• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A modified airfoil-based piezoaeroelastic energy harvester with double plunge degrees of freedom

    2016-12-24 08:39:24YiningWuDochunLiJinwuXingAndreRonch

    Yining Wu,Dochun Li,Jinwu Xing,?,Andre D Ronch

    aSchool of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China

    bEngineering and the Environment,University ofSouthampton,Southampton SO171BJ,UK

    Letter

    A modified airfoil-based piezoaeroelastic energy harvester with double plunge degrees of freedom

    Yining Wua,Daochun Lia,Jinwu Xianga,?,Andrea Da Ronchb

    aSchool of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China

    bEngineering and the Environment,University ofSouthampton,Southampton SO171BJ,UK

    H I G H L I G H T S

    .A double-plunge airfoil-based piezoaeroelastic energy harvester is proposed.

    .The dynamic modelof the proposed harvester is presented.

    .The proposed harvester generates higher power outputthan conventionaldesigns.

    .The proposed harvester has lower cut-in speed than conventionaldesigns.

    A R T I C L E I N F O

    Article history:

    Received 7 June 2016

    Received in revised form

    3 July 2016

    Accepted 7 August 2016

    Available online 24 August 2016

    Energy harvesting Aeroelastic Airfoil Piezoelectric

    In this letter,a piezoaeroelastic energy harvester based on an airfoil with double plunge degrees of freedom is proposed to additionally take advantage of the vibrationalenergy ofthe airfoilpitch motion. An analyticalmodelofthe proposed energy harvesting system is built and compared with an equivalent model using the well-explored pitch-plunge configuration.The dynamic response and average power output of the harvester are numerically studied as the flow velocity exceeds the cut-in speed(flutter speed).It is found that the harvester with double-plunge configuration generates 4%-10%more power with varying flow velocities while reducing 6%of the cut-in speed than its counterpart.

    ?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoreticaland Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The objective of energy harvesting(EH)is to convert ambient energy such as solar,tidal,and wind energy into available electric energy.Recently,EH based on aeroelastic vibrations has received growing attention since it potentially outperforms the conventionalturbines in terms of smallscale wind EH[1].The harvested energy can be used for low-power electronic systems such as wireless sensor networks to reduce cabling and maintenance costs[2].

    Taking advantage of aeroelastic phenomena,several harvesters have been designed,manufactured,and tested based on flutter of cantilevered plates[3,4],galloping oscillations of bluff bodies [5,6],wake galloping phenomenon[7,8],and vortex-induced vibrations[9,10].Airfoil-based energy harvesters,exploiting aeroelastic vibrations,consist of a rigid airfoilwith supporting devices that allow the pitch-plunge vibrations of the airfoil with transducers coupled to the plunge degree of freedom(DOF)[11,12]. Towards airfoil-based harvesters,a large body of work has been done including analytical modeling and experimental activities[13,14],investigating the effects of structural nonlinearities[15-18]and system parameters[19-23]to improve EH performance,and analyzing EHunder the combined base and wind excitations[24,25].Cambered airfoils[26]and 3-DOF airfoils with control surfaces[27,28]were also considered to enhance design flexibility.

    Previous studies on piezoaeroelastic EH of airfoil-based harvesters used a pitch-plunge configuration with piezoelectric transducers coupled to the plunge DOF.The airfoils were generally held by torsional springs and rotating shafts connected to cantilevered piezoelectric beams.The coupling between the transducers and the pitch DOF was not considered in the previous studies because (1)it is difficult to attach the piezoelectric transducers to the torsionalsprings,and(2)it is relatively hard to convertthe airfoilpitch motion into the deformation of the piezoelectric materials compared with the use of the piezoelectric beams.From an EH point of view,however,the vibrational energy in the pitch DOF was not converted into electric energy and wasted.The objective of thisletter is to enhance the performance of airfoil-based harvesters by additionally taking advantage of the vibrational energy of the airfoilpitch motion.

    Fig.1.Schematic of the airfoil-based harvester with double plunge DOFs.

    As it is very difficult to couple the piezoelectric transducers to the pitch DOF,an airfoilwith double plunge supporting devices is used.Shown in Fig.1,a second plunge DOF is introduced instead of the pitch DOF.The mechanical energy of each plunge DOF is converted into electric energy via the corresponding transducer and then consumed by a load resistance in the respective circuit.

    Shown in Fig.1,the displacements of two plunge supporting devices are denoted by h1and h2,positive downward.The terms d1and a denote,respectively,the dimensionless offset ofthe first supporting device and the elastic axis from the airfoil mid-chord. The term d is the dimensionless offset of the second supporting device measured from the first one.The location of the elastic axis is determined by a=d1+k2d/(k1+k2),where k1and k2are the linear stiffness coefficients of the two plunge DOFs, respectively,including the contributions from both the plunge springs and transducers.The dynamic equations of the proposed double-plunge airfoil-based piezoaeroelastic harvester are derived as

    where dc=a?d1+xα,and xαis the dimensionless offset of the gravity center axis measured from the elastic axis;m,m1,and m2are,respectively,the mass of the airfoil,the first,and the second supporting device;Jcis the moment of inertia of the airfoil about the gravity center axis;b is the airfoil semi-chord;c1and c2are the damping coefficients of the two plunge DOFs,respectively;V1and V2are the voltage outputs ofthe two transducers,respectively; θis the electromechanical coupling factor;Cpis the equivalent capacitance of the transducers;R1and R2are the load resistances in respective circuits.Note that the structural nonlinearities are not taken into account in this work.αeffis the effective angle of attack,andαeff= α+ ˙h/U? (0.5+a)b˙α/U,where h is the plunge displacement of the elastic axis,positive downward,and αis the pitch displacement,positive nose up;L= ρU2bCl,D= ρU2bCd,and M=2ρU2b2Cmare the aerodynamic lift(normalto the direction of the resultant flow velocity,positive upward),drag (along the resultant flow velocity,positive leeward),and moment (positive nose up)acting at the airfoil one-quarter-chord axis, respectively,whereρis the air density and U is flow velocity.The aerodynamic coefficients are calculated using the Office National d'Etudes et de Recherches Aerospatiales(ONERA)dynamic stall model[29]to consider the effects of flow separation due to large airfoilamplitudes.The aerodynamic model used in this work is

    where subscript z can be l or m to indicate,respectively,lift or moment coefficient;tτ=b/U.Subscripts a and b refer to the linear and nonlinear parts of the aerodynamics,respectively;the coefficients are sl1= π,sl2= π/2,sl3=0,sm1= ?π/4,sm2=?3π/16,sm3=?π/4,λ1=0.15,λ2=0.55,aol=5.9,aom=0, cd1=0.014,r1d=0.32;the terms with respect to the nonlinear aerodynamics in Eqs.(7)and(9)are given in the Appendix.The relationship between h1,h2and h,αcan be expressed via a transfer matrix

    To verify the advantage of EH based on the double-plunge airfoil,an equivalent pitch-plunge airfoil-based EH model is built. Shown in Fig.2,the plunge DOF ofthe equivalent modelis coupled with two transducers in parallel to ensure the use of the same amount of piezoelectric material.For this pitch-plunge airfoilbased harvester,the dynamics are

    where khand kαare,respectively,the stiffness coefficients of the plunge and pitch DOFs;chand cαare the damping coefficients of these two DOFs,respectively;mTis the total mass of the airfoil together with its supporting devices;J is the moment of inertia of the pitch-plunge airfoil about the gravity center axis.The relationships between the mass,stiffness,and damping coefficients of the two harvesters are derived as

    Fig.2.Schematic ofan equivalentpitch-plunge airfoil-based harvester.

    Fig.3.Time histories of(a)the plunge motion,(b)the pitch motion,and(c)the voltage output of the proposed harvester as the flow velocity is 30 m.s?1.

    For EH based on two transducers via respective circuits,the total harvested energy is evaluated by the average power output

    where t1to t2is a period of time in which the transient response has been dissipated.

    The dynamic equations are solved numerically using the Runge-Kutta method.For all results presented,the initial conditions are˙h1=0.01 and zeroes for the rest of the state variables. The value of the system parameters are:m=2.049 kg;m1= m2=10.338 kg;b=0.135 m;xα=0.331;d1=?1;d=1;Jc= 0.0517 kg.m2;c1=c2=27.43 kg.s?1;k1=k2=1000 N.m?1; θ=1.55 X10?3N.V?1;Cp=1.2 X10?7F;R1=R2=1 X 106Ω. The air density is 1.225 kg.m?3and the viscosity coefficient is 1.78 X10?5Pa.s.To calculate the average power output,the time period t1to t2in Eq.(17)corresponds to the last 10 s of the total simulation time(30 s)where the transient responses are observed to be completely dissipated.The cut-in speed(flutter speed)ofthe harvester is determined as 28.4 m.s?1.The time history results as the flow velocity is 30 m.s?1are shown in Fig.3.Itis shown that the plunge amplitude and voltage outputofthe second plunge DOF are larger than that of the first plunge DOF.Besides,the effective angle ofattack can be large enough to cause flow separation,e.g.,the amplitude is 22°shown in Fig.3(b).This demonstrates the necessity ofusing the dynamic stallmodelto calculate the aerodynamics in this work.

    Fig.4.Average power outputs of the harvesters with double-plunge and pitchplunge configurations with the flow velocity(solid lines),and the relative enhancementofthe power output(dash line).

    Fig.5.Average power outputs of the first and second plunge DOFs with the flow velocity.

    The double-plunge airfoil-based energy harvester is numerically compared with its pitch-plunge counterpart.The cut-in speed of the latter is firstly obtained as 30.2 m.s?1,which is larger than that of the former.This result shows that the use of the doubleplunge configuration improves the EH performance with a relative reduction 6%of the cut-in speed.The average power outputs of these two harvesters with the flow velocity are compared in Fig.4. Obviously,the power output using double-plunge configuration is larger than thatusing the pitch-plunge configuration.The relative enhancement of the power output is shown in Fig.4 by a dotted line.It can be seen that the enhancement in percentage varies with the flow velocity and fluctuates between 4%and 10%.Besides,the relationship between the power outputs of the two harvesters and the flow velocity is approximately piecewise linear.Specifically, the slopes of the two curves increase at 36 m.s?1and then descend as the flow velocity is beyond 37 m.s?1.

    The comparison of the average power outputs of two plunge DOFs with the flow velocity is shown in Fig.5.In this work,the first plunge supporting device is at the leading edge of the airfoil while the second one is at the mid-chord axis.Also,the parameters of the two plunge supporting devices are set identically.It can be seen that the power output from the second plunge DOF islarger than that from the first plunge DOF.Specifically,the former is approximately 50%larger than the latter with varying flow velocity.

    In summary,this letter proposes a piezoaeroelastic energy harvester based on an airfoil with double plunge DOFs.The dynamic equations of this harvester and an equivalent well-explored pitchplunge airfoil-based harvester are presented.It is numerically demonstrated that the proposed harvester outperforms its counterpart using the pitch-plunge configuration in terms of the average power output and the cut-in speed.Specifically,it is found that the former generates 4%-10%more power with varying flow velocities while reducing 6%of the cut-in speed than the latter.It is also shown thatthe second downstream plunge supporting device of the proposed harvester has larger plunge amplitude and hence yields 50%more power output compared with the first upstream one.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11402014,11572023)and the Royal Academy of Engineering for the project''Fast Nonlinear Aeroelastic Search for Loads Assessment''(NCRP/1415/51).

    Appendix

    The terms with respect to the nonlinear aerodynamics in Eqs.(7)and(9)are:

    if the Reynolds number is larger than 3.4 X 105,and

    ifthe Reynolds number is smaller than 3.4 X 105.Besides,

    whereα1=0.1396 andα2=0.3142.In addition,

    [1]A.Abdelkefi,Aeroelastic energy harvesting:a review,Internat.J.Engrg.Sci. 100(2016)112-135.

    [2]A.Truitt,S.N.Mahmoodi,A review on active wind energy harvesting designs, Int.J.Precis.Eng.Man.14(2013)1667-1675.

    [3]M.Pi?eirua,O.Doaré,S.Michelin,Influence and optimization ofthe electrodes position in a piezoelectric energy harvesting flag,J.Sound Vib.346(2015) 200-215.

    [4]J.A.Dunnmon,S.C.Stanton,B.P.Mann,etal.,Power extraction from aeroelastic limit cycle oscillations,J.Fluid Struct.27(2011)1182-1198.

    [5]A.Bibo,M.F.Daqaq,On the optimalperformance and universaldesign curves ofgalloping energy harvesters,Appl.Phys.Lett.104(2014)23901.

    [6]Y.Yang,L.Zhao,L.Tang,Comparative study of tip cross-sections for efficient galloping energy harvesting,Appl.Phys.Lett.102(2013)64105.

    [7]A.Abdelkefi,J.M.Scanlon,E.Mcdowell,et al.,Performance enhancement of piezoelectric energy harvesters from wake galloping,Appl.Phys.Lett.103 (2013)33903.

    [8]H.Jung,L.Seung-Woo,The experimentalvalidation ofa newenergy harvesting system based on the wake galloping phenomenon,Smart Mater.Struct.20 (2011)55022.

    [9]L.Ding,L.Zhang,M.M.Bernitsas,etal.,Numericalsimulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control,Renew.Energy 85(2016)1246-1259.

    [10]J.Xu-Xu,A.Barrero-Gil,A.Velazquez,A theoreticalstudy of the coupling between a vortex-induced vibration cylindrical resonator and an electromagnetic energy harvester,Smart Mater.Struct.24(2015)115009.

    [11]J.A.C.Dias,C.De Marqui Jr.,A.Erturk,Hybrid piezoelectric-inductive flow energy harvesting and dimensionless electroaeroelastic analysis for scaling, Appl.Phys.Lett.102(2013)44101.

    [12]C.De Marqui Jr.,A.Erturk,Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction,J.Intell.Mater.Syst.Struct.24(2013)846-854.

    [13]M.Bryant,E.Garcia,Modeling and testing ofa novelaeroelastic flutter energy harvester,J.Vib.Acoust.133(2011)11010.

    [14]A.Erturk,W.G.R.Vieira,C.De Marqui Jr.,et al.,On the energy harvesting potentialofpiezoaeroelastic systems,Appl.Phys.Lett.96(2010)184103.

    [15]V.C.Sousa,M.de M Anicézio,C.De Marqui Jr.,et al.,Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities:theory and experiment,Smart Mater.Struct.20(2011)94007.

    [16]J.Bae,D.J.Inman,Aeroelastic characteristics of linear and nonlinear piezoaeroelastic energy harvester,J.Intell.Mater.Syst.Struct.4(2014)401-416.

    [17]A.Abdelkefi,M.R.Hajj,Performance enhancement ofwing-based piezoaeroelastic energy harvesting through freeplay nonlinearity,Theor.Appl.Mech.Lett. 3(2013)41001.

    [18]V.C.Sousa,C.De Marqui Jr.,Airfoil-based piezoelectric energy harvesting by exploiting the pseudoelastic hysteresis ofshape memory alloy springs,Smart Mater.Struct.24(2015)125014.

    [19]M.Bryant,E.Wolff,E.Garcia,Aeroelastic flutter energy harvester design:the sensitivity ofthe driving instability to system parameters,Smart Mater.Struct. 20(2011)125017.

    [20]A.Abdelkefi,A.H.Nayfeh,M.R.Hajj,Enhancement of power harvesting from piezoaeroelastic systems,Nonlinear Dynam.68(2012)531-541.

    [21]A.Abdelkefi,A.H.Nayfeh,M.R.Hajj,Modeling and analysis ofpiezoaeroelastic energy harvesters,Nonlinear Dynam.67(2012)925-939.

    [22]A.Abdelkefi,M.Ghommem,A.O.Nuhait,et al.,Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters,J.Sound Vib. 333(2014)166-177.

    [23]A.Abdelkefi,A.H.Nayfeh,M.R.Hajj,Design of piezoaeroelastic energy harvesters,Nonlinear Dynam.68(2012)519-530.

    [24]A.Bibo,M.F.Daqaq,Investigation of concurrent energy harvesting from ambientvibrations and wind using a single piezoelectric generator,Appl.Phys. Lett.102(2013)243904.

    [25]A.Bibo,M.F.Daqaq,Energy harvesting under combined aerodynamic and base excitations,J.Sound Vib.332(2013)5086-5102.

    [26]A.Abdelkefi,A.O.Nuhait,Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters,Smart Mater.Struct.22(2013) 95029.

    [27]J.A.C.Dias,C.De Marqui Jr.,A.Erturk,Three-degree-of-freedom hybrid piezoelectric-inductive aeroelastic energy harvester exploiting a control surface,AIAA J.53(2014)394-404.

    [28]J.Bae,D.J.Inman,A preliminary study on piezo-aeroelastic energy harvesting using a nonlinear trailing-edge flap,Int.J.Aeronaut.Space Sci.16(2015) 407-417.

    [29]P.Dunn,D.John,Nonlinear stallflutter and divergence analysis ofcantilevered graphite/epoxy wings,AIAA J.30(1992)153-162.

    ?Corresponding author.

    E-mail address:xiangjw@buaa.edu.cn(J.Xiang).

    http://dx.doi.org/10.1016/j.taml.2016.08.009

    2095-0349/?2016 The Author(s).Published by Elsevier Ltd on behalfof The Chinese Society of Theoreticaland Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    免费观看人在逋| 欧美绝顶高潮抽搐喷水| 在线观看午夜福利视频| 90打野战视频偷拍视频| 国产精品亚洲一级av第二区| 国产探花在线观看一区二区| 色播亚洲综合网| 欧美在线一区亚洲| 99国产综合亚洲精品| 99在线人妻在线中文字幕| 亚洲熟妇中文字幕五十中出| 搡女人真爽免费视频火全软件 | 欧美+日韩+精品| 在线播放国产精品三级| 少妇的丰满在线观看| 国产97色在线日韩免费| 好男人在线观看高清免费视频| 在线观看美女被高潮喷水网站 | 色综合亚洲欧美另类图片| 久久国产乱子伦精品免费另类| 国产一区在线观看成人免费| 国产一区二区三区视频了| 亚洲一区二区三区色噜噜| 日本黄大片高清| eeuss影院久久| 老汉色av国产亚洲站长工具| 久久午夜亚洲精品久久| 亚洲天堂国产精品一区在线| 99视频精品全部免费 在线| 日韩欧美精品v在线| 久久久久久大精品| 亚洲人与动物交配视频| 小蜜桃在线观看免费完整版高清| 国产乱人视频| 有码 亚洲区| 亚洲五月婷婷丁香| 黑人欧美特级aaaaaa片| 麻豆成人av在线观看| 五月伊人婷婷丁香| 久久6这里有精品| 色视频www国产| 在线国产一区二区在线| 精品电影一区二区在线| or卡值多少钱| 成年免费大片在线观看| 无限看片的www在线观看| 婷婷精品国产亚洲av在线| 变态另类丝袜制服| 国产美女午夜福利| 午夜视频国产福利| 午夜福利在线在线| 极品教师在线免费播放| 国产精品亚洲av一区麻豆| 亚洲成av人片在线播放无| 国产精品综合久久久久久久免费| 宅男免费午夜| 最近最新免费中文字幕在线| 在线播放国产精品三级| 久久久久国产精品人妻aⅴ院| 国产精品99久久99久久久不卡| 我的老师免费观看完整版| 综合色av麻豆| 女人高潮潮喷娇喘18禁视频| 国产久久久一区二区三区| 午夜福利高清视频| 亚洲国产日韩欧美精品在线观看 | 欧美日韩精品网址| 亚洲成人精品中文字幕电影| 免费一级毛片在线播放高清视频| 久久国产精品人妻蜜桃| 99精品久久久久人妻精品| 99久久无色码亚洲精品果冻| av黄色大香蕉| 久久精品人妻少妇| 男女之事视频高清在线观看| 日本在线视频免费播放| 欧美日韩综合久久久久久 | 人妻丰满熟妇av一区二区三区| 欧美区成人在线视频| 日韩欧美一区二区三区在线观看| 在线观看午夜福利视频| 狂野欧美激情性xxxx| 婷婷亚洲欧美| 丰满人妻一区二区三区视频av | 天天一区二区日本电影三级| 久久精品国产亚洲av香蕉五月| 亚洲黑人精品在线| 一进一出抽搐动态| 狂野欧美白嫩少妇大欣赏| 日韩亚洲欧美综合| 桃红色精品国产亚洲av| 在线观看免费午夜福利视频| 无人区码免费观看不卡| 成年人黄色毛片网站| 国产精品久久久久久久久免 | 国产精品亚洲美女久久久| 欧美日本亚洲视频在线播放| 在线观看美女被高潮喷水网站 | 午夜福利免费观看在线| 欧美丝袜亚洲另类 | 19禁男女啪啪无遮挡网站| 中文字幕人妻丝袜一区二区| 久久婷婷人人爽人人干人人爱| 手机成人av网站| 观看美女的网站| 欧美一区二区国产精品久久精品| 一进一出好大好爽视频| 成人特级av手机在线观看| 国产精品久久久人人做人人爽| 99久久久亚洲精品蜜臀av| 亚洲中文字幕一区二区三区有码在线看| 亚洲色图av天堂| 小说图片视频综合网站| 天天一区二区日本电影三级| 一个人看的www免费观看视频| 欧美三级亚洲精品| 亚洲中文字幕一区二区三区有码在线看| 午夜福利在线观看免费完整高清在 | 麻豆成人av在线观看| 成年女人看的毛片在线观看| 伊人久久大香线蕉亚洲五| 热99在线观看视频| 国产精品免费一区二区三区在线| 99在线视频只有这里精品首页| 国产探花在线观看一区二区| 美女大奶头视频| 女人十人毛片免费观看3o分钟| 一卡2卡三卡四卡精品乱码亚洲| 精品福利观看| 哪里可以看免费的av片| 日本黄色片子视频| 国产精品亚洲一级av第二区| 有码 亚洲区| 日本撒尿小便嘘嘘汇集6| 国产伦在线观看视频一区| 村上凉子中文字幕在线| 最近最新中文字幕大全免费视频| 久久国产精品人妻蜜桃| 成人国产一区最新在线观看| 成人午夜高清在线视频| 天堂影院成人在线观看| 亚洲专区中文字幕在线| a级毛片a级免费在线| 亚洲欧美激情综合另类| 婷婷精品国产亚洲av| 欧美午夜高清在线| 操出白浆在线播放| 无限看片的www在线观看| 亚洲精品成人久久久久久| 色精品久久人妻99蜜桃| 午夜日韩欧美国产| 色噜噜av男人的天堂激情| 亚洲av熟女| 国产精品久久电影中文字幕| 夜夜看夜夜爽夜夜摸| 长腿黑丝高跟| 亚洲av不卡在线观看| 黄色成人免费大全| 久久久久久大精品| 亚洲天堂国产精品一区在线| 2021天堂中文幕一二区在线观| 久久6这里有精品| 最近最新中文字幕大全电影3| av天堂中文字幕网| 精品电影一区二区在线| 久久中文看片网| 国产av一区在线观看免费| 国产 一区 欧美 日韩| 亚洲人与动物交配视频| 国产欧美日韩一区二区三| 午夜精品一区二区三区免费看| 搞女人的毛片| 我的老师免费观看完整版| 国产成人系列免费观看| 亚洲av日韩精品久久久久久密| 夜夜爽天天搞| 欧美成人一区二区免费高清观看| 99久国产av精品| 中文字幕人妻熟人妻熟丝袜美 | 男女下面进入的视频免费午夜| 乱人视频在线观看| 中国美女看黄片| 麻豆一二三区av精品| 少妇丰满av| 久9热在线精品视频| 国产熟女xx| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩高清专用| www日本在线高清视频| 丰满人妻一区二区三区视频av | 亚洲专区国产一区二区| www.999成人在线观看| 久久久久性生活片| 日本黄色视频三级网站网址| 天美传媒精品一区二区| 国产高清videossex| 91字幕亚洲| 亚洲国产精品成人综合色| 精品久久久久久久久久免费视频| 亚洲成人中文字幕在线播放| 俺也久久电影网| 成人精品一区二区免费| 欧美午夜高清在线| 久久精品国产99精品国产亚洲性色| 国产精品98久久久久久宅男小说| 露出奶头的视频| 亚洲av电影不卡..在线观看| 亚洲一区二区三区色噜噜| 日韩欧美免费精品| 99热精品在线国产| 欧美午夜高清在线| 国产精品亚洲av一区麻豆| 成人特级黄色片久久久久久久| 久久久国产精品麻豆| 老司机福利观看| 麻豆久久精品国产亚洲av| 一个人免费在线观看的高清视频| 久久国产精品人妻蜜桃| 欧美bdsm另类| 国产日本99.免费观看| 国产精品乱码一区二三区的特点| 国产黄a三级三级三级人| 久久久国产成人精品二区| 久久香蕉精品热| 露出奶头的视频| 亚洲国产精品久久男人天堂| 女人高潮潮喷娇喘18禁视频| 最后的刺客免费高清国语| 成人av在线播放网站| 三级毛片av免费| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区 | 中文字幕av在线有码专区| 免费大片18禁| 天天躁日日操中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产午夜精品久久久久久一区二区三区 | 夜夜爽天天搞| 国产色婷婷99| 美女免费视频网站| 精品熟女少妇八av免费久了| 九九在线视频观看精品| 观看美女的网站| 黑人欧美特级aaaaaa片| 国产真实伦视频高清在线观看 | 久久精品91无色码中文字幕| 99久久99久久久精品蜜桃| 精品国产美女av久久久久小说| 亚洲人与动物交配视频| 亚洲成人免费电影在线观看| 国产91精品成人一区二区三区| 国产精品一及| 观看美女的网站| 欧美丝袜亚洲另类 | 九九久久精品国产亚洲av麻豆| 亚洲性夜色夜夜综合| 无人区码免费观看不卡| 欧美+日韩+精品| 精品久久久久久,| 亚洲av日韩精品久久久久久密| 亚洲人成伊人成综合网2020| 韩国av一区二区三区四区| www.熟女人妻精品国产| 日韩大尺度精品在线看网址| 中文资源天堂在线| 波野结衣二区三区在线 | 精品久久久久久久末码| 色尼玛亚洲综合影院| 黄色日韩在线| 88av欧美| 免费人成视频x8x8入口观看| 亚洲国产精品久久男人天堂| 日本黄大片高清| 一进一出好大好爽视频| 嫁个100分男人电影在线观看| 看免费av毛片| 亚洲精品亚洲一区二区| 欧美性猛交黑人性爽| 亚洲成人久久爱视频| 久久久久免费精品人妻一区二区| 最好的美女福利视频网| 国产精品 国内视频| 精品久久久久久久久久久久久| 窝窝影院91人妻| 国产一级毛片七仙女欲春2| 美女黄网站色视频| 国产欧美日韩一区二区精品| 国产熟女xx| 3wmmmm亚洲av在线观看| 亚洲五月婷婷丁香| 91麻豆av在线| 91麻豆精品激情在线观看国产| 日本熟妇午夜| 麻豆久久精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 亚洲国产色片| 在线国产一区二区在线| 午夜福利18| 久久亚洲真实| 一级毛片女人18水好多| 97碰自拍视频| 一个人免费在线观看电影| 午夜久久久久精精品| 不卡一级毛片| 18禁在线播放成人免费| 亚洲av电影不卡..在线观看| 免费av不卡在线播放| 高清日韩中文字幕在线| a级毛片a级免费在线| 狂野欧美激情性xxxx| 亚洲国产日韩欧美精品在线观看 | 午夜福利在线观看吧| 女人被狂操c到高潮| 一级黄色大片毛片| 美女黄网站色视频| 最近视频中文字幕2019在线8| 日日干狠狠操夜夜爽| 国产精品嫩草影院av在线观看 | 国产真实伦视频高清在线观看 | 国产精品免费一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看| 一进一出抽搐gif免费好疼| 久久性视频一级片| 激情在线观看视频在线高清| 成年女人永久免费观看视频| 国产精品永久免费网站| 亚洲精品亚洲一区二区| 欧美色视频一区免费| 熟妇人妻久久中文字幕3abv| 亚洲,欧美精品.| 国产日本99.免费观看| 一区二区三区激情视频| а√天堂www在线а√下载| 午夜日韩欧美国产| 久久中文看片网| 性欧美人与动物交配| 国内精品美女久久久久久| 久久中文看片网| av女优亚洲男人天堂| 搞女人的毛片| 久久久久久国产a免费观看| 蜜桃久久精品国产亚洲av| 国产一区二区在线观看日韩 | 非洲黑人性xxxx精品又粗又长| 亚洲不卡免费看| 女同久久另类99精品国产91| 国产免费av片在线观看野外av| 午夜福利视频1000在线观看| h日本视频在线播放| 国产亚洲欧美在线一区二区| 黑人欧美特级aaaaaa片| 老汉色av国产亚洲站长工具| 一本精品99久久精品77| 亚洲专区中文字幕在线| 久久久国产成人免费| 少妇熟女aⅴ在线视频| 淫秽高清视频在线观看| 国产亚洲精品综合一区在线观看| АⅤ资源中文在线天堂| 免费一级毛片在线播放高清视频| 欧美午夜高清在线| 黄色丝袜av网址大全| 人人妻人人澡欧美一区二区| 成人av在线播放网站| 成人av一区二区三区在线看| 日韩高清综合在线| 午夜视频国产福利| 国产一区二区激情短视频| 最近最新中文字幕大全电影3| 91麻豆精品激情在线观看国产| 亚洲成a人片在线一区二区| 99久国产av精品| 亚洲性夜色夜夜综合| 国产真实乱freesex| 欧美中文日本在线观看视频| aaaaa片日本免费| 在线播放无遮挡| 婷婷精品国产亚洲av| 18禁国产床啪视频网站| 免费看十八禁软件| 中国美女看黄片| 人妻丰满熟妇av一区二区三区| 欧美日韩综合久久久久久 | 久久亚洲精品不卡| 嫁个100分男人电影在线观看| 两人在一起打扑克的视频| 好看av亚洲va欧美ⅴa在| 国产三级在线视频| 欧美成人a在线观看| 黄色片一级片一级黄色片| 最近最新中文字幕大全电影3| 伊人久久精品亚洲午夜| 国产免费av片在线观看野外av| 国内久久婷婷六月综合欲色啪| 少妇丰满av| 亚洲精品乱码久久久v下载方式 | 久久伊人香网站| 亚洲国产精品sss在线观看| 亚洲精品456在线播放app | 亚洲中文日韩欧美视频| 九九热线精品视视频播放| 久久人妻av系列| 国产成年人精品一区二区| 丰满人妻熟妇乱又伦精品不卡| 国产免费av片在线观看野外av| 熟女少妇亚洲综合色aaa.| 国内揄拍国产精品人妻在线| 亚洲avbb在线观看| 婷婷六月久久综合丁香| 精品久久久久久成人av| 色综合亚洲欧美另类图片| 亚洲男人的天堂狠狠| 国产一区在线观看成人免费| 黄色丝袜av网址大全| 一区福利在线观看| 亚洲天堂国产精品一区在线| 91麻豆精品激情在线观看国产| svipshipincom国产片| 他把我摸到了高潮在线观看| 亚洲国产精品久久男人天堂| 国产高清视频在线观看网站| 亚洲av成人精品一区久久| 国产精品av视频在线免费观看| 色尼玛亚洲综合影院| 国产不卡一卡二| 午夜福利视频1000在线观看| 两个人的视频大全免费| 男人的好看免费观看在线视频| 亚洲av二区三区四区| 男插女下体视频免费在线播放| 欧美成狂野欧美在线观看| 久久人妻av系列| 国产真实伦视频高清在线观看 | 国产成人av激情在线播放| 国内揄拍国产精品人妻在线| 真人一进一出gif抽搐免费| 国产精品电影一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲最大成人手机在线| 人人妻人人看人人澡| 久久精品国产亚洲av香蕉五月| 欧美zozozo另类| 99久久精品一区二区三区| 搡女人真爽免费视频火全软件 | 在线观看一区二区三区| 叶爱在线成人免费视频播放| 欧美色欧美亚洲另类二区| 老司机在亚洲福利影院| 麻豆国产97在线/欧美| 欧美3d第一页| 一个人看的www免费观看视频| 91在线精品国自产拍蜜月 | 夜夜爽天天搞| 国内精品一区二区在线观看| 少妇裸体淫交视频免费看高清| 欧美日韩瑟瑟在线播放| а√天堂www在线а√下载| 国产伦精品一区二区三区四那| 少妇的逼好多水| 国产欧美日韩精品一区二区| 我要搜黄色片| 99国产精品一区二区三区| 久久亚洲真实| 欧美最新免费一区二区三区 | 久久久久久国产a免费观看| 国产熟女xx| 18禁在线播放成人免费| 白带黄色成豆腐渣| 成人午夜高清在线视频| 国产精品1区2区在线观看.| 成年人黄色毛片网站| 三级国产精品欧美在线观看| 国产成人aa在线观看| 在线观看av片永久免费下载| 老司机福利观看| 一区福利在线观看| 99热这里只有精品一区| 黄片小视频在线播放| 制服人妻中文乱码| 一个人免费在线观看的高清视频| 午夜免费男女啪啪视频观看 | 性欧美人与动物交配| 国产男靠女视频免费网站| 国模一区二区三区四区视频| 动漫黄色视频在线观看| 给我免费播放毛片高清在线观看| 欧美又色又爽又黄视频| 老司机午夜十八禁免费视频| 男女做爰动态图高潮gif福利片| 精品午夜福利视频在线观看一区| 91麻豆精品激情在线观看国产| 黑人欧美特级aaaaaa片| 岛国视频午夜一区免费看| 国产亚洲精品综合一区在线观看| 天天躁日日操中文字幕| 精品人妻偷拍中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲精品美女久久久久99蜜臀| 亚洲午夜理论影院| 观看美女的网站| 午夜两性在线视频| 男人和女人高潮做爰伦理| 精品人妻1区二区| 免费观看的影片在线观看| 精品人妻1区二区| 国产亚洲欧美98| 香蕉av资源在线| 亚洲av成人精品一区久久| 国产成年人精品一区二区| 国产精品久久久久久久久免 | 99久久精品国产亚洲精品| 人妻夜夜爽99麻豆av| 最近在线观看免费完整版| 麻豆成人av在线观看| 制服丝袜大香蕉在线| 欧美+日韩+精品| 日韩av在线大香蕉| 内射极品少妇av片p| 女人十人毛片免费观看3o分钟| 三级国产精品欧美在线观看| 国产中年淑女户外野战色| 午夜a级毛片| www.熟女人妻精品国产| 淫秽高清视频在线观看| 老司机深夜福利视频在线观看| 日本一二三区视频观看| 一个人看视频在线观看www免费 | 国产乱人伦免费视频| 51午夜福利影视在线观看| 欧美精品啪啪一区二区三区| 母亲3免费完整高清在线观看| 岛国在线观看网站| 在线观看免费午夜福利视频| 五月伊人婷婷丁香| 内地一区二区视频在线| 美女大奶头视频| 中文在线观看免费www的网站| 丰满人妻一区二区三区视频av | 99国产精品一区二区三区| 久久久久久久精品吃奶| 欧美日韩国产亚洲二区| 91在线精品国自产拍蜜月 | 国产主播在线观看一区二区| 脱女人内裤的视频| 成人特级av手机在线观看| 亚洲最大成人中文| 免费看美女性在线毛片视频| 欧美一级a爱片免费观看看| 黄片小视频在线播放| 国产伦精品一区二区三区四那| 久久久久久久精品吃奶| 一级黄色大片毛片| 成年免费大片在线观看| 久久精品国产自在天天线| 日日摸夜夜添夜夜添小说| 亚洲性夜色夜夜综合| 一区二区三区激情视频| 99在线视频只有这里精品首页| 色噜噜av男人的天堂激情| 欧美极品一区二区三区四区| avwww免费| 亚洲av中文字字幕乱码综合| 亚洲av第一区精品v没综合| 国产高潮美女av| 成年免费大片在线观看| 国产精品一区二区三区四区久久| 18+在线观看网站| 俺也久久电影网| ponron亚洲| 蜜桃久久精品国产亚洲av| 亚洲av电影在线进入| 全区人妻精品视频| 夜夜夜夜夜久久久久| 97超视频在线观看视频| 成人高潮视频无遮挡免费网站| 最近最新免费中文字幕在线| 亚洲精品一区av在线观看| 亚洲在线自拍视频| 嫩草影院精品99| 国产极品精品免费视频能看的| 欧美日韩一级在线毛片| 色综合亚洲欧美另类图片| 亚洲在线自拍视频| 亚洲黑人精品在线| 国产一级毛片七仙女欲春2| 欧美日韩亚洲国产一区二区在线观看| 在线视频色国产色| 精品99又大又爽又粗少妇毛片 | 欧美激情在线99| 久久久久免费精品人妻一区二区| 久久精品影院6| 精品一区二区三区av网在线观看| 欧美午夜高清在线| 成人18禁在线播放| 久久精品国产自在天天线| 国产av一区在线观看免费| 国产一区在线观看成人免费| 国产欧美日韩一区二区精品| 国产三级中文精品| 国产精品 欧美亚洲| 男女床上黄色一级片免费看| 国产亚洲精品一区二区www| 天天躁日日操中文字幕| 色在线成人网| 美女cb高潮喷水在线观看| 黄色女人牲交| 搞女人的毛片| 久久久久九九精品影院| 成人三级黄色视频| 国产精品永久免费网站| 香蕉丝袜av| 日本黄色视频三级网站网址| 国产中年淑女户外野战色| 村上凉子中文字幕在线| 国产在线精品亚洲第一网站|