• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Richtmyer-Meshkov instability of a'V'shaped air/helium interface subjected to a weak shock

    2016-12-24 08:39:20ZhigangZhaiXishengLuoPingDongAdvancedPropulsionLaboratoryDepartmentofModernMechanicsUniversityofScienceandTechnologyofChina230026HefeiChina

    Zhigang Zhai,Xisheng Luo,Ping DongAdvanced Propulsion Laboratory,Department of Modern Mechanics,University ofScience and Technology of China,230026 Hefei,China

    Letter

    The Richtmyer-Meshkov instability of a'V'shaped air/helium interface subjected to a weak shock

    Zhigang Zhai?,Xisheng Luo,Ping Dong
    Advanced Propulsion Laboratory,Department of Modern Mechanics,University ofScience and Technology of China,230026 Hefei,China

    H I G H L I G H T S

    .A novelmethod using the soap film technique is developed to create a discontinuous'V'shaped air/helium interface for Richtmyer-Meshkov instability (RMI)study.

    .The reduction factor is applied to the linear model and the modified linear modelis capable to predict the width growth rate of interface with high initialamplitudes.

    .The initialgrowth rate of interface width is a non-monotonous function of the initial vertex angle,which is found for the first time in a heavy/light interface configuration.

    A R T I C L E I N F O

    Article history:

    Received 31 May 2016

    Accepted 30 June 2016

    Available online 22 July 2016

    Richtmyer-Meshkov instability V shaped interface High-speed schlieren photography

    The Richtmyer-Meshkov instability ofa'V'shaped air/helium gaseous interface subjected to a weak shock wave is experimentally studied.A soap film technique is adopted to create a'V'shaped interface with accurate initial conditions.Five kinds of'V'shaped interfaces with different vertex angles are formed to highlight the effects of initial conditions on the flow characteristics.The results show that a spike is generated after the shock impact,and grows constantly with time.As the vertex angle increases,vortices generated on the interface become less noticeable,and the spike develops less pronouncedly.The linear growth rate ofinterface width after compression phase is estimated by a linear modeland a revised linear model,and the latterisproven to be more effective forthe interface with high initialamplitudes.The linear growth rate of interface width is,for the first time in a heavy/light interface configuration,found to be a non-monotonous function ofthe initialperturbation amplitude-wavelength ratio.

    ?2016 The Authors.Published by Elsevier Ltd on behalfof The Chinese Society of Theoreticaland Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Richtmyer-Meshkov instability(RMI)[1,2]arises when an interface with perturbations between two different fluids is impulsively impacted by a shock wave.Initially,the instabilities develop rapidly and reach a nonlinear state where the mixing layer between light and heavy components exhibits characteristic mushroom-shaped bubbles and spikes.The flow development is associated with transition and turbulentmixing.An understanding of this mechanism for the amplification of the initial interface perturbations and the associated mixing process is important in many areas of scientific research,such as inertial confinement fusion[3]and supersonic combustion[4].

    The dominant mechanism governing the hydrodynamic instability is the baroclinic vorticity deposition which results from the misalignment ofdensity and pressure gradients.The shape and feature of the interface determine the density gradient,therefore,a highly accurate initial interfacial condition is crucial for investigating the development of the instability.An inclined interface provides good conditions for the shock refraction study because of the unique feature that the incident angle is constant along the interface edge.The refraction of a planar shock at an inclined interface has been studied extensively[5,6].However,the postshock flow field of an inclined interface is seldom investigated experimentally.The work using organic films[7]and nitrocellulose membrane with a support[8]provided situations for the RMI study of the inclined interface.Unfortunately,the fragments of the nitrocellulose membrane and the support could have unfavorable effects on the evolution of flow field.Recently,a series of studies on the RMIof a membraneless inclined interface have been reported [9-11].In their experiments[9],the inclined interface is a diffusive one which will reduce the growth rate of perturbation,and only light/heavy case was investigated.In our previous work[12],a soapfilm technique was adopted to form five kinds of discontinuous 'V'shaped air/SF6interface with different amplitude-wavelength ratios.The influence of amplitude-wavelength ratio on interface width variation was investigated,and some models were tested. It was found that the interface width growth rate is a nonmonotonous function of the initial amplitude-wavelength ratio, providing an indirect experimental evidence for the numerical results of Dellet al.[13].For a light/heavy case,the perturbation amplitude increases immediately after the compression stage,while for a heavy/light one,the phase reversal needs special consideration.

    Fig.1.The interface formation method.(a),(b)The arrangementofthe fine needles around the vertex for different cases.(c)The interface formation process.(d)The images of the interface formed.

    In this work,a similar interface formation method to the previous work[12]is adopted to create a'V'shaped heavy/light interface.The interface formed is discontinuous and has no supports such that the unwanted effects of gas diffusion and support can be removed.Note that an inclined interface is equivalent to half of the'V'shaped interface,the boundary effects can also be reduced. Therefore,it is expected that the experiments could provide a reliable resultofthe RMIofthe inclined interface subjected to a planar shock.

    The'V'shaped interface is created by a soap film technique in which fine needles are introduced as angular vertexes to connect adjacent sides of soap films.As indicated in Fig.1(a), (b),two acrylic plates(3 mm in thickness)with a distance of 20 mm are first adopted to create the interface framework.Then fine needles(0.2 mm in diameter)are introduced at the vertex where the number of fine needle is dependent upon the angle between two adjacent soap films.The effects of the tube wall on the interface evolution could be largely reduced since the 'V'shaped interface boundaries contact the tube wall through another interface(the flat part)which will not be considered in experiments.A rectangular frame with the soap film on its surface is pulled along the interface framework,as shown in Fig.1(c),and then a'V'shaped interface can be formed.The schlieren image of the'V'shaped interface formed is presented in Fig.1(d)fromwhich the initial flow field can be clearly identified.In this work,five 'V'shaped interfaces with different vertex angles(θ=60°,90°, 120°,140°,and 160°)are considered by fixing the initialinterface width(W0)to 80 mm.For the current interface configuration,the initial amplitude(a0)is defined to be the total extent of the'V' shaped interface,which is twice the usual amplitude for a singlemode interface.Accordingly,the wavelength(λ)of the'V'shaped interface is taken asλ=2W0.The relation among the a0,λ,and θis given by a0/λ=1/4 tan(θ/2).As can be found in Table 1,a linear initial condition is satisfied only for the cases ofθ=160° and 140°(a0/λ<0.1).

    Table 1 Experimentalparameters for allcases.

    Experiments are conducted in the same horizontal shock tube as in our previous work[14].The shock tube consists of a 1.7 m long driver section,a 3.9 m long driven section and a 1.0 m long test section.The rectangular cross-section of the test section is 155 mm X26 mm.The incident shock Mach number(M)measured by piezoelectric transducers is 1.20±0.01.Illuminated by a DC-regulated light source(DCR III,SCHOTT North America,Inc),the postshock flow field is recorded by a schlieren photography with a high-speed video camera(FASTCAM SA5,Photron Limited).The detailed experimental parameters are listed in Table 1.Prior to experiment,air at the right side of interface should be removed and replaced by the test gas helium.Once the concentration of helium meets the requirement,the framework with a formed'V' shaped interface is inserted into the test section slowly,and the experiment can be performed.

    The evolutions of the shocked interfaces are shown in Fig.2 where the cases ofθ= 90°and 140°are omitted because of the similarity to the cases ofθ=60°and 160°,respectively.For all cases,the moment when the incident shock meets the vertex of the interface is defined as the initial time.When an incident shock encounters an inclined air/helium interface,a transmitted shock wave is generated in helium gas,simultaneously,a reflected wave propagates back into air.Compressed by the incident shock, the interface amplitude begins to decrease,and an obvious spike emerges at t=266μs forθ=60°due to the baroclinic vorticity deposition.With the spike movement,phase reversal,the specific feature of a heavy/light interface configuration,occurs(t= 446μs).As time proceeds,the spike grows in scale continuously and many smallvortices presentatthe interface,as can be found at t=446-466μs forθ=60°.At late times,the spike becomes the dominant feature in the flow field.Forθ=60°,the soap droplets separate from the interface at late stage.For a heavy/light interface,the velocity induced by vorticity is in the same direction as the postshock flow velocity.Therefore,more vorticity is deposited on the interface forthe caseswith smallvertex angles,resulting in a faster movement ofthe air/heliuminterface than the soap droplets. As the vertex angle increases,less vorticity is created on the interface.Consequently,the spike becomes less pronounced and the interface distorts less remarkably.Besides,due to the smallvorticity amplitude,additional velocity of the interface induced by the vorticity is limited,and the smalldifference in the velocities between the interface and the soap droplets causes the coupling ofthem,as indicated in the cases ofθ=120°and 160°.

    After the phase reversal,the interface width begins to grow from the minimum.For a heavy/lightcase,Meyerand Blewett[15] proposed a linear model(MB model)to estimate the initiallinear growth rate v0.The MB model can be expressed as

    Fig.2.Experimental schlieren sequences showing the evolution of a shocked air/helium interface for(a)θ=60°,(b)θ=120°,and(c)θ=160°.IS,incident shock;INF, initialinterface;TS,transmitted shock;RW,reflected wave;a0,initialinterface amplitude;a,evolving interface amplitude;W0,halfofinterface wavelength.

    Table 2 The reduction factor R and the initiallinear growth rate v0calculated by the RMB model[16].

    The value ofthe reduction factor R is different for each vertex angle θ,and is listed in Table 2.Comparison of the experimental results with the predictions from the RMB modelis shown in Fig.4.Good agreements are reached for both the smallinitialamplitudes and high initial amplitudes,illustrating the effectiveness of the RMB modelfor capturing the width linear growth rate of interface with high initialamplitudes.

    Fig.3.(Color online)Comparison ofmixing width extracted fromthe experimental results with the MB model[15]after the phase reversal.The vertical dotted line means the time ofthe shock leaving the interface.

    From Table 2,one can find that the interface width growth rate experiences an increase and then a decrease as the vertex angle increases.Dell et al.[13]indicated in their numerical work on a shocked sinusoidal air/SF6interface that for a given shock strength and density ratio,the interface width growth rate of an initial sinusoidal perturbation is a non-monotonous function of the initial perturbation amplitude.In our previous work[12], a'V'shaped air/SF6interface was considered and the nonmonotonous function of the width growth rate with the initial amplitude was concluded,which provides the experimental and theoreticalevidences for the numericalresults[13].In this work, the relationship between the linear growth rate v0and the vertex angleθcan be obtained by rewriting Eq.(2),

    According to this formula,the variation of v0withθcan be theoretically solved,as shown in Fig.5,together with the experimental values.From Fig.5,the non-monotonicity between v0andθis also found.This is the first time to observe the nonmonotonicity of the linear growth rate with the initialamplitudefor a heavy/light case.In addition,Dell et al.[13]stated that the value of a0/λfor the maximum linear growth rate lies between 0.2 and 0.4,and it depends only slightly on the shock Mach number and Atwood number.In our previous work ofthe air/SF6interfac°econfiguration[12],the maximum growth rate occurs nearθ=90, corresponding to the a0/λof 0.25,which agrees well with the numerical results of Dell et al.[13].In the present work,from the Fig.5,a similar conclusion is reached for the first time for a heavy/light interface configuration.

    Fig.4.(Coloronline)Comparison ofmixing width extracted from the experimental results with the revised MB model[16]with specific reduction factor listed in Table 2 after the phase reversal.

    Fig.5.Variation of interface width growth rate with initial amplitude from experiment(symbols)and theory(line).

    The Richtmyer-Meshkov instability of a discontinuous'V' shaped air/helium interface is studied experimentally using the soap film technique to create the initial interface.The interface formed is free of support and is discontinuous such that the initialconditions can be accurately controlled.Morphologies ofthe shocked'V'shaped air/helium interface for five different vertex angles are recorded by a high-speed schlieren photography and the effects ofinitialinterface amplitude over wavelength on the mixing width are highlighted.

    After the shock impact,a spike forms,and then phase reversal, a specific phenomenon for a heavy/light interface configuration, occurs.For smallvertex angles,more vorticity is produced on the interface,resulting in the obvious vortices generation,and the spike is more noticeable.After phase reversal,the initial linear growth rates ofwidth are experimentally measured and compared with the predictions fromthe linear model.The predictions deviate from the experimental results,especially for large vertex angles, which is ascribed to the high initial amplitudes.Considering the reduction factor,a revised linear model can predict the width linear growth rate of interface with high initial amplitudes. The experimental and theoretical results also reveal the nonmonotonicity between the linear growth rate and the vertex angle,which is for the first time found in a heavy/light interface configuration.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China(U1530103,11302219,and 11272308).

    [1]R.D.Richtmyer,Taylor instability in shock acceleration ofcompressible fluids, Comm.Pure Appl.Math.13(1960)297-319.

    [2]E.E.Meshkov,Instability of the interface of two gases accelerated by a shock wave,Fluid Dyn.4(1969)101-104.

    [3]J.D.Lindl,O.Landen,J.Edwards,etal.,Review ofthe nationalignition campaign 2009-2012,Phys.Plasmas 21(2014)020501.

    [4]J.Yang,T.Kubota,E.E.Zukoski,A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity,J.Fluid Mech.258 (1994)217-244.

    [5]A.M.Abd-el Fattah,L.F.Henderson,Shock waves at a fast-slow gas interface, J.Fluid Mech.86(1978)15-32.

    [6]A.M.Abd-el Fattah,L.F.Henderson,Shock waves at a slow-fast gas interface, J.Fluid Mech.89(1978)79-95.

    [7]S.M.Bakhrakh,B.A.Klopov,E.E.Meshkov,etal.,Developmentofperturbations ofa shock-accelerated interface between two gases,J.Appl.Mech.Tech.Phy. 36(1995)341-346.

    [8]T.Wang,J.H.Liu,J.S.Bai,et al.,Experimental and numerical investigation of inclined air/SF6interface instability under shock wave,Appl.Math.Mech.33 (2012)37-50.

    [9]J.A.McFarland,D.Reilly,S.Creel,et al.,Experimental investigation of the inclined interface Richtmyer-Meshkov instability before and after reshock, Exp.Fluids 55(2014)1640-1653.

    [10]J.A.McFarland,D.Reilly,W.Black,et al.,Modal interactions between a large-wavelength inclined interface and small-wavelength multimode perturbations in a Richtmyer-Meshkov instability,Phys.Rev.E 92(2015) 013023.

    [11]D.Reilly,J.A.McFarland,M.Mohaghar,et al.,The effects of initial conditions and circulation deposition on the inclined-interface reshocked Richtmyer-Meshkov instability,Exp.Fluids 56(2015)168-183.

    [12]X.Luo,P.Dong,T.Si,et al.,The Richtmyer-Meshkov instability of a'V'shaped air/SF6interface,J.Fluid Mech.802(2016)186-202.

    [13]Z.Dell,R.F.Stellingwerf,S.I.Abarzhi,Effectofinitialperturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks,Phys.Plasmas 22(2015) 092711.

    [14]Z.Zhai,M.Wang,T.Si,et al.,On the interaction ofa planar shock with a light polygonalinterface,J.Fluid Mech.757(2014)800-816.

    [15]K.A.Meyer,P.J.Blewett,Numerical investigation of the stability of a shockaccelerated interface between two fluids,Phys.Fluids 15(1972)753-759.

    [16]A.Rikanati,D.Oron,O.Sadot,et al.,High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability,Phys.Rev.E 67(2003)026307.

    ?Corresponding author.Fax:+86 551 63606459.

    E-mail address:sanjing@ustc.edu.cn(Z.Zhai).

    http://dx.doi.org/10.1016/j.taml.2016.06.002

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalfof The Chinese Society of Theoreticaland Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    两性夫妻黄色片| www日本在线高清视频| 亚洲午夜理论影院| 国产成人免费无遮挡视频| 在线观看免费高清a一片| 99精品在免费线老司机午夜| 丰满迷人的少妇在线观看| 久久久久久久久免费视频了| 国产一区有黄有色的免费视频| 国产精品电影一区二区三区 | 免费在线观看黄色视频的| 亚洲天堂av无毛| 天天添夜夜摸| 国产精品自产拍在线观看55亚洲 | 国产有黄有色有爽视频| 91av网站免费观看| 亚洲欧美一区二区三区黑人| 交换朋友夫妻互换小说| 一边摸一边抽搐一进一小说 | 亚洲熟女精品中文字幕| 在线观看免费午夜福利视频| 久久久精品国产亚洲av高清涩受| 夜夜夜夜夜久久久久| 国产单亲对白刺激| 亚洲精品国产一区二区精华液| 正在播放国产对白刺激| 久久国产精品人妻蜜桃| 我的亚洲天堂| 中文字幕av电影在线播放| 国产免费视频播放在线视频| netflix在线观看网站| 亚洲av片天天在线观看| 老司机深夜福利视频在线观看| 老熟妇乱子伦视频在线观看| 精品国产超薄肉色丝袜足j| 999精品在线视频| 成人国产一区最新在线观看| 国产成人系列免费观看| 一区二区日韩欧美中文字幕| 18禁国产床啪视频网站| 久久久久精品人妻al黑| 色94色欧美一区二区| 肉色欧美久久久久久久蜜桃| 夜夜爽天天搞| 久久九九热精品免费| 亚洲国产av影院在线观看| 成年女人毛片免费观看观看9 | 精品国产乱码久久久久久小说| 日本vs欧美在线观看视频| 人妻久久中文字幕网| 国产人伦9x9x在线观看| 久久99热这里只频精品6学生| 99久久99久久久精品蜜桃| 岛国在线观看网站| 亚洲中文字幕日韩| 亚洲 国产 在线| 日韩 欧美 亚洲 中文字幕| 人妻 亚洲 视频| 久久亚洲精品不卡| 高清视频免费观看一区二区| 久久精品人人爽人人爽视色| 久久精品国产亚洲av高清一级| 亚洲黑人精品在线| 后天国语完整版免费观看| 亚洲免费av在线视频| 免费av中文字幕在线| 怎么达到女性高潮| 午夜日韩欧美国产| 欧美日韩精品网址| 精品国产超薄肉色丝袜足j| 新久久久久国产一级毛片| 国产高清激情床上av| 十八禁网站免费在线| 国产有黄有色有爽视频| 这个男人来自地球电影免费观看| 中文字幕人妻熟女乱码| 日韩中文字幕视频在线看片| 黄色丝袜av网址大全| 美女福利国产在线| av不卡在线播放| 建设人人有责人人尽责人人享有的| 亚洲 国产 在线| 久热这里只有精品99| 国产精品九九99| 黄频高清免费视频| 欧美亚洲 丝袜 人妻 在线| 日本wwww免费看| 国产激情久久老熟女| 看免费av毛片| av不卡在线播放| 欧美日韩黄片免| 午夜福利视频在线观看免费| kizo精华| 国产成人精品在线电影| 交换朋友夫妻互换小说| 亚洲一卡2卡3卡4卡5卡精品中文| 十分钟在线观看高清视频www| 国产人伦9x9x在线观看| 热re99久久国产66热| 日韩免费高清中文字幕av| 久久青草综合色| 丁香六月欧美| 国产在线精品亚洲第一网站| 国产亚洲精品一区二区www | 亚洲 国产 在线| 日韩欧美一区视频在线观看| 久久久水蜜桃国产精品网| 狠狠狠狠99中文字幕| 如日韩欧美国产精品一区二区三区| 国产97色在线日韩免费| 正在播放国产对白刺激| 99久久99久久久精品蜜桃| 国产精品一区二区精品视频观看| 悠悠久久av| 国产xxxxx性猛交| 亚洲熟妇熟女久久| 一进一出好大好爽视频| 国产亚洲欧美在线一区二区| 亚洲av第一区精品v没综合| 成人黄色视频免费在线看| 久久久久视频综合| 黄片播放在线免费| 老司机深夜福利视频在线观看| 国产一区二区三区视频了| 日本欧美视频一区| 老汉色av国产亚洲站长工具| 国产伦人伦偷精品视频| 久久性视频一级片| 国产成人欧美在线观看 | 一区二区三区国产精品乱码| 精品福利观看| 99久久人妻综合| 热99久久久久精品小说推荐| 黑丝袜美女国产一区| 欧美日韩成人在线一区二区| 首页视频小说图片口味搜索| 久久人妻av系列| 欧美人与性动交α欧美软件| 999久久久精品免费观看国产| 久久国产精品男人的天堂亚洲| 大香蕉久久网| 亚洲黑人精品在线| 精品久久久久久电影网| 午夜久久久在线观看| 色播在线永久视频| 丰满饥渴人妻一区二区三| 欧美av亚洲av综合av国产av| 黄片小视频在线播放| 18禁美女被吸乳视频| 99精品久久久久人妻精品| 成人18禁在线播放| 99九九在线精品视频| 精品国产亚洲在线| av在线播放免费不卡| 大香蕉久久网| 黄片大片在线免费观看| 日韩中文字幕视频在线看片| 男男h啪啪无遮挡| 日韩中文字幕欧美一区二区| 亚洲第一av免费看| 亚洲中文av在线| 十八禁人妻一区二区| 精品欧美一区二区三区在线| 男男h啪啪无遮挡| 在线观看www视频免费| 精品一区二区三卡| 午夜福利免费观看在线| 大香蕉久久成人网| 亚洲avbb在线观看| 丰满少妇做爰视频| 999精品在线视频| 久久久欧美国产精品| 亚洲七黄色美女视频| 精品久久久久久电影网| 免费在线观看日本一区| 国产日韩欧美视频二区| 日韩 欧美 亚洲 中文字幕| 国产av精品麻豆| 69精品国产乱码久久久| 国产激情久久老熟女| 99国产精品一区二区三区| 自线自在国产av| 国产精品二区激情视频| 母亲3免费完整高清在线观看| 夜夜夜夜夜久久久久| 成人精品一区二区免费| 美女视频免费永久观看网站| 午夜福利一区二区在线看| 男女免费视频国产| aaaaa片日本免费| 一级毛片精品| 午夜两性在线视频| 两个人免费观看高清视频| 香蕉丝袜av| 日本撒尿小便嘘嘘汇集6| 久久99热这里只频精品6学生| 日韩一区二区三区影片| 日韩视频在线欧美| 亚洲九九香蕉| 欧美日韩一级在线毛片| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美精品综合一区二区三区| 国产一区有黄有色的免费视频| 免费高清在线观看日韩| 中文字幕人妻熟女乱码| 我的亚洲天堂| 亚洲三区欧美一区| 国产免费av片在线观看野外av| 男女免费视频国产| 十分钟在线观看高清视频www| 精品卡一卡二卡四卡免费| 12—13女人毛片做爰片一| 亚洲,欧美精品.| 亚洲av国产av综合av卡| 国产精品久久电影中文字幕 | 丰满迷人的少妇在线观看| 国产视频一区二区在线看| 欧美黑人精品巨大| 亚洲七黄色美女视频| 亚洲精品乱久久久久久| 国产在视频线精品| 亚洲av成人不卡在线观看播放网| 亚洲熟妇熟女久久| 国产av又大| 我的亚洲天堂| 国产无遮挡羞羞视频在线观看| 国产欧美日韩一区二区三| 男女边摸边吃奶| 欧美另类亚洲清纯唯美| 色老头精品视频在线观看| 欧美av亚洲av综合av国产av| 极品教师在线免费播放| 性少妇av在线| 国产成人精品久久二区二区免费| 999久久久国产精品视频| 19禁男女啪啪无遮挡网站| 国产男女内射视频| 欧美人与性动交α欧美软件| 亚洲成人免费av在线播放| 老司机影院毛片| 国产一区二区在线观看av| 99精品在免费线老司机午夜| 12—13女人毛片做爰片一| 成年人免费黄色播放视频| 欧美日韩一级在线毛片| 日日夜夜操网爽| 国产高清视频在线播放一区| 欧美黄色片欧美黄色片| 久久精品亚洲av国产电影网| 欧美久久黑人一区二区| 亚洲中文字幕日韩| 欧美黄色片欧美黄色片| tocl精华| 国精品久久久久久国模美| 少妇粗大呻吟视频| 国产一区二区激情短视频| 中文字幕人妻熟女乱码| 少妇猛男粗大的猛烈进出视频| 狠狠精品人妻久久久久久综合| 久久精品人人爽人人爽视色| e午夜精品久久久久久久| 丰满少妇做爰视频| 国产一区有黄有色的免费视频| 在线看a的网站| 熟女少妇亚洲综合色aaa.| 亚洲专区国产一区二区| 少妇被粗大的猛进出69影院| 国产黄色免费在线视频| 搡老乐熟女国产| 激情视频va一区二区三区| 深夜精品福利| 日韩有码中文字幕| 亚洲av成人一区二区三| 新久久久久国产一级毛片| 天堂中文最新版在线下载| 2018国产大陆天天弄谢| 亚洲欧美精品综合一区二区三区| 热99久久久久精品小说推荐| 在线观看免费日韩欧美大片| 淫妇啪啪啪对白视频| 999精品在线视频| 日韩熟女老妇一区二区性免费视频| 性少妇av在线| av不卡在线播放| 午夜福利乱码中文字幕| 又大又爽又粗| 久久人人爽av亚洲精品天堂| 婷婷成人精品国产| 美女高潮到喷水免费观看| 亚洲国产av影院在线观看| 夜夜骑夜夜射夜夜干| 国产又爽黄色视频| 男女边摸边吃奶| 高潮久久久久久久久久久不卡| 大型黄色视频在线免费观看| 丝袜美腿诱惑在线| av网站在线播放免费| 水蜜桃什么品种好| 国产91精品成人一区二区三区 | 久久婷婷成人综合色麻豆| 女人久久www免费人成看片| 欧美黄色淫秽网站| 国产精品国产高清国产av | 捣出白浆h1v1| 女警被强在线播放| 午夜91福利影院| 国产精品久久久av美女十八| 色精品久久人妻99蜜桃| 国产aⅴ精品一区二区三区波| 欧美 日韩 精品 国产| 国产免费现黄频在线看| 首页视频小说图片口味搜索| 老司机在亚洲福利影院| 亚洲av美国av| 日韩有码中文字幕| 国产成+人综合+亚洲专区| 国产高清激情床上av| 久久午夜亚洲精品久久| 美女福利国产在线| 日韩视频在线欧美| 欧美日韩成人在线一区二区| 国产免费视频播放在线视频| 欧美av亚洲av综合av国产av| 中国美女看黄片| 亚洲精品av麻豆狂野| 国产日韩欧美亚洲二区| 99国产精品一区二区蜜桃av | 亚洲av片天天在线观看| 巨乳人妻的诱惑在线观看| 嫁个100分男人电影在线观看| 啦啦啦在线免费观看视频4| 亚洲成人免费av在线播放| 男女边摸边吃奶| 窝窝影院91人妻| 亚洲成人免费av在线播放| 麻豆av在线久日| 久久青草综合色| 无遮挡黄片免费观看| 久久久久久久久久久久大奶| 国产99久久九九免费精品| 免费黄频网站在线观看国产| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 无遮挡黄片免费观看| 18在线观看网站| 精品少妇内射三级| 精品视频人人做人人爽| 亚洲天堂av无毛| 欧美人与性动交α欧美软件| 国产不卡av网站在线观看| 日韩有码中文字幕| 色老头精品视频在线观看| www.999成人在线观看| 首页视频小说图片口味搜索| 亚洲精品成人av观看孕妇| 国产在线免费精品| 久久久久国产一级毛片高清牌| 麻豆乱淫一区二区| 国产男女超爽视频在线观看| 国产亚洲午夜精品一区二区久久| 美女视频免费永久观看网站| 国产伦人伦偷精品视频| 黄片播放在线免费| tube8黄色片| 制服诱惑二区| 又黄又粗又硬又大视频| 久久av网站| 十分钟在线观看高清视频www| 中文亚洲av片在线观看爽 | 亚洲国产欧美一区二区综合| 国产1区2区3区精品| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩一区二区精品| 99国产精品一区二区三区| 国产伦理片在线播放av一区| 国产成人一区二区三区免费视频网站| 老司机在亚洲福利影院| 国产真人三级小视频在线观看| 亚洲精品自拍成人| 亚洲av片天天在线观看| 国产精品国产av在线观看| 久久久精品国产亚洲av高清涩受| 欧美日韩精品网址| 日韩三级视频一区二区三区| 熟女少妇亚洲综合色aaa.| 12—13女人毛片做爰片一| 纵有疾风起免费观看全集完整版| 精品第一国产精品| 十八禁高潮呻吟视频| 一边摸一边抽搐一进一小说 | 水蜜桃什么品种好| 午夜福利免费观看在线| 久久ye,这里只有精品| 日本五十路高清| 久久久久国内视频| 在线观看舔阴道视频| 久久中文看片网| 大码成人一级视频| 老司机靠b影院| 男女下面插进去视频免费观看| 久久 成人 亚洲| 国产欧美日韩一区二区三| 国产97色在线日韩免费| 亚洲精品中文字幕在线视频| 69av精品久久久久久 | 成人亚洲精品一区在线观看| www.精华液| 亚洲少妇的诱惑av| 亚洲精品自拍成人| 丰满人妻熟妇乱又伦精品不卡| 国产无遮挡羞羞视频在线观看| 国产亚洲欧美在线一区二区| bbb黄色大片| 亚洲专区国产一区二区| 日韩欧美免费精品| 看免费av毛片| 日韩欧美一区二区三区在线观看 | 麻豆av在线久日| 一本综合久久免费| 久久久水蜜桃国产精品网| 色尼玛亚洲综合影院| 午夜免费成人在线视频| 欧美日韩视频精品一区| 欧美日韩av久久| 精品国产一区二区三区久久久樱花| 国产一区二区 视频在线| 午夜福利欧美成人| 亚洲国产av影院在线观看| 精品一区二区三区视频在线观看免费 | 亚洲精品粉嫩美女一区| 丰满人妻熟妇乱又伦精品不卡| 丁香六月天网| 一区在线观看完整版| 水蜜桃什么品种好| 黄频高清免费视频| 男男h啪啪无遮挡| 欧美黑人欧美精品刺激| 亚洲欧洲日产国产| 免费黄频网站在线观看国产| 99热国产这里只有精品6| 一边摸一边做爽爽视频免费| 亚洲av日韩在线播放| 午夜91福利影院| 亚洲精品国产精品久久久不卡| 最新美女视频免费是黄的| 国产淫语在线视频| 国产精品亚洲av一区麻豆| 成人国产一区最新在线观看| 青草久久国产| 亚洲专区国产一区二区| 亚洲七黄色美女视频| 亚洲欧美一区二区三区久久| 人妻一区二区av| svipshipincom国产片| tube8黄色片| 老司机午夜十八禁免费视频| 丝袜在线中文字幕| 桃红色精品国产亚洲av| 精品福利观看| 国产免费福利视频在线观看| 免费一级毛片在线播放高清视频 | 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 精品少妇久久久久久888优播| 欧美变态另类bdsm刘玥| 欧美日韩亚洲国产一区二区在线观看 | 法律面前人人平等表现在哪些方面| 色在线成人网| 亚洲人成伊人成综合网2020| 亚洲国产成人一精品久久久| 黄片大片在线免费观看| 久热爱精品视频在线9| 51午夜福利影视在线观看| 亚洲av成人一区二区三| 亚洲精品粉嫩美女一区| 黄片播放在线免费| 久久中文看片网| 正在播放国产对白刺激| 午夜福利乱码中文字幕| 精品午夜福利视频在线观看一区 | 久久久久久久精品吃奶| 亚洲av成人一区二区三| 国产精品.久久久| 一级毛片精品| 99在线人妻在线中文字幕 | 精品少妇内射三级| 欧美激情极品国产一区二区三区| 色视频在线一区二区三区| 久久久欧美国产精品| 夫妻午夜视频| 国产精品久久久av美女十八| 国产成人av教育| 三上悠亚av全集在线观看| 美女主播在线视频| 丝袜在线中文字幕| 日本av免费视频播放| 欧美成人午夜精品| 丝袜人妻中文字幕| 一二三四在线观看免费中文在| 欧美精品人与动牲交sv欧美| 色老头精品视频在线观看| 亚洲国产精品一区二区三区在线| 我要看黄色一级片免费的| 国产精品av久久久久免费| netflix在线观看网站| 亚洲人成77777在线视频| 日日夜夜操网爽| 黄色视频不卡| 国产av国产精品国产| 国产在线免费精品| 国产精品电影一区二区三区 | 久久中文字幕一级| 午夜福利影视在线免费观看| 极品教师在线免费播放| 咕卡用的链子| 女性生殖器流出的白浆| 99国产精品99久久久久| 黄色视频不卡| 黄色毛片三级朝国网站| 在线天堂中文资源库| 国精品久久久久久国模美| 美女高潮到喷水免费观看| 91精品国产国语对白视频| 成人免费观看视频高清| 一区福利在线观看| 欧美另类亚洲清纯唯美| 国产精品香港三级国产av潘金莲| 欧美成人免费av一区二区三区 | 国产视频一区二区在线看| 最近最新免费中文字幕在线| 亚洲欧美精品综合一区二区三区| 亚洲精华国产精华精| 一二三四在线观看免费中文在| 最近最新免费中文字幕在线| 精品福利观看| 1024视频免费在线观看| 97人妻天天添夜夜摸| 日韩人妻精品一区2区三区| 水蜜桃什么品种好| 最近最新免费中文字幕在线| 在线观看66精品国产| 日韩大码丰满熟妇| 亚洲欧美激情在线| 中文欧美无线码| 丝袜在线中文字幕| bbb黄色大片| 男女午夜视频在线观看| 可以免费在线观看a视频的电影网站| 少妇精品久久久久久久| 国产亚洲欧美精品永久| 人妻 亚洲 视频| 久久国产精品人妻蜜桃| 国产在线视频一区二区| 亚洲精品av麻豆狂野| 久久国产精品大桥未久av| 美国免费a级毛片| 亚洲精品中文字幕一二三四区 | 久久免费观看电影| 黄网站色视频无遮挡免费观看| 制服诱惑二区| 三上悠亚av全集在线观看| 日韩一卡2卡3卡4卡2021年| 波多野结衣av一区二区av| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三| 我的亚洲天堂| 视频区欧美日本亚洲| 一本久久精品| 满18在线观看网站| 在线观看免费视频日本深夜| 后天国语完整版免费观看| 自线自在国产av| 久久精品国产99精品国产亚洲性色 | 一区二区三区乱码不卡18| 91av网站免费观看| 成年版毛片免费区| 国产黄频视频在线观看| 亚洲国产成人一精品久久久| bbb黄色大片| 亚洲国产毛片av蜜桃av| 国产精品 欧美亚洲| 男女床上黄色一级片免费看| 一区二区三区国产精品乱码| 丝袜美腿诱惑在线| 亚洲色图av天堂| 两性夫妻黄色片| 国产欧美日韩一区二区三区在线| 国产成人免费观看mmmm| 成年动漫av网址| 久久人妻av系列| 成人免费观看视频高清| 老司机深夜福利视频在线观看| 母亲3免费完整高清在线观看| 精品国产亚洲在线| 精品国产一区二区久久| 啦啦啦免费观看视频1| 久久久久精品国产欧美久久久| 亚洲熟妇熟女久久| netflix在线观看网站| 久久99一区二区三区| 国产日韩欧美视频二区| 99热国产这里只有精品6| 亚洲欧美色中文字幕在线| 中文字幕最新亚洲高清| 亚洲av日韩精品久久久久久密| 国产精品久久久久成人av| 亚洲精品自拍成人| 久久久久久久大尺度免费视频| 国产97色在线日韩免费| 久久精品国产亚洲av香蕉五月 | 亚洲欧美一区二区三区久久| 精品福利永久在线观看| 亚洲精品国产区一区二| av片东京热男人的天堂| 国产精品久久久人人做人人爽|