• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numericalinvestigation of unsteady mixing mechanism in plate film cooling

    2016-12-24 08:39:17ShuaiLiZongjingYuanGangChenStateKeyLaboratoryforStrengthandVibrationofMechanicalStructuresSchoolofAerospaceXianJiaotongUniversityXian710049ChinaShaanxiProvinceKeyLaboratoryforServiceEnvironmentandControlofAdvancedAircraf
    關(guān)鍵詞:吸塵除塵孔徑

    Shuai Li,Zongjing Yuan,Gang Chen?State Key Laboratory for Strength and Vibration ofMechanicalStructures,School of Aerospace,Xi'an Jiaotong University,Xi'an 710049,China Shaanxi Province Key Laboratory for Service Environment and Controlof Advanced Aircraft,Xi'an Jiaotong University,Xi'an 710049,China

    Letter

    Numericalinvestigation of unsteady mixing mechanism in plate film cooling

    Shuai Li,Zongjing Yuan,Gang Chen?
    State Key Laboratory for Strength and Vibration ofMechanicalStructures,School of Aerospace,Xi'an Jiaotong University,Xi'an 710049,China Shaanxi Province Key Laboratory for Service Environment and Controlof Advanced Aircraft,Xi'an Jiaotong University,Xi'an 710049,China

    H I G H L I G H T S

    .Under the unsteady flow dynamics,the details of the flow and heat-transfer characteristics are obtained by large eddy simulation.

    .Investigation ofthe law ofmutualinterference between gas films in parallelholes.

    A R T I C L E I N F O

    Article history:

    Received 30 May 2016

    Received in revised form

    24 July 2016

    Accepted 7 August 2016

    Available online 24 August2016

    2)采用EDEM離散元軟件建立除塵截割頭仿真模型,進行工作過程仿真模擬,其中孔徑為25 mm的方案3除塵效果最佳,除塵率為90%,由此確定最佳吸塵效果的孔徑尺寸為25 mm。

    Mixing mechanism Anti-symmetric vortices Mutualinterference Film cooling Large eddy simulation

    A large-scale large eddy simulation in high performance personal computer clusters is carried out to present unsteady mixing mechanism of film cooling and the development of films.Simulation cases include a single-hole plate with the inclined angle of30°and blowing ratio of0.5,and a single-row plate with hole-spacing of 1.5D and 2D(diameters of the hole).According to the massive simulation results, some new unsteady phenomena ofgas films are found.The vortex system is changed in differentposition with the development of film cooling with the time marching the process of a single-row plate film cooling.Due to the mutualinterference effects including mutualexclusion,a certain periodic sloshing and mutual fusion,and the structures of a variety of vortices change between parallel gas films.Macroscopic flow structures and heat transfer behaviors are obtained based on 20 million grids and Reynolds number of 28600.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    With the development of the aeronautic industry,the military fighters in the pursuit of high speed and high mobility performance,or large civilaircraft pursues the great capacity,higher demands of high performance aero-engine are urgently proposed. Turbine blades are one of the most important components of the aircraft aero-engine,which works at the very extreme conditions such as the high temperature,high speeds,and high pressure loads. The increase ofaero-engine thrust mainly depends on the increase of the turbine inlet temperature.This means that the cooling of a turbine blade becomes the first priority in a high-performance gas turbine engine.The inlet temperature ofcurrent advanced gas turbine engine has reached about 2200 K,in which the 400 K more than the melting point of metalmaterials of turbine blades.So the advanced turbine blade cooling design becomes one of the most important and urgent key technologies,such as the film cooling in Fig.1[1].There are many open small holes in blade surfaces and when the cool medium is injected into the mainstream with high temperature,the cold air filmexists on the surface ofblades to protect the materials.

    The ideas of the film cooling technology begin in the 1870s. The research in film cooling of the flow and heat transfer is mainly divided into two aspects:one is committed to the mixing mechanism of gas film cooling,and the other focuses on the gas film cooling performance for complex models.For the mixing mechanism of the gas film cooling,new simulation methods, and the influence factors of gas film cooling are the main two key issues.Ongoing theoretical exploration and the theory of calculation methods both make great foundation for the research of the gas filmcooling mixing mechanism.Liu et al.[2]put forward a new calculation model(turbulent Prandtl number distribution model)to improve the accuracy of gas film cooling calculation. Meanwhile,Lee and Kim[3]put forward a kind ofspecialmethods for optimization design of fan hole plate final cooling.V?lker and Zehe[4]set up a method to forecast flow field and temperature field in cold flow pipe,according to correlation design of different aerodynamic parameters,which is a part of film cooling.These investigations lie mainly in the micro structure of the flow field.However,there are many factors that can affect the film cooling performance as follows:

    Fig.1.(Color online)Heat transfer coefficient distribution of turbine blade with film cooling by numericalsimulations[1].

    (1)The geometric parameters of the gas film hole,such as the size of injection angle,aperture,length,aperture ratio,hole spacing,the number of rows,and the shape of the hole.(2)The aerodynamic parameters of hole,such as the mainstream speed,blowing ratio,momentum ratio ofcold air from the mainstream,development situation of mainstreamturbulence boundary layer before the gas filmholes,pressure gradient,etc.Nemdiliet al.[5]and Guo etal.[6]focus on the influence ofthe geometric parameters ofthe gas film hole(jet angle,the shape of the hole,hole spacing,etc.) on the mixing mechanism of film cooling.Jovanovi?et al.[7]and Duggleby et al.[8]focus on aerodynamic parameters ofthe gas film hole(blowing ratio,momentum ratio,density ratio,development ofmainstream turbulence boundary layer before the gas film hole, etc.)Suryanarayanan et al.[9]and Zhou et al.[10]using the experimentaltechnology,study the influence ofblowing ratio on the turbine blade film cooling efficiency.Li et al.[11]study the film cooling efficiency of rotating blade.

    Experimental research is mainly used for gas film cooling of complex models.However the obtained experiment results are limited by experimentalconditions which cannot completely provide all the accurate reference data for turbine blade film cooling design.Owning to the rapid development of the large-scaled supercomputer,the detail data of flow field and the heat transfer in film cooling can be obtained in larger-scale simulation, which can provide a basic guidance to the optimization design of blade cooling structure geometry parameters.Shangguan etal.[12] present many detail data based on hybrid thermal lattice Boltzmann method with a grid of 200 million on a GPU-cluster for the unsteady mixing mechanismofthe plate filmcooling,which is very important to high efficient film cooling design for blades.However for the limitations of the lattice Boltzmann method(LBM),the numericalReynolds number is justabout 5000 even with 200 million grids.In this paper,based on the large eddy simulation(LES)for unsteady Navier-Stokes equation the unsteady mixing mechanism of plate film cooling on Reynolds number of 28600,which is very near to the real blade conditions,will be carried on to investigate the laws ofunsteady mixing mechanism.

    The unsteady flow and heat transfer of the gas film cooling is simulated by LES method.The three dimensional unsteady governing Navier-Stokes equation in the conservation form is as follows

    Fig.2.Experimental model.

    Fig.3.Diagrammatic drawing ofmodelabout data extraction.(For interpretation of the references to colour in this figure legend,the reader is referred to the web version ofthis article.)

    Table 1 Detail data of the experimental model.

    The momentum equation deals with a filtering function and then the two filter equations were obtained:

    Fig.4.Results ofnumericalvalidation:speed ratio in flow direction and normaldirection.

    Fig.5.Computationalmodel.

    where C is the modelconstantsetto a value of0.15 in presentstudy and?is the representative elementdimension which is calculated from the volume of each finite element.

    In order to validate the LES simulation method for plate film cooling,the experimental model[13]is presented as in Fig.2.The detail data[13]of the modelis shown in Table 1.

    To verify the accuracy ofthe numericalsimulation,the numerical data(speed ratio of flowing velocity with the mainstream in center line)is compared with the experiment data.The situation of the data extraction is shown as the red line in Fig.3.W and U are the flow directions.The comparison between the experiment and numerical simulation is shown in Fig.4.The data is chosen from the distance far from the hole,such as X/D=0.5,1.5,and 3,respectively.Itis obvious thatvariation trend ofnumericalpredicted speed ratio data and experimentaldata agrees well.Following the results of the numerical validation,the error of comparison between experiment and numerical simulations is little.Taking into account the experimental system error and calculation error,the simulation ofplate film cooling by LES method is good enough for unsteady mixing mechanism analysis.

    Under the inclined angle of 30°and blowing ratio of 0.5, the change law of mixing mechanism with different time is discussed.The fluid is models as incompressible air.The lengths of computational domain in three different coordinates are Lx,Ly, and Lz,such as Fig.5.A uniform velocity U∞is given atthe inlet of hot air and the temperature of hot air is T∞.No-slip adiabatic wall is prescribed at the body surface.The meshes near the holes are refined in order to keep the nondimensional walldistance Y+less than 1.The LES computations involve the grids of 21.8 million with 368X256 X232 in the three directions.The coordinate ofthe holesisReynolds number is Model parameters are.Blowing ratio is M=0.5.The mainstream temperature isand the cool flow temperatureCooling efficiency of adiabatic wallis

    According to the flow field and cooling efficiency vary as time going on,the mixing mechanism as the film going on can be achieved.The results of three cross sections are chosen as shown in Fig.6.On this cross section,anti-symmetric vortices are stable at different time in Fig.7.The cooling efficiency remains the same in Fig.8.The film stays in the stable stage,when the film has just started.The film is carried by anti-symmetric vortices close to the wall.The generation of this phenomenon is due to the high intensity of jet flow.At the beginning of gas film,the normal shear is strong,so the anti-symmetric vortices formed by shear stress of impacting from jetflow are stable.

    On the cross section of X/D =15,anti-symmetric vortices are elevated in Fig.9 compared with that in Fig.7.The secondary vortex and the horseshoe vortex are found obviously in the six snapshots in Fig.9.But in Fig.10,the cooling efficiency is almost keeping the same relatively.It is concluded that the gas filmbegins to appear unstable as anti-symmetric vortices rising far from the wall.Meanwhile the change of the flow field is not enough to change the temperature of the wall.Then the film stays in mix stage.The generation of this phenomenon is because of cooler mixed fluid is carried close to the wall by secondary vortex and the horseshoe vortex,when anti-symmetric vortices rise.At the middle process of gas film,the normalshear is wear,so the antisymmetric vortices formed by shear stress of impacting from jet flow are mainly impacted by mainstream.

    On the cross section of X/D=20,the anti-symmetric vortices are asymmetric no longer as shown in Fig.11.Also the cooling efficiency occurs periodic exhibition to swing as shown in Fig.12. At the position far away from the inclined hole,anti-symmetric vortices rise far from the wall,when the mainstream permeates the bottom of them.Because of the energy of film is weak,the anti-symmetric vortices slosh in the mainstream,affected by the infiltration action.So the film carried by anti-symmetric vortices stays in the dissipation stage.

    Above all,in the process of generation and development of the gas film,the characteristics of different stages are mainly determined by the performance of anti-symmetric vortices,which affected the structure ofthe gas film.Meanwhile,the anti-symmetric vortices are affected by the shear stress of jet flow at the beginning and affected by infiltrationaction with the developmentofthe film.

    Computational domain of a single-row plate is the same as a single-hole plate.The arrangement offive holes is shown in Fig.13, and the serial number of the middle hole is 3.Parameters are the same as a single-hole plate,while hole spacing is d=1.5D and d=2D.

    Fig.6.(Color online)Cross section drawing.

    In this section,the main work is about plate film cooling with two kinds of hole-spacing of 1.5D and 2D.The two hole-spacingsare selected,for considering thatnarrower hole-spacing cannot apply to the engineering,which reduce the intensity in the process of manufacturing,while hole spacing is too large,the gas film cooling effectis the same as a single-hole plate.According to the currentliteratures,the two hole-spacing is finally chosen as the research objects.In Fig.14,the characteristics of mixing mechanism films are more apparent because of mutual interference between gas films in the three stages(stable stage,mixed stage and dissipation stage) mentioned above.It is obvious that Stable Stage stays longer when hole-spacing is 2D,while merger phenomenon appears between the films when hole-spacing is 1.5D in Fig.14(a).The merger phenomenon appears because of films are so close to each other that films merge together with the development of films.In addition, mainstream extrude films inward.When hole-spacing is 2D,after the stable stage,the instability of films flow has played a major role between films in parallel.The interference occurs in the form of periodic sloshing,so periodic rejection and attraction due to the mutual interference occur in Fig.14(b).

    Fig.7.(Color online)Results offlow field and temperature atthe cross section of X/D=5.

    Fig.8.Results of cooling efficiency with different time at the cross section of X/D=5.

    Next,the change law of film cooling efficiency is discussed.In the two pictures of Fig.15,middle gas film(film 3)is relatively stable in the process ofthe gas film flow,while the films atthe edge change strongly.The reason is thatthe influence on the middle film coming from both sides is the same,while other films are affected unequally by the mainstream.In the two pictures,after a certain stage ofstable,the cooling efficiency of5 different films has certain cyclical shocks,indicating that the films occur periodic offset the centerline of films.And cooling efficiency along the exhibition on the different cross sections is compared,as shown in Fig.16.From the two pictures of Fig.16,it is concluded that with the development of film cooling,films extrude towards the middle.

    Fig.9.(Color online)Results of flow field and temperature at the cross section of X/D=15.

    Fig.10.Results of cooling efficiency with different time at the cross section of X/D=15.

    As shown in Fig.17,in the cross section X/D=1,gas films of d=2D are higher than thatof d=1.5D,which is mainly due to the mentioned extrusion.And the extrusion is stronger when the films are closer to mainstream.From Figs.18-20,it is concluded that flow direction of vortex belongs to adjacent side of the adjacent two anti-symmetric vortex is opposite,indicating that mutual repulsion occurs between the adjacent films.The horseshoe vortex exists in cross section when hole-spacing is 2D,but not for holespacing of 1.5D because of no enough space between films.

    According to the mutual interference between the gas films put forward before,this section focuses on contrast analysis of y-velocity along center line of middle film,which provides data validation for analysis above.

    As shown in Fig.21,in the process offilmcooling,we argue that y-velocity along center line of film indicates the migration of gas film.According to the contrast,it can be found in the stable stage, y-velocity is almost zero in single-row plate,while smalldeviation in single-hole plate.Certain cyclicalshock appears as the distance fromthe gas filmhole going on.Through this data,detailed resultof periodic oscillation can be obtained,such as oscillation frequency and precise location where oscillation occurs.The decrease of amplitude indicates attenuation of oscillation and dissipation of the gas film energy.In addition,according to the contrast,the exhibition of periodic oscillation in single-row plate is advance of that in single-hole plate,proving that periodic oscillation occurs in mixed stage of single-row plate.According to Fig.22,the direction ofoscillation ofadjacent films is opposite,which indicates mutualrepulsion between films.In comparison,amplitude of oscillation formiddle filmis respectively small,which indicates the oscillation is mainly generated by the infiltration from mainstream.

    Fig.11.(Color online)Results offlow field and temperature atthe cross section of X/D=20.

    Fig.12.Results of cooling efficiency with different time at the cross section of X/D=20.

    Fig.13.Computationalmodelofa row ofholes in the plate.

    The unsteady mixing mechanism of the plate film cooling was investigated by large eddy simulation with more than 20 million grids.The single-hole plate film cooling and single-row plate film cooling in different hole spaces are calculated.The unsteady flow field and cooling efficiency of the adiabatic wall plate are obtained and the influence law of mixing mechanism is concluded.The features of unsteady mixed jet-to-mainstream are varied regularly as time goes on.It can be concluded that the formation process of coolant film affected by the differentaerodynamic characteristics is divided into three different stages with different mixing characteristics,which are stable stage,mix stage,and dissipation stage,and the distribution of vortex system dominates the mixing process.For further analysis,the process of gas film cooling can be divided into different stages according to the different characteristics,and different stages own its special mixing characteristics.Furthermore,the numerical simulation of film cooling with a single-row plate under various hole-spacing is carried out,and the influence law of covering characteristics on different hole-spacing is revealed.The simulated results show thatthe mutualinterference effects between the gas films perform different characteristics in different stages.The mutualexclusion happens atthe stable stage,and a certain periodic sloshing appears in mix stage,while in the dissipation stage,the phenomenon ofthe mutual fusion appears.

    Fig.14.(Color online)Flow and temperature field on the surface ofthe plate.

    Fig.15.(Color online)Cooling efficiency along the center line ofeach film.

    Fig.16.(Color online)Cooling efficiency ofplate on different cross sections.

    Acknowledgments

    The present work was partially supported by the National Science and Technology Major Project(2013CB035700),the National Natural Science Foundation of China(11672225,11511130053), and the Funds for the Central Universities(xjj2014135).

    Fig.17.(Color online)Results offlow field and temperature atthe cross section of X/D=1.

    Fig.18.(Color online)Results offlow field and temperature atthe cross section of X/D=2.

    Fig.19.(Color online)Results offlow field and temperature atthe cross section of X/D=4.

    Fig.20.(Color online)Results offlow field and temperature atthe cross section of X/D=5.

    Fig.21.Contrast of y-velocity along center line ofmiddle film.

    Fig.22.Contrast of y-velocity along center line ofdifferent gas films,when holespacing is 2D.

    [1]T.Hildebrandt,J.Ettrich,M.Kluge,et al.Unsteady 3D Navier-Stokes calculation of a film-cooled turbine stage:Part 2-Cooling flow modeling via discrete cooling holes,in:European Turbomachinery Conference,2003.

    [2]C.Liu,H.Zhu,J.Bai,Newdevelopmentofthe turbulent Prandtlnumbermodels for the computation of film cooling effectiveness,Int.J.Heat Mass Transfer 54 (2011)874-886.

    [3]K.D.Lee,K.Y.Kim,Shape optimization of a fan-shaped hole to enhance filmcooling effectiveness,Int.J.Heat Mass Transfer 53(2010)2996-3005.

    [4]S.V?lker,F.Zehe,A modelforcylindricalhole film cooling-Part I:A correlation for jet-flow with application to film cooling,J.ASME 134(2012)061010.

    [5]F.Nemdili,A.Azzi,G.Theodoridis,etal.,Reynolds stress transportmodeling of film cooling at the leading edge ofa symmetricalturbine blade model,J.Heat Transf.Eng.29(2008)950-960.

    [6]X.Guo,W.Schr?der,M.Meinke,Large-eddy simulations of film cooling flows, J.Comput.Fluids 35(2006)587-606.

    [7]M.B.Jovanovi?,D.Lange,A.A.Steenhoven,Effect of hole imperfection on adiabatic film cooling effectiveness,Int.J.Heat Fluid Flow 29(2008)377-386.

    [8]A.Duggleby,J.L.Camp,G.Laskowski,Evaluation ofmassively-parallelspectral element algorithm for LES of film-cooling,in:C.ASME Turbo Expo 2013: Turbine Technical Conference and Exposition,V03BT13A008-V03BT13A008.

    [9]A.Suryanarayanan,B.Ozturk,M.T.Schobeiri,et al.,Film-cooling effectiveness on a rotating turbine platform using pressure sensitive paint technique, J.Turbomach.132(2010)041001.

    [10]L.Zhou,H.Fan,X.Zhang,et al.,Investigation ofeffect ofunsteady interaction on turbine blade film cooling,Eng.App.Comp.Fluid 5(2011)487-498.

    [11]S.Li,Z.Li,T.Guo,Numerical simulation study on the effect of rotation on film cooling of blades with compound angle holes,in:C.Proceedings of the 2011 International Conference on Informatics,Cybernetics,and Computer Engineering,ICCE2011,November 19-20,2011,Melbourne, Australia,Springer,Berlin,Heidelberg,2012,pp.429-436.

    [12]Y.Shangguan,X.Wang,Y.Li,Investigation on the mixing mechanismofsinglejet film cooling with various blowing ratios based on hybrid thermal lattice Boltzmann method,Int.J.Heat Mass Transfer 97(2016)880-890.

    [13]A.Kampe,S.V?lker,F.Zehe,A modelfor cylindricalhole film cooling-Part I: A correlation for jet-flow with application to film cooling,J.Turbomach.134 (2012)061010.

    ?Corresponding author.

    E-mail address:aachengang@mail.xjtu.edu.cn(G.Chen).

    http://dx.doi.org/10.1016/j.taml.2016.08.007

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoreticaland Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    猜你喜歡
    吸塵除塵孔徑
    一種新型無動力除塵系統(tǒng)的研發(fā)與應(yīng)用
    50t轉(zhuǎn)爐一次除塵系統(tǒng)改造實踐
    如何鑒別及選購一臺好的石材除塵設(shè)備
    石材(2020年10期)2021-01-08 09:19:56
    不同滲透率巖芯孔徑分布與可動流體研究
    分布式孔徑相參合成雷達技術(shù)
    便捷式吸塵黑板擦的設(shè)計
    電子制作(2017年1期)2017-05-17 03:54:16
    基于子孔徑斜率離散采樣的波前重構(gòu)
    多功能吸塵車
    大孔徑淺臺階控制爆破在重慶地區(qū)的應(yīng)用
    重慶建筑(2014年12期)2014-07-24 14:00:32
    天鋼一次除塵三管放散塔點火裝置改造
    天津冶金(2014年4期)2014-02-28 16:52:44
    日韩亚洲欧美综合| 一区二区日韩欧美中文字幕 | 熟妇人妻不卡中文字幕| 一个人看视频在线观看www免费| 交换朋友夫妻互换小说| 九九爱精品视频在线观看| 精品人妻在线不人妻| 精品熟女少妇av免费看| 十分钟在线观看高清视频www| 中文字幕av电影在线播放| 妹子高潮喷水视频| 中国美白少妇内射xxxbb| 精品人妻偷拍中文字幕| 视频区图区小说| 美女主播在线视频| 成年人免费黄色播放视频| 成人亚洲精品一区在线观看| 女性生殖器流出的白浆| 九九在线视频观看精品| 久久久久久久久久久久大奶| 亚洲av国产av综合av卡| 国产成人91sexporn| 丰满乱子伦码专区| 有码 亚洲区| 极品人妻少妇av视频| 国产精品欧美亚洲77777| 啦啦啦中文免费视频观看日本| 婷婷色综合www| 午夜激情av网站| 亚洲国产欧美日韩在线播放| av在线老鸭窝| 国产色婷婷99| 亚洲欧美成人精品一区二区| 欧美老熟妇乱子伦牲交| 成年美女黄网站色视频大全免费 | xxx大片免费视频| 日韩强制内射视频| 少妇猛男粗大的猛烈进出视频| 一本久久精品| 日韩免费高清中文字幕av| 亚洲精品成人av观看孕妇| 中文字幕亚洲精品专区| 久久久久久久久久久丰满| videos熟女内射| 中文字幕免费在线视频6| 亚洲三级黄色毛片| 尾随美女入室| 欧美日韩综合久久久久久| 满18在线观看网站| 国产极品天堂在线| 亚洲国产av新网站| 国产精品欧美亚洲77777| 久久久久久久久久久免费av| 夜夜看夜夜爽夜夜摸| 插逼视频在线观看| 大陆偷拍与自拍| 精品国产露脸久久av麻豆| 人成视频在线观看免费观看| 18在线观看网站| 免费观看a级毛片全部| 中国三级夫妇交换| 国产视频首页在线观看| √禁漫天堂资源中文www| 一边亲一边摸免费视频| 又粗又硬又长又爽又黄的视频| 97在线视频观看| 日韩成人av中文字幕在线观看| 插阴视频在线观看视频| 最近手机中文字幕大全| 少妇 在线观看| 丁香六月天网| 国产又色又爽无遮挡免| 国产毛片在线视频| 老司机影院毛片| 一级,二级,三级黄色视频| 久久精品国产自在天天线| 精品一区在线观看国产| 精品卡一卡二卡四卡免费| 男人爽女人下面视频在线观看| 日本黄色片子视频| 亚洲少妇的诱惑av| 国产不卡av网站在线观看| videosex国产| 国产极品天堂在线| 国产欧美另类精品又又久久亚洲欧美| 91久久精品国产一区二区三区| 亚洲,一卡二卡三卡| 久久久久网色| 韩国av在线不卡| 久久久久久久大尺度免费视频| 久久这里有精品视频免费| 国产免费现黄频在线看| 亚洲av欧美aⅴ国产| 3wmmmm亚洲av在线观看| 一级毛片 在线播放| 91午夜精品亚洲一区二区三区| 亚洲av欧美aⅴ国产| 69精品国产乱码久久久| 亚州av有码| 免费大片18禁| 99久久精品国产国产毛片| 日韩一区二区三区影片| 久久久久久人妻| 午夜福利,免费看| 午夜福利网站1000一区二区三区| 亚洲怡红院男人天堂| 国产片内射在线| 毛片一级片免费看久久久久| 少妇 在线观看| 国产精品一二三区在线看| 国产淫语在线视频| 成人免费观看视频高清| 母亲3免费完整高清在线观看 | 极品人妻少妇av视频| 国产综合精华液| 亚洲人与动物交配视频| 一级爰片在线观看| 国产高清不卡午夜福利| av免费观看日本| 国国产精品蜜臀av免费| 99国产精品一区二区三区| 欧美日韩黄片免| avwww免费| 一个人免费在线观看的高清视频| 1024视频免费在线观看| 18禁裸乳无遮挡动漫免费视频| 91国产中文字幕| 极品人妻少妇av视频| 午夜福利,免费看| 少妇被粗大的猛进出69影院| 久久精品人人爽人人爽视色| 十八禁人妻一区二区| 色婷婷av一区二区三区视频| 国产一区二区在线观看av| 国产精品一区二区免费欧美| 亚洲va日本ⅴa欧美va伊人久久| 久久人人97超碰香蕉20202| 国产不卡av网站在线观看| 黄频高清免费视频| 欧美亚洲 丝袜 人妻 在线| 无人区码免费观看不卡 | 老熟妇仑乱视频hdxx| 人妻 亚洲 视频| 老司机影院毛片| 午夜精品久久久久久毛片777| 法律面前人人平等表现在哪些方面| 久久精品国产综合久久久| 在线亚洲精品国产二区图片欧美| 天天影视国产精品| 一个人免费在线观看的高清视频| 久久香蕉激情| 一区二区三区乱码不卡18| avwww免费| 成年人黄色毛片网站| 窝窝影院91人妻| 天天躁狠狠躁夜夜躁狠狠躁| 中文欧美无线码| 精品高清国产在线一区| 国产主播在线观看一区二区| 国产欧美日韩一区二区精品| 女性被躁到高潮视频| 黄片小视频在线播放| 色老头精品视频在线观看| 精品一区二区三卡| 精品国产乱码久久久久久小说| 中文字幕精品免费在线观看视频| 欧美午夜高清在线| 亚洲人成伊人成综合网2020| 欧美成人午夜精品| 久久人妻熟女aⅴ| 国产aⅴ精品一区二区三区波| 嫩草影视91久久| 18禁美女被吸乳视频| 夫妻午夜视频| 免费看a级黄色片| 国产精品 国内视频| 久久99热这里只频精品6学生| videos熟女内射| 一边摸一边抽搐一进一小说 | 亚洲色图av天堂| 在线永久观看黄色视频| 日本wwww免费看| 色婷婷久久久亚洲欧美| 国产免费现黄频在线看| 丰满迷人的少妇在线观看| 嫩草影视91久久| 啪啪无遮挡十八禁网站| 色综合婷婷激情| 久久亚洲精品不卡| e午夜精品久久久久久久| 一级a爱视频在线免费观看| 在线天堂中文资源库| 久久精品国产99精品国产亚洲性色 | 国产成人欧美在线观看 | 人妻一区二区av| e午夜精品久久久久久久| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久av网站| 成人国语在线视频| 纯流量卡能插随身wifi吗| 亚洲精品中文字幕一二三四区 | 久久人妻福利社区极品人妻图片| 久久青草综合色| 美女午夜性视频免费| 免费人妻精品一区二区三区视频| 亚洲情色 制服丝袜| 黄色成人免费大全| 国产不卡一卡二| 国产亚洲精品久久久久5区| 久久这里只有精品19| 亚洲国产欧美网| 久久精品国产a三级三级三级| 国产三级黄色录像| 久久香蕉激情| 亚洲成人手机| 18禁观看日本| 99在线人妻在线中文字幕 | 电影成人av| 精品久久蜜臀av无| 欧美日韩精品网址| 亚洲视频免费观看视频| 超色免费av| 91大片在线观看| 美女视频免费永久观看网站| 精品乱码久久久久久99久播| a在线观看视频网站| 久久久久精品国产欧美久久久| 亚洲自偷自拍图片 自拍| 自线自在国产av| 成年人免费黄色播放视频| 日本av免费视频播放| 成人影院久久| 老熟妇乱子伦视频在线观看| 色在线成人网| 岛国毛片在线播放| 欧美乱妇无乱码| 最新美女视频免费是黄的| 亚洲中文字幕日韩| 99国产精品免费福利视频| 高清毛片免费观看视频网站 | 少妇粗大呻吟视频| 18禁国产床啪视频网站| 一级片免费观看大全| 人妻久久中文字幕网| 一本久久精品| 久久人人97超碰香蕉20202| 91成年电影在线观看| 日韩大片免费观看网站| 不卡av一区二区三区| 一区福利在线观看| 老鸭窝网址在线观看| av网站在线播放免费| 久久精品亚洲精品国产色婷小说| 嫩草影视91久久| 精品久久久久久久毛片微露脸| 日韩大片免费观看网站| 久久精品亚洲精品国产色婷小说| videos熟女内射| 国产免费现黄频在线看| 日本一区二区免费在线视频| 日本av手机在线免费观看| 另类精品久久| 99国产精品免费福利视频| 精品熟女少妇八av免费久了| 午夜日韩欧美国产| 欧美av亚洲av综合av国产av| 亚洲国产精品一区二区三区在线| 国产精品免费大片| 精品少妇一区二区三区视频日本电影| 久久中文看片网| av福利片在线| 香蕉久久夜色| 午夜福利乱码中文字幕| 国产色视频综合| 久久 成人 亚洲| 精品亚洲成国产av| 男女下面插进去视频免费观看| 制服人妻中文乱码| 亚洲专区中文字幕在线| 国产伦人伦偷精品视频| 午夜久久久在线观看| 欧美日韩亚洲高清精品| 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 日本五十路高清| 麻豆av在线久日| 亚洲精品av麻豆狂野| 无遮挡黄片免费观看| 亚洲av日韩在线播放| 亚洲欧洲精品一区二区精品久久久| 久久国产精品影院| 在线天堂中文资源库| 日本wwww免费看| 欧美日韩国产mv在线观看视频| videos熟女内射| 两个人看的免费小视频| 亚洲av成人一区二区三| videos熟女内射| 久久精品91无色码中文字幕| 久久人妻av系列| 少妇粗大呻吟视频| 国产有黄有色有爽视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲第一青青草原| 日本av免费视频播放| 精品国内亚洲2022精品成人 | 天堂8中文在线网| 中文字幕制服av| 久久中文字幕人妻熟女| 在线av久久热| 欧美 亚洲 国产 日韩一| 乱人伦中国视频| 高清黄色对白视频在线免费看| 国产精品一区二区免费欧美| 热99久久久久精品小说推荐| 成人18禁在线播放| 考比视频在线观看| av一本久久久久| 成年动漫av网址| 成年女人毛片免费观看观看9 | 久久狼人影院| 欧美另类亚洲清纯唯美| 精品一品国产午夜福利视频| 国产激情久久老熟女| 巨乳人妻的诱惑在线观看| 操美女的视频在线观看| 涩涩av久久男人的天堂| 亚洲免费av在线视频| 国产在线一区二区三区精| 操出白浆在线播放| 每晚都被弄得嗷嗷叫到高潮| 中文欧美无线码| 亚洲三区欧美一区| 91国产中文字幕| 亚洲中文字幕日韩| 制服诱惑二区| 纯流量卡能插随身wifi吗| 波多野结衣一区麻豆| 动漫黄色视频在线观看| 国产熟女午夜一区二区三区| 中文字幕制服av| 别揉我奶头~嗯~啊~动态视频| 999久久久精品免费观看国产| 99riav亚洲国产免费| 亚洲五月色婷婷综合| 亚洲精品自拍成人| 女同久久另类99精品国产91| 久久性视频一级片| 免费在线观看影片大全网站| 女警被强在线播放| 国产深夜福利视频在线观看| 黄色片一级片一级黄色片| 国产高清视频在线播放一区| 操出白浆在线播放| 亚洲精品在线观看二区| 成人国产av品久久久| 女警被强在线播放| 国产在线一区二区三区精| 久久久精品国产亚洲av高清涩受| 乱人伦中国视频| 久久这里只有精品19| 老熟女久久久| 亚洲成国产人片在线观看| 丁香六月天网| 欧美成人免费av一区二区三区 | 一本一本久久a久久精品综合妖精| 亚洲精品国产色婷婷电影| 国产精品久久久人人做人人爽| 成人18禁在线播放| 人妻一区二区av| 久久久久久久久免费视频了| 国产精品二区激情视频| 国产成人免费无遮挡视频| 欧美激情极品国产一区二区三区| 精品少妇内射三级| 91av网站免费观看| 国产精品久久久久久精品电影小说| 交换朋友夫妻互换小说| 精品少妇一区二区三区视频日本电影| 成人手机av| 老汉色∧v一级毛片| 亚洲天堂av无毛| 免费在线观看影片大全网站| 日本wwww免费看| 女人高潮潮喷娇喘18禁视频| 91麻豆av在线| 国产免费av片在线观看野外av| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩一区二区三| 久久人妻av系列| 男女床上黄色一级片免费看| 国产1区2区3区精品| 国产亚洲欧美在线一区二区| 亚洲av片天天在线观看| 国产精品av久久久久免费| 中文字幕精品免费在线观看视频| 啪啪无遮挡十八禁网站| 黄网站色视频无遮挡免费观看| 欧美成狂野欧美在线观看| 超碰97精品在线观看| 国产熟女午夜一区二区三区| 亚洲伊人色综图| 18禁裸乳无遮挡动漫免费视频| 日韩视频在线欧美| 搡老乐熟女国产| 亚洲男人天堂网一区| 日本av手机在线免费观看| 美女高潮到喷水免费观看| 亚洲午夜理论影院| 亚洲av日韩在线播放| 国产精品99久久99久久久不卡| 国产黄色免费在线视频| 久久婷婷成人综合色麻豆| 日韩有码中文字幕| 免费黄频网站在线观看国产| √禁漫天堂资源中文www| 亚洲成人国产一区在线观看| 一级毛片精品| 免费观看av网站的网址| 老司机在亚洲福利影院| 国产精品偷伦视频观看了| 久久婷婷成人综合色麻豆| 国产成人av教育| 在线观看人妻少妇| 国产男女内射视频| 亚洲av美国av| 真人做人爱边吃奶动态| 久久人妻福利社区极品人妻图片| 97人妻天天添夜夜摸| 亚洲五月婷婷丁香| 丝瓜视频免费看黄片| 一本色道久久久久久精品综合| 久久精品熟女亚洲av麻豆精品| 高清在线国产一区| 国产欧美亚洲国产| 一本综合久久免费| 久久天躁狠狠躁夜夜2o2o| 国产无遮挡羞羞视频在线观看| 在线观看免费午夜福利视频| 日韩成人在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产精品二区激情视频| 99九九在线精品视频| 满18在线观看网站| 动漫黄色视频在线观看| 性少妇av在线| 日韩欧美一区视频在线观看| 黄色怎么调成土黄色| 一个人免费在线观看的高清视频| 国产精品国产高清国产av | 青青草视频在线视频观看| 女性生殖器流出的白浆| 欧美国产精品va在线观看不卡| 欧美精品人与动牲交sv欧美| 婷婷成人精品国产| 日韩大片免费观看网站| 久久天堂一区二区三区四区| 夫妻午夜视频| 精品国产一区二区三区四区第35| 中文字幕人妻熟女乱码| a级毛片黄视频| 露出奶头的视频| 亚洲精品久久午夜乱码| 国产一区有黄有色的免费视频| 国产熟女午夜一区二区三区| 亚洲精品成人av观看孕妇| 亚洲精品中文字幕一二三四区 | 国产精品二区激情视频| 久久久精品94久久精品| 男女午夜视频在线观看| 青草久久国产| 欧美激情久久久久久爽电影 | 色视频在线一区二区三区| 别揉我奶头~嗯~啊~动态视频| 不卡av一区二区三区| 深夜精品福利| 最新美女视频免费是黄的| 日韩欧美一区二区三区在线观看 | 一区二区三区精品91| 在线观看66精品国产| 亚洲七黄色美女视频| 精品久久久精品久久久| 午夜福利免费观看在线| 黄色怎么调成土黄色| 久久av网站| 搡老乐熟女国产| 久久天堂一区二区三区四区| 欧美另类亚洲清纯唯美| 巨乳人妻的诱惑在线观看| 18禁裸乳无遮挡动漫免费视频| www.自偷自拍.com| 中文字幕人妻熟女乱码| 久久婷婷成人综合色麻豆| 最近最新免费中文字幕在线| 色婷婷久久久亚洲欧美| 肉色欧美久久久久久久蜜桃| 王馨瑶露胸无遮挡在线观看| 女人久久www免费人成看片| 黄色a级毛片大全视频| 久久精品国产亚洲av香蕉五月 | 99riav亚洲国产免费| 一级a爱视频在线免费观看| 亚洲av日韩在线播放| 亚洲自偷自拍图片 自拍| 女性生殖器流出的白浆| xxxhd国产人妻xxx| 一二三四社区在线视频社区8| 国产aⅴ精品一区二区三区波| 久久精品aⅴ一区二区三区四区| 成人国语在线视频| 新久久久久国产一级毛片| 国产精品秋霞免费鲁丝片| 国产无遮挡羞羞视频在线观看| 两性夫妻黄色片| 老汉色∧v一级毛片| 男人操女人黄网站| 蜜桃国产av成人99| 一区在线观看完整版| 欧美日韩黄片免| tocl精华| 麻豆成人av在线观看| a级毛片在线看网站| 日韩一区二区三区影片| 超色免费av| 成年版毛片免费区| 亚洲精品中文字幕一二三四区 | 人妻一区二区av| xxxhd国产人妻xxx| 国产欧美亚洲国产| 少妇猛男粗大的猛烈进出视频| 天天添夜夜摸| 国产成+人综合+亚洲专区| 日本a在线网址| 欧美日韩av久久| 这个男人来自地球电影免费观看| 日韩中文字幕欧美一区二区| 国产精品成人在线| 欧美 日韩 精品 国产| 国产欧美日韩综合在线一区二区| 丝瓜视频免费看黄片| 国产成人免费观看mmmm| 在线观看一区二区三区激情| 久久久国产一区二区| 国产高清激情床上av| 国产人伦9x9x在线观看| 男女床上黄色一级片免费看| 啦啦啦在线免费观看视频4| 露出奶头的视频| 欧美精品啪啪一区二区三区| 国产av又大| 久久狼人影院| 精品少妇内射三级| 汤姆久久久久久久影院中文字幕| 国产亚洲精品第一综合不卡| 国产精品一区二区免费欧美| 久久精品国产亚洲av高清一级| 老司机靠b影院| 国产亚洲欧美精品永久| 国产午夜精品久久久久久| 激情在线观看视频在线高清 | 精品少妇内射三级| 汤姆久久久久久久影院中文字幕| tube8黄色片| 久久青草综合色| 久久亚洲真实| 女人高潮潮喷娇喘18禁视频| 91老司机精品| 人成视频在线观看免费观看| av线在线观看网站| 国产aⅴ精品一区二区三区波| 国产亚洲精品久久久久5区| 婷婷成人精品国产| 亚洲国产中文字幕在线视频| 人人妻人人澡人人爽人人夜夜| 一边摸一边做爽爽视频免费| 亚洲成国产人片在线观看| 99在线人妻在线中文字幕 | 国产91精品成人一区二区三区 | 欧美乱妇无乱码| 亚洲国产看品久久| 午夜日韩欧美国产| 中文欧美无线码| 精品视频人人做人人爽| 亚洲国产欧美网| 91国产中文字幕| 男女无遮挡免费网站观看| 丝袜美足系列| 两性夫妻黄色片| 亚洲精品久久成人aⅴ小说| 欧美日韩国产mv在线观看视频| 成年人黄色毛片网站| 久久精品熟女亚洲av麻豆精品| 亚洲中文日韩欧美视频| 国产精品成人在线| av欧美777| 99九九在线精品视频| 后天国语完整版免费观看| 精品人妻在线不人妻| 久久精品亚洲精品国产色婷小说| 别揉我奶头~嗯~啊~动态视频| 在线永久观看黄色视频| 老司机深夜福利视频在线观看| 操出白浆在线播放| 久久中文看片网| 国产精品国产高清国产av | 超碰成人久久| 热99re8久久精品国产| 国产91精品成人一区二区三区 | 欧美日韩视频精品一区| 国产高清激情床上av| 日韩免费高清中文字幕av| 亚洲人成电影免费在线| 宅男免费午夜| 曰老女人黄片| 最新在线观看一区二区三区|