• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On transition of type V interaction in double-wedge flow with non-equilibrium effects

    2017-01-06 08:46:59WentaoXiongYujianZhuXishengLuo

    Wentao Xiong,Yujian Zhu,Xisheng Luo

    Advanced Propulsion Laboratory,Department of Modern Mechanics,University of Science and Technology of China,Hefei 230026,China

    On transition of type V interaction in double-wedge flow with non-equilibrium effects

    Wentao Xiong,Yujian Zhu,Xisheng Luo?

    Advanced Propulsion Laboratory,Department of Modern Mechanics,University of Science and Technology of China,Hefei 230026,China

    H I G H L I G H T S

    ·Transition of regular reflection(RR)-Mach reflection(MR)in type V shock interaction in double-wedge flow is studied considering the thermochemical non-equilibrium effects.

    ·Transition mechanism between RR and MR of type V interaction is changed by the non-equilibrium effects.

    ·Non-equilibrium effects lead to a lager critical wedge angle and a larger hysteresis interval.

    A R T I C L E I N F O

    Article history:

    Received 31 May 2016

    Received in revised form

    18 August 2016

    Accepted 19 August 2016

    Available online 1 October 2016

    Shock interaction

    Non-equilibrium effects

    Shock polar

    Hypersonic flow

    The transition between regular reflection(RR)and Mach reflection(MR)of type V shock–shock interaction on a double-wedge geometry with high temperature non-equilibrium effects is investigated by extended shock-polar method and numerical simulation.First,the critical angles of transition from detachment criterion and von Neumann criterion are determined by the extended shock-polar method considering the non-equilibrium effects.Then wave patterns and the transition process are numerically obtained.Results of the critical transition angles from shock-polar calculation and numerical simulation show evident disagreement,indicating transition mechanism between RR and MR of type V interaction is changed.By comparing with the frozen counterpart,it is also found that non-equilibrium effects lead to a larger critical wedge angle and a larger hysteresis interval.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Shock–shock interaction is a common phenomenon in many aerodynamic configurations.Such shock interactions cause high localized heat loads and pressure oscillations on the vehicle surface,and subsequently have significant impacts on the performance and reliability of hypersonic flights.Type V shock interaction in hypersonic double-wedge flow has gained a lot of attention for it may cause high peak pressure loads and high frequency pressure variations on the wedge surface.However,most previous researches on type V interaction were based on the calorically perfect gas model and few exceptions dealt with the real gas effectswhich play a significantroleinhypersonic flows.Olejniczak et al.[1]investigated the high enthalpy double-wedge flows using experimental methods as well as numerical simulations,and the reasons causing the difference between the numerical simulation and experimental results were analyzed.Nompelis et al.[2]studied the effect of vibrational non-equilibrium on the heat-transfer rate in hypersonic double-wedge flow.Tchuen et al.[3]indicated the double-wedge flow field was highly sensitive to real gas effects which will significantly change the shock shape,the thickness of the shock layer,and the pressure oscillations.

    There are two fundamental wave patterns in type V interaction.Figure 1(a)and(b)shows an overall regular reflection (RR)and an overall Mach refection(MR)of type V interaction,respectively.Here,Sw1 is the impinging shock emanating from the first wedge,Sw2 is the impinging shock emanating from the second wedge.Bs is the bow shock generated by the second wedge.Transmitted shock Sw3 and the shock Sw2 undergo a RR or MR.UTP,MTP,and LTP denote the upper triple point,middle triple point,and lower triple point,respectively. In this letter,we will study the transition between these two reflections in hypersonic double-wedge flow with the first wedge angles of 10°–30°considering the thermochemical nonequilibrium effects.The shock polar analysis with non-equilibrium effects[4]is used to theoretically calculate the critical angles of transition angles determined by detachment criterion and von Neumann criterion.The wave patterns and the process of the transition are investigated through two-dimensional inviscid numerical simulations[4].Two-temperature model and Park’s five specieschemicalkineticsmodel[5]areadoptedtocharacterizethe flow.Thenumericalsolutiontwo-dimensionalvectorizedadaptive solver(VAS2D)[6]based on the finite volume method with an unstructured mesh is adopted for the Euler equation,which has beenwellvalidatedintheshock–bodyinteractionandtheshock–bubble interaction[6,7].The type of shock interaction that occurs in double-wedge flow depends on the relevant non-dimensional parameters.Inthisstudy,werestricttheMachnumberMa=9,mole fractions of the gas species N2:O2=0.79:0.21,temperatureTv=T∞=500 K,pressurep=0.1 atm(1 atm=1.0×105Pa), the lengths of the wedgesL1=L2=0.1 m.The original mesh in the computation is 1.8 mm×1.8 mm,and a maximum adaptation level of 6 is used in all simulations.

    Fig.1.Schematic diagram of regular reflection and Mach reflection of type V interaction.

    Fig.2.Shock polar diagram for type V interaction.

    Fig.3.Critical transition angles resulting from shock polar analysis and numerical simulation.

    Fig.4.Transition process from RR to MR of type V interaction in non-equilibrium flow.θ1=10°,(a1)θ2=43°,(a2)θ2=43.5°→43.7°,(a3)θ2=43.7°→44°; θ1=14°,(b1)θ2=43.6°,(b2)θ2=44.2°→ 44.5°,(b3)θ2=44.7°→ 44.9°; θ1=18°,(c1)θ2=44.1°,(c2)θ2=45.2°→ 45.5°,(c3)θ2=45.8°→ 46°; θ1=22.5°,(d1)θ2=45°,(d2)θ2=45.5°→46°,(d3)θ2=46.5°→46.8°.

    The non-equilibrium shock polar[4]diagrams for type V interaction with different wedge angles are used to analyze the critical angles determined by detachment criterion and von Neumann criterion,as shown in Fig.2.The vertical axis corresponds to pressure behind the oblique shock and is normalized by the incoming flow pressure.Whenθ2is larger thanθD,the transition RR→MR of type V interaction occurs.Whenθ2is smaller thanθvon,the transition MR→RR of type V interaction occurs.The critical angles of the transition RR?MR obtained by shock polar diagram for nonequilibrium gas are shown in Fig.3,and the critical values from numerical simulations are also illustrated in Fig.3.Here,symbol‘°’denotes the theoretical transition value and symbol‘·’denotes the computed transition value.The solid lineθDis obtained by detachment criterion,while the solid lineθvonis obtained by von Neumann criterion.The dashed line‘RR→MR’indicates the critical angles of transition RR→MR arising from numerical simulation,and the dashed line‘MR→RR’indicates the critical angles of transition MR→RR arising from numerical simulation.Figure 3 also indicates the existence of hysteresis phenomenon between the transition RR?MR of type V interaction in double-wedge flow with non-equilibrium effects,and there is a hysteresis interval of about 1°in all cases.However,it is found that the hysteresis effect is inconspicuous for frozen cases.At the first wedge angles of 10°and 22.5°,there is a hysteresis interval of about 0.1°.The nonequilibrium effects extend the hysteresis interval for the transition RR?MR of type V interaction in double-wedge flow.

    Fig.5.Transition from RR to MR of type V interaction in frozen flow,θ1=10°, (a1)θ2=40°,(a2)θ2=40°→ 40.2°,(a3)θ2=40.2°→ 40.4°;θ1=22.5°, (b1)θ2=43.4°,(b2)θ2=43.4°→43.6°,(b3)θ2=43.6°→43.8°.

    Figure 4 represents the transition process of the RR→MR of type V interaction with series of wedge angles obtained from computations.It is clearly observed in the Mach number contours that the transition of RR→MR is related to the Mach stem generating at the second wedge.With the first wedge angle fixed, when the second wedge angle is small,the transmitted shock Sw3(see in Fig.1)emanating from the upper triple point and the leading wedge shock Sw2 emanating from the leading edge of the secondwedgeundergoanoverallRR,andoneofthereflectedshock Sw5 is re-reflected from the second wedge in an RR,as shown in Fig.4(a1)–(d1).Increasing the second wedge angle gradually,the shockinteractionremainsanoverallRRattheLTP,butthereflected shock Sw5 performs an MR over the second wedge surface,as showninFig.4(a2)–(d2).TheMachstemgrowswiththeincreasing of the angle of the second wedge,and finally the triple point of the MR emanating from second wedge surface collides with the regular intersection point LTP,which leads to the occurrence of the overall MR between the shock wave Sw3 and Sw2,as shown in Fig.4(a3)–(d3).The critical anglesθ2for RR→MR of type V interaction obtained by computations and theoretical shock polar method are compared in the(θ1,θ2)plane in Fig.3.It is found that the critical wedge angles of transition RR→MR by numerical simulations are smaller than the theoretical results based on detachmentcriterion.Thatcanbeascribedtothecollisionbetween the triple points which advances the RR→MR transition.The conclusion considering thermochemical non-equilibrium effects of the flow in our study appears to be consistent with the computations with a perfect gas model by Hu et al.[8].

    Frozen computations,with the same initial condition and boundary condition but using a perfect gas model,are conducted to evaluate the influence of the non-equilibrium effects on the critical angles.Two frozen double-wedge flows were computed and the transitions of the shock wave configuration are illustrated in Fig.5.The transition RR→MR of type V interaction undergoes a different process at the first wedge angle of 10°.The transition in non-equilibriumflowisfinishedbyacollisionasmentionedabove, whilethetransitioninfrozenflowdoesnotundergosuchaprocess. The mechanism for the transition RR→MR of type V interaction at the first wedge angle of 10°in frozen flow has been explained for disturbance-induced transition by Hu et al.[9].In our study, it is found that the non-equilibrium effects change the transition mechanism,i.e.the transition undergoes a collision.Moreover,it is observed that the non-equilibrium effects make the critical wedge angles larger than the frozen ones.

    Fig.6.Transition process from MR to RR of type V interaction in non-equilibrium flow,θ1=10°,(a1)θ2=43.7°,(a2)θ2=43.5°→43.3°,(a3)θ2=43.3°→43°; θ1=14°,(b1)θ2=44.5°,(b2)θ2=44.5°→ 44°,(b3)θ2=44°→ 43.8°; θ1=18°,(c1)θ2=46°,(c2)θ2=46°→ 45.7°,(c3)θ2=45.7°→ 45.3°; θ1=22.5°,(d1)θ2=47°,(d2)θ2=47°→46.8°,(d3)θ2=46.8°→46.5°.

    The transition process of the MR→RR of type V interaction with series of wedge angles obtained from numerical simulations is shown in Fig.6.It is seen by Mach number contour that the transition process of MR→RR of type V interaction obeys the same principle for different wedge angles.With the first wedge angle θ1fixed,the computation starts at an angle ofθ2which leads to an overall MR of type V interaction.With theθ2decreasing gradually,the Mach stem emanating from the MTP and LTP(see in Fig.1(b))becomes shorter.With further decreasing theθ2to critical value,the Mach stem disappears and the shock wave configuration changes to an overall RR of type V interaction.The criticalvaluesofθ2obtainedfromtheoreticalshockpolarapproach and numerical results are compared in the(θ1,θ2)plane in Fig.3.It is found that there is a great difference between the critical values of transition MR→RR obtained from von Neumann criterion and numerical simulation.That means the mechanism of the transition MR→RR is not the von Neumann criterion any more.With the second wedge angleθ2decreasing,MTP moves down until it collides with LTP,which leads to the occurring of MR→RR.Frozen computations are also performed to investigate the influence of the non-equilibrium effects on the transition MR→RR of type V interaction.As illustrated in Fig.7,the frozen transitions areconsistent with the ones in non-equilibrium flows.However,the critical values ofθ2in frozen flows are smaller than those in the non-equilibrium case.

    Fig.7.Transition from MR to RR of type V interaction in frozen flow,θ1=10°, (a1)θ2=41°,(a2)θ2=41°→ 40.6°,(a3)θ2=40.6°→ 40.3°;θ1=22.5°, (b1)θ2=44.5°,(b2)θ2=44.5°→44°,(b3)θ2=44°→43.7°.

    In conclusion,the transition between RR and MR of type V interaction in hypersonic double-wedge flow was investigated by considering the non-equilibrium effects.The results showed that there was a significant difference between the critical wedge anglesofthesecondwedgeobtainedbytheoreticalmethodandthe numerical simulation,indicating transition mechanism between RR and MR of type V interaction was changed.The collisions between the shock interaction points of type V interaction caused the transition.Hysteresis phenomenon was also observed.By comparing with the frozen counterpart,it was also found that nonequilibrium effects lead to a larger critical wedge angle and a larger hysteresis interval.

    [1]J.Olejniczak,G.Candler,M.Wright,et al.,Experimental and computational study of high enthalpy double-wedge flows,J.Thermophys.Heat Transfer 13 (1999)431–440.

    [2]I.Nompelis,G.Candler,M.Holden,Effect of vibrational nonequilibrium on hypersonic double-cone experiments,AIAA J.41(2003)2162–2169.

    [3]G.Tchuen,Y.Burtschell,D.Zeitoun,Numerical study of the interaction of type IVr around a double-wedge in hypersonic flow,Comput.Fluids 50(2011) 147–154.

    [4]J.Li,Y.Zhu,X.Luo,On type VI–V transition in hypersonic double-wedge flows with thermo-chemical non-equilibrium effects,Phys.Fluids 26(2014)086104.

    [5]C.Park,Review of chemical-kinetic problems of future NASA missions.I-Earth entries,J.Thermophys.Heat Transfer 7(1993)385–398.

    [6]M. Sun, K. Takayama, Conservative smoothing on an adaptive quadrilateral grid,J. Comput. Phys. 150 (1999) 143–180.

    [7]Z.Zhai,M.Wang,T.Si,et al.,On the interaction of a planar shock with a light polygonal interface,J.Fluid Mech.757(2014)800–816.

    [8]Z.Hu,R.Myong,M.Kim,et al.,Downstream flow condition effects on the RR→MR transition of asymmetric shock waves in steady flows,J.Fluid Mech. 620(2009)43–62.

    [9]Z.Hu,Y.Gao,R.Myong,et al.,Geometric criterion for RR?MR transition in hypersonic double-wedge flows,Phys.Fluids 22(2010)016101.

    ?Corresponding author.

    E-mail address:xluo@ustc.edu.cn(X.Luo).

    http://dx.doi.org/10.1016/j.taml.2016.08.011

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    性色avwww在线观看| 国产毛片在线视频| 少妇高潮的动态图| 久久99精品国语久久久| 有码 亚洲区| 丝袜美足系列| 成人二区视频| 欧美+日韩+精品| 男女边摸边吃奶| 日韩制服骚丝袜av| 日韩中文字幕视频在线看片| 免费久久久久久久精品成人欧美视频 | 亚洲av在线观看美女高潮| 超碰97精品在线观看| 另类亚洲欧美激情| 久久99一区二区三区| 99久久中文字幕三级久久日本| 日日摸夜夜添夜夜爱| 色婷婷久久久亚洲欧美| 国产精品99久久99久久久不卡 | 久久久国产一区二区| 久久97久久精品| 国产精品久久久久久av不卡| 2021少妇久久久久久久久久久| 亚洲国产最新在线播放| 麻豆精品久久久久久蜜桃| 国产亚洲av片在线观看秒播厂| 亚洲成av片中文字幕在线观看 | 国产在线免费精品| 欧美最新免费一区二区三区| 亚洲精品自拍成人| 国产精品无大码| 一本色道久久久久久精品综合| 又大又黄又爽视频免费| 亚洲伊人久久精品综合| 菩萨蛮人人尽说江南好唐韦庄| 成人黄色视频免费在线看| 国产欧美日韩综合在线一区二区| 日本wwww免费看| 又粗又硬又长又爽又黄的视频| 欧美另类一区| 久久99热这里只频精品6学生| 亚洲国产色片| 91成人精品电影| 久久精品人人爽人人爽视色| 亚洲一级一片aⅴ在线观看| 9191精品国产免费久久| 国产亚洲av片在线观看秒播厂| 亚洲人成77777在线视频| 男女边摸边吃奶| 久久精品久久久久久噜噜老黄| 亚洲综合色惰| 国产激情久久老熟女| 成人影院久久| 免费大片18禁| 亚洲精品av麻豆狂野| 久久国产亚洲av麻豆专区| 王馨瑶露胸无遮挡在线观看| 午夜老司机福利剧场| 毛片一级片免费看久久久久| 大陆偷拍与自拍| 国产有黄有色有爽视频| 国产免费一级a男人的天堂| 一级片免费观看大全| 久久久亚洲精品成人影院| 国产麻豆69| 卡戴珊不雅视频在线播放| 国产精品久久久久久久久免| 日韩,欧美,国产一区二区三区| 黄片无遮挡物在线观看| 黄片播放在线免费| 99久久人妻综合| 老司机影院毛片| 亚洲综合色惰| 97人妻天天添夜夜摸| 午夜视频国产福利| 国产极品天堂在线| 9色porny在线观看| a级毛色黄片| kizo精华| 汤姆久久久久久久影院中文字幕| 久久久久人妻精品一区果冻| 午夜精品国产一区二区电影| 黄色一级大片看看| 国产一区亚洲一区在线观看| 亚洲精品成人av观看孕妇| 久久毛片免费看一区二区三区| 久久免费观看电影| 在线观看美女被高潮喷水网站| 天堂俺去俺来也www色官网| 中国美白少妇内射xxxbb| 91aial.com中文字幕在线观看| 青青草视频在线视频观看| 蜜桃国产av成人99| 性高湖久久久久久久久免费观看| 少妇的丰满在线观看| 国产老妇伦熟女老妇高清| 亚洲国产看品久久| 中文欧美无线码| 天堂8中文在线网| 国产精品久久久久久精品古装| 精品少妇黑人巨大在线播放| 日韩制服骚丝袜av| 亚洲国产色片| 亚洲,欧美精品.| 哪个播放器可以免费观看大片| 免费观看性生交大片5| 天天躁夜夜躁狠狠躁躁| 日本-黄色视频高清免费观看| 久久人人爽人人爽人人片va| 999精品在线视频| 欧美日本中文国产一区发布| www.色视频.com| 一本久久精品| 亚洲人成网站在线观看播放| 婷婷色综合大香蕉| 欧美人与性动交α欧美软件 | 少妇被粗大猛烈的视频| 国产精品熟女久久久久浪| 日韩视频在线欧美| 一级毛片黄色毛片免费观看视频| 美女国产视频在线观看| 色婷婷久久久亚洲欧美| 欧美人与善性xxx| 婷婷色麻豆天堂久久| 亚洲av成人精品一二三区| 美女内射精品一级片tv| 久久人人爽人人片av| 考比视频在线观看| 又大又黄又爽视频免费| 美女国产高潮福利片在线看| 精品少妇黑人巨大在线播放| 一本—道久久a久久精品蜜桃钙片| 色婷婷久久久亚洲欧美| 亚洲精品美女久久av网站| 欧美bdsm另类| 亚洲国产最新在线播放| 亚洲欧美成人精品一区二区| 精品久久久久久电影网| 亚洲精品第二区| 午夜福利,免费看| av免费观看日本| 91精品伊人久久大香线蕉| av在线老鸭窝| 久久99精品国语久久久| 午夜福利视频精品| 国产av一区二区精品久久| 一区二区三区精品91| 久久97久久精品| 男女午夜视频在线观看 | 妹子高潮喷水视频| 国产熟女欧美一区二区| 国产精品免费大片| 精品99又大又爽又粗少妇毛片| 中文字幕另类日韩欧美亚洲嫩草| 搡老乐熟女国产| 晚上一个人看的免费电影| 看十八女毛片水多多多| www.熟女人妻精品国产 | 18禁裸乳无遮挡动漫免费视频| 人妻少妇偷人精品九色| 国产成人精品福利久久| 91麻豆av在线| 国产三级黄色录像| 国产单亲对白刺激| 老司机靠b影院| 亚洲中文av在线| 首页视频小说图片口味搜索| 不卡一级毛片| 日韩欧美免费精品| 黄色怎么调成土黄色| 亚洲精品在线观看二区| 亚洲一区二区三区欧美精品| 欧美日韩国产mv在线观看视频| 国产精品香港三级国产av潘金莲| 视频区图区小说| 超碰成人久久| 国产精品九九99| 操美女的视频在线观看| av免费在线观看网站| 中文字幕人妻丝袜一区二区| 国产精品偷伦视频观看了| 夫妻午夜视频| 757午夜福利合集在线观看| 久久精品国产a三级三级三级| 高清视频免费观看一区二区| 电影成人av| 很黄的视频免费| 我的亚洲天堂| 国产精品国产高清国产av | 老司机午夜十八禁免费视频| 亚洲精品国产一区二区精华液| 老司机深夜福利视频在线观看| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线 | 多毛熟女@视频| 激情视频va一区二区三区| 宅男免费午夜| 一夜夜www| 性少妇av在线| av国产精品久久久久影院| 高清欧美精品videossex| 午夜福利欧美成人| bbb黄色大片| 美女国产高潮福利片在线看| 黄色视频不卡| 成熟少妇高潮喷水视频| 久久精品国产a三级三级三级| 亚洲国产欧美一区二区综合| 9191精品国产免费久久| 在线免费观看的www视频| 很黄的视频免费| 国产精品免费视频内射| 丝袜美腿诱惑在线| 午夜免费鲁丝| 久久国产精品男人的天堂亚洲| 久久九九热精品免费| 亚洲专区字幕在线| 高清视频免费观看一区二区| 午夜成年电影在线免费观看| 无遮挡黄片免费观看| 久久性视频一级片| 又黄又粗又硬又大视频| 国产精品九九99| 亚洲国产中文字幕在线视频| 亚洲成人免费av在线播放| 免费看十八禁软件| 久久精品亚洲精品国产色婷小说| 日韩三级视频一区二区三区| 久久午夜综合久久蜜桃| 精品国产一区二区三区四区第35| 操出白浆在线播放| 亚洲成人免费电影在线观看| 天天操日日干夜夜撸| 最近最新中文字幕大全电影3 | 最近最新免费中文字幕在线| 亚洲欧美一区二区三区久久| 亚洲精品美女久久av网站| 成人三级做爰电影| 午夜精品国产一区二区电影| 久久性视频一级片| 国产精品免费视频内射| www.999成人在线观看| 欧美色视频一区免费| 热99国产精品久久久久久7| 日本黄色日本黄色录像| 最新美女视频免费是黄的| 无遮挡黄片免费观看| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 一区二区日韩欧美中文字幕| 亚洲免费av在线视频| 国产精品久久久久久精品古装| 亚洲av熟女| 亚洲 欧美一区二区三区| 美女午夜性视频免费| 国产极品粉嫩免费观看在线| 国产精品一区二区精品视频观看| 叶爱在线成人免费视频播放| 日日夜夜操网爽| 黄色女人牲交| 熟女少妇亚洲综合色aaa.| 国产精品综合久久久久久久免费 | 天天影视国产精品| 国产国语露脸激情在线看| 亚洲五月色婷婷综合| 亚洲性夜色夜夜综合| 最新美女视频免费是黄的| 在线观看一区二区三区激情| 精品无人区乱码1区二区| 国产亚洲一区二区精品| av网站免费在线观看视频| netflix在线观看网站| 亚洲成av片中文字幕在线观看| 美女扒开内裤让男人捅视频| 一级a爱片免费观看的视频| 一级作爱视频免费观看| 日本黄色视频三级网站网址 | 国产无遮挡羞羞视频在线观看| 久久久久久久精品吃奶| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| 91大片在线观看| 亚洲欧美色中文字幕在线| 免费在线观看黄色视频的| 国产亚洲精品久久久久久毛片 | 国产亚洲av高清不卡| 日本a在线网址| 男男h啪啪无遮挡| 日韩欧美一区二区三区在线观看 | 亚洲 国产 在线| 国产精品成人在线| 欧美精品亚洲一区二区| а√天堂www在线а√下载 | 亚洲人成电影观看| 亚洲专区国产一区二区| 精品福利永久在线观看| 亚洲va日本ⅴa欧美va伊人久久| 成年人免费黄色播放视频| 国产精品 欧美亚洲| 免费黄频网站在线观看国产| 99热国产这里只有精品6| 国产精品亚洲一级av第二区| 一级片免费观看大全| av不卡在线播放| 日韩熟女老妇一区二区性免费视频| 国产91精品成人一区二区三区| 欧美丝袜亚洲另类 | 黑人欧美特级aaaaaa片| 少妇被粗大的猛进出69影院| 校园春色视频在线观看| 国产一区有黄有色的免费视频| 别揉我奶头~嗯~啊~动态视频| 精品少妇一区二区三区视频日本电影| 高清黄色对白视频在线免费看| 亚洲午夜理论影院| 成人免费观看视频高清| 美女福利国产在线| 亚洲精品国产精品久久久不卡| 国产在线精品亚洲第一网站| 国产免费av片在线观看野外av| 自拍欧美九色日韩亚洲蝌蚪91| 国产深夜福利视频在线观看| 99久久国产精品久久久| 亚洲全国av大片| 国产精品成人在线| 黑人巨大精品欧美一区二区mp4| 亚洲欧美一区二区三区黑人| 亚洲一区二区三区不卡视频| 日韩欧美免费精品| 国产免费男女视频| 天天添夜夜摸| 亚洲国产欧美网| 精品人妻熟女毛片av久久网站| 91大片在线观看| 国产蜜桃级精品一区二区三区 | 天堂动漫精品| xxxhd国产人妻xxx| 亚洲精品粉嫩美女一区| 亚洲精品av麻豆狂野| 国产高清激情床上av| 香蕉国产在线看| 免费一级毛片在线播放高清视频 | av片东京热男人的天堂| 成年版毛片免费区| 一本一本久久a久久精品综合妖精| 精品欧美一区二区三区在线| 身体一侧抽搐| 亚洲av熟女| 窝窝影院91人妻| 日韩 欧美 亚洲 中文字幕| 麻豆国产av国片精品| 成年人午夜在线观看视频| 亚洲久久久国产精品| 可以免费在线观看a视频的电影网站| 午夜两性在线视频| 91av网站免费观看| 久久久久久久久免费视频了| 99国产极品粉嫩在线观看| 男人的好看免费观看在线视频 | 搡老岳熟女国产| 亚洲成国产人片在线观看| 国产日韩欧美亚洲二区| 欧美黄色淫秽网站| 国产精品久久久av美女十八| av网站在线播放免费| 国产真人三级小视频在线观看| 久久久国产成人精品二区 | 久久人妻福利社区极品人妻图片| 老司机深夜福利视频在线观看| 精品国产乱码久久久久久男人| 香蕉久久夜色| 在线看a的网站| 亚洲自偷自拍图片 自拍| 国产亚洲精品久久久久5区| 91在线观看av| 天堂中文最新版在线下载| 国产免费男女视频| 99国产精品一区二区蜜桃av | 欧美成狂野欧美在线观看| 激情视频va一区二区三区| 在线观看免费日韩欧美大片| 美女视频免费永久观看网站| 视频区图区小说| 国产深夜福利视频在线观看| 十分钟在线观看高清视频www| 国产野战对白在线观看| 亚洲综合色网址| 搡老岳熟女国产| 亚洲综合色网址| 久久精品熟女亚洲av麻豆精品| 91麻豆av在线| 国产主播在线观看一区二区| 中文字幕最新亚洲高清| 亚洲成av片中文字幕在线观看| 高潮久久久久久久久久久不卡| 亚洲久久久国产精品| 精品国内亚洲2022精品成人 | 国产高清videossex| 精品国产美女av久久久久小说| www.熟女人妻精品国产| 免费在线观看完整版高清| 国产成人av激情在线播放| 美女高潮喷水抽搐中文字幕| 久久青草综合色| 啦啦啦 在线观看视频| 欧美最黄视频在线播放免费 | 久久人妻福利社区极品人妻图片| 久久久久国产精品人妻aⅴ院 | 丝袜在线中文字幕| 黄色片一级片一级黄色片| 国产深夜福利视频在线观看| 久久精品国产99精品国产亚洲性色 | 99久久精品国产亚洲精品| 午夜影院日韩av| 777米奇影视久久| avwww免费| 法律面前人人平等表现在哪些方面| 国产免费av片在线观看野外av| 久久午夜综合久久蜜桃| 欧美激情极品国产一区二区三区| 好看av亚洲va欧美ⅴa在| 狠狠婷婷综合久久久久久88av| 国产免费男女视频| a级毛片在线看网站| 午夜两性在线视频| 亚洲人成电影免费在线| 国产男靠女视频免费网站| 中文字幕色久视频| 欧美黑人精品巨大| 亚洲情色 制服丝袜| 午夜福利,免费看| 日日夜夜操网爽| 免费高清在线观看日韩| 久久久久国产精品人妻aⅴ院 | 三上悠亚av全集在线观看| 很黄的视频免费| 欧美精品高潮呻吟av久久| www.精华液| 丰满的人妻完整版| av国产精品久久久久影院| 精品久久久久久久毛片微露脸| 国产精品久久久久成人av| 久久亚洲真实| 激情视频va一区二区三区| 操出白浆在线播放| 国产一区有黄有色的免费视频| 国产精品久久电影中文字幕 | 99久久99久久久精品蜜桃| 国产精品.久久久| 搡老熟女国产l中国老女人| 免费女性裸体啪啪无遮挡网站| 精品福利观看| tocl精华| 国产精品影院久久| 一级片'在线观看视频| 日韩欧美一区视频在线观看| 丰满迷人的少妇在线观看| 国产欧美日韩精品亚洲av| 亚洲av成人一区二区三| 亚洲欧美一区二区三区黑人| 亚洲成人免费电影在线观看| 热99re8久久精品国产| 欧美精品高潮呻吟av久久| 亚洲国产中文字幕在线视频| 国产在线观看jvid| 在线av久久热| 国产野战对白在线观看| 国产成人av教育| 国产欧美日韩一区二区三区在线| 国产精品亚洲av一区麻豆| 久热这里只有精品99| 最新美女视频免费是黄的| 大香蕉久久网| 又黄又粗又硬又大视频| 日韩大码丰满熟妇| 欧美+亚洲+日韩+国产| 99久久综合精品五月天人人| 免费在线观看完整版高清| 美女福利国产在线| 99国产精品一区二区蜜桃av | 亚洲欧美激情综合另类| 久久精品aⅴ一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| 国产精品二区激情视频| 亚洲欧美日韩高清在线视频| 深夜精品福利| 大型av网站在线播放| 50天的宝宝边吃奶边哭怎么回事| 午夜免费观看网址| 久久午夜综合久久蜜桃| 午夜视频精品福利| 99久久国产精品久久久| 97人妻天天添夜夜摸| 亚洲欧美一区二区三区黑人| 中文字幕最新亚洲高清| 午夜福利一区二区在线看| 成人影院久久| 国产91精品成人一区二区三区| 十分钟在线观看高清视频www| 丝瓜视频免费看黄片| 欧美日韩一级在线毛片| 亚洲精品中文字幕在线视频| 两性夫妻黄色片| 黄色 视频免费看| 亚洲精华国产精华精| 黑人操中国人逼视频| 欧美激情极品国产一区二区三区| 亚洲精品av麻豆狂野| 精品人妻熟女毛片av久久网站| 淫妇啪啪啪对白视频| 十八禁网站免费在线| 淫妇啪啪啪对白视频| 精品乱码久久久久久99久播| 国产高清videossex| 亚洲成av片中文字幕在线观看| 欧美日韩亚洲国产一区二区在线观看 | 一级a爱视频在线免费观看| 51午夜福利影视在线观看| www日本在线高清视频| 男女之事视频高清在线观看| 亚洲午夜精品一区,二区,三区| 露出奶头的视频| 咕卡用的链子| 亚洲aⅴ乱码一区二区在线播放 | 日本撒尿小便嘘嘘汇集6| 久久久精品区二区三区| 久久精品成人免费网站| 变态另类成人亚洲欧美熟女 | 中文字幕制服av| 下体分泌物呈黄色| 中文字幕人妻丝袜一区二区| 色精品久久人妻99蜜桃| 欧美精品亚洲一区二区| 亚洲一码二码三码区别大吗| 老熟妇乱子伦视频在线观看| 老鸭窝网址在线观看| 国产精品免费视频内射| 大香蕉久久成人网| 老司机靠b影院| 国产欧美日韩综合在线一区二区| 国产深夜福利视频在线观看| x7x7x7水蜜桃| 亚洲成人免费av在线播放| 十分钟在线观看高清视频www| 国产精品久久久av美女十八| 成人三级做爰电影| avwww免费| 国产精品一区二区在线不卡| 99精品欧美一区二区三区四区| 99精品在免费线老司机午夜| 日韩熟女老妇一区二区性免费视频| 精品卡一卡二卡四卡免费| 91av网站免费观看| 不卡av一区二区三区| cao死你这个sao货| 一二三四在线观看免费中文在| a在线观看视频网站| 精品国产超薄肉色丝袜足j| 久久天躁狠狠躁夜夜2o2o| 亚洲一区中文字幕在线| 69av精品久久久久久| 国产精品一区二区精品视频观看| 久久久久国内视频| 亚洲精品中文字幕在线视频| 99热国产这里只有精品6| 亚洲少妇的诱惑av| 久久草成人影院| 久久精品aⅴ一区二区三区四区| 制服人妻中文乱码| 人人妻人人爽人人添夜夜欢视频| 久久 成人 亚洲| 免费观看人在逋| 国产精品99久久99久久久不卡| 国产精品偷伦视频观看了| 国产欧美日韩一区二区三区在线| 很黄的视频免费| 啦啦啦免费观看视频1| 伦理电影免费视频| 亚洲成av片中文字幕在线观看| 免费一级毛片在线播放高清视频 | av国产精品久久久久影院| 午夜福利在线免费观看网站| 激情在线观看视频在线高清 | 国产一区在线观看成人免费| 啦啦啦视频在线资源免费观看| 色精品久久人妻99蜜桃| av线在线观看网站| 最近最新中文字幕大全电影3 | 怎么达到女性高潮| 国产精品久久久久久人妻精品电影| www.自偷自拍.com| 制服人妻中文乱码| 亚洲精品中文字幕一二三四区| 久久久久久人人人人人| 丰满人妻熟妇乱又伦精品不卡| 成在线人永久免费视频| 亚洲三区欧美一区| 可以免费在线观看a视频的电影网站| 成年人免费黄色播放视频| 亚洲精品一卡2卡三卡4卡5卡| 99久久精品国产亚洲精品| 99热只有精品国产| 757午夜福利合集在线观看| 黄色片一级片一级黄色片| 18禁国产床啪视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 99re6热这里在线精品视频| 亚洲午夜精品一区,二区,三区| 很黄的视频免费| www.999成人在线观看| a级毛片黄视频| 99热网站在线观看| 高清视频免费观看一区二区| 成年版毛片免费区|