• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A modified airfoil-based piezoaeroelastic energy harvester with double plunge degrees of freedom

    2016-12-24 08:39:24YiningWuDochunLiJinwuXingAndreRonch

    Yining Wu,Dochun Li,Jinwu Xing,?,Andre D Ronch

    aSchool of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China

    bEngineering and the Environment,University ofSouthampton,Southampton SO171BJ,UK

    Letter

    A modified airfoil-based piezoaeroelastic energy harvester with double plunge degrees of freedom

    Yining Wua,Daochun Lia,Jinwu Xianga,?,Andrea Da Ronchb

    aSchool of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China

    bEngineering and the Environment,University ofSouthampton,Southampton SO171BJ,UK

    H I G H L I G H T S

    .A double-plunge airfoil-based piezoaeroelastic energy harvester is proposed.

    .The dynamic modelof the proposed harvester is presented.

    .The proposed harvester generates higher power outputthan conventionaldesigns.

    .The proposed harvester has lower cut-in speed than conventionaldesigns.

    A R T I C L E I N F O

    Article history:

    Received 7 June 2016

    Received in revised form

    3 July 2016

    Accepted 7 August 2016

    Available online 24 August 2016

    Energy harvesting Aeroelastic Airfoil Piezoelectric

    In this letter,a piezoaeroelastic energy harvester based on an airfoil with double plunge degrees of freedom is proposed to additionally take advantage of the vibrationalenergy ofthe airfoilpitch motion. An analyticalmodelofthe proposed energy harvesting system is built and compared with an equivalent model using the well-explored pitch-plunge configuration.The dynamic response and average power output of the harvester are numerically studied as the flow velocity exceeds the cut-in speed(flutter speed).It is found that the harvester with double-plunge configuration generates 4%-10%more power with varying flow velocities while reducing 6%of the cut-in speed than its counterpart.

    ?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoreticaland Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The objective of energy harvesting(EH)is to convert ambient energy such as solar,tidal,and wind energy into available electric energy.Recently,EH based on aeroelastic vibrations has received growing attention since it potentially outperforms the conventionalturbines in terms of smallscale wind EH[1].The harvested energy can be used for low-power electronic systems such as wireless sensor networks to reduce cabling and maintenance costs[2].

    Taking advantage of aeroelastic phenomena,several harvesters have been designed,manufactured,and tested based on flutter of cantilevered plates[3,4],galloping oscillations of bluff bodies [5,6],wake galloping phenomenon[7,8],and vortex-induced vibrations[9,10].Airfoil-based energy harvesters,exploiting aeroelastic vibrations,consist of a rigid airfoilwith supporting devices that allow the pitch-plunge vibrations of the airfoil with transducers coupled to the plunge degree of freedom(DOF)[11,12]. Towards airfoil-based harvesters,a large body of work has been done including analytical modeling and experimental activities[13,14],investigating the effects of structural nonlinearities[15-18]and system parameters[19-23]to improve EH performance,and analyzing EHunder the combined base and wind excitations[24,25].Cambered airfoils[26]and 3-DOF airfoils with control surfaces[27,28]were also considered to enhance design flexibility.

    Previous studies on piezoaeroelastic EH of airfoil-based harvesters used a pitch-plunge configuration with piezoelectric transducers coupled to the plunge DOF.The airfoils were generally held by torsional springs and rotating shafts connected to cantilevered piezoelectric beams.The coupling between the transducers and the pitch DOF was not considered in the previous studies because (1)it is difficult to attach the piezoelectric transducers to the torsionalsprings,and(2)it is relatively hard to convertthe airfoilpitch motion into the deformation of the piezoelectric materials compared with the use of the piezoelectric beams.From an EH point of view,however,the vibrational energy in the pitch DOF was not converted into electric energy and wasted.The objective of thisletter is to enhance the performance of airfoil-based harvesters by additionally taking advantage of the vibrational energy of the airfoilpitch motion.

    Fig.1.Schematic of the airfoil-based harvester with double plunge DOFs.

    As it is very difficult to couple the piezoelectric transducers to the pitch DOF,an airfoilwith double plunge supporting devices is used.Shown in Fig.1,a second plunge DOF is introduced instead of the pitch DOF.The mechanical energy of each plunge DOF is converted into electric energy via the corresponding transducer and then consumed by a load resistance in the respective circuit.

    Shown in Fig.1,the displacements of two plunge supporting devices are denoted by h1and h2,positive downward.The terms d1and a denote,respectively,the dimensionless offset ofthe first supporting device and the elastic axis from the airfoil mid-chord. The term d is the dimensionless offset of the second supporting device measured from the first one.The location of the elastic axis is determined by a=d1+k2d/(k1+k2),where k1and k2are the linear stiffness coefficients of the two plunge DOFs, respectively,including the contributions from both the plunge springs and transducers.The dynamic equations of the proposed double-plunge airfoil-based piezoaeroelastic harvester are derived as

    where dc=a?d1+xα,and xαis the dimensionless offset of the gravity center axis measured from the elastic axis;m,m1,and m2are,respectively,the mass of the airfoil,the first,and the second supporting device;Jcis the moment of inertia of the airfoil about the gravity center axis;b is the airfoil semi-chord;c1and c2are the damping coefficients of the two plunge DOFs,respectively;V1and V2are the voltage outputs ofthe two transducers,respectively; θis the electromechanical coupling factor;Cpis the equivalent capacitance of the transducers;R1and R2are the load resistances in respective circuits.Note that the structural nonlinearities are not taken into account in this work.αeffis the effective angle of attack,andαeff= α+ ˙h/U? (0.5+a)b˙α/U,where h is the plunge displacement of the elastic axis,positive downward,and αis the pitch displacement,positive nose up;L= ρU2bCl,D= ρU2bCd,and M=2ρU2b2Cmare the aerodynamic lift(normalto the direction of the resultant flow velocity,positive upward),drag (along the resultant flow velocity,positive leeward),and moment (positive nose up)acting at the airfoil one-quarter-chord axis, respectively,whereρis the air density and U is flow velocity.The aerodynamic coefficients are calculated using the Office National d'Etudes et de Recherches Aerospatiales(ONERA)dynamic stall model[29]to consider the effects of flow separation due to large airfoilamplitudes.The aerodynamic model used in this work is

    where subscript z can be l or m to indicate,respectively,lift or moment coefficient;tτ=b/U.Subscripts a and b refer to the linear and nonlinear parts of the aerodynamics,respectively;the coefficients are sl1= π,sl2= π/2,sl3=0,sm1= ?π/4,sm2=?3π/16,sm3=?π/4,λ1=0.15,λ2=0.55,aol=5.9,aom=0, cd1=0.014,r1d=0.32;the terms with respect to the nonlinear aerodynamics in Eqs.(7)and(9)are given in the Appendix.The relationship between h1,h2and h,αcan be expressed via a transfer matrix

    To verify the advantage of EH based on the double-plunge airfoil,an equivalent pitch-plunge airfoil-based EH model is built. Shown in Fig.2,the plunge DOF ofthe equivalent modelis coupled with two transducers in parallel to ensure the use of the same amount of piezoelectric material.For this pitch-plunge airfoilbased harvester,the dynamics are

    where khand kαare,respectively,the stiffness coefficients of the plunge and pitch DOFs;chand cαare the damping coefficients of these two DOFs,respectively;mTis the total mass of the airfoil together with its supporting devices;J is the moment of inertia of the pitch-plunge airfoil about the gravity center axis.The relationships between the mass,stiffness,and damping coefficients of the two harvesters are derived as

    Fig.2.Schematic ofan equivalentpitch-plunge airfoil-based harvester.

    Fig.3.Time histories of(a)the plunge motion,(b)the pitch motion,and(c)the voltage output of the proposed harvester as the flow velocity is 30 m.s?1.

    For EH based on two transducers via respective circuits,the total harvested energy is evaluated by the average power output

    where t1to t2is a period of time in which the transient response has been dissipated.

    The dynamic equations are solved numerically using the Runge-Kutta method.For all results presented,the initial conditions are˙h1=0.01 and zeroes for the rest of the state variables. The value of the system parameters are:m=2.049 kg;m1= m2=10.338 kg;b=0.135 m;xα=0.331;d1=?1;d=1;Jc= 0.0517 kg.m2;c1=c2=27.43 kg.s?1;k1=k2=1000 N.m?1; θ=1.55 X10?3N.V?1;Cp=1.2 X10?7F;R1=R2=1 X 106Ω. The air density is 1.225 kg.m?3and the viscosity coefficient is 1.78 X10?5Pa.s.To calculate the average power output,the time period t1to t2in Eq.(17)corresponds to the last 10 s of the total simulation time(30 s)where the transient responses are observed to be completely dissipated.The cut-in speed(flutter speed)ofthe harvester is determined as 28.4 m.s?1.The time history results as the flow velocity is 30 m.s?1are shown in Fig.3.Itis shown that the plunge amplitude and voltage outputofthe second plunge DOF are larger than that of the first plunge DOF.Besides,the effective angle ofattack can be large enough to cause flow separation,e.g.,the amplitude is 22°shown in Fig.3(b).This demonstrates the necessity ofusing the dynamic stallmodelto calculate the aerodynamics in this work.

    Fig.4.Average power outputs of the harvesters with double-plunge and pitchplunge configurations with the flow velocity(solid lines),and the relative enhancementofthe power output(dash line).

    Fig.5.Average power outputs of the first and second plunge DOFs with the flow velocity.

    The double-plunge airfoil-based energy harvester is numerically compared with its pitch-plunge counterpart.The cut-in speed of the latter is firstly obtained as 30.2 m.s?1,which is larger than that of the former.This result shows that the use of the doubleplunge configuration improves the EH performance with a relative reduction 6%of the cut-in speed.The average power outputs of these two harvesters with the flow velocity are compared in Fig.4. Obviously,the power output using double-plunge configuration is larger than thatusing the pitch-plunge configuration.The relative enhancement of the power output is shown in Fig.4 by a dotted line.It can be seen that the enhancement in percentage varies with the flow velocity and fluctuates between 4%and 10%.Besides,the relationship between the power outputs of the two harvesters and the flow velocity is approximately piecewise linear.Specifically, the slopes of the two curves increase at 36 m.s?1and then descend as the flow velocity is beyond 37 m.s?1.

    The comparison of the average power outputs of two plunge DOFs with the flow velocity is shown in Fig.5.In this work,the first plunge supporting device is at the leading edge of the airfoil while the second one is at the mid-chord axis.Also,the parameters of the two plunge supporting devices are set identically.It can be seen that the power output from the second plunge DOF islarger than that from the first plunge DOF.Specifically,the former is approximately 50%larger than the latter with varying flow velocity.

    In summary,this letter proposes a piezoaeroelastic energy harvester based on an airfoil with double plunge DOFs.The dynamic equations of this harvester and an equivalent well-explored pitchplunge airfoil-based harvester are presented.It is numerically demonstrated that the proposed harvester outperforms its counterpart using the pitch-plunge configuration in terms of the average power output and the cut-in speed.Specifically,it is found that the former generates 4%-10%more power with varying flow velocities while reducing 6%of the cut-in speed than the latter.It is also shown thatthe second downstream plunge supporting device of the proposed harvester has larger plunge amplitude and hence yields 50%more power output compared with the first upstream one.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11402014,11572023)and the Royal Academy of Engineering for the project''Fast Nonlinear Aeroelastic Search for Loads Assessment''(NCRP/1415/51).

    Appendix

    The terms with respect to the nonlinear aerodynamics in Eqs.(7)and(9)are:

    if the Reynolds number is larger than 3.4 X 105,and

    ifthe Reynolds number is smaller than 3.4 X 105.Besides,

    whereα1=0.1396 andα2=0.3142.In addition,

    [1]A.Abdelkefi,Aeroelastic energy harvesting:a review,Internat.J.Engrg.Sci. 100(2016)112-135.

    [2]A.Truitt,S.N.Mahmoodi,A review on active wind energy harvesting designs, Int.J.Precis.Eng.Man.14(2013)1667-1675.

    [3]M.Pi?eirua,O.Doaré,S.Michelin,Influence and optimization ofthe electrodes position in a piezoelectric energy harvesting flag,J.Sound Vib.346(2015) 200-215.

    [4]J.A.Dunnmon,S.C.Stanton,B.P.Mann,etal.,Power extraction from aeroelastic limit cycle oscillations,J.Fluid Struct.27(2011)1182-1198.

    [5]A.Bibo,M.F.Daqaq,On the optimalperformance and universaldesign curves ofgalloping energy harvesters,Appl.Phys.Lett.104(2014)23901.

    [6]Y.Yang,L.Zhao,L.Tang,Comparative study of tip cross-sections for efficient galloping energy harvesting,Appl.Phys.Lett.102(2013)64105.

    [7]A.Abdelkefi,J.M.Scanlon,E.Mcdowell,et al.,Performance enhancement of piezoelectric energy harvesters from wake galloping,Appl.Phys.Lett.103 (2013)33903.

    [8]H.Jung,L.Seung-Woo,The experimentalvalidation ofa newenergy harvesting system based on the wake galloping phenomenon,Smart Mater.Struct.20 (2011)55022.

    [9]L.Ding,L.Zhang,M.M.Bernitsas,etal.,Numericalsimulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control,Renew.Energy 85(2016)1246-1259.

    [10]J.Xu-Xu,A.Barrero-Gil,A.Velazquez,A theoreticalstudy of the coupling between a vortex-induced vibration cylindrical resonator and an electromagnetic energy harvester,Smart Mater.Struct.24(2015)115009.

    [11]J.A.C.Dias,C.De Marqui Jr.,A.Erturk,Hybrid piezoelectric-inductive flow energy harvesting and dimensionless electroaeroelastic analysis for scaling, Appl.Phys.Lett.102(2013)44101.

    [12]C.De Marqui Jr.,A.Erturk,Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction,J.Intell.Mater.Syst.Struct.24(2013)846-854.

    [13]M.Bryant,E.Garcia,Modeling and testing ofa novelaeroelastic flutter energy harvester,J.Vib.Acoust.133(2011)11010.

    [14]A.Erturk,W.G.R.Vieira,C.De Marqui Jr.,et al.,On the energy harvesting potentialofpiezoaeroelastic systems,Appl.Phys.Lett.96(2010)184103.

    [15]V.C.Sousa,M.de M Anicézio,C.De Marqui Jr.,et al.,Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities:theory and experiment,Smart Mater.Struct.20(2011)94007.

    [16]J.Bae,D.J.Inman,Aeroelastic characteristics of linear and nonlinear piezoaeroelastic energy harvester,J.Intell.Mater.Syst.Struct.4(2014)401-416.

    [17]A.Abdelkefi,M.R.Hajj,Performance enhancement ofwing-based piezoaeroelastic energy harvesting through freeplay nonlinearity,Theor.Appl.Mech.Lett. 3(2013)41001.

    [18]V.C.Sousa,C.De Marqui Jr.,Airfoil-based piezoelectric energy harvesting by exploiting the pseudoelastic hysteresis ofshape memory alloy springs,Smart Mater.Struct.24(2015)125014.

    [19]M.Bryant,E.Wolff,E.Garcia,Aeroelastic flutter energy harvester design:the sensitivity ofthe driving instability to system parameters,Smart Mater.Struct. 20(2011)125017.

    [20]A.Abdelkefi,A.H.Nayfeh,M.R.Hajj,Enhancement of power harvesting from piezoaeroelastic systems,Nonlinear Dynam.68(2012)531-541.

    [21]A.Abdelkefi,A.H.Nayfeh,M.R.Hajj,Modeling and analysis ofpiezoaeroelastic energy harvesters,Nonlinear Dynam.67(2012)925-939.

    [22]A.Abdelkefi,M.Ghommem,A.O.Nuhait,et al.,Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters,J.Sound Vib. 333(2014)166-177.

    [23]A.Abdelkefi,A.H.Nayfeh,M.R.Hajj,Design of piezoaeroelastic energy harvesters,Nonlinear Dynam.68(2012)519-530.

    [24]A.Bibo,M.F.Daqaq,Investigation of concurrent energy harvesting from ambientvibrations and wind using a single piezoelectric generator,Appl.Phys. Lett.102(2013)243904.

    [25]A.Bibo,M.F.Daqaq,Energy harvesting under combined aerodynamic and base excitations,J.Sound Vib.332(2013)5086-5102.

    [26]A.Abdelkefi,A.O.Nuhait,Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters,Smart Mater.Struct.22(2013) 95029.

    [27]J.A.C.Dias,C.De Marqui Jr.,A.Erturk,Three-degree-of-freedom hybrid piezoelectric-inductive aeroelastic energy harvester exploiting a control surface,AIAA J.53(2014)394-404.

    [28]J.Bae,D.J.Inman,A preliminary study on piezo-aeroelastic energy harvesting using a nonlinear trailing-edge flap,Int.J.Aeronaut.Space Sci.16(2015) 407-417.

    [29]P.Dunn,D.John,Nonlinear stallflutter and divergence analysis ofcantilevered graphite/epoxy wings,AIAA J.30(1992)153-162.

    ?Corresponding author.

    E-mail address:xiangjw@buaa.edu.cn(J.Xiang).

    http://dx.doi.org/10.1016/j.taml.2016.08.009

    2095-0349/?2016 The Author(s).Published by Elsevier Ltd on behalfof The Chinese Society of Theoreticaland Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    日本精品一区二区三区蜜桃| 亚洲片人在线观看| 国产精品98久久久久久宅男小说| 亚洲av中文字字幕乱码综合| 成年女人看的毛片在线观看| 亚洲综合色惰| 51午夜福利影视在线观看| 亚洲人成电影免费在线| 国产在线精品亚洲第一网站| 日本成人三级电影网站| 亚洲片人在线观看| 99国产精品一区二区蜜桃av| 国产日本99.免费观看| 亚洲av中文字字幕乱码综合| 老熟妇仑乱视频hdxx| 日韩欧美一区二区三区在线观看| 毛片一级片免费看久久久久 | 美女 人体艺术 gogo| 成人美女网站在线观看视频| 黄色日韩在线| 久久这里只有精品中国| 国产精品久久久久久人妻精品电影| 国产69精品久久久久777片| 中文字幕av在线有码专区| 亚洲成人久久性| 亚洲av二区三区四区| 我的老师免费观看完整版| 国产精品一及| 国产伦人伦偷精品视频| 高清毛片免费观看视频网站| 日韩av在线大香蕉| 亚洲国产精品成人综合色| 久久久久久大精品| 日韩av在线大香蕉| 麻豆成人午夜福利视频| 国产成人av教育| 亚洲美女搞黄在线观看 | 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美免费精品| 亚洲五月婷婷丁香| 国产人妻一区二区三区在| 亚洲第一欧美日韩一区二区三区| 亚洲av电影不卡..在线观看| 首页视频小说图片口味搜索| 特大巨黑吊av在线直播| 亚洲一区高清亚洲精品| 国产av一区在线观看免费| 国产在线精品亚洲第一网站| 可以在线观看毛片的网站| 久久人妻av系列| www.熟女人妻精品国产| 欧美丝袜亚洲另类 | 男人的好看免费观看在线视频| 欧美中文日本在线观看视频| 国产精品99久久久久久久久| 亚洲国产精品sss在线观看| 亚洲av一区综合| 亚洲人成电影免费在线| 久久伊人香网站| 中文字幕人妻熟人妻熟丝袜美| 欧美另类亚洲清纯唯美| 九色国产91popny在线| 别揉我奶头 嗯啊视频| 亚洲欧美日韩高清在线视频| 久久久久久久久久成人| 全区人妻精品视频| 无遮挡黄片免费观看| 美女高潮喷水抽搐中文字幕| 观看美女的网站| 嫩草影院入口| 国产精品美女特级片免费视频播放器| 欧洲精品卡2卡3卡4卡5卡区| 日日夜夜操网爽| 在线观看舔阴道视频| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 亚洲中文字幕一区二区三区有码在线看| 亚洲一区二区三区色噜噜| 亚洲专区中文字幕在线| 中文亚洲av片在线观看爽| 亚洲最大成人中文| 男人舔奶头视频| 亚洲精品色激情综合| 国产精品自产拍在线观看55亚洲| 色综合站精品国产| 露出奶头的视频| 欧美性猛交黑人性爽| 欧美色视频一区免费| 国产在视频线在精品| 天天一区二区日本电影三级| 看片在线看免费视频| 国产熟女xx| 国产亚洲精品综合一区在线观看| 国产欧美日韩精品一区二区| 可以在线观看毛片的网站| 亚洲精品456在线播放app | 亚洲美女搞黄在线观看 | 一个人看视频在线观看www免费| 久久国产乱子伦精品免费另类| 性色av乱码一区二区三区2| 夜夜夜夜夜久久久久| 久久久久久久久久成人| 国产主播在线观看一区二区| 男人的好看免费观看在线视频| 国产又黄又爽又无遮挡在线| 特级一级黄色大片| 亚洲成av人片在线播放无| 看片在线看免费视频| 一个人看视频在线观看www免费| 成人毛片a级毛片在线播放| 波多野结衣高清无吗| 国产精品亚洲一级av第二区| 伊人久久精品亚洲午夜| 两个人的视频大全免费| 人人妻,人人澡人人爽秒播| 免费看a级黄色片| 亚洲欧美日韩无卡精品| 色综合亚洲欧美另类图片| 我要搜黄色片| 18禁裸乳无遮挡免费网站照片| 日本a在线网址| 18禁在线播放成人免费| 国产单亲对白刺激| 一个人看的www免费观看视频| 亚洲激情在线av| 中亚洲国语对白在线视频| 国产 一区 欧美 日韩| 欧美日韩黄片免| 99在线人妻在线中文字幕| 国产中年淑女户外野战色| 韩国av一区二区三区四区| 久久国产乱子免费精品| 午夜福利在线观看吧| 久久久久国产精品人妻aⅴ院| 五月伊人婷婷丁香| 日本 欧美在线| 最新在线观看一区二区三区| 99久久精品一区二区三区| 757午夜福利合集在线观看| 久久香蕉精品热| 国产精品综合久久久久久久免费| 人人妻人人澡欧美一区二区| 久久精品国产亚洲av香蕉五月| 一二三四社区在线视频社区8| 亚洲精品粉嫩美女一区| 欧美性猛交╳xxx乱大交人| 成年免费大片在线观看| 国产精品乱码一区二三区的特点| 好男人电影高清在线观看| 好男人电影高清在线观看| 无遮挡黄片免费观看| 男人舔奶头视频| 免费看美女性在线毛片视频| 国产精品久久电影中文字幕| 免费在线观看影片大全网站| 国内毛片毛片毛片毛片毛片| 精品人妻一区二区三区麻豆 | 亚洲成a人片在线一区二区| 内射极品少妇av片p| 久久久成人免费电影| 别揉我奶头~嗯~啊~动态视频| 亚洲国产日韩欧美精品在线观看| 久久精品国产亚洲av香蕉五月| 在现免费观看毛片| 国产精品亚洲美女久久久| 一区福利在线观看| 欧美色视频一区免费| 日日摸夜夜添夜夜添av毛片 | 欧美成人性av电影在线观看| 国产在线精品亚洲第一网站| 色在线成人网| 中国美女看黄片| 欧美潮喷喷水| 亚洲精品成人久久久久久| 午夜老司机福利剧场| 赤兔流量卡办理| 精品久久久久久久久亚洲 | 久久久精品大字幕| 人人妻人人澡欧美一区二区| 日韩高清综合在线| 欧美高清成人免费视频www| 亚洲美女黄片视频| 国产精品日韩av在线免费观看| 丰满乱子伦码专区| 免费观看人在逋| а√天堂www在线а√下载| 欧美色视频一区免费| 国产亚洲精品av在线| 国产伦精品一区二区三区视频9| 久久午夜福利片| 成年女人毛片免费观看观看9| 国产单亲对白刺激| 窝窝影院91人妻| 757午夜福利合集在线观看| 国产免费一级a男人的天堂| 国产高清激情床上av| 国产精品爽爽va在线观看网站| 夜夜爽天天搞| 日韩 亚洲 欧美在线| 国产熟女xx| 丰满的人妻完整版| 欧美色视频一区免费| 特级一级黄色大片| 亚洲av美国av| 免费看日本二区| 成年女人看的毛片在线观看| 日本a在线网址| 亚洲在线自拍视频| 午夜福利欧美成人| 国产美女午夜福利| av天堂中文字幕网| 久久久久久大精品| 一本精品99久久精品77| 亚洲国产精品sss在线观看| 欧美乱妇无乱码| 日韩国内少妇激情av| 十八禁网站免费在线| 国产精品久久久久久久久免 | 国产伦人伦偷精品视频| 欧美潮喷喷水| www.色视频.com| 在线看三级毛片| 国产精品久久久久久久电影| 日本a在线网址| 欧美最黄视频在线播放免费| 亚洲美女视频黄频| 国产日本99.免费观看| 全区人妻精品视频| av视频在线观看入口| 可以在线观看毛片的网站| 久久精品久久久久久噜噜老黄 | 赤兔流量卡办理| 99久久精品热视频| 女人被狂操c到高潮| 身体一侧抽搐| 夜夜爽天天搞| netflix在线观看网站| 久久精品国产清高在天天线| 日本撒尿小便嘘嘘汇集6| 久久精品91蜜桃| 一夜夜www| 亚洲欧美日韩高清在线视频| 国产精品av视频在线免费观看| 亚洲人成电影免费在线| 国产亚洲精品久久久久久毛片| 欧美性猛交╳xxx乱大交人| 亚洲av成人精品一区久久| 亚洲成人中文字幕在线播放| 99精品久久久久人妻精品| 国产精品1区2区在线观看.| a级毛片免费高清观看在线播放| 日韩欧美在线二视频| 日韩人妻高清精品专区| 制服丝袜大香蕉在线| 欧美中文日本在线观看视频| 久久久久免费精品人妻一区二区| 国产午夜福利久久久久久| 在线免费观看的www视频| 欧美成人a在线观看| 91麻豆av在线| 天堂av国产一区二区熟女人妻| 91九色精品人成在线观看| 国产高清视频在线播放一区| 国产一区二区在线av高清观看| 夜夜爽天天搞| 日本在线视频免费播放| 波野结衣二区三区在线| 国产精品一及| 欧美成狂野欧美在线观看| 精品无人区乱码1区二区| 9191精品国产免费久久| 一a级毛片在线观看| www.www免费av| 亚洲久久久久久中文字幕| 黄色一级大片看看| 国产91精品成人一区二区三区| 欧美色欧美亚洲另类二区| 亚洲中文字幕日韩| 最近最新免费中文字幕在线| 久久久久国产精品人妻aⅴ院| 变态另类丝袜制服| 日韩欧美国产在线观看| 亚洲片人在线观看| 亚洲欧美精品综合久久99| 老熟妇仑乱视频hdxx| 一本久久中文字幕| 特级一级黄色大片| 亚洲av美国av| 亚洲成a人片在线一区二区| av专区在线播放| 男人舔奶头视频| 嫩草影院精品99| 亚洲一区高清亚洲精品| 亚洲第一区二区三区不卡| 90打野战视频偷拍视频| 简卡轻食公司| 国产在线男女| 99久久久亚洲精品蜜臀av| 国产av不卡久久| 能在线免费观看的黄片| 天天一区二区日本电影三级| 久久亚洲精品不卡| 日本 欧美在线| 男女那种视频在线观看| 在线天堂最新版资源| 欧美精品国产亚洲| 桃色一区二区三区在线观看| 亚洲国产精品合色在线| 国产私拍福利视频在线观看| 老司机午夜十八禁免费视频| 国产免费男女视频| 免费看a级黄色片| 免费人成视频x8x8入口观看| 国产在视频线在精品| 中文亚洲av片在线观看爽| 九色成人免费人妻av| 欧美丝袜亚洲另类 | 亚洲国产精品久久男人天堂| 精品一区二区三区人妻视频| 99国产综合亚洲精品| 人妻久久中文字幕网| 亚洲av五月六月丁香网| 亚洲熟妇熟女久久| 一进一出抽搐动态| 久久久久久久久中文| 免费在线观看影片大全网站| 丰满乱子伦码专区| 欧美成人免费av一区二区三区| 九九在线视频观看精品| 国产一区二区在线av高清观看| 欧美成人免费av一区二区三区| 一区二区三区激情视频| 性色av乱码一区二区三区2| 色尼玛亚洲综合影院| 在线观看免费视频日本深夜| 有码 亚洲区| 欧美中文日本在线观看视频| 人妻制服诱惑在线中文字幕| 国产蜜桃级精品一区二区三区| 久久久国产成人免费| 日韩大尺度精品在线看网址| 婷婷精品国产亚洲av在线| 女人十人毛片免费观看3o分钟| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久热精品热| 免费搜索国产男女视频| 窝窝影院91人妻| 日韩欧美精品v在线| 免费搜索国产男女视频| 亚洲天堂国产精品一区在线| 久久久久久九九精品二区国产| 色哟哟·www| 久久久国产成人免费| 日本一本二区三区精品| 不卡一级毛片| 久久人人爽人人爽人人片va | 高清在线国产一区| 午夜福利在线观看免费完整高清在 | 久久久久久九九精品二区国产| 欧美zozozo另类| av专区在线播放| 国产高清激情床上av| 精品一区二区三区视频在线| 中文资源天堂在线| 五月伊人婷婷丁香| 精品熟女少妇八av免费久了| 人妻制服诱惑在线中文字幕| 日韩欧美一区二区三区在线观看| 亚洲欧美清纯卡通| 国产大屁股一区二区在线视频| 精品不卡国产一区二区三区| 国产精品一区二区三区四区久久| 欧美xxxx性猛交bbbb| 国产精品亚洲美女久久久| 亚洲国产欧洲综合997久久,| 国产日本99.免费观看| 一个人看的www免费观看视频| 亚洲精品粉嫩美女一区| 老司机午夜福利在线观看视频| 一区二区三区激情视频| 亚洲av第一区精品v没综合| 国产又黄又爽又无遮挡在线| 亚洲 国产 在线| 性插视频无遮挡在线免费观看| 18+在线观看网站| 亚洲片人在线观看| 国产麻豆成人av免费视频| 老熟妇乱子伦视频在线观看| 五月玫瑰六月丁香| 婷婷丁香在线五月| 亚洲第一区二区三区不卡| 嫩草影院精品99| 九色国产91popny在线| 欧美bdsm另类| 欧美色欧美亚洲另类二区| 国产精品一区二区性色av| 亚洲五月天丁香| 91九色精品人成在线观看| 久久精品影院6| 日韩欧美国产在线观看| 精品久久久久久久久亚洲 | 午夜福利在线观看吧| 窝窝影院91人妻| 亚洲成人中文字幕在线播放| 能在线免费观看的黄片| 日本熟妇午夜| 天堂动漫精品| 可以在线观看毛片的网站| 深夜a级毛片| 无人区码免费观看不卡| 国产视频一区二区在线看| 一夜夜www| 少妇的逼水好多| 波多野结衣高清作品| www.熟女人妻精品国产| 日韩欧美精品v在线| 18禁黄网站禁片午夜丰满| 精品福利观看| 亚洲最大成人av| 欧美最黄视频在线播放免费| 国产欧美日韩一区二区三| 最新在线观看一区二区三区| 一区二区三区高清视频在线| 天天躁日日操中文字幕| 真人做人爱边吃奶动态| 九九久久精品国产亚洲av麻豆| 国产欧美日韩一区二区精品| 又黄又爽又免费观看的视频| 国产精品三级大全| 特大巨黑吊av在线直播| 日韩中文字幕欧美一区二区| 综合色av麻豆| 99久国产av精品| 国产精品98久久久久久宅男小说| 色综合亚洲欧美另类图片| 真人一进一出gif抽搐免费| 午夜日韩欧美国产| 国内揄拍国产精品人妻在线| 简卡轻食公司| 又紧又爽又黄一区二区| 亚洲狠狠婷婷综合久久图片| 88av欧美| 深爱激情五月婷婷| 高清在线国产一区| 日韩人妻高清精品专区| 中国美女看黄片| 好看av亚洲va欧美ⅴa在| 91麻豆精品激情在线观看国产| 国产精品美女特级片免费视频播放器| 国产黄片美女视频| 丰满乱子伦码专区| 观看免费一级毛片| 亚洲欧美日韩无卡精品| 国产亚洲av嫩草精品影院| 成人永久免费在线观看视频| 热99在线观看视频| 性欧美人与动物交配| 神马国产精品三级电影在线观看| 国产精华一区二区三区| 在线观看66精品国产| 男女之事视频高清在线观看| 亚洲人成网站高清观看| 欧美bdsm另类| 99久国产av精品| 亚洲精品一区av在线观看| 在线看三级毛片| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区成人| 日日夜夜操网爽| 日韩欧美三级三区| 日本三级黄在线观看| 搡老岳熟女国产| 在线看三级毛片| 午夜福利高清视频| 一夜夜www| 91九色精品人成在线观看| 欧美一区二区国产精品久久精品| 精品久久久久久久久久免费视频| 日本 av在线| 在线免费观看不下载黄p国产 | 国产老妇女一区| 简卡轻食公司| 婷婷色综合大香蕉| 日本一本二区三区精品| 国产精品精品国产色婷婷| 国产乱人伦免费视频| 在现免费观看毛片| 2021天堂中文幕一二区在线观| 久久精品国产亚洲av天美| 男女下面进入的视频免费午夜| 99久国产av精品| 久久国产乱子免费精品| 国产美女午夜福利| 婷婷亚洲欧美| 国产精品日韩av在线免费观看| 乱码一卡2卡4卡精品| 一区福利在线观看| 国产日本99.免费观看| 国产免费一级a男人的天堂| 国产亚洲精品久久久com| 悠悠久久av| bbb黄色大片| ponron亚洲| 青草久久国产| 亚洲色图av天堂| 在线观看美女被高潮喷水网站 | 免费av观看视频| 国产成年人精品一区二区| 国产成人啪精品午夜网站| 亚洲专区中文字幕在线| 色精品久久人妻99蜜桃| 欧美激情国产日韩精品一区| 黄色视频,在线免费观看| 国产大屁股一区二区在线视频| 婷婷六月久久综合丁香| 亚洲av不卡在线观看| 国产午夜精品久久久久久一区二区三区 | 精品欧美国产一区二区三| 亚洲av二区三区四区| 久久久久久久精品吃奶| 变态另类成人亚洲欧美熟女| 少妇人妻精品综合一区二区 | 性欧美人与动物交配| 丰满人妻一区二区三区视频av| 少妇的逼水好多| 亚洲五月天丁香| 欧美+亚洲+日韩+国产| 亚洲国产精品久久男人天堂| 丰满乱子伦码专区| 国产精品98久久久久久宅男小说| 国产麻豆成人av免费视频| 国产主播在线观看一区二区| 国产在线男女| 国产精品久久视频播放| 午夜福利在线在线| 中文在线观看免费www的网站| 舔av片在线| 久久香蕉精品热| 桃色一区二区三区在线观看| 97超视频在线观看视频| 搞女人的毛片| 精品一区二区三区视频在线| 国产不卡一卡二| 美女被艹到高潮喷水动态| 亚洲黑人精品在线| 999久久久精品免费观看国产| 熟女人妻精品中文字幕| 嫩草影视91久久| 日韩欧美精品免费久久 | 毛片一级片免费看久久久久 | 99热这里只有是精品在线观看 | 亚洲成人久久爱视频| 91午夜精品亚洲一区二区三区 | 日本撒尿小便嘘嘘汇集6| 亚洲美女黄片视频| 熟女人妻精品中文字幕| 亚洲一区二区三区色噜噜| 日韩亚洲欧美综合| 欧美一区二区精品小视频在线| 国产淫片久久久久久久久 | 国产伦在线观看视频一区| 欧美日韩乱码在线| 伦理电影大哥的女人| 亚洲av熟女| 欧美日韩国产亚洲二区| 一个人免费在线观看的高清视频| 亚洲成av人片在线播放无| 亚洲性夜色夜夜综合| 99久久精品一区二区三区| 99在线人妻在线中文字幕| 脱女人内裤的视频| 精品午夜福利在线看| 日韩大尺度精品在线看网址| 免费高清视频大片| 日日夜夜操网爽| 国产精品爽爽va在线观看网站| 日日摸夜夜添夜夜添小说| 亚洲国产欧美人成| 国产精品亚洲美女久久久| 女人十人毛片免费观看3o分钟| av天堂中文字幕网| 精品久久久久久久末码| 在线天堂最新版资源| 国产人妻一区二区三区在| 亚洲真实伦在线观看| 成人亚洲精品av一区二区| 草草在线视频免费看| 天堂影院成人在线观看| 亚洲熟妇熟女久久| 欧美+日韩+精品| 别揉我奶头~嗯~啊~动态视频| 搡女人真爽免费视频火全软件 | 两人在一起打扑克的视频| avwww免费| 99热这里只有是精品50| 国产精品三级大全| a级一级毛片免费在线观看| 亚洲av电影在线进入| 国产精品亚洲美女久久久| 狠狠狠狠99中文字幕| 757午夜福利合集在线观看| 91久久精品国产一区二区成人| 全区人妻精品视频| bbb黄色大片| 最好的美女福利视频网| 男人狂女人下面高潮的视频| 久久久成人免费电影| 成人一区二区视频在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩无卡精品| 国产激情偷乱视频一区二区| 亚洲欧美清纯卡通| 日本五十路高清| 欧美国产日韩亚洲一区| 日本精品一区二区三区蜜桃|