• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The performance of proper orthogonaldecomposition in discontinuous flows

    2016-12-24 08:39:22JingLiWeiweiZhangSchoolofAeronauticsNorthwesternPolytechnicalUniversityXian710072China

    Jing Li,Weiwei ZhangSchoolofAeronautics,Northwestern PolytechnicalUniversity,Xi'an 710072,China

    Letter

    The performance of proper orthogonaldecomposition in discontinuous flows

    Jing Li,Weiwei Zhang?
    SchoolofAeronautics,Northwestern PolytechnicalUniversity,Xi'an 710072,China

    H I G H L I G H T S

    .The proper orthogonaldecomposition(POD)modes have specialpattern for flow existing shock wave.

    .The reason why reconstructing transonic flow needs more POD modes is explained.

    .POD combined with interpolation has good prediction ability for transonic flow.

    .POD combined with extrapolation does not have prediction ability for transonic flow.

    A R T I C L E I N F O

    Article history:

    Received 4 June 2016

    Received in revised form

    4 July 2016

    Accepted 7 August 2016

    Available online 24 August 2016

    POD Interpolation Shock wave Transonic flow Prediction

    In this paper,flow reconstruction accuracy and flow prediction capability of discontinuous transonic flow field by means of proper orthogonal decomposition(POD)method is studied.Although linear superposition of''high frequency waves''in different POD modes can achieve the reconstruction of the shock wave,the smoothness of the solution near the shock wave cannot be guaranteed.The modal coefficients are interpolated or extrapolated and different modal components are superposed to realize the prediction of the flow field beyond the snapshot sets.Results show that compared with the subsonic flow,the transonic flow with shock wave requires more PODmodes to reach a comparative reconstruction accuracy.When a shock wave exists,the interpolation prediction ability is acceptable.However,large errors exist in extrapolation,and increasing the number of POD modes cannot effectively improve the prediction accuracy ofthe flow field.

    ?2016 The Authors.Published by Elsevier Ltd on behalfof The Chinese Society of Theoreticaland Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The proper orthogonal decomposition(POD),also known as Karhunen-Loeve(K-L)expansion or principle components analysis,has been widely used in many areas,such as image processing[1],pattern recognition[2],reduced order model[3](ROM), flow dynamics analysis[4,5],and airfoil design optimization[6], and so on.POD method is a powerfulstatisticaltoolwhich can extract the significant structure or pattern from a large data set.POD method is also an effective reduction toolwhich can use the minimum number of POD modes to present a large data ensemble with the given accuracy.Lumley[7]firstly introduced the POD method into the turbulent flow.Then,Sirovich[8]introduced snapshots as a way to efficiently determine the POD modes,which made POD method applied to a wider range of problems,especially to computationalfluid dynamics(CFD).

    Numerical simulation of fluid flows is a very computationally intensive endeavor.In addition,reaching a physicalunderstanding from numerical simulation data is another challenge.Faced with these two challenges,ROM is a good choice that retains the essential physics and dynamics of the fluid flows,but has a much lower computational cost.This can enable uncertainty quantification[9],on-the-spot decision-making[10],optimization[11], and control[12].There are two approaches in constructing an efficient ROMbased on PODby integrating with Galerkin method[13-16]or surrogate technique[17,18].One approach is based on Galerkin projection of the physicalmodelon a reduced-dimension basis determined by POD.Xie et al.[19]employed this scheme to solve the nonlinear aeroelastic oscillations of a fluttering plate in both two and three dimensions.Pla et al.[20]described a flexible Galerkin method based on POD to construct the bifurcation diagram.Furthermore,Kim[21]developed the ROMin frequency form using a set of discrete snapshots in frequency domain instead of time domain.However,the POD-Galerkin ROM is non-robust and structurally unstable[22].Therefore,some new approaches are developed to improve the stability and reliability of the POD-Galerkin ROM.Xiao et al.[23]applied a new non-linear Petrov-Galerkin method to the reduced order Navier-Stokesequations,thus improving the stability of ROM.Romain et al.[24] investigated sequential data assimilation techniques to improve the stability of POD-Galerkin ROM for fluid flows.Leblond and Allery[25]obtained a priori low-dimensional space-time separated representation ofthe fluid fields,which is based on the use of space-time proper generalized decomposition(PGD)definitions. PGD may be seen as a generalization of the POD for a priori construction of a separated representation ofthe solution.This allows ensuring the accuracy ofa ROMas the parameter varies.The other approach to construct the POD-based ROMis to utilize a surrogate modelas a function ofthe measurement POD coefficients.Mainini and Willcox[10]combined POD and a localpolynomial response surface model to realize a fast mapping from measured quantities to system capabilities.This assists online rapid decision making for an unmanned aerialvehicle.Fossati[26]integrated PODand multidimensional interpolation for the parametric evaluation of steady aerodynamic loads.Kato and Funazaki[27]combined POD and radial basis function network(RBFN)for adaptively sampling a design parameter space using an error estimate through the reconstruction offlow field.

    However,because of shock waves,boundary-layer separation, and control-surface deflection in the transonic flow regime,additional complexities of the nonlinear aerodynamic system may be introduced.Especially,shock waves involve jumps in the flow variables,which bring great difficulties in POD-based ROM[28-30]. This results in either a quite poor approximation between ROM and CFD or a huge number of POD modes[31,32].And some special treatments are needed to avoid that problem.Iuliano and Quagliarella[11]presented a zonal approach to better solve the shock wave region and improve the ROM prediction in transonic flow.Malouin et al.[33]proposed an idea thatis to use POD to interpolate the difference between the CFDsolution obtained on two different grids,a coarse one and a fine one.This allows some nonlinearities associated with the flow to be introduced and gets good improvement over the classical approach.Taeibi-Rahni et al.[34] proposed the filtered and reprojection POD for transonic flow and better results were obtained than the conventional POD method. Butthere are no explanations why POD method results in poor approximation when dealing with shock waves and needs more POD modes to improve the behavior.Thus,this paper conducts research on this question.The performances of POD method for flow reconstruction in both subsonic and transonic flows are tested.Results show that different from subsonic flow,there are''high frequency waves''in the POD modes oftransonic flow.This is the reason why reconstructing shock waves with satisfactory accuracy needs more POD modes.Furthermore,this will result in the prediction failure of the flow field beyond snapshot sets.

    POD can be applied efficiently to large systems using the method of snapshots[6]as followsis a collection of m flow snapshots,where Ukis a vector containing the flow solution ata time or a parameter,such as the angle ofattack(AOA)or Mach number.And usually these solutions are expressed as the sum of average values and fluctuation values.

    The correlation matrix R is formed by computing the inner product between every pair of snapshots,

    where denotes the inner product betweenAnd then compute the eigenvaluesand eigenvectorsThe orthonormalPODmodes can be obtained by the following formula:

    The magnitude of the i th eigenvalue,λi,describes the relative importance of the i th POD mode,also known as the relative energy contained in the i th POD mode.

    The approximate reconstruction of the flow solutions can be given by the sum ofaverage values and a linear combination of the POD modes:

    where p?m and p is chosen to capture the desired levelofenergy.is the modal coefficient,corresponding to the i th POD mode, which can be obtained by projecting the k th snapshot to the i th POD mode.

    POD method combined with interpolation and extrapolation can realize the fast prediction of flow solutions which are not contained in the snapshots[26].The main steps are as follows:

    (2)Perform the basic POD procedure described above to get the truncated orthonormal POD modesand the corresponding POD coefficients

    In this paper,the steady flow solutions to a NACA 0012 airfoilwith varying AOA are used as snapshots.CFD solver adopts advection upstreamsplitting method(AUSM)+UP scheme to solve the Euler equation.Unstructured grid is used.The number ofnodes is 6916 and the number of cells is 13490,as shown in Fig.1. A detailed description of the solver and its verification can be referred to in Ref.[35].

    The snapshots set of case 1 is composed of 100 flow solutions ensemble at the fixed Mach number of 0.8,with AOA range of [0.25°,2.23°],uniformly spaced with an interval of 0.02°.Among them,two shock waves are separately located on the upper surface and the lower surface of the airfoilin the first 70 snapshots,while there is only one shock wave on the upper surface in the last 30 snapshots.With the increase ofAOA,the position ofthe shock wave gradually moves downstream.And the range of the shock wave on the upper surface corresponding to the x-axis is 0.53-0.71.Figure 2 shows the distribution ofpressure coefficients on the upper surface at different AOAs,which illustrates the position change of the shock wave with the AOA rang.Based on this snapshots set, reconstruction of the flow solution is conducted by the POD method.For a distinct demonstration,POD method is applied only to the pressure field and the pressure is dimensionless.The procedure of the other flow fields is straightforward.

    In order to better illustrate the impact of shock waves on the reconstruction result of the flow field based on POD method,a subsonic case 2 is tested.The snapshots set of case 2 is composed ofa steady flow solution ensemble atthe fixed Mach number of0.5 and the AOArange,spacing and the number ofsnapshots are allthe same as in case 1.

    Figure 3 shows the first to the third PODmodes ofthe above two cases.As can be seen from Fig.3(d)to(f),the contour of the upper airfoilsurface displays a ribbon pattern.And the value distribution of these ribbons alternates in a positive and negative way.Wecall these ribbons''high frequency waves'',the maximum value of which corresponds to the peak and the minimum value of which corresponds to the valley.The''frequency''in''high frequency wave''has no correlation with time.It expresses the reciprocal of wavelength.In subsonic case,the POD modes change smoothly. And so is the region except where the shock wave appeared and moved at POD modes of transonic case.If these smooth changes are considered as part of a wave,the wavelength of these waves is much longer than that at shock wave appeared and moved region. Therefore,the dense changes at shock wave appeared and moved region are called''high frequency wave''.Furthermore,the number of''half waves''is correlated with the order of POD modes.And in case 1,the number of''half waves''is equal to the order of POD mode.The range of''high frequency waves''is roughly the same as the moving range of the shock wave in the snapshots set.With the increasing order of POD mode,the wavelength of''high frequency waves''decreases gradually and the amplitude increases gradually. Only the shock wave on the upper surface willbe discussed and the contour of the lower airfoil surface has the similar regularity.The linear superposition of these''high frequency waves''reproduces the shock wave of the flow field.However,under the premise of the reconstruction accuracy ofthe shock wave,the''high frequency waves''at different amplitudes and frequencies in other regions can hardly offset each other.Therefore,oscillation phenomenon occurs before and after the shock wave.With the increase of POD modes used in reconstruction,the oscillation frequency increases while the oscillation amplitude decreases gradually.Furthermore, the range of oscillation is roughly the same as that of''high frequency waves''in POD modes,as shown in Figs.4 and 5. To better illustrate the oscillation phenomenon in reconstruction flows,surface pressure coefficients are presented here.Figures 4 and 5 show the comparison of the surface pressure coefficient between the POD and the CFD.Figures 6 and 7 compare the flow field reconstructed by POD method with that computed by CFD solver.Figures 4 and 6 present the first snapshot flow.Figures 5 and 7 present the one hundredth snapshot flow.Other snapshots have the same regularities.

    Fig.1.Computationalgrids.

    Fig.2.Pressure coefficient distribution of airfoilwith AOAs range.

    Table 1 The order of POD mode needed to achieve specified energy.

    Figure 8 shows the eigenvalue curves of the two cases.It can be seen that the eigenvalue of M=0.8 declines slowly and the phenomenon of''most energy contained in the first few PODmodes''is notobvious.As shown in Table 1,at M=0.5,it only needs one POD mode to achieve 99%or 99.9%ofthe totalenergy;while at M=0.8, it requires 9 POD modes to achieve 99%of the totalenergy and 21 POD modes to achieve 99.9%of the total energy.Therefore,if the energy is regarded as a standard of POD mode truncation,the flow with shock waves requires more POD modes to reach the specified energy.Taking the 71th snapshot as an example,Fig.9 shows the comparison of surface pressure coefficient obtained by POD and CFD in the two cases.Figure 9(a)shows thatin the state of the transonic speed with shock waves(M=0.8),even if the POD modes which are needed to reach 99.9%of the totalenergy are used,oscillation phenomenon stilloccurs before and after the shock wave. Butoutside this region,even ifone PODmode is used,surface pressure coefficients obtained by POD agree well with those by CFD. However,in the state of the subsonic speed(M=0.5),with only one POD mode,pressure coefficients atthe whole surface obtained by PODagree wellwith those by CFD,as shown in Fig.9(b).This difference is mainly caused by the shock discontinuity in snapshots.

    In order to quantify the deviation between the reconstructed flow field and the actual flow field,the reconstruction error is defined as follows:

    Fig.3.(Color online)POD modes(case2:(a)-(c);case1:(d)-(f)).

    Fig.4.Comparison ofthe surface pressure coefficient between the POD and the CFD at snapshot 1(α=0.25°).

    Fig.5.Comparison ofthe surface pressure coefficient between the POD and the CFD at snapshot 100(α=2.23°).

    We also take case 1 and case 2 described above as comparison. POD coefficients are interpolated or extrapolated according to theabove interpolation steps,so as to realize the prediction of flow field solutions which are not contained in the snapshots set.The flow field ofα=1.84°is taken as the presentation example in interpolation and the flow field ofα =2.26°in extrapolation. Figure 11 shows the modalcoefficients comparison between real value and interpolation result of the two cases.The real value is obtained by Eq.(5).The AOArange of[0.25°,2.23°]is resulted from interpolation and the AOA range of[2.24°,2.25°]is resulted from extrapolation.

    Fig.6.(Color online)Comparison ofthe flow field between the POD and the CFD at snapshot 1(α=0.25°).

    Fig.7.(Color online)Comparison of the flow field between the POD and the CFD at snapshot 100(α=2.23°).

    Fig.8.Eigenvalue curve.

    Fig.9.Comparison ofthe surface pressure coefficient between the POD and the CFD at snapshot 71(α=1.65°).

    For flow with the shock discontinuity,POD method combined with interpolation has relatively good prediction ability.But the shock discontinuity in the flow also causes the increase of the prediction error in POD method combined with interpolation. The analysis results are similar to that of the reconstruction. The surface pressure coefficient curve of POD interpolation at M =0.8 still shows oscillation phenomenon before and afterthe shock wave while other regions agree very well with that of CFD,as shown in Fig.12.Furthermore,with the increase of POD modes,the oscillation frequency increases gradually and the amplitude decreases gradually.And with enough POD modes,it can achieve higher reconstruction accuracy.Figure 13 shows the interpolation error curve with the POD modes.It can be seen that the interpolation error curves of the two cases are all convergent with the POD modes.However,the interpolation error at M=0.8 is 2-3 orders of magnitude higher than that at M=0.5.

    Fig.10.Reconstruction error curve(snapshot71,α=1.65°).

    Figure 14 shows the comparison of surface pressure coefficient between POD extrapolation and CFD.It can be seen that oscillation phenomenon still occurs at M = 0.8.But if POD modes are increased,the oscillation amplitude cannot be decreased.It also can be seen from Fig.15 that the prediction curve with POD modes is notconvergent.When POD modes used in the prediction are increased,the prediction error increases instead of decrease. However,the extrapolation prediction error curve at M =0.5 converges quickly and maintains at a low value.Therefore,the shock discontinuity in the flow destroys the prediction ability of POD method combined with extrapolation so that it no longer has the extrapolation ability.

    Fig.13.Prediction error curve of POD interpolation.

    Fig.12.Surface pressure coefficient of POD interpolation and CFD.

    Fig.14.Surface pressure coefficient of POD extrapolation and CFD.

    Fig.15.Prediction error curve of POD extrapolation.

    For the flow with the shock discontinuity,POD method is used to get POD modes.And then the snapshot is projected to each POD mode to obtain the modal coefficient,so as to realize the reconstruction of flow field.The cubic spline interpolation is conducted on modal coefficients for interpolation or extrapolation to predict flow solution beyond the snapshots set.The reconstruction accuracy and prediction ability of the POD method are studied in the view ofthe discontinuous flow field and following conclusions can be drawn:

    (1)The shock discontinuity in snapshots causes the occurrence of''high frequency waves''in POD modes.And the range of''high frequency waves''is roughly the same as the moving range of the shock waves in the snapshots set.With the increasing order of POD mode,the wavelength of''high frequency waves''decreases gradually and the amplitude increases gradually.

    (2)The linear superposition of''high frequency waves''in different POD modes can achieve the reconstruction of the shock wave in the flow field.However,under the premise of the reconstruction accuracy of the shock wave,the''high frequency waves''at different amplitudes and frequencies in other regions often hardly offset each other.Therefore,oscillation phenomena appear near the shock waves.Increasing the PODmodes used in the reconstruction can decrease the amplitude ofoscillation Therefore, reconstructing the discontinuity flow field with higher accuracy needs more POD modes.

    (3)POD method combined with interpolation or extrapolation is a good way to predict flow solutions for snapshots without the shock discontinuity.However,for snapshots with the shock discontinuity,although this method stillhas a relatively good interpolation prediction ability,the performance of extrapolation is poor.

    Acknowledgment

    This study was supported by the''National Natural Science Foundation-Outstanding Youth Foundation''.

    [1]L.Sirovich,M.Kirby,Low-dimensional procedure for the characterization of human faces,J.Opt.Soc.Amer.A 33(1987)591-596.

    [2]K.Fukunaga,Introduction to Statistical Pattern Recognition,Academic Press, 2013.

    [3]P.Holmes,J.L.Lumley,G.Berkooz,Turbulence,Coherent Structures,Dynamical Systems and Symmetry,Cambridge University Press,1998.

    [4]L.Q.Ma,L.H.Feng,Experimentalinvestigation on controlof vortex shedding mode of a circular cylinder using synthetic jets placed at stagnation points, Sci.China TechnolSc.56(2013)158-170.

    [5]W.J.Qin,M.Z.Xie,M.Jia,et al.,Large eddy simulation and proper orthogonal decomposition analysis ofturbulent flows in a direct injection spark ignition engine:Cyclic variation and effect ofvalve lift,Sci.China TechnolSc.57(2014) 489-504.

    [6]P.A.LeGresley,J.J.Alonso,Investigation ofnon-linear projection for pod based reduced order models for aerodynamics,AIAA Paper 14(2001)2002-0317.

    [7]J.Lumley,The structures of inhomogeneous turbulent flow,in:A.M.Yaglom, V.I.Tatarski(Eds.),Atmospheric Turbulence and Radio Wave Propagation, Nauka,Moscow,1967,pp.166-178.

    [8]L.Sirovich,Turbulence and the dynamics of coherent structures.Part I: Coherentstructures,Q.Appl.Math.45(1987)561-571.

    [9]O.Roderick,M.Anitescu,Y.Peet,Proper orthogonal decompositions in multifidelity uncertainty quantification ofcomplex simulation models,Int.J. Comput.Math.91(2014)748-769.

    [10]L.Mainini,K.Willcox,Surrogate modeling approach to support real-time structuralassessmentand decision making,AIAA J.53(2015)1612-1626.

    [11]E.Iuliano,D.Quagliarella,Proper orthogonal decomposition,surrogate modelling and evolutionary optimization in aerodynamic design,Comput. Fluids 84(2013)327-350.

    [12]G.Chen,X.Wang,Y.M.Li,Areduced-order-model-based multiple-in multipleout gust alleviation control law design method in transonic flow,Sci.China TechnolSc.57(2014)368-378.

    [13]E.H.Dowell,K.C.Hall,J.P.Thomas,et al.,Reduced order models in unsteady aerodynamics,AIAA Paper(1999)99-1261.

    [14]N.Z.Cao,N.Aubry,Numericalsimulation ofa wake flow via a reduced system, ASME-Publications-FED 149(1993)53-53.

    [15]M.Romanowski,Reduced order unsteady aerodynamic and aeroelastic models using Karhunen-Loeveeigenmodes,in:6th Symposium on Multidisciplinary Analysis and Optimization,1996,p.3981.

    [16]D.J.Lucia,P.S.Beran,W.A.Silva,Reduced-order modeling:new approaches for computationalphysics,Prog.Aerosp.Sci.40(2004)51-117.

    [17]P.Mokhasi,D.Rempfer,S.Kandala,Predictive flow-field estimation,Physica D 238(2009)290-308.

    [18]C.Yang,X.Y.Liu,Z.G.Wu,Unsteady aerodynamic modeling based on POD-observer method,Sci.China TechnolSc.53(2010)2032-2037.

    [19]D.Xie,M.Xu,E.H.Dowell,Proper orthogonal decomposition reduced-order modelfor nonlinear aeroelastic oscillations,AIAA J.52(2014)229-241.

    [20]F.Pla,H.Herrero,J.M.Vega,A flexible symmetry-preserving Galerkin/POD reduced order model applied to a convective instability problem,Comput. Fluids 119(2015)162-175.

    [21]T.Kim,Frequency-domain Karhunen-Loeve method and its application to linear dynamic systems,AIAA J.36(1998)2117-2123.

    [22]B.R.Noack,K.Afanasiev,M.Morzynski,et al.,A hierarchy of low-dimensional models for the transient and post-transient cylinder wake,J.Fluid Mech.497 (2003)335-363.

    [23]D.Xiao,F.Fang,J.Du,et al.,Non-linear Petrov-Galerkin methods for reduced order modeling ofthe Navier-Stokes equations using a mixed finite element pair.,Comput.Methods Appl.Math.255(2013)147-157.

    [24]L.Romain,L.Chatellier,L.David,Bayesian inference applied to spatio-temporal reconstruction of flows around a NACA0012 airfoil,Exp.Fluids 55(2014) 1-19.

    [25]C.Leblond,C.Allery,A priori space-time separated representation for the reduced order modeling of low Reynolds number flows,Comput.Methods Appl.Math.274(2014)264-288.

    [26]M.Fossati,Evaluation of aerodynamic loads via reduced-order methodology, AIAA J.53(2015)2389-2405.

    [27]H.Kato,K.Funazaki,POD-driven adaptive sampling for efficient surrogate modeling and its application to supersonic turbine optimization,in:ASME Turbo Expo 2014:Turbine Technical Conference and Exposition,American Society of MechanicalEngineers,2014,V02BT45A023-V02BT45A023.

    [28]Y.Qiu,J.Q.Bai,Stationary flow fields prediction of variable physical domain based on proper orthogonal decomposition and kriging surrogate model, Chinese J.Aeronaut.28(2015)44-56.

    [29]R.Huang,H.Li,H.Hu,et al.,Open/Closed-Loop aeroservoelastic predictions via nonlinear,reduced-order aerodynamic models,AIAA J.53(2015)1812-1824.

    [30]B.A.Freno,T.A.Brenner,P.G.A.Cizmas,Using proper orthogonal decomposition to model off-reference flow conditions,Int.J.Non-Linear Mech.54(2013) 76-84.

    [31]K.Willcox,Unsteady flow sensing and estimation via the gappy proper orthogonaldecomposition,Comput.Fluids 35(2006)208-226.

    [32]A.Qamar,S.Sanghi,Steady supersonic flow-field predictions using proper orthogonaldecomposition technique,Comput.Fluids 38(2009)1218-1231.

    [33]B.Malouin,J.Y.Trépanier,M.Gariépy,Interpolation of transonic flows using a proper orthogonaldecomposition method,Int.J.Aerosp.Eng.2013(2013) 928904.

    [34]M.Taeibi-Rahni,F.Sabetghadam,M.K.Moayyedi,Low-dimensional proper orthogonaldecomposition modeling as a fast approach of aerodynamic data estimation,J.Aerosp.Eng.23(2009)44-54.

    [35]Y.Jiang,Numerical Solution of Navier-Stokes Equations on Generalized Mesh and its Applications[Ph.D.Thesis],Northwestern Polytechnical University, Xi'an,2013.

    ?Corresponding author.

    E-mail address:aeroelastic@nwpu.edu.cn(W.Zhang).

    http://dx.doi.org/10.1016/j.taml.2016.08.008

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalfof The Chinese Society of Theoreticaland Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    色在线成人网| 女人精品久久久久毛片| 精品高清国产在线一区| 久久久久久人人人人人| 亚洲中文av在线| 母亲3免费完整高清在线观看| 欧美黄色淫秽网站| 99国产精品99久久久久| 激情视频va一区二区三区| 亚洲片人在线观看| 亚洲七黄色美女视频| 国产极品粉嫩免费观看在线| 亚洲色图综合在线观看| 激情视频va一区二区三区| 国产精品国产av在线观看| 性色av乱码一区二区三区2| 日本一区二区免费在线视频| 精品国内亚洲2022精品成人| 久久久久久免费高清国产稀缺| 久久狼人影院| 男女下面插进去视频免费观看| 国产国语露脸激情在线看| 两个人看的免费小视频| 激情视频va一区二区三区| 国产av一区二区精品久久| 香蕉丝袜av| 99热国产这里只有精品6| 9色porny在线观看| 精品国产超薄肉色丝袜足j| avwww免费| 丝袜美腿诱惑在线| 在线av久久热| 高清欧美精品videossex| av福利片在线| 国产极品粉嫩免费观看在线| 国产熟女xx| 黑人巨大精品欧美一区二区蜜桃| 99精品在免费线老司机午夜| 91老司机精品| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人免费av在线播放| 村上凉子中文字幕在线| 亚洲第一青青草原| 巨乳人妻的诱惑在线观看| 99热只有精品国产| 久久人妻福利社区极品人妻图片| 日韩视频一区二区在线观看| 久久亚洲真实| 久久亚洲真实| 国产精品久久视频播放| 男人的好看免费观看在线视频 | 手机成人av网站| 精品少妇一区二区三区视频日本电影| 午夜91福利影院| 午夜福利影视在线免费观看| netflix在线观看网站| 国产伦一二天堂av在线观看| 免费日韩欧美在线观看| 欧美性长视频在线观看| 午夜激情av网站| 变态另类成人亚洲欧美熟女 | 91字幕亚洲| 欧美av亚洲av综合av国产av| 精品乱码久久久久久99久播| 亚洲av电影在线进入| 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| 欧美精品啪啪一区二区三区| 少妇被粗大的猛进出69影院| 午夜福利在线免费观看网站| 97碰自拍视频| 欧美日韩亚洲国产一区二区在线观看| 午夜久久久在线观看| 丰满迷人的少妇在线观看| 精品久久久久久久久久免费视频 | 精品久久久精品久久久| 老司机深夜福利视频在线观看| 精品福利观看| 日本黄色视频三级网站网址| 国产一区二区三区视频了| 一进一出抽搐gif免费好疼 | 亚洲avbb在线观看| 欧美亚洲日本最大视频资源| 亚洲av电影在线进入| 夜夜夜夜夜久久久久| 色综合婷婷激情| 亚洲美女黄片视频| 国产欧美日韩一区二区三| 欧美日韩亚洲综合一区二区三区_| 高清毛片免费观看视频网站 | 纯流量卡能插随身wifi吗| 日韩三级视频一区二区三区| 一进一出抽搐动态| 不卡av一区二区三区| 国产真人三级小视频在线观看| 国产成人精品久久二区二区91| 国产精品 欧美亚洲| 久热爱精品视频在线9| 久久精品国产清高在天天线| 久99久视频精品免费| 男男h啪啪无遮挡| 99久久人妻综合| 成在线人永久免费视频| 成人三级做爰电影| 亚洲三区欧美一区| 亚洲人成77777在线视频| 免费不卡黄色视频| 免费在线观看视频国产中文字幕亚洲| 丰满的人妻完整版| 国产精品美女特级片免费视频播放器 | 啦啦啦在线免费观看视频4| 三上悠亚av全集在线观看| 亚洲人成77777在线视频| e午夜精品久久久久久久| 欧美人与性动交α欧美软件| 91麻豆精品激情在线观看国产 | 欧美av亚洲av综合av国产av| 国产精品偷伦视频观看了| 中文字幕av电影在线播放| 男女午夜视频在线观看| 亚洲一码二码三码区别大吗| 免费观看精品视频网站| 久久久国产欧美日韩av| 久久久久国内视频| 中文字幕高清在线视频| 男人舔女人下体高潮全视频| tocl精华| 久久精品亚洲精品国产色婷小说| 黄片小视频在线播放| 国产欧美日韩一区二区精品| 一区二区三区国产精品乱码| 日韩精品免费视频一区二区三区| 成人黄色视频免费在线看| 一区二区三区国产精品乱码| 两个人免费观看高清视频| 十八禁人妻一区二区| 啦啦啦在线免费观看视频4| 国产野战对白在线观看| 这个男人来自地球电影免费观看| 麻豆一二三区av精品| 新久久久久国产一级毛片| 狠狠狠狠99中文字幕| 在线播放国产精品三级| 久久久久久人人人人人| av网站免费在线观看视频| 欧美大码av| 亚洲全国av大片| 日本a在线网址| 色尼玛亚洲综合影院| 12—13女人毛片做爰片一| 露出奶头的视频| 精品久久蜜臀av无| 精品国产超薄肉色丝袜足j| 午夜福利免费观看在线| 国产片内射在线| 亚洲国产欧美日韩在线播放| 久久久久久久久久久久大奶| 中文字幕高清在线视频| 久久精品国产清高在天天线| 在线av久久热| 免费在线观看影片大全网站| 久久99一区二区三区| av天堂久久9| 老熟妇仑乱视频hdxx| 国产av精品麻豆| 日韩欧美在线二视频| 日本黄色视频三级网站网址| 久久精品国产亚洲av高清一级| 天堂影院成人在线观看| 波多野结衣av一区二区av| 久久久久久久久久久久大奶| 91在线观看av| 亚洲,欧美精品.| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美激情久久久久久爽电影 | 久久午夜亚洲精品久久| 国产精品久久久久成人av| 国产精品国产av在线观看| 日本一区二区免费在线视频| 女同久久另类99精品国产91| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看| 亚洲国产精品999在线| 亚洲精华国产精华精| 看免费av毛片| 日本 av在线| 波多野结衣一区麻豆| 美国免费a级毛片| 日韩欧美一区二区三区在线观看| 欧美日韩一级在线毛片| 精品少妇一区二区三区视频日本电影| 免费观看人在逋| 国产高清videossex| 国产成人欧美| 久久亚洲真实| 欧美乱色亚洲激情| 成年人免费黄色播放视频| 欧美一级毛片孕妇| 乱人伦中国视频| 1024视频免费在线观看| 国产伦一二天堂av在线观看| 在线免费观看的www视频| 国产精品秋霞免费鲁丝片| 热99国产精品久久久久久7| 啦啦啦免费观看视频1| 久久久国产精品麻豆| 在线观看日韩欧美| 欧美久久黑人一区二区| 黄色 视频免费看| 91精品三级在线观看| 国产精品久久久久久人妻精品电影| 狂野欧美激情性xxxx| 黑人操中国人逼视频| 新久久久久国产一级毛片| 久久中文字幕一级| 国产亚洲欧美98| 欧美日韩国产mv在线观看视频| 欧美+亚洲+日韩+国产| 国产免费现黄频在线看| 女警被强在线播放| 亚洲精品av麻豆狂野| 亚洲三区欧美一区| 他把我摸到了高潮在线观看| 久久精品国产亚洲av高清一级| 黄色怎么调成土黄色| 一级a爱片免费观看的视频| 成人手机av| 超碰成人久久| 黄色视频不卡| 午夜成年电影在线免费观看| 亚洲 欧美 日韩 在线 免费| 国产av精品麻豆| 国产精品永久免费网站| 天堂俺去俺来也www色官网| 女性生殖器流出的白浆| 黑人欧美特级aaaaaa片| 少妇被粗大的猛进出69影院| 精品国产一区二区久久| 日韩中文字幕欧美一区二区| 日韩av在线大香蕉| 美国免费a级毛片| 亚洲熟妇中文字幕五十中出 | 欧美午夜高清在线| 精品日产1卡2卡| 欧美日韩亚洲高清精品| 99国产精品一区二区蜜桃av| 黄色怎么调成土黄色| 在线视频色国产色| 日本撒尿小便嘘嘘汇集6| 久久香蕉精品热| 亚洲av第一区精品v没综合| 丁香六月欧美| 深夜精品福利| 在线播放国产精品三级| 在线观看免费视频网站a站| 国产麻豆69| 中文亚洲av片在线观看爽| 日韩欧美免费精品| 午夜免费鲁丝| 99热只有精品国产| 成人影院久久| 日本 av在线| 亚洲免费av在线视频| 国产成人欧美| 久久午夜亚洲精品久久| 一区二区三区激情视频| av网站免费在线观看视频| 精品国产国语对白av| 91精品三级在线观看| 久久伊人香网站| 涩涩av久久男人的天堂| 日韩一卡2卡3卡4卡2021年| 精品国产超薄肉色丝袜足j| 亚洲黑人精品在线| 无限看片的www在线观看| 免费在线观看完整版高清| 欧美一级毛片孕妇| 亚洲欧美日韩无卡精品| 亚洲免费av在线视频| 欧美日韩亚洲高清精品| 久久午夜亚洲精品久久| 动漫黄色视频在线观看| 亚洲精华国产精华精| 免费在线观看视频国产中文字幕亚洲| 国内毛片毛片毛片毛片毛片| 午夜91福利影院| 在线天堂中文资源库| www.熟女人妻精品国产| 日韩欧美一区视频在线观看| 性欧美人与动物交配| 久久久久久人人人人人| 亚洲五月婷婷丁香| 黄网站色视频无遮挡免费观看| 在线看a的网站| 国产熟女xx| av有码第一页| 国产99久久九九免费精品| 黄色女人牲交| www.精华液| 亚洲精品一区av在线观看| 99精品久久久久人妻精品| 黑人巨大精品欧美一区二区mp4| 高清黄色对白视频在线免费看| 午夜日韩欧美国产| 午夜福利在线免费观看网站| 精品卡一卡二卡四卡免费| 国产精品一区二区三区四区久久 | 欧美精品一区二区免费开放| 黑人巨大精品欧美一区二区mp4| 日韩av在线大香蕉| 老司机在亚洲福利影院| 69av精品久久久久久| 精品久久久精品久久久| 亚洲九九香蕉| 欧美乱码精品一区二区三区| av在线天堂中文字幕 | 精品乱码久久久久久99久播| 久久人妻av系列| 婷婷六月久久综合丁香| 亚洲avbb在线观看| 日本 av在线| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 99久久国产精品久久久| www.自偷自拍.com| 精品无人区乱码1区二区| 麻豆久久精品国产亚洲av | 日韩精品青青久久久久久| tocl精华| 国产精品综合久久久久久久免费 | www国产在线视频色| 嫩草影视91久久| 欧美色视频一区免费| 久久久久久免费高清国产稀缺| 日韩高清综合在线| 国产精品亚洲一级av第二区| 国产精华一区二区三区| 身体一侧抽搐| 久99久视频精品免费| 老汉色∧v一级毛片| 十八禁人妻一区二区| 麻豆成人av在线观看| av超薄肉色丝袜交足视频| 757午夜福利合集在线观看| 国产伦人伦偷精品视频| 欧美 亚洲 国产 日韩一| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美网| 国产精品九九99| 日日爽夜夜爽网站| 亚洲中文av在线| 国产精品野战在线观看 | 色婷婷久久久亚洲欧美| 人成视频在线观看免费观看| 欧美不卡视频在线免费观看 | 麻豆久久精品国产亚洲av | 亚洲国产精品sss在线观看 | 亚洲成人免费av在线播放| 日本vs欧美在线观看视频| 日韩欧美国产一区二区入口| 色婷婷av一区二区三区视频| 国产野战对白在线观看| 欧美一级毛片孕妇| 婷婷六月久久综合丁香| 国产日韩一区二区三区精品不卡| 99热只有精品国产| 夜夜躁狠狠躁天天躁| 午夜福利,免费看| 欧美大码av| 欧美激情 高清一区二区三区| 午夜成年电影在线免费观看| 国产av一区二区精品久久| 黑人猛操日本美女一级片| 黄色女人牲交| 9色porny在线观看| 欧美激情极品国产一区二区三区| 亚洲av成人一区二区三| 叶爱在线成人免费视频播放| 亚洲国产精品合色在线| 国产精品久久视频播放| 亚洲精品在线美女| 69精品国产乱码久久久| 国产欧美日韩一区二区三区在线| 极品人妻少妇av视频| 日韩欧美国产一区二区入口| 欧美中文日本在线观看视频| 在线观看免费视频网站a站| 多毛熟女@视频| 欧美午夜高清在线| 久久热在线av| 国产精品九九99| 久久久久久久久中文| 嫩草影院精品99| 久久精品亚洲精品国产色婷小说| 国产成人精品无人区| 亚洲一区中文字幕在线| 午夜福利在线观看吧| 9热在线视频观看99| 久久天躁狠狠躁夜夜2o2o| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 亚洲中文字幕日韩| 日韩有码中文字幕| 村上凉子中文字幕在线| 国产激情久久老熟女| 国产精品久久久人人做人人爽| 欧美大码av| 欧美黑人欧美精品刺激| 亚洲中文日韩欧美视频| 久久人妻福利社区极品人妻图片| 欧美不卡视频在线免费观看 | 久久欧美精品欧美久久欧美| 国产97色在线日韩免费| 亚洲国产看品久久| 高清在线国产一区| 99精品欧美一区二区三区四区| 久久青草综合色| 久久久久久久午夜电影 | 一级片免费观看大全| 亚洲精品一卡2卡三卡4卡5卡| 中国美女看黄片| 久久久久久免费高清国产稀缺| 别揉我奶头~嗯~啊~动态视频| 三上悠亚av全集在线观看| aaaaa片日本免费| 91成人精品电影| 成人亚洲精品av一区二区 | 美女福利国产在线| 亚洲九九香蕉| 97人妻天天添夜夜摸| 国产精品久久视频播放| 每晚都被弄得嗷嗷叫到高潮| 久久这里只有精品19| 亚洲国产毛片av蜜桃av| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 国产精品电影一区二区三区| 国产有黄有色有爽视频| 黄色成人免费大全| 国产熟女午夜一区二区三区| 神马国产精品三级电影在线观看 | 黄片小视频在线播放| 国产精品电影一区二区三区| 久久中文字幕一级| 亚洲专区国产一区二区| av福利片在线| 成人三级黄色视频| 男女高潮啪啪啪动态图| 黄色视频不卡| 超碰成人久久| 超色免费av| 日本免费一区二区三区高清不卡 | 欧美 亚洲 国产 日韩一| 一个人观看的视频www高清免费观看 | 国产亚洲精品一区二区www| 亚洲精品中文字幕一二三四区| 黄色成人免费大全| 亚洲人成电影免费在线| 超色免费av| 精品一区二区三区视频在线观看免费 | 黄色a级毛片大全视频| 久久香蕉国产精品| 国产精品乱码一区二三区的特点 | 国产在线精品亚洲第一网站| 90打野战视频偷拍视频| 曰老女人黄片| 国产精品成人在线| 亚洲精品一区av在线观看| 精品久久久久久成人av| 美女高潮喷水抽搐中文字幕| 91在线观看av| 麻豆av在线久日| 女人被躁到高潮嗷嗷叫费观| e午夜精品久久久久久久| 久久亚洲精品不卡| 日日夜夜操网爽| 俄罗斯特黄特色一大片| 麻豆成人av在线观看| 一级作爱视频免费观看| 搡老岳熟女国产| 最近最新中文字幕大全电影3 | 国产精品影院久久| 日本三级黄在线观看| 国产一区二区三区综合在线观看| 老司机深夜福利视频在线观看| 久久精品成人免费网站| 午夜精品国产一区二区电影| 成人三级做爰电影| 长腿黑丝高跟| 国产精品乱码一区二三区的特点 | 国产成人av激情在线播放| 国产免费现黄频在线看| 欧美精品亚洲一区二区| 欧美人与性动交α欧美精品济南到| 午夜免费成人在线视频| 国产片内射在线| 女性生殖器流出的白浆| 欧美日韩精品网址| 男人操女人黄网站| 亚洲美女黄片视频| 丰满迷人的少妇在线观看| 黑丝袜美女国产一区| 热99国产精品久久久久久7| 成人手机av| 国产三级在线视频| 久久影院123| 嫩草影院精品99| 国产精品免费视频内射| 美女 人体艺术 gogo| 日本 av在线| 日日摸夜夜添夜夜添小说| 亚洲av熟女| 欧美精品亚洲一区二区| 中国美女看黄片| 日韩中文字幕欧美一区二区| 欧美黑人欧美精品刺激| 亚洲熟妇熟女久久| 欧美中文综合在线视频| 亚洲国产看品久久| 人妻久久中文字幕网| 久久国产精品男人的天堂亚洲| 亚洲成a人片在线一区二区| 麻豆久久精品国产亚洲av | 欧美乱码精品一区二区三区| 俄罗斯特黄特色一大片| 国产免费男女视频| 在线看a的网站| 欧美日韩精品网址| 午夜福利在线观看吧| 久久国产精品影院| 这个男人来自地球电影免费观看| 欧美成人午夜精品| 国产色视频综合| 老汉色∧v一级毛片| 欧美日韩福利视频一区二区| 成人国产一区最新在线观看| 国产成人av教育| av天堂在线播放| 女人精品久久久久毛片| 在线观看一区二区三区激情| 精品午夜福利视频在线观看一区| 一区福利在线观看| 高清在线国产一区| 88av欧美| 可以在线观看毛片的网站| 久久香蕉国产精品| 一区二区三区国产精品乱码| 国产精品av久久久久免费| av电影中文网址| 国产有黄有色有爽视频| 老熟妇乱子伦视频在线观看| 这个男人来自地球电影免费观看| 精品国产超薄肉色丝袜足j| 亚洲一卡2卡3卡4卡5卡精品中文| 一进一出抽搐gif免费好疼 | 国产高清视频在线播放一区| 操美女的视频在线观看| 欧美av亚洲av综合av国产av| √禁漫天堂资源中文www| 一区福利在线观看| 免费久久久久久久精品成人欧美视频| 久久精品aⅴ一区二区三区四区| 久久人妻av系列| 国产午夜精品久久久久久| 热re99久久国产66热| av在线天堂中文字幕 | 国产精品久久久人人做人人爽| 我的亚洲天堂| 嫩草影院精品99| 手机成人av网站| 后天国语完整版免费观看| 欧美日本亚洲视频在线播放| svipshipincom国产片| 午夜福利,免费看| 国产亚洲精品综合一区在线观看 | 成熟少妇高潮喷水视频| 久久精品国产清高在天天线| 精品国内亚洲2022精品成人| 中文字幕人妻丝袜制服| 亚洲精品久久成人aⅴ小说| 黑人猛操日本美女一级片| 99精品欧美一区二区三区四区| 欧美最黄视频在线播放免费 | 操美女的视频在线观看| 国产真人三级小视频在线观看| 高清在线国产一区| 亚洲av成人av| 精品久久久精品久久久| cao死你这个sao货| 亚洲熟女毛片儿| bbb黄色大片| 欧美日本亚洲视频在线播放| 日韩欧美在线二视频| 欧美激情 高清一区二区三区| 欧美最黄视频在线播放免费 | 欧美丝袜亚洲另类 | 50天的宝宝边吃奶边哭怎么回事| 国产一区二区激情短视频| 久久精品亚洲精品国产色婷小说| 亚洲五月天丁香| 成人av一区二区三区在线看| 国产区一区二久久| 男女下面进入的视频免费午夜 | 久久中文看片网| 在线观看免费高清a一片| 亚洲七黄色美女视频| 日韩中文字幕欧美一区二区| 三级毛片av免费| 亚洲精品久久成人aⅴ小说| 我的亚洲天堂| 成在线人永久免费视频| 777久久人妻少妇嫩草av网站| 国产熟女午夜一区二区三区| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址 |