• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of Gurney flap on SFYT15thick airfoil

    2017-01-06 08:47:00XiHeJinjunWngMuqingYngDongliChoYnPeiqingLiu
    關(guān)鍵詞:蟲族頭車愛美

    Xi He,Jinjun Wng,?,Muqing Yng,Dongli M,Cho Yn,Peiqing Liu

    aFluid Mechanics Key Laboratory of Education Ministry,Beijing University of Aeronautics and Astronautics,Beijing 100191,China

    bInstitute of Aircraft Design,Beijing University of Aeronautics and Astronautics,Beijing 100191,China

    Numerical simulation of Gurney flap on SFYT15thick airfoil

    Xi Hea,Jinjun Wanga,?,Muqing Yangb,Dongli Mab,Chao Yana,Peiqing Liua

    aFluid Mechanics Key Laboratory of Education Ministry,Beijing University of Aeronautics and Astronautics,Beijing 100191,China

    bInstitute of Aircraft Design,Beijing University of Aeronautics and Astronautics,Beijing 100191,China

    H I G H L I G H T S

    ·Gurney flap can improve aerodynamic performance of SFYT15thick airfoil.

    ·The mechanism for Gurney flap lift-enhancement is revealed.

    ·Gurney flap can reduce the wall friction drag at a certain angle of attack.

    ·Gurney flap can largely increase the pressure drag of the flow around the airfoil.

    A R T I C L E I N F O

    Article history:

    沒想到這個(gè)蟲族還挺愛美的,安潔西嘆息著,跳上最后一輛貨車。四輛貨車排成一行前進(jìn),雷狼和亞虎等人跟著頭車,雨馳和安潔西他們則在最后壓陣。

    Received 29 June 2016

    Received in revised form

    3 September 2016

    Accepted 8 September 2016

    Available online 2 October 2016

    Lift enhancement

    Airfoil

    Gurney flap

    A two-dimensional steady Reynolds-averaged Navier–Stokes(RANS)equation was solved to investigate the effects of a Gurney flap on SFYT15thick airfoil aerodynamic performance.This airfoil was designed for flight vehicle operating at 20 km altitude with freestream velocity of 25 m/s.The chord length(C)is 5 m and the Reynolds number based on chord length is Re=7.76×105.Gurney flaps with the heights rangingfrom0.25%C to3%C wereinvestigated.Theshearstresstransport(SST)k-ωturbulencemodelwas used to simulate the flow structure around the airfoil.It is showed that Gurney flap can enhance not only the prestall lift but also lift-to-drag ratio in a certain range of angles of attack.Specially,at cruise angle of attack(α=3°),Gurney flap with 0.5%C height can increase lift-to-drag ratio by 2.7%,and lift coefficient by 12.9%,respectively.Furthermore,the surface pressure distribution,streamlines and trailing-edge flow structure around the airfoil are illustrated,which are helpful to understand the mechanisms of Gurney flaponairfoilaerodynamicperformance.Moreover,itisfoundthattheincreaseofairfoildragwithGurney flap can be attributed to the increase of pressure drag between the windward and the leeward sides of Gurney flap itself.

    ?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Gurney flap(GF)is a small flat tab mounted perpendicular to the pressure surface of the airfoil in the vicinity of the trailing edge,which can effectively increase airfoil lift and aerodynamic performance.Because of the significant effect of GF on airfoil aerodynamic performance,a lot of researches were conducted in recent 20 years.

    Initial research of GF lift enhancement was conducted by Liebeck[1].Then,numerous studies showed that GF is a simple and efficient aircraft high-lift device[2–9].Wang et al.[10]in the review paper showed that GF can increase the lift coefficient of airfoils,wings,and aircraft both at subsonic and transonic speeds. The use of GF is especially useful during takeoff and landing of aircraft.For optimum aerodynamic performance,the GF should be mounted at the trailing edge perpendicular to the chord line of the airfoil or root chord line of the wing,where its height must be less than the local boundary layer thickness.In addition,they alsoanalyzedandsummarizedlift-enhancementmechanismofGF. Now,GF is widely used to improve the airfoil lift-to-drag ratio, stall control,flutter control,and other aspects.The installation form of GF has transformed from conventional fixed type to active variable type.Amini et al.[11]pointed out that though GF can enhance lift,it increases drag simultaneously.Their numerical simulationusedtheadjointshapeoptimizationprocesstodecrease unfavorable effects on the drag coefficient,which can strongly improve the aerodynamic performance of airfoils with GF by maintaining the lift coefficient and reducing the drag coefficient. Chandrasekhara[12]used a variable droop leading edge(VDLE) airfoil to control compressible dynamic stall,but the price was a10%loss of lift.GF was used for recovering this loss,and the airfoil with GF height of 1%chord length(C)was an optimal choice.Hak-Tae et al.[13]and Stefan and Ilan[14]used miniature trailing edge effectors(MiTEs)which are small movable control surfaces similar to GF.The effectors were mounted at or near the trailing edge to provide high bandwidth and robust control.They illustrated that the MiTEs can inhibit the occurrence of flutter from the perspective of numerical analysis and experiments.Yen et al.[15] mounted micro-electro-mechanical(MEM)translational tabs near the trailing edge of Newman airfoil.The tab is equivalent to a variable GF and able to control the wing load.Through numerical simulation and wind tunnel experiments,they pointed out that this active GF can replace bulky ailerons in the future,so it will reduce the structural weight,complexity and costs.

    Fig.1.Grid system.

    To meet the high altitude,low energy consumption,long flight time,highload,andotherrequirementsofnearspaceflightvehicle, the SFYT15thick airfoil was designed.The purpose of this paper is to install GF on this specially designed airfoil,and analyze its ability to improve the aerodynamic characteristics of the airfoil, thus improving the aerodynamic performance of near space flight vehicle.

    The governing equations are the Reynolds-averaged Navier–Stokes(RANS)equations.Fortwo-dimensionalsteadyincompressible flow,the conservation of mass and momentum equations can be written as:

    Allthe numericalsimulations wereperformedwith theFLUENT commercial computational fluid dynamics(CFD)software,in which the solution methods were set to solve the RANS equations. The governing equations have a precision of second-order,and pressure–velocity coupling adopts the semi-implicit method for pressure-linked equations consistent(SIMPLEC)algorithm.The pressure term,the momentum term,the turbulent kinetic energy term,and the specific dissipation term are all discretized using the second-order upwind scheme.

    The turbulence model adopted in this study is the shear stress transport(SST)k-ωtwo-equation turbulence model proposed by Menter[16].The core idea of this model is to use the robustness ofk-ωmodel to capture the flow of viscous sublayer and to usek-?model in the mainstream area to avoid the disadvantage ofk-ωturbulence model which performs too sensitive in entrance turbulence parameters.SSTk-ωmodel combines the advantages of the standardk-ωmodel and the standardk-?model by mixing functions.Therefore,SSTk-ω model has higher accuracy and reliability in a wide range of flow fields.

    In the previous researches of Yu et al.[17]and Zhang et al.[18], thesimulationresultssolvedbySpalart–Allmaras(S–A)turbulence model are in good agreement with experimental data.Moreover, Menter[16]and Rogers et al.[19]found out that for most part of the high-lift problems,the predictions of the S–A and SSTk-ω models are similar.However,it was proposed that SSTk-ωmodel is superior in accurately predicting pressure-induced separation. Therefore,theSSTk-ωmodelcanbemoresuitableinpresentstudy than the S–A model,whose accuracy was verified by Yu et al.[20] and Zhang et al.[21].

    At the altitude of 20 km in present study,C=5 m,freestream velocityV=25m/s,ρ=8.8×10-2kg/m3,andμ=1.418×10-5 Pa·s,which result inRe=7.76×105.The H-type mesh generated by elliptical method in ICEM CFD is more suitable,and its accuracy was verified by Ma et al.[22].The computational grid,shown in Fig.1,constitutes 320 grid points on the airfoil surface.The respective distance of the inlet and outlet boundaries away from the leading edge is 20Cand 30C,respectively.The top and bottom boundaries are both 16Caway from the chord.The total grid number is 1.2× 105.In order to capture the boundary layer preciously,thegridmusthaveay+approximatetoone.y+isanondimensional distance which indicates the degree of grid fineness in near-wall region.In the present simulation,the first grid node above the surface is 1.5×10-5times of chord length,which leads toy+=0.5.

    Fig.2.The dependence on the grids.

    Fig.3.Aerodynamic coefficients.

    As for boundary conditions,the inlet,top and bottom boundaries are defined as the velocity inlet boundary condition.The outlet boundary is defined as the outflow boundary condition. The surface of the airfoil and the GF are set as the no-slip wall condition.

    Four types of grids are used in the present simulation to check the dependence of the results on the grids.The grid numbers are 8×104,1×105,1.2×105,and 1.5×105,respectively.As is shown in Fig.2,the lift coefficient(CL)and lift-to-drag ratio(L/D)are in reasonable agreement for different grids,which indicates that thesimulation results are independent on the grid numbers for the four cases selected.Therefore,it is convincing to adopt the grid number of 1.2×105in the present simulation.

    Fig. 4. Pressure coefficient (CP) distribution on the airfoil with/without GF at different α.

    Figure3 presentsthe aerodynamicforcecoefficientof SFYT15thick airfoil with and without a GF.In the present simulation,the data marked with‘No GF’show the aerodynamic coefficients curves of the clean airfoil,and the curves marked with‘h=x%’indicate the aerodynamic coefficients curves of the SFYT15thick airfoil with GF height ofx%C.As is shown in Fig.3(a),with the increase of GF height,the lift curves gradually shift upward.The larger the GF height is,the greater magnitude the curve shifts.At the designed cruise angle of attack(α= 3°),CLis enhanced by 12.9%and 32.8%forh= 0.5%and 2%, respectively.

    Figure 3(b)shows the variation of drag with angles of attack at different GF heights.Obviously,GF also increases drag,and the largertheGFheightis,themorethedragincreasewillbe.Similarly, at the designed cruise angle of attack,drag coefficient(CD)is increased by 10.0%and 41.7%forh=0.5%and 2%,respectively. Thus,when the GF height is large,compared to the increase of lift,the drag increase becomes more significant.As the lift-to-drag ratio is an important factor in the flight range and endurance of theaircraft,analyzing the lift and drag merely is not comprehensive enough.It is needed to investigate the effect of GF on lift-to-drag ratio.

    Fig.5.(Color online)Flow structure and pressure contours on trailing edge of SFYT15thick airfoil with/without GF atα=3°.

    As is shown in Fig.3(c),for a given lift-to-drag ratio,the lift coefficientis enhancedwiththeincrease ofGF height.Ontheother hand,when the lift coefficient is in the range ofCL=1.2–1.7,the lift-to-drag ratio of airfoil with GF is increased compared with the clean airfoil.Specifically,when the lift coefficientCLis between 1.2 and 1.45,airfoil withh=0.5%GF has the optimal effect on the lift-to-drag ratio.Meanwhile,whenCLis between 1.45 and 1.7, airfoilwithh=1.0%GFisanoptimalchoice.Figure3(d)showsthe variation of lift-to-drag ratio withα,it can be seen that at a small angle of attack,GF can increase the lift-to-drag ratio of the airfoil. Atα=3°,the installation ofh=0.5%GF is an optimal design,in this case,the lift-to-drag ratio can be increased by 2.7%with a lift increment of 12.9%.

    Figure 4 illustrates the pressure distribution on the airfoil with/without a GF.The Kutta condition of the trailing edge is changed when deploying a GF.The suction force of the upper surface of the airfoil is enhanced,and the lower surface pressure is increased.This effect raises the load capacity of the airfoil,and thenresultsinanincreasedCLoftheairfoil.ThelargertheGFheight is,the more the lift enhancement is.As is shown in Fig.4(a),when α=0°,the front 35%Cof the upper surface undergoes favorable pressure gradient.After that,the air flows smoothly along the upper surface of the airfoil without separation.In Fig.4(b),due to the increase ofα,the leading edge suction is increased,but the range of the favorable pressure gradient is reduced.In Fig.4(c), theleadingedgesuctionisfurtherincreased,andtheuppersurface of the airfoil undergoes adverse pressure gradient after 4%Cof the uppersurfaceatα=8°.Underthelargeadversepressuregradient, the flow tends to separate.It can be seen that the flow separation occurs at about 80%C.In the separation zone,the pressure remains constant and the pressure increment caused by the GF seems to be smaller.In the lower surface near the trailing edge and in front of the GF,the flow is also separated,forming a large recirculation zone,which makes the pressure of trailing edge increased.

    In the present simulation,a comparison is made on the timeaveraged streamlines and pressure contours near trailing edge of the airfoil with/without GF atα = 3°.Figure 5(a)shows that there is a small separation bubble near the trailing edge without GF.However,in Fig.5(b),it is obvious that GF eliminates the small separation bubble on the upper surface,so that the air can flow smoothly along the upper surface.Thus,GF can increase the lift by delaying the flow separation in the trailing edge of the airfoil.

    Table 1 Analysis of drag coefficient.

    Simultaneously,a similar comparison is made atα=8°.As is shown in Fig.6(a),flow has separated at the position of 85%Cfrom the leading edge,resulting in a large separation bubble, which greatly reduces the suction on the upper surface of airfoil. However,Fig.6(b)illustrates that the flow separation on the upper surface is suppressed and the position of the separation is delayed to 90%Cfrom the leading edge when the GF is installed.As a result,the suction is larger than the clean airfoil and the lift is increased.At the same time,from the perspective of vortex,there is a wake region downstream of the leeward of GF,where a couple of counter-rotating vortex pairs exist.GF acts as a point vortex, which enlarges the circulation of the airfoil.The Kutta condition shifts from trailing-edge point of the airfoil to the lower edge of the GF,which results in lift enhancement.Moreover,the pressure contour shows that the windward side of the GF endures positive pressure and the leeward side endures the negative one,resulting in the drag increase of the airfoil.These are consistent with the results of Yu et al.[17].

    In general,the drag of flow over airfoil includes friction drag, pressure drag,shock drag,and induced drag.In this paper,a twodimensional airfoil is considered at low speed,thus,it is enough to consider friction drag and pressure drag only.The total drag coefficientiscalculatedwithFluentsoftware,aswellasthespecific friction drag coefficient(Cf)and pressure drag coefficient(CDP). The results are shown in Table 1.

    Fig.6.(Color online)Flow structure and pressure contours on trailing edge of SFYT15thick airfoil with/without GF atα=8°.

    Fig.7.Cfof upper/lower surface atα=8°.

    It can be seen from Table 1 that it is the dramatic increase of pressure drag which results in the increase of total drag of airfoil with GF.According to the analysis of the trailing edge flow,the windwardsideoftheGFendurespositivepressureandtheleeward sideenduresthenegativeone,andthepressuredragincreasesalot compared to the clean airfoil,which leads to the increase of total drag.From the data of frictional drag,it can be seen that the GF has a tendency to decrease the friction drag at a certain angle of attack. A comparison is made on the skin friction coefficient of the upper and lower surfaces with/without GF atα=8°.In Fig.7,on the upper surface,the leading edge suction is increased because of the GF so that the local flow rate is larger than that of the clean airfoil, whichmeansthefrictioncoefficientbecomeslarger.Meanwhile,at the trailing edge of the lower surface,the existence of GF leads to the flow separation.The flow is no longer attached to the entire lower airfoil surface,and the skin friction coefficient decreases. Combined with these two factors,the decrease of drag coefficient of the lower airfoil surface is dominant,resulting in the reduction of total friction coefficient.

    This study further shows that even the carefully designed airfoil,GF can also be used to effectively improve the aerodynamic performance of the airfoil,i.e.,increasing lift coefficient as well as the lift-to-drag ratio.The larger the GF height is,the more obvious the lift-enhancement will be.When the lift coefficientCLis ranged from 1.2 to 1.7,airfoil with GF can provide higher lift-to-drag ratio at a fixed lift coefficient.Whenαis low,airfoil with GF can also improve the lift-to-drag ratio at a fixedα.In addition,this paper further reveals the mechanism of GF lift-enhancement and drag increase,and the drag increase can mainly be attributed to the pressure drag increment for flow around the GF.

    [1]R.H.Liebeck,Designofsubsonicairfoilsforhighlift,J.Aircr.15(1978)547–561. http://dx.doi.org/10.2514/3.58406.

    [2]R.Myose,M.Papadakis,I.Heron,Gurney flap experiments on airfoils,wings, and reflection plane model,J.Aircr.35(1998)206–211.http://dx.doi.org/10. 2514/2.2309.

    [3]D.R.Jeffrey,X.Zhang,D.W.Hurst,Aerodynamics of Gurney flaps on a singleelement high-lift wing,J.Aircr.37(2000)295–301.http://dx.doi.org/10.2514/ 2.2593.

    [4]Y.C.Li,J.J.Wang,P.F.Zhang,Effect of Gurney flaps on a NACA0012 airfoil,Flow Turbul.Combust.68(2002)27–39.http://dx.doi.org/10.1023/A: 1015679408150.

    [5]Y.C.Li,J.J.Wang,P.F.Zhang,Influencesofmountinganglesandlocationsonthe effects of gurney flaps,J.Aircr.40(2003)494–498.http://dx.doi.org/10.2514/ 2.3144.

    [6]R.Meyer,W.Hage,D.W.Bechert,et al.,Drag reduction on Gurney flaps by three-dimensional modifications,J.Aircr.43(2006)132–140. http://dx.doi.org/10.2514/1.14294.

    [7]L.W.Traub,A.C.Miller,O.Rediniotis,Preliminary parametric study of Gurney flap dependencies,J.Aircr.43(2006)1242–1244.http://dx.doi.org/10.2514/1. 13852.

    [8]T.S.Liu,J.Montefort,Thin airfoil theoretical interpretation for Gurney flap lift enhancement,J.Aircr.44(2007)667–671.http://dx.doi.org/10.2514/1.27680.

    [9]L.Lee,T.Lee,Effect of Gurney flap on unsteady wake vortex,J.Aircr.44(2007) 1398–1401.http://dx.doi.org/10.2514/1.29555.

    [10]J.J.Wang,Y.C.Li,K.S.Choi,Gurney flap–liftenhancement,mechanisms and applications, Prog. Aerosp. Sci. 44 (2008) 22–47. http://dx.doi.org/10.1016/j.paerosci.2007.10.001.

    [11]Y.Amini,H.Emdad,M.Farid,Adjoint shape optimization of airfoils with attached Gurney flap,Aerosp.Sci.Technol.41(2015)216–228. http://dx.doi.org/10.1016/j.ast.2014.12.023.

    [12]M.S.Chandrasekhara,Optimum Gurney flap height determination for‘lostlift’recovery in compressible dynamic stall control,Aerosp.Sci.Technol.14 (2010)551–556.http://dx.doi.org/10.1016/j.ast.2010.04.010.

    [13]L.Hak-Tae,K.Ilan,B.Stefan,Flutter suppression for high aspect ratio flexible wings using microflaps,AIAA 2002-1717,in:43rd Conference of AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials, 2002.http://dx.doi.org/10.2514/6.2002-1717.

    [14]B.Stefan,K.Ilan,Flutter suppression using micro-trailing edge effectors, AIAA 2003-1941,in:44th Conference AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,and Materials,2003.http://dx.doi.org/10.2514/6.2003-1941.

    [15]D.T.Yen,C.Van Dam,F.Br?euchle,et al.Active load control and lift enhancement using MEM translational tabs,AIAA 2000-2422,2000. http://dx.doi.org/10.2514/6.2000-2242.

    [16]F.R.Menter,Two-equation eddy-viscosity turbulence models for engineering applications,AIAAJ.32(1994)1598–1605.http://dx.doi.org/10.2514/3.12149.

    [17]T.Yu,J.J.Wang,P.F.Zhang,Numerical simulation of Gurney flap on RAE-2822 supercritical airfoil,J.Aircr.48(2011)1565–1575.http://dx.doi.org/10.2514/ 1.C031285.

    [18]P.F.Zhang,A.B.Liu,J.J.Wang,Aerodynamic modification of a NACA 0012 airfoil by trailing-edge plasma Gurney flap,AIAA J.47(2009)2467–2474. http://dx.doi.org/10.2514/1.43379.

    [19]S.E.Rogers,F.R.Menter,P.A.Durbin,et al.A comparison of turbulence models in computing multi-element airfoil flows,AIAA-94-0291,in:32nd Aerospace Sciences Meeting&Exhibit,Reno,NV,USA,1994.

    [20]T.Yu,J.J.Wang,P.F.Zhang,Numericalsimulation ofGurney flap on RAE-2822 supercriticalairfoil,J.Aircr.48 (2011) 1565–1575. http://dx.doi.org/10.2514/1.C031285.

    [21]P.F.Zhang,A.B.Liu,J.J.Wang,Aerodynamic modification of a NACA 0012 airfoil by trailing-edge plasma Gurney flap,AIAA J.47(2009)2467–2474. http://dx.doi.org/10.2514/1.43379.

    [22]D.L.Ma,Y.P.Zhao,Y.H.Qiao,et al.,Effects of relative thickness on aerodynamic characteristicsofairfoilatalowReynoldsnumber,Chin.J.Aeronaut.28(2015) 1003–1015.http://dx.doi.org/10.1016/j.cja.2015.05.012.

    ?Corresponding author.

    E-mail addresses:hx1605106@buaa.edu.cn(X.He),jjwang@buaa.edu.cn (J.Wang),qingfengrumu@163.com(M.Yang),madongli@buaa.edu.cn(D.Ma), chyan@vip.sina.com(C.Yan),lpq@buaa.edu.cn(P.Liu).

    http://dx.doi.org/10.1016/j.taml.2016.09.002

    2095-0349/?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    猜你喜歡
    蟲族頭車愛美
    兩種不同蜂窩防爬裝置的城軌頭車耐撞性分析
    愛美也需適度而為
    中老年保健(2022年3期)2022-08-24 02:59:52
    丁輝:閱兵坦克“頭車”駕駛員
    晚晴(2020年8期)2020-12-03 13:49:57
    頭車半自動(dòng)鉤緩裝置傾斜問題研究
    星際獵人·陷阱
    星際獵人·反擊
    星際獵人·追擊
    愛美之心人皆有之
    沒有忘記愛美
    什么也不能阻擋我們愛美
    999精品在线视频| 美女主播在线视频| 999久久久国产精品视频| 久久鲁丝午夜福利片| 在线精品无人区一区二区三| 涩涩av久久男人的天堂| 久久国产精品男人的天堂亚洲| 国产精品香港三级国产av潘金莲 | 视频区图区小说| 国产精品偷伦视频观看了| 亚洲欧洲国产日韩| 亚洲av福利一区| 亚洲国产精品一区三区| 午夜激情久久久久久久| 久久99热这里只频精品6学生| 丰满乱子伦码专区| 韩国av在线不卡| 精品一区二区三卡| 精品久久蜜臀av无| 男人爽女人下面视频在线观看| 一本久久精品| 欧美av亚洲av综合av国产av | 欧美人与性动交α欧美精品济南到 | 亚洲精品国产色婷婷电影| 美国免费a级毛片| 蜜桃国产av成人99| 看十八女毛片水多多多| 日本vs欧美在线观看视频| 91精品伊人久久大香线蕉| 晚上一个人看的免费电影| 伦精品一区二区三区| 国产精品国产三级专区第一集| 欧美中文综合在线视频| 国产精品久久久久久精品电影小说| 国产野战对白在线观看| 国产福利在线免费观看视频| 国产一区亚洲一区在线观看| 日本欧美国产在线视频| 久久久精品免费免费高清| 免费看不卡的av| 欧美日本中文国产一区发布| 哪个播放器可以免费观看大片| 久久久久久久久免费视频了| 久久久久久免费高清国产稀缺| 亚洲视频免费观看视频| 香蕉国产在线看| 黑人欧美特级aaaaaa片| 午夜精品国产一区二区电影| 看免费成人av毛片| 中文字幕人妻熟女乱码| 精品国产国语对白av| 亚洲图色成人| 久久人妻熟女aⅴ| 可以免费在线观看a视频的电影网站 | 国产精品嫩草影院av在线观看| 久久久久久久亚洲中文字幕| 制服丝袜香蕉在线| 男女高潮啪啪啪动态图| 国产乱来视频区| 久久亚洲国产成人精品v| freevideosex欧美| 久久热在线av| 免费黄网站久久成人精品| 大香蕉久久网| 99久久中文字幕三级久久日本| av电影中文网址| 少妇精品久久久久久久| 麻豆av在线久日| 97在线视频观看| 亚洲欧美一区二区三区国产| 国产又色又爽无遮挡免| 日本av免费视频播放| 在线观看美女被高潮喷水网站| 久久精品久久久久久久性| 国产精品二区激情视频| 亚洲伊人久久精品综合| 在现免费观看毛片| 久久亚洲国产成人精品v| 两性夫妻黄色片| 伦理电影免费视频| 欧美 日韩 精品 国产| 黄色一级大片看看| 少妇的丰满在线观看| 国产老妇伦熟女老妇高清| 亚洲三级黄色毛片| 大香蕉久久成人网| 精品卡一卡二卡四卡免费| 欧美成人午夜免费资源| 午夜福利网站1000一区二区三区| 国产精品 欧美亚洲| 一二三四在线观看免费中文在| 另类亚洲欧美激情| 亚洲天堂av无毛| 国产视频首页在线观看| 亚洲成人手机| 色婷婷av一区二区三区视频| 男女免费视频国产| 五月伊人婷婷丁香| 人人妻人人澡人人看| 国产片内射在线| 欧美日韩精品网址| 女人高潮潮喷娇喘18禁视频| 久久av网站| av.在线天堂| 亚洲美女视频黄频| 十分钟在线观看高清视频www| 青春草亚洲视频在线观看| 久久精品夜色国产| 午夜精品国产一区二区电影| 精品视频人人做人人爽| 国产欧美亚洲国产| 男人操女人黄网站| 午夜久久久在线观看| 久久精品国产综合久久久| 国产精品久久久久久精品古装| 国产精品麻豆人妻色哟哟久久| 精品少妇黑人巨大在线播放| 1024视频免费在线观看| 有码 亚洲区| 亚洲欧美一区二区三区久久| 国产乱来视频区| 在线观看人妻少妇| 91精品三级在线观看| 午夜福利网站1000一区二区三区| 中文字幕人妻熟女乱码| 丰满乱子伦码专区| 2021少妇久久久久久久久久久| 国产精品久久久久久精品古装| 欧美97在线视频| 欧美激情极品国产一区二区三区| 在线看a的网站| 欧美日韩一级在线毛片| 丰满乱子伦码专区| 欧美人与性动交α欧美软件| 欧美成人午夜免费资源| 国产精品.久久久| 哪个播放器可以免费观看大片| 日日爽夜夜爽网站| 欧美在线黄色| 亚洲色图 男人天堂 中文字幕| 午夜福利视频精品| 成年女人在线观看亚洲视频| 久久人人爽av亚洲精品天堂| 女性被躁到高潮视频| 纯流量卡能插随身wifi吗| 少妇的逼水好多| 黄频高清免费视频| 69精品国产乱码久久久| 免费久久久久久久精品成人欧美视频| 国产精品久久久久久av不卡| 国产精品一二三区在线看| 国产精品久久久av美女十八| 女性生殖器流出的白浆| 国产精品国产三级专区第一集| 高清av免费在线| 又黄又粗又硬又大视频| 亚洲伊人色综图| 久久久久国产网址| 大码成人一级视频| 青春草国产在线视频| 亚洲国产日韩一区二区| 国产亚洲欧美精品永久| 婷婷色av中文字幕| 熟女电影av网| 亚洲情色 制服丝袜| 久久久久久久国产电影| 国产免费福利视频在线观看| 制服人妻中文乱码| av线在线观看网站| 亚洲激情五月婷婷啪啪| 午夜91福利影院| 美女中出高潮动态图| 丝袜人妻中文字幕| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 1024视频免费在线观看| 国精品久久久久久国模美| 精品亚洲成国产av| 如日韩欧美国产精品一区二区三区| 毛片一级片免费看久久久久| 秋霞伦理黄片| 亚洲美女视频黄频| 亚洲精品在线美女| 欧美xxⅹ黑人| xxxhd国产人妻xxx| 另类精品久久| 欧美精品高潮呻吟av久久| 亚洲四区av| 曰老女人黄片| 久久久久久免费高清国产稀缺| 欧美97在线视频| 亚洲成人av在线免费| 欧美日韩成人在线一区二区| 黑人猛操日本美女一级片| av不卡在线播放| 97在线人人人人妻| 日韩熟女老妇一区二区性免费视频| 两性夫妻黄色片| 久久热在线av| 韩国av在线不卡| 免费看不卡的av| 91午夜精品亚洲一区二区三区| 久久久久国产一级毛片高清牌| 精品久久久精品久久久| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜一区二区 | 在线天堂最新版资源| 国产成人免费观看mmmm| 免费观看性生交大片5| 波多野结衣av一区二区av| 丝袜人妻中文字幕| 在线 av 中文字幕| 女人久久www免费人成看片| 可以免费在线观看a视频的电影网站 | 中文字幕制服av| 午夜福利在线观看免费完整高清在| 欧美另类一区| 久久精品国产鲁丝片午夜精品| 欧美精品人与动牲交sv欧美| 少妇猛男粗大的猛烈进出视频| 国产淫语在线视频| 久久精品久久久久久噜噜老黄| 成年人午夜在线观看视频| www.av在线官网国产| 大码成人一级视频| 老熟女久久久| 波多野结衣一区麻豆| 免费在线观看视频国产中文字幕亚洲 | av片东京热男人的天堂| 精品国产超薄肉色丝袜足j| 色网站视频免费| 久久综合国产亚洲精品| 老女人水多毛片| 国产极品天堂在线| 国产在视频线精品| 色94色欧美一区二区| 免费久久久久久久精品成人欧美视频| 国产深夜福利视频在线观看| 日产精品乱码卡一卡2卡三| 久久午夜福利片| 久久毛片免费看一区二区三区| 日韩一卡2卡3卡4卡2021年| 国产精品免费视频内射| 成人亚洲精品一区在线观看| 成人漫画全彩无遮挡| 新久久久久国产一级毛片| 日产精品乱码卡一卡2卡三| 一区二区三区乱码不卡18| 中文字幕人妻丝袜一区二区 | www日本在线高清视频| 91精品三级在线观看| 日本猛色少妇xxxxx猛交久久| 女的被弄到高潮叫床怎么办| 久久久亚洲精品成人影院| 亚洲成人手机| 亚洲国产日韩一区二区| 在线观看美女被高潮喷水网站| 天天影视国产精品| 最近最新中文字幕免费大全7| 激情视频va一区二区三区| 日本免费在线观看一区| 大片免费播放器 马上看| 亚洲精华国产精华液的使用体验| 在线观看三级黄色| 国产精品久久久久久精品电影小说| 国产成人精品一,二区| 啦啦啦视频在线资源免费观看| 久久人人爽人人片av| 蜜桃在线观看..| 亚洲av中文av极速乱| 久久人人爽av亚洲精品天堂| 婷婷色av中文字幕| 在线天堂中文资源库| 国产精品秋霞免费鲁丝片| av电影中文网址| 巨乳人妻的诱惑在线观看| 老鸭窝网址在线观看| 亚洲av电影在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 国产成人aa在线观看| 18+在线观看网站| 哪个播放器可以免费观看大片| 毛片一级片免费看久久久久| 热99久久久久精品小说推荐| 国产成人精品婷婷| 欧美成人精品欧美一级黄| 成人毛片60女人毛片免费| 久久韩国三级中文字幕| 18+在线观看网站| 一级毛片 在线播放| 亚洲成人一二三区av| 国产成人精品久久久久久| 日韩成人av中文字幕在线观看| 成年女人在线观看亚洲视频| 日日撸夜夜添| 久久久久久久大尺度免费视频| 亚洲精品aⅴ在线观看| 国产免费视频播放在线视频| 免费看不卡的av| 免费不卡的大黄色大毛片视频在线观看| 久久久精品区二区三区| 亚洲精品aⅴ在线观看| 亚洲成人手机| 国产午夜精品一二区理论片| 国产亚洲欧美精品永久| 久久人人爽人人片av| 国产精品不卡视频一区二区| 亚洲欧美精品综合一区二区三区 | www.自偷自拍.com| 不卡视频在线观看欧美| 美女大奶头黄色视频| 一级毛片电影观看| 欧美成人午夜精品| 免费在线观看完整版高清| 青草久久国产| 久久国产亚洲av麻豆专区| 9热在线视频观看99| 考比视频在线观看| a级毛片在线看网站| 成人影院久久| 美女视频免费永久观看网站| 国产毛片在线视频| 亚洲熟女精品中文字幕| 国产精品久久久久久av不卡| videos熟女内射| 久久99一区二区三区| 黑人猛操日本美女一级片| 青春草国产在线视频| 国产成人精品福利久久| 日日撸夜夜添| 777久久人妻少妇嫩草av网站| 人人妻人人爽人人添夜夜欢视频| 亚洲美女视频黄频| 日本欧美国产在线视频| 亚洲欧美色中文字幕在线| 黄片无遮挡物在线观看| 热re99久久国产66热| 国产xxxxx性猛交| 亚洲av国产av综合av卡| av电影中文网址| a级片在线免费高清观看视频| 99热网站在线观看| 久久久久网色| 高清视频免费观看一区二区| 亚洲一级一片aⅴ在线观看| 亚洲国产精品成人久久小说| 欧美老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品中文字幕在线视频| 你懂的网址亚洲精品在线观看| 黄色怎么调成土黄色| 精品国产一区二区三区四区第35| 91aial.com中文字幕在线观看| 一区二区三区四区激情视频| 日本91视频免费播放| 成年美女黄网站色视频大全免费| √禁漫天堂资源中文www| 丝袜脚勾引网站| 十八禁网站网址无遮挡| 成人黄色视频免费在线看| 少妇猛男粗大的猛烈进出视频| 国产在线一区二区三区精| 女性生殖器流出的白浆| 亚洲国产欧美在线一区| 一级a爱视频在线免费观看| 免费在线观看完整版高清| 美女主播在线视频| 午夜老司机福利剧场| 美女中出高潮动态图| 超色免费av| 久久 成人 亚洲| 女人高潮潮喷娇喘18禁视频| 永久网站在线| 激情五月婷婷亚洲| 亚洲精品中文字幕在线视频| 大香蕉久久网| 久久久久视频综合| 女性被躁到高潮视频| 国产伦理片在线播放av一区| 亚洲欧美成人综合另类久久久| 一级毛片我不卡| videosex国产| 在线观看美女被高潮喷水网站| 80岁老熟妇乱子伦牲交| 欧美中文综合在线视频| 青春草视频在线免费观看| 99久久中文字幕三级久久日本| 韩国精品一区二区三区| 桃花免费在线播放| 亚洲少妇的诱惑av| av片东京热男人的天堂| 亚洲av在线观看美女高潮| 国产 一区精品| 激情视频va一区二区三区| 在线观看免费日韩欧美大片| 18禁动态无遮挡网站| av免费观看日本| 国产精品蜜桃在线观看| 成人黄色视频免费在线看| 中文字幕亚洲精品专区| 精品久久久久久电影网| 少妇精品久久久久久久| 男女边吃奶边做爰视频| kizo精华| 9色porny在线观看| 国产一区二区激情短视频 | 国产免费现黄频在线看| 性色avwww在线观看| 香蕉丝袜av| 午夜福利影视在线免费观看| 成年美女黄网站色视频大全免费| 日韩 亚洲 欧美在线| 国产福利在线免费观看视频| 色婷婷久久久亚洲欧美| 精品人妻偷拍中文字幕| 黄网站色视频无遮挡免费观看| 亚洲精品,欧美精品| 国产无遮挡羞羞视频在线观看| 大香蕉久久成人网| 欧美成人精品欧美一级黄| 亚洲美女视频黄频| av在线老鸭窝| 激情五月婷婷亚洲| 尾随美女入室| 亚洲欧洲日产国产| 精品亚洲成国产av| 欧美日本中文国产一区发布| 国产精品国产av在线观看| 超色免费av| 亚洲精品国产av成人精品| 欧美黄色片欧美黄色片| 99久久中文字幕三级久久日本| 韩国高清视频一区二区三区| 日本-黄色视频高清免费观看| 久久久久久久精品精品| 免费女性裸体啪啪无遮挡网站| 国产综合精华液| 少妇精品久久久久久久| 男女啪啪激烈高潮av片| 色网站视频免费| 亚洲精品久久午夜乱码| 精品亚洲成a人片在线观看| 亚洲一区二区三区欧美精品| 精品少妇内射三级| 国产日韩欧美在线精品| 菩萨蛮人人尽说江南好唐韦庄| 国产乱来视频区| 国产成人精品久久久久久| 国产免费视频播放在线视频| 午夜日韩欧美国产| 亚洲精品一区蜜桃| 欧美日韩成人在线一区二区| 在线 av 中文字幕| 欧美激情高清一区二区三区 | 久久午夜综合久久蜜桃| 少妇的逼水好多| www.精华液| 一区福利在线观看| 国产亚洲欧美精品永久| 久久狼人影院| 少妇的丰满在线观看| 晚上一个人看的免费电影| 黄片无遮挡物在线观看| 天堂俺去俺来也www色官网| 国产精品国产三级专区第一集| 欧美日韩亚洲国产一区二区在线观看 | 国产男人的电影天堂91| 日本欧美视频一区| 一级片'在线观看视频| 另类亚洲欧美激情| 国产av国产精品国产| 大陆偷拍与自拍| 免费在线观看视频国产中文字幕亚洲 | 色播在线永久视频| 亚洲精品美女久久av网站| 亚洲婷婷狠狠爱综合网| 亚洲av日韩在线播放| 亚洲欧美精品综合一区二区三区 | 人妻少妇偷人精品九色| 亚洲精品久久久久久婷婷小说| 亚洲精品国产av蜜桃| 色吧在线观看| 精品人妻在线不人妻| 黄片播放在线免费| 久久女婷五月综合色啪小说| 久久久久精品性色| 91aial.com中文字幕在线观看| 伊人久久大香线蕉亚洲五| 亚洲av福利一区| 亚洲人成网站在线观看播放| 亚洲色图综合在线观看| 亚洲成人av在线免费| 欧美精品亚洲一区二区| 久久久亚洲精品成人影院| 亚洲精品中文字幕在线视频| 最近最新中文字幕免费大全7| 久久精品aⅴ一区二区三区四区 | 一区福利在线观看| 综合色丁香网| 99国产综合亚洲精品| 国产精品久久久久久精品电影小说| 大香蕉久久成人网| 久久精品国产a三级三级三级| 欧美日韩亚洲国产一区二区在线观看 | 日日爽夜夜爽网站| 国产精品av久久久久免费| 9热在线视频观看99| 如日韩欧美国产精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 欧美另类一区| 国产在线视频一区二区| 在现免费观看毛片| 亚洲人成电影观看| 十八禁高潮呻吟视频| 欧美日韩亚洲国产一区二区在线观看 | 黑人欧美特级aaaaaa片| 久久精品久久久久久久性| 90打野战视频偷拍视频| 在线观看美女被高潮喷水网站| 亚洲精华国产精华液的使用体验| 夫妻午夜视频| 精品人妻在线不人妻| 男女边吃奶边做爰视频| 亚洲人成网站在线观看播放| 精品一区在线观看国产| 久久精品aⅴ一区二区三区四区 | 国产精品熟女久久久久浪| 日本-黄色视频高清免费观看| 一本大道久久a久久精品| 中文字幕另类日韩欧美亚洲嫩草| 性色avwww在线观看| 99国产综合亚洲精品| 精品久久久精品久久久| 免费女性裸体啪啪无遮挡网站| 亚洲综合精品二区| av.在线天堂| 亚洲国产色片| 成人毛片a级毛片在线播放| 下体分泌物呈黄色| 午夜福利网站1000一区二区三区| 久久久久网色| 只有这里有精品99| 91成人精品电影| 美女xxoo啪啪120秒动态图| 国产精品国产三级专区第一集| 日韩一区二区三区影片| 女人精品久久久久毛片| 久久亚洲国产成人精品v| 午夜91福利影院| 视频在线观看一区二区三区| 丝瓜视频免费看黄片| √禁漫天堂资源中文www| 大香蕉久久网| 久久久久国产精品人妻一区二区| 亚洲av成人精品一二三区| 精品一品国产午夜福利视频| 中文字幕av电影在线播放| 久久99一区二区三区| 如何舔出高潮| 国产男女内射视频| 久久久久国产网址| 欧美日韩av久久| 在线观看免费日韩欧美大片| 久久久国产欧美日韩av| 青青草视频在线视频观看| 美女脱内裤让男人舔精品视频| 一级黄片播放器| 国产97色在线日韩免费| 熟女av电影| 婷婷色综合www| 91国产中文字幕| 亚洲第一av免费看| 午夜免费鲁丝| 男女下面插进去视频免费观看| 亚洲国产成人一精品久久久| 亚洲av.av天堂| 18禁国产床啪视频网站| 午夜老司机福利剧场| 国产精品偷伦视频观看了| 免费少妇av软件| 观看美女的网站| 最近最新中文字幕大全免费视频 | www日本在线高清视频| 美女主播在线视频| 久久这里有精品视频免费| 亚洲成人手机| 街头女战士在线观看网站| 久久久a久久爽久久v久久| 人人妻人人添人人爽欧美一区卜| 欧美激情高清一区二区三区 | 伦精品一区二区三区| 热99国产精品久久久久久7| 婷婷色综合大香蕉| 日韩视频在线欧美| 日韩成人av中文字幕在线观看| 成年美女黄网站色视频大全免费| 亚洲三区欧美一区| 日韩大片免费观看网站| 黄色配什么色好看| 男人爽女人下面视频在线观看| 日韩中字成人| 一区福利在线观看| 午夜日韩欧美国产| 日本av免费视频播放| 国产精品香港三级国产av潘金莲 | 久久人人爽av亚洲精品天堂| 亚洲欧美一区二区三区黑人 | 99热网站在线观看| 国产精品二区激情视频| 不卡av一区二区三区| 婷婷色综合大香蕉| av视频免费观看在线观看| 最近手机中文字幕大全| 亚洲色图 男人天堂 中文字幕| 免费少妇av软件|