• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling windwave driven by typhoon Chan-Hom(201509)in the East China Sea

    2017-01-06 08:47:02ZhangNie
    關(guān)鍵詞:遠高于總額銷售額

    H.Q.Zhang,B.C.Nie

    aKey Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    bSchool of Engineering Science,University of Chinese Academy of Science,Beijing 100049,China

    cSchool of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China

    Modelling windwave driven by typhoon Chan-Hom(201509)in the East China Sea

    H.Q.Zhanga,b,?,B.C.Niec

    aKey Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    bSchool of Engineering Science,University of Chinese Academy of Science,Beijing 100049,China

    cSchool of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China

    H I G H L I G H T S

    ·Discussed anisotropic energy dissipation in the wave propagation direction.

    ·The new modified model to simulate and forecast wave evolution caused by Chan-Hom(201509).

    ·Discussed typical wave parameters near Donghai Bridge.

    A R T I C L E I N F O

    Article history:

    Received 2 November 2016

    Received in revised form

    4 November 2016

    Accepted 4 November 2016

    Available online 17 November 2016

    Windwave

    Wave dissipation

    Saturation spectrum

    Significant wave height

    Typhoon

    Typhoon-generated waves pose a serious threat to the development of offshore wind power;therefore typical wave parameters caused by typhoon near Donghai Bridge,a demonstration area of offshore wind farm,were analysed.We pay particular attention to the dissipation term which is one of the source terms of governing equation for windwave evolution in WAVEWATCH III.Anisotropic energy dissipation in the wave propagation direction is considered and further applied in our model.A good agreement is observed by comparison with in situ data.Furthermore,the new improved model is used to simulate and forecast wave evolution caused by Chan-Hom(201509).The evolution of typical wave parameters i.e.significant wave height and mean wave period were discussed in the East China Sea,especially near Donghai Bridge.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Air–sea interaction is one of the important fluid dynamical processes which mediate exchanges of momentum,heat,and gases between atmosphere and ocean[1].On the other hand, rouge waves generated by wind have profound implications for the design,placement,and safety of offshore wind power system.Based on these considerations,in this paper,we primarily explore the classical problem of windwave especially for typhoongenerated waves that occur in the East China Sea,where a few marine wind farms are under construction now.The study on the wave spectrum forecast made great progress and developed from the first generation to the third generation.Numerical method and source terms are continuously improved and modified.In these source terms,one of the least known is the dissipation term.Phillips[2]thought that in the balance equation,the wind term,the wave–wave interaction,and the dissipation term are all important.Balanced by wave–wave interactions,the dissipation term is the cube of‘saturation’.Later results showed that the wave breaking has an obvious critical value.Banner et al.[3]found that there is a relationship between wave breaking probability and saturation spectrum,and wave breaking happened when saturation level exceeds a certain threshold.Ardhuin et al.[4] further supposed that energy dissipation caused by wave breaking are in proportion to probability and dimension of the wave breaking,and so energy dissipation by wave breaking is expressed as

    Total wave energy or wave action is conservation which gives the balance equation for the wave action density spectrumNas Eq.(2)in the spherical coordinate system.

    whereRis the radius of the earth;λandφare the longitude and latitude,respectively;UλandUφare current components;θis the wave travelling direction in the Cartesian definition,andθ=0 corresponds to waves travelling from west to east;kandcgare wavenumberandgroupvelocity,respectively;andσistherelative frequency observed in a frame of reference moving with the mean current.

    The source termSat the right hand of the equation consists of four parts,an energy input termSin,a nonlinear wave–wave interactions termSnl,a dissipation termSds,and a bottom friction termSbot.

    By analysing the source terms,we primarily focus on the term ofSdsas it plays a major role in the balance and is not well understood thus far.The dissipation termSdsin the source terms due to wave breaking are generally considered as a combination of the saturation-based termthe wave–turbulence interaction termand other dissipation termsas follows:

    whereSis the saturation level;CifandChfare switch coefficients of unsaturation and saturation terms,respectively.

    The saturation-based term related to the spectral density, breaking probability and breaking severity is parameterized by the saturation spectrum,as shown in Eq.(1).In the past,the saturation spectrum is usually assumed independent of wave propagation direction.

    However,recent research shows that energy dissipation due to wave breaking is anisotropic in the wave propagation direction. Thus we integrate the direction-weighted saturation spectrumexpressed as Eq.(5)into the windwave predicting model expecting to improve its accuracy.

    據(jù)《2017年歐盟產(chǎn)業(yè)研發(fā)投入記分牌》[8]報告對全球研發(fā)投入排名前2 500家企業(yè)(占全球企業(yè)研發(fā)總投入90%以上)所做的調(diào)查,2016年,全球企業(yè)研發(fā)投入連續(xù)6年保持增長,總額達7 416億歐元,同比增長5.8%,遠高于其凈銷售額0.1%的增長幅度。

    Fig.1.History of the significant wave height at station(12.10°E,34.45°N).The open square is in situ data from Ref.[10].

    whereF(f,θ′)is the wave’s spectral density over frequenciesfand directionsθ′;pwas suggested to take 2 which is related to the maximum orbital velocity in directionθfor waves with frequencies close tof.

    Considering the effect of wave direction on energy dissipation caused by wave breaking,in this paper,new definition of saturation spectrum expressed by Eq.(6)is applied in WAVEWATCH III.

    Muifa(201109)is chosen to validate our new model.The target typhoon formed as a tropical depression over the Western Pacific Ocean on July 25,2011,and then strengthened to a super typhoon by the end of the month.It came to the East China Sea on August 5,and landed North Korea on August 9.Thus,we studied the windwave of the East China Sea in 5 days since August 5.Our results are validated with significant wave heights from three observation stations:(120.10°E,34.45°N),(126.02°E,37.23°N), and(125.77°E,36.25°N),hereinafterreferredtoasSI,SIIandSIII.As an example,the comparisons of significant wave height between in-situ SI data and our model are illustrated in Fig.1,which shows that the maximum significant wave heights are 2.18 m(in situ) and 2.54 m(our model).Comparing with the in situ data,our result has a sight phase delay.That is caused by the wind data updating delay in our computing,since the wind data we used is the remotely sensed wind field data from NASA’s cross-calibrated, multi-platform ocean surface wind velocity project with time resolution six hours.The maximum significant wave heights at SII and SIII are 4.58 m(in situ)and 6.95 m(our results)and 3.86m(insitu)and5.97m(ourresults),respectively.Thedeviation between simulation and observations,i.e.the significant wave heights of simulation seem larger than the in situ observation, are in fact in the allowable tolerance.Because mechanisms of wave dissipation in inshore water,where those three observation stations located,are quite complicated due to the nonlinear effect in wave breaking and bottom friction.Moreover,the effects such as reflection,refraction,and wave–current interaction will also become significant in those regions.In addition,wind field and bathymetry data in inshore waters seems somewhat coarser due to land terrain effect and large bathymetry slope.

    Fig.2.Wind field caused by Chan-Hom at 08:00:00,July 11.

    Chan-Hom(201509)formed on June 29,2015 from a westerly wind burst on the Northern Pacific Ocean.It headed northwest and intensified into a typhoon on July 7 before passing between the Japanese islands of Okinawa and Miyako-jima,and it reached the peak winds of 165 km/h two days later.The wind speed of typhoons hit China coast often decayed greatly during their way to China Seas.However,the wind speed of Chan-Hom was still as high as 130 km/h when it struck the coast of Zhejiang on July 11. Then it turned to north crossing the East China Sea and Yellow Sea, and made landfall on the Korean Peninsula on July 13 finally.Since the East China Sea is the region of interest,the geographical area considered in this analysis is formed by a rectangle covering those areas.Its four corners being assigned at the most northerly,the mostsoutherly,thewesternmost,andthemosteasterlypointsare: 38.00°N,22.00°N,115.00°E,and 130.00°E.Based on the track,our analysis period lasts from 02:00:00 of July 8 to 22:00:00 of July 12.

    The Bathymetry data is retrieved from the National Centers for Environment Information,which belongs to National Oceanic and Atmospheric Administration.In this analysis,ETOP01,a 1 arcminute global relief model of Earth’s surface,was utilized.

    The wind field caused by Chan-Hom was reconstructed based onthetropicalcyclonemodel[11,12].Inthetropicalcyclonemodel we used,wind field v is decomposed into three components: tangential wind speed vT,radial wind speed vR,and environmental scale wind velocity vEas expressed by Eq.(7).

    We here only present the final expressions of those three components,for the details one may refer to Ref.[12].vT,vR, and vEare given as Eqs.(8)–(10)with vector marks omitted for convenience.

    whereVmis the maximal wind velocity,U0is the translation velocity of the cyclone.RGis the length scale of the environmental scale processes of order of 500 km,ris the distance form tropical cyclonecentre.Risr/RM,whereRMistheradiustomaximumwind speed.As for the coefficientsB,Candk,we took the typical valuesB=1.5,C=0.013,andk=0.16 as suggested by Jakobsen and Madsen[12].aequals tofRM/(2Vm),wherefis the Coriolis parameter related to latitude.

    Using the aforementioned tropical cyclone model,wind field can be obtained once the maximal wind velocity and location of tropical cyclone centre are given.In this analysis,the maximal wind velocity and location were retrieved from the joint typhoon warning center(JTWC),a joint United States Navy.Its time resolution is 6 h during the life cycle time of Chan-Hom.As a demonstration,the wind field at 08:00:00 July 11 is presented as Fig.2.From which,the eye of Chan-Hom and the asymmetric wind vectors due to translation heading northwest are quite straightforward.

    Fig.3.Maximal significant wave heights at observation stations in Chan-Hom life cycle.S1–S15 are the observation stations located along China coast from the Taiwan Strait to the Shandong Peninsula.

    Fig.4.History of significant wave heights at S5 to S9.The observation stations S5 to S9 are Zhoushan,Daishan,Chengshan,Dajishan,and Sheshan,respectively.The horizontal and vertical axes are time from 24:00:00 July 9 to 00:00:00 July 13 and significant wave height,respectively.

    The maximal significant wave heights of fifteen stations along China coast from the Taiwan Strait to the Shandong Peninsula were observed.The observation stations are Pingtan(120.190°E,25.49°N),Beishuang(120.830°E,26.71°N),Nanlu (121.580°E,27.46°N),Dachen(122.500°E,28.46°N),Zhoushan (123.040°E,29.87°N),Daishan(123.000°E,30.27°N),Chengshan (123.460°E,30.73°N),Dajishan(122.950°E,30.83°N),Sheshan (122.810°E,31.52°N),Waikejiao(122.180°E,33.02°N),Binhai (120.780°E,34.28°N),Lianyungang(119.860°E,34.79°N),Qianliyan(121.960°E,36.25°N),Chengshantou(123.36°E,37.38°N), Penglai(121.20°E,37.86°N),which are referred to as S1–S15,respectively,hereinafter.

    As shown in Fig.3,the maximal significant wave heights of S1–S3(at nearshore of provinces Fujian and southern Zhejiang) and S11–S15(at nearshore of provinces Shandong and Jiangsu)are all below 6 m,since those stations are a little bit far away from the typhoon track.While the maximal significant wave heights of S6–S9,i.e.Daishan station,Chengshan station,Dajishan station and Sheshan station,are all above 9 m,in which S9 reaches 16.06 m.Those stations sit at the nearshore of Shanghai and northern Zhejiang,just on the track(see Fig.5).Besides,the wind speed is still as high as 130 km/h when Chan-Hom passing this region.

    Fig.5.Distribution and evolution of significant wave heights.Subfigure(a)–(f)are for different moments:(a)18:00 July 8,(b)06:00 July 9,(c)18:00 July 9,(d)06:00 July 10,(e)06:00 July 11,(f)06:00 July 12.The solid line is track of Chan-Hom.

    To be more specific,the histories of significant wave height of S5–S9 are presented as shown in Fig.4.Significant wave heights rise sharply at morning of July 10 and decay at July 12,it is coincident with the arriving and leaving time of Chan-Hom for those stations.Histories of significant wave height in Fig.4 are not single peak curves,i.e.two peaks exist for each curve roughly.The‘twopeaks’phenomenoncanbeexplainedas:themaximumwind speed radius,the eye and the maximum wind speed radius will pass those stations in sequence because they are just on the track of the eye.

    In addition,the distribution/evolution of significant wave heights(see Fig.5)and mean wave periods(see Fig.6)are presented.Figure 5 shows that the maximum significant wave height moves forward along the typhoon track.The shape of area with large significant wave height,say significant wave height above 8 m,seems more slender comparing with the elliptic wind field.This tailing effect is due to wave dissipation is much gentler comparing with the sharp growth by the strong driven wind because of lack of intense dissipation force.From Fig.5(d)and (e),we can say significant wave height is strongly affected by bathymetry through wave breaking and bottom friction.As for the mean wave period(see Fig.6(d)and(e)),short mean wave period (<10 s)is in the high wind speed area where wave in the growth stage.While the mean wave period of mature wave in Yellow Sea is about 20 s(see Fig.6(e)).When the maximum wind speed decreased to 90 km/h on 06:00 July 12 as shown in Fig.6(f),mean wave periods are all below 15 s.

    In this paper,we preliminarily examine the wind generated waves in the East China Sea using a theoretical model which considers the directional behaviours of the spectral dissipation.In comparisonofnumericalsimulationwithinsitudata,basically,the model is shown to be reasonable.In the future,more in situ data is desired to further validate the model.In addition,the influences of other source terms are planned to be explored in more detail.

    Fig.6.Distribution and evolution of mean wave period.Subfigure(a)-(f)are for different moments:(a)18:00 July 8,(b)06:00 July 9,(c)18:00 July 9,(d)06:00 July 10, (e)06:00 July 11,(f)06:00 July 12.The solid line is track of Chan-Hom.

    Acknowledgements

    This work was supported by the National Science Foundation for the Youth of China(11102212)and the State Key Program of National Science of China(11232012).The authors would like to extend our sincere gratitude to Prof. Jiachun Li and Dr. Lizhen Wang for their instructive advice and useful suggestion on this study.

    [1]Z.F.Zhang,J.C.Li,Numerical simulation of momentum heat and moisture transfer on air-sea interface,J.Hydrodyn.16(2001)119(in Chinese).

    [2]O.M.Philips,Spectral and statistical properties of the equilibrium range in wind-generated gravity waves,J.Fluid Mech.156(1985)505–531.

    [3]M.L.Banner,A.V.Babanin,I.R.Young,Breakingprobabilityfordominantwaves on the sea surface,J.Phys.Oceanogr.30(2000)3145–3160.

    [4]F.Ardhuin,F.Collard,B.Chapron,et al.Spectral wave dissipation based on observations:a global validation,Proceedings of Chinese-German Joint Symposium on Hydraulics and Ocean Engineering,Darmstadt,Germany, (2008)391–400.

    [5]F. Ardhuin, A. Le Boyer, Numerical modeling of sea states: validation of spectral shapes, Navigation 54 (2006) 55–71 (in French).

    [6]M.L.Banner,J.R.Gemmrich,D.M.Farmer,Multiscale measurement of ocean wave breaking probability,J.Phys.Oceanogr.32(2002)3364.

    [7]I.R Young,A.V.Babanin,Spectral distribution of energy dissipation of windgenerated waves due to dominant wave breaking,J.Phys.Oceanogr.36(2006) 376.

    [8]F.Ardhuin,E.Rogers,A.Babanin,et al.,Semi-empirical dissipation source functions for wind-wave models:part I,definition,calibration and validation, J.Phys.Oceanogr.40(2010)1917.

    [9]L.Z.Wang,Study on Extreme Marine Environment and the Safety of Offshore Platforms(Doctoral dissertations),2011(in Chinese).

    [10]H.Hou,Y.Chen,C.Zhang,Numerical simulation of typhoon waves along Jiangsu coast,Port Waterway Eng.478(2013)13.(in Chinese).

    [11]G.D.Hubbert,G.J.Holland,L.M.Leslie,et al.,A real-time system for forecasting tropical cyclone storm surges,Weather Forecast.6(1991)86–97.

    [12]F.Jakobsen,H.Madsen,Comparison and further development of parametric tropical cyclone models for storm surge modelling,J.Wind Eng.Ind.Aerodyn. 92(2004)375–391.

    ?Corresponding author.

    E-mail address:zhanghuiqin@imech.ac.cn(H.Q.Zhang).

    http://dx.doi.org/10.1016/j.taml.2016.11.003

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    猜你喜歡
    遠高于總額銷售額
    金佰利2022財年第三季度凈銷售額為51億美元
    生活用紙(2022年12期)2023-01-25 15:54:46
    中國2012年至2021年十年間工業(yè)增加值的增長情況
    四川化工(2022年3期)2023-01-16 10:43:31
    2020年美國玩具總銷售額增至326億美元,上升16.7%
    玩具世界(2021年3期)2021-08-23 01:18:18
    美泰公司今年一季度凈銷售額8.74億美元,同比增長47%
    玩具世界(2021年3期)2021-08-23 01:18:18
    勞動報酬總額統(tǒng)計中容易出現(xiàn)的問題及對策
    В 20162016 году объемы китайского экспортамогутсократиться
    中亞信息(2016年8期)2016-12-06 05:35:41
    隱形眼鏡致感染風險高
    全國國有企業(yè)所有者權(quán)益總額
    В январе- апреле объем привлеченных зарубежных инвестиций в Китае вырос на 11,1 проц .
    中亞信息(2015年5期)2015-01-30 20:05:50
    第二季度服務(wù)器銷售額創(chuàng)13年新低
    亚洲精品粉嫩美女一区| 亚洲专区中文字幕在线| 最新美女视频免费是黄的| 一本久久中文字幕| 少妇被粗大的猛进出69影院| 亚洲精品一卡2卡三卡4卡5卡| 男女视频在线观看网站免费 | 人人妻人人澡人人看| 女性生殖器流出的白浆| 亚洲国产精品999在线| 成人18禁高潮啪啪吃奶动态图| 免费高清在线观看日韩| 男人舔女人的私密视频| 久久青草综合色| 人人妻人人澡人人看| 免费观看人在逋| 免费看a级黄色片| 欧美激情久久久久久爽电影| 国产人伦9x9x在线观看| 国产极品粉嫩免费观看在线| 国产成年人精品一区二区| 动漫黄色视频在线观看| 亚洲中文日韩欧美视频| 欧美zozozo另类| 国产欧美日韩一区二区三| 久热爱精品视频在线9| 亚洲天堂国产精品一区在线| 欧美成狂野欧美在线观看| 国产一区二区激情短视频| 伊人久久大香线蕉亚洲五| 91在线观看av| 午夜久久久久精精品| 天天添夜夜摸| 成人三级黄色视频| 一级a爱视频在线免费观看| 人人澡人人妻人| 午夜激情福利司机影院| 少妇裸体淫交视频免费看高清 | 特大巨黑吊av在线直播 | 亚洲专区字幕在线| 国产亚洲精品第一综合不卡| 热re99久久国产66热| 亚洲成人久久爱视频| 免费观看人在逋| 国产精品久久久久久精品电影 | 老汉色av国产亚洲站长工具| 亚洲 国产 在线| 真人做人爱边吃奶动态| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av电影在线进入| 欧美一区二区精品小视频在线| 亚洲国产日韩欧美精品在线观看 | av有码第一页| 美女午夜性视频免费| 欧美日韩黄片免| 午夜激情av网站| 午夜日韩欧美国产| 欧美大码av| 成人亚洲精品av一区二区| 国产成人精品无人区| 久久国产乱子伦精品免费另类| 黄色成人免费大全| 黑人操中国人逼视频| 国产成人av激情在线播放| 桃色一区二区三区在线观看| 亚洲精品久久国产高清桃花| 极品教师在线免费播放| 国产黄a三级三级三级人| 婷婷六月久久综合丁香| 巨乳人妻的诱惑在线观看| 国产精品99久久99久久久不卡| 亚洲人成网站高清观看| 国产v大片淫在线免费观看| 真人一进一出gif抽搐免费| 久久久精品欧美日韩精品| 国产av一区二区精品久久| 波多野结衣高清无吗| 色婷婷久久久亚洲欧美| 老司机午夜福利在线观看视频| 精品欧美国产一区二区三| 欧美zozozo另类| 精品国产乱码久久久久久男人| 美女大奶头视频| 波多野结衣高清无吗| 动漫黄色视频在线观看| 日韩国内少妇激情av| 丁香六月欧美| 日本三级黄在线观看| 久久这里只有精品19| 嫁个100分男人电影在线观看| 欧美日韩乱码在线| 亚洲成av片中文字幕在线观看| 久久狼人影院| 波多野结衣高清无吗| 一区二区三区激情视频| av电影中文网址| 我的亚洲天堂| 成熟少妇高潮喷水视频| 亚洲人成电影免费在线| www.www免费av| 亚洲av第一区精品v没综合| 国产一区二区激情短视频| 久久精品国产清高在天天线| 免费看a级黄色片| 国产精品综合久久久久久久免费| 国产精品99久久99久久久不卡| 国产精品亚洲美女久久久| 精品第一国产精品| 国产99久久九九免费精品| 亚洲人成网站高清观看| 国产精品野战在线观看| 国产片内射在线| tocl精华| 男女视频在线观看网站免费 | АⅤ资源中文在线天堂| 欧美黄色片欧美黄色片| 国产成人系列免费观看| 精品福利观看| 看免费av毛片| 国产片内射在线| 在线播放国产精品三级| 国产v大片淫在线免费观看| 国产成人一区二区三区免费视频网站| 免费在线观看黄色视频的| 美女 人体艺术 gogo| 成人手机av| 99久久精品国产亚洲精品| 别揉我奶头~嗯~啊~动态视频| 女性生殖器流出的白浆| 深夜精品福利| 91麻豆精品激情在线观看国产| 美女免费视频网站| 精品福利观看| 在线十欧美十亚洲十日本专区| 我的亚洲天堂| 国产在线精品亚洲第一网站| 精品久久久久久久久久久久久 | 伦理电影免费视频| 亚洲精品国产一区二区精华液| 亚洲欧美激情综合另类| 成人国语在线视频| 国产精品久久电影中文字幕| 最近最新中文字幕大全电影3 | 亚洲 欧美一区二区三区| 国产精品一区二区免费欧美| 人人澡人人妻人| 男男h啪啪无遮挡| 丁香六月欧美| 成人一区二区视频在线观看| 久久热在线av| 观看免费一级毛片| 国产aⅴ精品一区二区三区波| 国产高清videossex| 美女扒开内裤让男人捅视频| 国产v大片淫在线免费观看| 亚洲第一欧美日韩一区二区三区| 国产亚洲欧美98| 日韩一卡2卡3卡4卡2021年| 在线观看免费日韩欧美大片| 精品久久久久久久末码| 这个男人来自地球电影免费观看| 一级片免费观看大全| 老鸭窝网址在线观看| 男女视频在线观看网站免费 | 听说在线观看完整版免费高清| 国产精品精品国产色婷婷| 黄色视频,在线免费观看| 国产黄色小视频在线观看| 最近最新免费中文字幕在线| 黄频高清免费视频| 日本 欧美在线| 99riav亚洲国产免费| 亚洲成人久久爱视频| 色播亚洲综合网| 丝袜美腿诱惑在线| 国产成年人精品一区二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品久久男人天堂| 久久香蕉激情| cao死你这个sao货| 亚洲av成人av| 99热只有精品国产| 精华霜和精华液先用哪个| 丝袜在线中文字幕| 国产乱人伦免费视频| 9191精品国产免费久久| 色av中文字幕| 亚洲欧美激情综合另类| 两性夫妻黄色片| 亚洲国产精品成人综合色| 99在线人妻在线中文字幕| 国产一卡二卡三卡精品| 国产又爽黄色视频| 午夜福利高清视频| 一边摸一边做爽爽视频免费| 一本一本综合久久| 精品乱码久久久久久99久播| 久久婷婷成人综合色麻豆| 国产精品99久久99久久久不卡| 国产成人精品久久二区二区免费| 啦啦啦韩国在线观看视频| 成人亚洲精品av一区二区| 99久久国产精品久久久| 日本 欧美在线| 国产黄色小视频在线观看| 亚洲性夜色夜夜综合| 久久狼人影院| 91麻豆精品激情在线观看国产| 美女午夜性视频免费| 久久精品91蜜桃| 国产亚洲精品久久久久久毛片| 丁香六月欧美| 一本精品99久久精品77| 熟女少妇亚洲综合色aaa.| 欧美人与性动交α欧美精品济南到| 久久久久久大精品| 岛国视频午夜一区免费看| 一区二区日韩欧美中文字幕| 精品熟女少妇八av免费久了| 亚洲五月天丁香| 国产亚洲精品久久久久5区| 亚洲精品国产精品久久久不卡| 国产精品久久久久久精品电影 | 男人舔女人下体高潮全视频| 国产一级毛片七仙女欲春2 | 欧美又色又爽又黄视频| 夜夜躁狠狠躁天天躁| 国产极品粉嫩免费观看在线| 日韩高清综合在线| 国产精品爽爽va在线观看网站 | 999久久久精品免费观看国产| 一级毛片高清免费大全| 国产在线精品亚洲第一网站| 法律面前人人平等表现在哪些方面| 亚洲色图 男人天堂 中文字幕| 淫秽高清视频在线观看| 国产黄a三级三级三级人| 丁香欧美五月| 亚洲中文av在线| 韩国精品一区二区三区| 国产爱豆传媒在线观看 | 久久久久久久精品吃奶| 亚洲久久久国产精品| 午夜免费成人在线视频| 国内少妇人妻偷人精品xxx网站 | 亚洲成国产人片在线观看| 久久久久国内视频| 国产精品久久久久久人妻精品电影| 国产精品九九99| 欧美黑人欧美精品刺激| 在线永久观看黄色视频| 精品久久久久久,| 久久国产乱子伦精品免费另类| av天堂在线播放| 一进一出抽搐gif免费好疼| 在线观看66精品国产| 又紧又爽又黄一区二区| 成人国产综合亚洲| 国产1区2区3区精品| xxxwww97欧美| 麻豆av在线久日| 精品久久久久久久末码| 黄片大片在线免费观看| 又大又爽又粗| 亚洲五月天丁香| 1024视频免费在线观看| 90打野战视频偷拍视频| 女性生殖器流出的白浆| 亚洲精品国产精品久久久不卡| 99热只有精品国产| 99热只有精品国产| 欧美黄色片欧美黄色片| 88av欧美| 国产欧美日韩精品亚洲av| 日韩欧美三级三区| 国产成年人精品一区二区| 天天添夜夜摸| 欧美日韩亚洲综合一区二区三区_| 嫩草影院精品99| 亚洲av电影在线进入| 他把我摸到了高潮在线观看| 久热这里只有精品99| 欧美激情 高清一区二区三区| av欧美777| 午夜免费观看网址| 99热只有精品国产| 天堂动漫精品| 色综合站精品国产| 91av网站免费观看| 免费人成视频x8x8入口观看| 免费人成视频x8x8入口观看| 无人区码免费观看不卡| 欧美一级毛片孕妇| 国产成人欧美在线观看| 一进一出抽搐动态| 精品无人区乱码1区二区| 国产视频内射| 少妇的丰满在线观看| 久久久水蜜桃国产精品网| 色综合亚洲欧美另类图片| 日韩欧美国产一区二区入口| 男人舔奶头视频| 日本黄色视频三级网站网址| 久久伊人香网站| 在线av久久热| 免费看十八禁软件| av视频在线观看入口| 男女视频在线观看网站免费 | 久久久久久久精品吃奶| 国内毛片毛片毛片毛片毛片| а√天堂www在线а√下载| 满18在线观看网站| 又大又爽又粗| 好男人在线观看高清免费视频 | 50天的宝宝边吃奶边哭怎么回事| 国产精品久久电影中文字幕| 亚洲男人的天堂狠狠| 国产精品久久电影中文字幕| 久久午夜综合久久蜜桃| 可以免费在线观看a视频的电影网站| 亚洲免费av在线视频| 久久久久久亚洲精品国产蜜桃av| 婷婷丁香在线五月| 日韩欧美国产在线观看| 国内久久婷婷六月综合欲色啪| 日韩欧美在线二视频| 国产aⅴ精品一区二区三区波| 伦理电影免费视频| 久久午夜综合久久蜜桃| 观看免费一级毛片| 9191精品国产免费久久| 色老头精品视频在线观看| 日韩成人在线观看一区二区三区| 久久国产乱子伦精品免费另类| 亚洲第一av免费看| 午夜免费观看网址| 老汉色av国产亚洲站长工具| 免费观看人在逋| 91国产中文字幕| 欧美色视频一区免费| 日本撒尿小便嘘嘘汇集6| 伦理电影免费视频| 久久青草综合色| 久久精品亚洲精品国产色婷小说| 久久香蕉精品热| 最好的美女福利视频网| 久久精品aⅴ一区二区三区四区| 一进一出好大好爽视频| 久久久久久国产a免费观看| 丝袜美腿诱惑在线| 一个人观看的视频www高清免费观看 | 波多野结衣高清作品| 久久人妻福利社区极品人妻图片| 给我免费播放毛片高清在线观看| 成在线人永久免费视频| 免费高清在线观看日韩| 狠狠狠狠99中文字幕| 午夜精品在线福利| 两人在一起打扑克的视频| 色av中文字幕| 久久热在线av| 韩国av一区二区三区四区| 亚洲最大成人中文| 亚洲专区中文字幕在线| 波多野结衣高清无吗| 宅男免费午夜| 国产精品日韩av在线免费观看| 日日干狠狠操夜夜爽| 一本一本综合久久| 免费看十八禁软件| 精品久久久久久久末码| 免费在线观看黄色视频的| 色综合欧美亚洲国产小说| 亚洲欧美日韩高清在线视频| 亚洲午夜理论影院| 欧美日韩瑟瑟在线播放| www.自偷自拍.com| 一区二区日韩欧美中文字幕| 国产精品二区激情视频| 叶爱在线成人免费视频播放| 国产精品爽爽va在线观看网站 | 午夜影院日韩av| 18禁观看日本| 露出奶头的视频| 亚洲成人精品中文字幕电影| 午夜免费观看网址| 亚洲片人在线观看| 黄片小视频在线播放| 在线免费观看的www视频| 国产av一区二区精品久久| 黄片小视频在线播放| 欧美性猛交╳xxx乱大交人| а√天堂www在线а√下载| 日韩有码中文字幕| 免费看日本二区| 天堂影院成人在线观看| 一级毛片女人18水好多| 又黄又爽又免费观看的视频| 亚洲中文字幕一区二区三区有码在线看 | 久久久久精品国产欧美久久久| 夜夜夜夜夜久久久久| 欧美中文综合在线视频| 日日爽夜夜爽网站| 日韩精品中文字幕看吧| 亚洲中文字幕一区二区三区有码在线看 | 韩国精品一区二区三区| 不卡一级毛片| 国内揄拍国产精品人妻在线 | 一a级毛片在线观看| 久久人人精品亚洲av| 两个人免费观看高清视频| 国产精品免费一区二区三区在线| 久久久久久久午夜电影| 亚洲精品中文字幕一二三四区| 久久九九热精品免费| 非洲黑人性xxxx精品又粗又长| 欧美日韩福利视频一区二区| 淫妇啪啪啪对白视频| 曰老女人黄片| 亚洲熟女毛片儿| 久久久久国产精品人妻aⅴ院| 午夜福利高清视频| 国产在线观看jvid| 亚洲熟妇熟女久久| a级毛片a级免费在线| 18美女黄网站色大片免费观看| 后天国语完整版免费观看| 少妇的丰满在线观看| 人妻丰满熟妇av一区二区三区| 国产乱人伦免费视频| 国产爱豆传媒在线观看 | 嫁个100分男人电影在线观看| 满18在线观看网站| 欧美日韩福利视频一区二区| 伦理电影免费视频| 国内精品久久久久精免费| 黄色毛片三级朝国网站| 成人国产综合亚洲| 久久精品人妻少妇| 日本精品一区二区三区蜜桃| 性色av乱码一区二区三区2| 久久天躁狠狠躁夜夜2o2o| 欧美日韩福利视频一区二区| 中文在线观看免费www的网站 | 村上凉子中文字幕在线| 久久精品aⅴ一区二区三区四区| 长腿黑丝高跟| 久久午夜亚洲精品久久| 特大巨黑吊av在线直播 | 一边摸一边做爽爽视频免费| 精品国产一区二区三区四区第35| 国产欧美日韩一区二区三| 免费人成视频x8x8入口观看| 久久亚洲精品不卡| 亚洲av成人不卡在线观看播放网| 午夜免费观看网址| 男人的好看免费观看在线视频 | 99久久无色码亚洲精品果冻| 在线看三级毛片| 99久久99久久久精品蜜桃| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区中文字幕在线| 久久精品影院6| tocl精华| 亚洲精品av麻豆狂野| 婷婷精品国产亚洲av在线| 久久精品国产亚洲av香蕉五月| 满18在线观看网站| 国产精品永久免费网站| 免费在线观看视频国产中文字幕亚洲| av在线播放免费不卡| 最近最新免费中文字幕在线| 啦啦啦观看免费观看视频高清| 午夜福利高清视频| 黑丝袜美女国产一区| 成人三级做爰电影| 在线观看66精品国产| 亚洲成av片中文字幕在线观看| 中文字幕人妻熟女乱码| 黑人操中国人逼视频| 久久久国产欧美日韩av| 成人午夜高清在线视频 | 成年免费大片在线观看| 国产激情偷乱视频一区二区| 999久久久国产精品视频| 色播亚洲综合网| 怎么达到女性高潮| 999精品在线视频| 国产精品久久久久久精品电影 | 国产三级黄色录像| 真人一进一出gif抽搐免费| 亚洲天堂国产精品一区在线| 亚洲专区字幕在线| 男女午夜视频在线观看| 99国产精品一区二区蜜桃av| 国产高清videossex| 国产午夜福利久久久久久| 一进一出好大好爽视频| 国产亚洲精品久久久久5区| 非洲黑人性xxxx精品又粗又长| 女人爽到高潮嗷嗷叫在线视频| 亚洲美女黄片视频| 国产黄色小视频在线观看| 欧美久久黑人一区二区| 欧美+亚洲+日韩+国产| 51午夜福利影视在线观看| 级片在线观看| 午夜视频精品福利| 久久精品影院6| 久久久久国产一级毛片高清牌| 精品少妇一区二区三区视频日本电影| 波多野结衣高清作品| 亚洲成人久久爱视频| 99热这里只有精品一区 | 一夜夜www| 最新在线观看一区二区三区| 亚洲五月色婷婷综合| 免费女性裸体啪啪无遮挡网站| 啦啦啦韩国在线观看视频| 国产精品香港三级国产av潘金莲| 在线观看日韩欧美| 侵犯人妻中文字幕一二三四区| 香蕉丝袜av| 免费观看精品视频网站| 亚洲自拍偷在线| 国产极品粉嫩免费观看在线| 又紧又爽又黄一区二区| 色播亚洲综合网| 亚洲一区二区三区不卡视频| 国产真人三级小视频在线观看| 母亲3免费完整高清在线观看| 日日夜夜操网爽| 国产亚洲精品第一综合不卡| 性色av乱码一区二区三区2| 中文字幕高清在线视频| 久久婷婷人人爽人人干人人爱| 18禁黄网站禁片午夜丰满| 国产精品国产高清国产av| 男女床上黄色一级片免费看| 黄色片一级片一级黄色片| 成年版毛片免费区| 露出奶头的视频| 国产高清videossex| 18禁观看日本| 亚洲五月天丁香| 在线国产一区二区在线| 欧美激情 高清一区二区三区| 亚洲欧美激情综合另类| 国产精品一区二区精品视频观看| 亚洲人成77777在线视频| 国产人伦9x9x在线观看| 婷婷精品国产亚洲av在线| 亚洲五月婷婷丁香| 免费在线观看视频国产中文字幕亚洲| 一进一出好大好爽视频| 日本撒尿小便嘘嘘汇集6| 麻豆成人av在线观看| 久久中文字幕人妻熟女| 91老司机精品| 亚洲国产精品sss在线观看| 国产精品 国内视频| 丁香六月欧美| 两个人免费观看高清视频| 黄色片一级片一级黄色片| 欧美日韩精品网址| 亚洲精品久久成人aⅴ小说| 一进一出抽搐动态| 亚洲三区欧美一区| 黄频高清免费视频| 亚洲国产精品久久男人天堂| 亚洲精品久久成人aⅴ小说| 中文字幕人妻熟女乱码| 中文亚洲av片在线观看爽| 国内毛片毛片毛片毛片毛片| 精品久久久久久久久久免费视频| 麻豆久久精品国产亚洲av| cao死你这个sao货| 人妻丰满熟妇av一区二区三区| 丁香欧美五月| 亚洲人成电影免费在线| 亚洲国产欧美网| 国产在线观看jvid| 国产成人av教育| 香蕉久久夜色| 亚洲中文字幕一区二区三区有码在线看 | 国产主播在线观看一区二区| 香蕉丝袜av| 午夜老司机福利片| 久久久久久久久免费视频了| 久久精品国产综合久久久| 婷婷精品国产亚洲av在线| 免费人成视频x8x8入口观看| 久久国产亚洲av麻豆专区| 国产高清激情床上av| 啪啪无遮挡十八禁网站| 国产99久久九九免费精品| 久久99热这里只有精品18| 少妇粗大呻吟视频| 满18在线观看网站| 中文字幕久久专区| 国产欧美日韩一区二区三| 特大巨黑吊av在线直播 | 天堂√8在线中文| 成人三级做爰电影| 欧美又色又爽又黄视频| 好男人在线观看高清免费视频 | 国产又色又爽无遮挡免费看| 操出白浆在线播放| 国产99白浆流出| 欧美zozozo另类| 亚洲自偷自拍图片 自拍| 国产不卡一卡二| 一区二区三区精品91| 久久精品亚洲精品国产色婷小说| 国产黄a三级三级三级人|