditions and local Reynolds number on the axisymmetric wake,Phys. Fluids 15(2003)603–617.

    [19]S.B.Pope,Turbulent Flows,Cambridge University,United Kingdom,London, 2010(Chapter 5).

    ?Corresponding author.

    E-mail address:hgw@lnm.imech.ac.cn(G.He).

    http://dx.doi.org/10.1016/j.taml.2016.11.004

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    18在线观看网站| 99re6热这里在线精品视频| 久久99热6这里只有精品| 黄色毛片三级朝国网站| 亚洲伊人久久精品综合| 两个人的视频大全免费| 国产毛片在线视频| 久久久久久久国产电影| 女性被躁到高潮视频| 国产亚洲欧美精品永久| 亚洲精品日韩在线中文字幕| 99re6热这里在线精品视频| 国产色爽女视频免费观看| 久久人人爽人人片av| 天堂8中文在线网| 精品久久久久久电影网| 天堂中文最新版在线下载| 人人妻人人爽人人添夜夜欢视频| 高清毛片免费看| 国产精品一区www在线观看| 久久97久久精品| 婷婷色麻豆天堂久久| 一级爰片在线观看| 日韩一区二区三区影片| 啦啦啦视频在线资源免费观看| 大码成人一级视频| 男人操女人黄网站| 黑丝袜美女国产一区| 欧美变态另类bdsm刘玥| 久久久久久人妻| 韩国av在线不卡| 夜夜骑夜夜射夜夜干| xxx大片免费视频| 黄片无遮挡物在线观看| 欧美三级亚洲精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产色婷婷99| 99久久精品国产国产毛片| 精品久久久久久久久av| 国产熟女午夜一区二区三区 | 黑人猛操日本美女一级片| 亚洲天堂av无毛| 成人免费观看视频高清| 亚洲国产精品国产精品| 国产精品嫩草影院av在线观看| 国产精品一区二区在线不卡| 免费人妻精品一区二区三区视频| 亚洲av二区三区四区| 久久久精品免费免费高清| 久久精品国产鲁丝片午夜精品| 国产精品一区www在线观看| 热re99久久国产66热| 久久99热这里只频精品6学生| 一本—道久久a久久精品蜜桃钙片| 国产极品天堂在线| 亚洲成色77777| 日日摸夜夜添夜夜添av毛片| 免费少妇av软件| 亚洲国产欧美日韩在线播放| a 毛片基地| 国产成人a∨麻豆精品| 日韩成人av中文字幕在线观看| 日韩中文字幕视频在线看片| 国产熟女午夜一区二区三区 | 夜夜骑夜夜射夜夜干| 久久综合国产亚洲精品| 大片电影免费在线观看免费| av福利片在线| 久久热精品热| 婷婷色综合大香蕉| 边亲边吃奶的免费视频| 久久这里有精品视频免费| 三上悠亚av全集在线观看| 99久国产av精品国产电影| 久久午夜综合久久蜜桃| 爱豆传媒免费全集在线观看| 国产精品一国产av| 69精品国产乱码久久久| 91久久精品电影网| 91精品一卡2卡3卡4卡| 91精品国产九色| 亚洲精品一区蜜桃| 97在线人人人人妻| 国产色婷婷99| 最近中文字幕2019免费版| 亚洲精品,欧美精品| 亚洲精品色激情综合| 色婷婷av一区二区三区视频| 日本wwww免费看| 久久久久视频综合| 五月玫瑰六月丁香| 欧美少妇被猛烈插入视频| 中国三级夫妇交换| 成人手机av| 精品国产一区二区三区久久久樱花| 婷婷色av中文字幕| av卡一久久| 哪个播放器可以免费观看大片| 久久国产精品大桥未久av| 久久久久久久亚洲中文字幕| 狂野欧美白嫩少妇大欣赏| 18禁在线播放成人免费| 色婷婷av一区二区三区视频| 久久ye,这里只有精品| 99九九在线精品视频| 午夜老司机福利剧场| 丝袜脚勾引网站| 香蕉精品网在线| 三级国产精品片| 另类精品久久| av网站免费在线观看视频| 肉色欧美久久久久久久蜜桃| 免费高清在线观看视频在线观看| 成人国产麻豆网| 国产成人精品婷婷| 黄色怎么调成土黄色| 亚洲高清免费不卡视频| 一本大道久久a久久精品| 免费日韩欧美在线观看| 国语对白做爰xxxⅹ性视频网站| 插阴视频在线观看视频| 欧美精品亚洲一区二区| 少妇人妻精品综合一区二区| 国产69精品久久久久777片| 亚洲av综合色区一区| 女的被弄到高潮叫床怎么办| 久久精品国产鲁丝片午夜精品| 午夜福利视频在线观看免费| 夜夜爽夜夜爽视频| 国产伦理片在线播放av一区| 久久精品国产亚洲av涩爱| 亚洲中文av在线| 国产女主播在线喷水免费视频网站| 伦精品一区二区三区| 欧美+日韩+精品| 精品亚洲成a人片在线观看| 麻豆乱淫一区二区| 国产亚洲一区二区精品| 好男人视频免费观看在线| 国产高清国产精品国产三级| 国产亚洲午夜精品一区二区久久| 丰满迷人的少妇在线观看| 日本av手机在线免费观看| 精品久久久精品久久久| 色婷婷久久久亚洲欧美| 国产无遮挡羞羞视频在线观看| 国产爽快片一区二区三区| 丝袜喷水一区| 97超碰精品成人国产| 成年人免费黄色播放视频| 久久人妻熟女aⅴ| 亚洲精品,欧美精品| 国产国语露脸激情在线看| 在线观看三级黄色| 国产精品欧美亚洲77777| 日日摸夜夜添夜夜爱| 热99国产精品久久久久久7| 成年av动漫网址| 九九爱精品视频在线观看| 国产欧美日韩一区二区三区在线 | 中文字幕人妻丝袜制服| 满18在线观看网站| 亚洲av欧美aⅴ国产| a级毛片在线看网站| 免费人妻精品一区二区三区视频| 欧美日韩在线观看h| 91午夜精品亚洲一区二区三区| 欧美亚洲 丝袜 人妻 在线| 最黄视频免费看| 成人影院久久| 国产精品久久久久久精品电影小说| 熟妇人妻不卡中文字幕| 免费黄频网站在线观看国产| 少妇精品久久久久久久| 国产一区二区三区综合在线观看 | 午夜福利,免费看| 欧美激情国产日韩精品一区| 亚洲中文av在线| 男的添女的下面高潮视频| 母亲3免费完整高清在线观看 | 夫妻午夜视频| 成人18禁高潮啪啪吃奶动态图 | 亚洲人与动物交配视频| 999精品在线视频| 熟妇人妻不卡中文字幕| 欧美一级a爱片免费观看看| 久久国产精品男人的天堂亚洲 | 日韩一区二区视频免费看| 插逼视频在线观看| 欧美bdsm另类| 免费播放大片免费观看视频在线观看| 精品久久久久久久久av| 亚洲四区av| 久久久国产欧美日韩av| 日韩成人伦理影院| 亚洲av日韩在线播放| 十分钟在线观看高清视频www| 综合色丁香网| 我要看黄色一级片免费的| 亚洲成人一二三区av| 黄色欧美视频在线观看| 亚洲经典国产精华液单| 亚洲精品久久久久久婷婷小说| 一级片'在线观看视频| 精品国产国语对白av| 女性被躁到高潮视频| 亚洲国产成人一精品久久久| 国产不卡av网站在线观看| 插逼视频在线观看| 国产午夜精品久久久久久一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 免费大片18禁| 久久久国产一区二区| 日韩欧美精品免费久久| 丰满饥渴人妻一区二区三| 国产免费又黄又爽又色| 亚洲第一区二区三区不卡| 国产伦精品一区二区三区视频9| 丰满迷人的少妇在线观看| 在现免费观看毛片| 亚洲精品一区蜜桃| 欧美日本中文国产一区发布| 欧美精品人与动牲交sv欧美| 各种免费的搞黄视频| 黄色毛片三级朝国网站| 日韩一区二区三区影片| 欧美97在线视频| 波野结衣二区三区在线| 成人手机av| 国产男人的电影天堂91| 国精品久久久久久国模美| 美女国产高潮福利片在线看| 九九爱精品视频在线观看| 欧美激情国产日韩精品一区| 在线观看免费日韩欧美大片 | 国产免费一区二区三区四区乱码| 日韩 亚洲 欧美在线| 亚洲精品国产av蜜桃| 成人午夜精彩视频在线观看| 高清午夜精品一区二区三区| 免费观看a级毛片全部| 亚州av有码| 热re99久久国产66热| 亚洲国产欧美日韩在线播放| 国产又色又爽无遮挡免| 少妇高潮的动态图| 国产成人精品久久久久久| 久久99蜜桃精品久久| 久久久久久久久大av| 午夜激情久久久久久久| 国产综合精华液| 一本大道久久a久久精品| 性色av一级| 丁香六月天网| 色5月婷婷丁香| 99精国产麻豆久久婷婷| 蜜臀久久99精品久久宅男| 一级毛片 在线播放| 久久久久人妻精品一区果冻| videossex国产| 国产日韩欧美视频二区| 91成人精品电影| 亚洲在久久综合| 亚洲国产精品一区二区三区在线| av免费观看日本| 久久久国产一区二区| 卡戴珊不雅视频在线播放| 九色亚洲精品在线播放| 久久久久久久久久久丰满| 在线观看人妻少妇| 国产黄片视频在线免费观看| 精品少妇久久久久久888优播| 18禁在线无遮挡免费观看视频| 啦啦啦啦在线视频资源| 久久国产精品男人的天堂亚洲 | 成年av动漫网址| 伦精品一区二区三区| 纵有疾风起免费观看全集完整版| 精品国产乱码久久久久久小说| 中国国产av一级| 一边摸一边做爽爽视频免费| 午夜影院在线不卡| 中文字幕人妻丝袜制服| 日韩大片免费观看网站| 99久久综合免费| 久久久久久久国产电影| 人妻一区二区av| 国产精品 国内视频| 中文精品一卡2卡3卡4更新| 亚洲精品国产av成人精品| 精品亚洲成a人片在线观看| 三级国产精品欧美在线观看| 91午夜精品亚洲一区二区三区| 国产亚洲最大av| 99热全是精品| 国产欧美亚洲国产| 成人黄色视频免费在线看| av电影中文网址| 成年女人在线观看亚洲视频| 欧美日韩视频精品一区| 插阴视频在线观看视频| 色5月婷婷丁香| 国产极品粉嫩免费观看在线 | 欧美3d第一页| 久久久国产精品麻豆| 国产亚洲欧美精品永久| 麻豆精品久久久久久蜜桃| 亚洲在久久综合| 亚洲av成人精品一二三区| 精品久久久久久久久亚洲| 99久久精品国产国产毛片| 国产探花极品一区二区| 色吧在线观看| 国产精品嫩草影院av在线观看| 一级毛片aaaaaa免费看小| 你懂的网址亚洲精品在线观看| 亚洲av.av天堂| 日韩欧美精品免费久久| 黄色欧美视频在线观看| 22中文网久久字幕| 制服人妻中文乱码| 国产无遮挡羞羞视频在线观看| 看十八女毛片水多多多| 美女国产视频在线观看| 国产片特级美女逼逼视频| 久久久欧美国产精品| 免费观看a级毛片全部| 大香蕉97超碰在线| 色5月婷婷丁香| 观看av在线不卡| 一区二区三区免费毛片| 国产色婷婷99| 成人毛片60女人毛片免费| 国国产精品蜜臀av免费| 青春草国产在线视频| 久久鲁丝午夜福利片| 七月丁香在线播放| 人妻少妇偷人精品九色| 人妻一区二区av| 日本午夜av视频| 精品卡一卡二卡四卡免费| videos熟女内射| 亚洲欧美一区二区三区黑人 | 99久久精品一区二区三区| 2022亚洲国产成人精品| 久久97久久精品| 十八禁高潮呻吟视频| 日韩人妻高清精品专区| 日本爱情动作片www.在线观看| 日日啪夜夜爽| 男女啪啪激烈高潮av片| 精品少妇久久久久久888优播| 999精品在线视频| 插逼视频在线观看| 黑人猛操日本美女一级片| 香蕉精品网在线| 母亲3免费完整高清在线观看 | 999精品在线视频| 人人妻人人澡人人爽人人夜夜| 一边亲一边摸免费视频| 国产精品久久久久久精品古装| 夫妻性生交免费视频一级片| 一级a做视频免费观看| 如何舔出高潮| 你懂的网址亚洲精品在线观看| 91精品三级在线观看| 视频在线观看一区二区三区| 久久99热这里只频精品6学生| 精品人妻一区二区三区麻豆| 2022亚洲国产成人精品| 美女cb高潮喷水在线观看| 日韩欧美一区视频在线观看| 91午夜精品亚洲一区二区三区| 免费观看无遮挡的男女| 亚洲欧美色中文字幕在线| 汤姆久久久久久久影院中文字幕| av在线播放精品| 国产高清三级在线| 91久久精品电影网| 亚洲精品久久午夜乱码| 中文字幕人妻熟人妻熟丝袜美| 欧美精品人与动牲交sv欧美| 视频中文字幕在线观看| 久久久a久久爽久久v久久| 最新的欧美精品一区二区| 日韩免费高清中文字幕av| 亚洲性久久影院| 看非洲黑人一级黄片| 中文乱码字字幕精品一区二区三区| 国产午夜精品一二区理论片| 亚洲美女视频黄频| 国产片特级美女逼逼视频| 99国产精品免费福利视频| 一级毛片 在线播放| 97精品久久久久久久久久精品| 国产毛片在线视频| 国产一区二区在线观看日韩| 欧美日韩av久久| 日本黄色日本黄色录像| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品蜜桃在线观看| 国产免费福利视频在线观看| 国产黄片视频在线免费观看| 亚洲欧美色中文字幕在线| 日本av免费视频播放| 亚洲国产最新在线播放| 中文字幕久久专区| 国产精品一国产av| 色婷婷久久久亚洲欧美| 亚洲精品美女久久av网站| 亚州av有码| 嘟嘟电影网在线观看| 午夜福利网站1000一区二区三区| 日本爱情动作片www.在线观看| 美女中出高潮动态图| 69精品国产乱码久久久| 国产 精品1| videosex国产| 久久久精品94久久精品| 国产成人aa在线观看| 欧美日本中文国产一区发布| 九九久久精品国产亚洲av麻豆| 丝袜脚勾引网站| 九草在线视频观看| 777米奇影视久久| 超碰97精品在线观看| 在线天堂最新版资源| av一本久久久久| 亚洲不卡免费看| 亚洲欧美精品自产自拍| 激情五月婷婷亚洲| 飞空精品影院首页| 精品人妻偷拍中文字幕| 一二三四中文在线观看免费高清| 又黄又爽又刺激的免费视频.| 日韩av不卡免费在线播放| 人人澡人人妻人| 99热这里只有精品一区| 高清黄色对白视频在线免费看| 国产亚洲最大av| 在线观看人妻少妇| 大香蕉久久成人网| 王馨瑶露胸无遮挡在线观看| 少妇的逼水好多| 亚洲国产av新网站| 欧美xxxx性猛交bbbb| 人人妻人人澡人人爽人人夜夜| 免费av中文字幕在线| 十八禁高潮呻吟视频| 国产一区二区三区av在线| 久久韩国三级中文字幕| 少妇精品久久久久久久| 日本与韩国留学比较| 好男人视频免费观看在线| 久久婷婷青草| 亚洲欧洲国产日韩| 成年人午夜在线观看视频| 国产午夜精品一二区理论片| 亚洲av成人精品一二三区| 精品久久久精品久久久| 一区二区日韩欧美中文字幕 | 晚上一个人看的免费电影| 99久久综合免费| 狂野欧美激情性bbbbbb| 久久精品人人爽人人爽视色| 丰满乱子伦码专区| 97在线人人人人妻| 亚洲精品,欧美精品| 国内精品宾馆在线| 国产有黄有色有爽视频| 99九九在线精品视频| 欧美激情国产日韩精品一区| 97在线视频观看| 老女人水多毛片| 少妇被粗大猛烈的视频| 久久久久国产精品人妻一区二区| 精品熟女少妇av免费看| 国产精品久久久久久av不卡| 国产成人一区二区在线| 在线观看三级黄色| 欧美成人午夜免费资源| av播播在线观看一区| 丝袜脚勾引网站| 国产精品久久久久久久电影| 一区二区三区四区激情视频| 久久毛片免费看一区二区三区| 精品久久久久久电影网| 丝瓜视频免费看黄片| 五月伊人婷婷丁香| 精品人妻熟女av久视频| 一级毛片黄色毛片免费观看视频| 一二三四中文在线观看免费高清| 午夜福利,免费看| 男女国产视频网站| 黑人巨大精品欧美一区二区蜜桃 | 国产精品一区二区在线观看99| 中国国产av一级| 久久婷婷青草| av免费在线看不卡| a级毛色黄片| 亚洲精品乱码久久久久久按摩| 欧美 亚洲 国产 日韩一| 老司机影院毛片| 亚洲国产最新在线播放| 性高湖久久久久久久久免费观看| 综合色丁香网| 18+在线观看网站| a级毛片免费高清观看在线播放| 天天影视国产精品| 99久久中文字幕三级久久日本| 三上悠亚av全集在线观看| 亚洲熟女精品中文字幕| a级毛色黄片| 久久免费观看电影| 老司机影院成人| 你懂的网址亚洲精品在线观看| 最后的刺客免费高清国语| 看十八女毛片水多多多| 观看美女的网站| kizo精华| 国产精品欧美亚洲77777| 久久婷婷青草| 免费av中文字幕在线| 国产又色又爽无遮挡免| 一级a做视频免费观看| 亚洲av成人精品一区久久| 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品| 成年人免费黄色播放视频| 青春草亚洲视频在线观看| 国产成人午夜福利电影在线观看| 有码 亚洲区| 精品一区二区三卡| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看一区二区三区激情| 亚洲av男天堂| 亚洲少妇的诱惑av| 亚洲综合色惰| tube8黄色片| 有码 亚洲区| 国产av一区二区精品久久| 丰满乱子伦码专区| 久久毛片免费看一区二区三区| 免费久久久久久久精品成人欧美视频 | 国产欧美另类精品又又久久亚洲欧美| 亚洲av不卡在线观看| 成人黄色视频免费在线看| a级毛色黄片| 久久99蜜桃精品久久| 99热这里只有是精品在线观看| 2022亚洲国产成人精品| 日韩一区二区三区影片| 国产精品国产三级专区第一集| 三级国产精品片| 国产熟女午夜一区二区三区 | 在线观看免费日韩欧美大片 | 蜜臀久久99精品久久宅男| 久久久久国产精品人妻一区二区| 中文天堂在线官网| 国产 精品1| 国产精品国产三级专区第一集| 青春草国产在线视频| 街头女战士在线观看网站| 国产精品久久久久久精品古装| 美女主播在线视频| 久久久久久久大尺度免费视频| 视频区图区小说| 久久久久久人妻| 美女国产视频在线观看| 乱码一卡2卡4卡精品| 桃花免费在线播放| 少妇精品久久久久久久| 色哟哟·www| 国产毛片在线视频| 亚洲欧美日韩卡通动漫| www.av在线官网国产| 黄色毛片三级朝国网站| 性高湖久久久久久久久免费观看| 99久久综合免费| 亚洲成人av在线免费| 午夜老司机福利剧场| 亚洲欧美一区二区三区黑人 | 久久久久久久久久久久大奶| 狂野欧美白嫩少妇大欣赏| 免费高清在线观看视频在线观看| 蜜桃国产av成人99| 国产国语露脸激情在线看| 伊人久久国产一区二区| 爱豆传媒免费全集在线观看| 国产色婷婷99| 男女国产视频网站| 欧美人与善性xxx| 在线观看免费高清a一片| 人体艺术视频欧美日本| 国产片特级美女逼逼视频| 成年美女黄网站色视频大全免费 | 欧美最新免费一区二区三区| 性色avwww在线观看| 亚洲av日韩在线播放| 97精品久久久久久久久久精品| 国产午夜精品久久久久久一区二区三区| 中文字幕亚洲精品专区| www.色视频.com| 夜夜爽夜夜爽视频| 亚洲欧洲精品一区二区精品久久久 | 少妇人妻久久综合中文| 精品亚洲成国产av| 大码成人一级视频| 免费看不卡的av| 欧美日韩视频高清一区二区三区二| 亚洲性久久影院| 少妇猛男粗大的猛烈进出视频| 色网站视频免费| 欧美日韩av久久| 亚洲美女黄色视频免费看|