• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensionalmodeling of the self-limiting oxidation in silicon and tungsten nanowires

    2016-12-24 08:39:14MingchoLiuPengJinZhipingXuDorinHnorYixingGnChngqingChen

    Mingcho Liu,Peng Jin,Zhiping Xu,Dorin A.H.Hnor,Yixing Gn, Chngqing Chen,?

    aDepartment of Engineering Mechanics,CNMM&AML,Tsinghua University,Beijing 100084,China

    bSchool of CivilEngineering,The University of Sydney,Sydney,NSW 2006,Australia

    Letter

    Two-dimensionalmodeling of the self-limiting oxidation in silicon and tungsten nanowires

    Mingchao Liua,b,Peng Jina,Zhiping Xua,Dorian A.H.Hanaorb,Yixiang Ganb, Changqing Chena,?

    aDepartment of Engineering Mechanics,CNMM&AML,Tsinghua University,Beijing 100084,China

    bSchool of CivilEngineering,The University of Sydney,Sydney,NSW 2006,Australia

    H I G H L I G H T S

    .A new diffusion-controlled kinetic modelfor nanowire oxidation is developed.

    .A finite reactive region is included to accountfor oxidation stress and suboxide formation.

    .Self-limiting nanowire oxidation and its curvature/temperature dependence are predicted.

    .Results are consistentwith observed oxidation behavior ofsilicon(Si)and tungsten(W)nanowires.

    A R T I C L E I N F O

    Article history:

    Received 18 July 2016

    Received in revised form

    1 August 2016

    Accepted 2 August 2016

    Available online 16 August 2016

    Self-limiting oxidation Finite reactive region Kinetics model Nanowires

    Self-limiting oxidation of nanowires has been previously described as a reaction-or diffusion-controlled process.In this letter,the concept of finite reactive region is introduced into a diffusion-controlled model, based upon which a two-dimensional cylindricalkinetics modelis developed for the oxidation of silicon nanowires and is extended for tungsten.In the model,diffusivity is affected by the expansive oxidation reaction induced stress.The dependency of the oxidation upon curvature and temperature is modeled. Good agreement between the model predictions and available experimental data is obtained.The developed model serves to quantify the oxidation in two-dimensional nanostructures and is expected to facilitate their fabrication via thermaloxidation techniques.

    ?2016 The Author(s).Published by Elsevier Ltd on behalfof The Chinese Society of Theoreticaland Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Owing to their unique physical and chemical properties,silicon nanowires(Si NWs)are a promising candidate for a wide range of applications[1-5].Thermal oxidation is one of the most fundamental processes used for manufacturing nanostructured devices in generaland SiNWs in particular,allowing accurate control of the size,surface structure,and electronic properties[6-9]. Existing experimental studies have shown that the oxidation behavior of silicon nanostructures differs significantly from that of bulk Si[10].In particular,the oxidation kinetics of SiNWs are found to be surface curvature-and temperature-dependent[11].The initial oxidation rate of Si NWs with small diameters can be significantly higher when compared to the planar oxide growth on Si. Depending on their initial size,the oxidation of Si NWs may become immeasurably slow during prolonged oxidation studies.This phenomena is referred to as retarded oxidation[12,13],or selflimiting oxidation[14-17],and is more pronounced at lower temperatures[8,11].However,understanding the self-limiting oxidation in nanowires is hindered by the complex coupling between mechanicaldeformation and oxidation,making it difficult to apply the self-limiting effect to controlthe size of Si NWs in fabrication processes[8,18,19].To facilitate improved manufacturing quality of Si NWs,it is important to develop accurate models for the oxidation kinetics in such materials.

    In the popular kinetics modeldeveloped by Dealand Grove[20] for the thermal oxidation of planar silicon the intrinsic physical process of oxidation is assumed to be reaction-controlled.The chemical reaction occurs at the SiO2/Si interface and hampers further oxygen diffusion through the as-formed oxide film.As the oxidation progresses,the formation of new oxide material at the interface with silicon leads to volumetric expansion, and the newly formed oxide thus displaces the older material, which consequently undergoes microstructural rearrangement.For non-planar structures,non-uniformity of oxidation induced deformation becomes significant due to the influence of surface curvature[21,22].By considering this factor,the Deal-Grove model was later extended to the oxidation of cylindrical structures[23] and spherical particles[24].The viscous stress associated with the non-uniform deformation of the oxide was identified as the primary factor inhibiting further oxidation and was taken into account when calculating the oxidation rate.

    Fig.1.(a)Schematic diagram ofthe two-dimensionalcylindricaloxidation of SiNWs.(b)Profiles ofthe effective activation energy of O2diffusion in the oxide.

    However,both theoretical and experimental studies have suggested that the thermal oxidation of nanowires maybe diffusion-controlled rather than reaction-controlled because the interfacialreaction is not a rate limiting step[25-27].Specifically, first-principles calculations suggested a negligibly smallactivation barrier for the oxidation reaction[25],and experimental results have shown a layer-by-layer growth ofoxide at the silicon surfaces, and there is also a high density at the SiO2/Si interface[26,27]. Based on these findings,Watanabe et al.[28]argued that oxygen diffusion in the oxide layer plays a leading role in governing the oxidation rate and proposed a new linear-parabolic oxidation model that does not consider rate limitation by the interfacial reaction.Cui and co-workers modified this model by considering nanoscale effects in the oxidation process and used their modified modelto explain the anomalous initialoxidation process of planar Si[29]and the observed self-limiting effect in the oxidation of Si NWs[30].

    Recently,atomistic simulations have suggested that oxidation does not instantaneously yield SiO2.Rather a suboxide forms initially before gradually transforming to the dioxide phase [31-33].Thus,there exists a transition layer with finite thickness between the unreacted silicon and fully reacted oxide,in which silicon exists in various oxidation states,i.e.,Si+,Si2+,and Si3+[32].This transition layer normally exhibits a high stress leveldue to stepwise chemicalreactions and is expected to affect nanostructure-oxidation of other materials exhibiting suboxide formation,including tungsten nanowires(WNWs)and other transition metal nanostructures[34].In this letter,the transition layer is referred to as the finite reactive region and is incorporated into a diffusion-controlled oxidation kinetic modelto describe the oxidation behavior ofnanowires.The modelpredictions are compared with available experimentalresults,showing good agreement.

    To study the oxidation behavior of Si NWs,a cylindricalmodel is proposed,with a finite reactive region of thickness H in the radial direction(see Fig.1(a)).The inner and outer radii of the oxide shell are denoted by a and b with their ratio beingγ=b/a. The chemical reaction process within the finite reactive region is generally too complex to be simply characterized using a physical quantity such as the surface reaction rate[35].Here,we adopt a similar assumption to that of Watanabe et al.[28]in the cylindrical modeland assume that the diffusivity in the reactive region decays exponentially due to the chemical reaction induced compressive stress.Accordingly,the effective diffusivity which is affected by the initialgeometry can be expressed as a function ofradialposition r,

    where D0is the diffusivity in the oxide-except for the finite reactive region,kBis the Boltzmann constant,T is the oxidation temperature in K,andΔE(γ)is the maximum diffusion barrier at the outer surface of the silicon core.Because high compressive stress exists in the finite reactive region during oxidation,ΔE(γ) is dependent upon the oxidation process in the cylindrical model, as illustrated in Fig.1(b).Liu et al.[15]showed that the energy barrier of diffusion varies with the oxide thickness during the oxidation process.Consequently by including the results of recent molecular-dynamics simulations relating to the activation energy of diffusion[36],ΔE(γ)can be assumed to be

    whereΔEpis the incremental diffusion barrier at the interface for planar oxidation of Si,ΔEsis the difference in O2diffusion activation energy at the maximaldensity position between planar and cylindrical Si structures,andη(γ)is the normalized oxide strain energy.According to Liu et al.[15],η(γ)is given by

    where n=1/(1?v),and v is Poisson's ratio with a value of 0.17 for Si NWs.

    According to Fick's law[37,38]the constant flux Frofoxidantfor a steady-state diffusion profile can be modeled by Fr= ?D(r). (?C(r)/?r),where C(r)is the concentration of oxidants at the radial position r.Conservation of oxygen across any cylinder implies that Fr.r=Constant.Integrating the differential equation over r from a to b and considering the finite reactive region (a

    where Fais the oxidant flux at the outer surface of the Si core (r=a),and Cband Cidenote the concentrations of oxidant at the outer surface of the oxide layer cylindrical shells(r=b)and the outer surface of Si core,respectively.According to the assumptions of Watanabe et al.[28],Ci=0 can be adopted.From the Deal-Grove theory[20],the flux of the oxidant near the surfacer=b is taken to be Fb=h.(C??Cb),where h and C?are the gas-phase transport coefficientand the equilibrium concentration in the oxide filmrespectively.Noting that Fa.a=Fb.b=Constant, Facan be obtained as

    Fig.2.Comparison of the model predictions and experimental results of the oxidation of a Si NWwith radius R=25 nm.Symbols denote experimentalresults, and solid and dash lines refer to the predictions by the present and 2D Deal-Grove model,respectively.

    The oxidation rate at the Si/SiO2interface can be described as d x0/d t=Fa/N1[23,30],where x0is the thickness of oxide layer and N1is the number ofoxidant molecules incorporated into a unit volume of the oxide layer.Hence the kinetic rate equation for the oxidation of Si NWs which describes the change in oxide thickness over time,can be expressed as

    It should be noted that the present model differs from the extended 2D cylindrical Deal-Grove model by Kao et al.[23], in which the first term in the denominator of the reaction rate equation due to the interface reaction refers to the suppressed diffusion in the finite reactive region.The relationship between the oxide thickness and oxidation time can be obtained by integrating Eq.(6).Similar to the conventional Deal-Grove model,an iterative algorithm is used to numerically solve the present model.It is worth noting that when applying the 2D Deal-Grove model to small Si NWs,using this iterative method is computationally problematic.Fazziniet al.[18]have proposed an implicit algorithm to remedy thisdifficulty,which can avoid the sensitivity ofthe time step and reduce the simulation time for any initial diameter of Si NWs.However,there is no such numericaldifficulty in applying the present modelto nano-scaled structures.The influence of stress,if necessary,can be included into our model using stress dependent parameters similar to the conventional2D model.

    To illustrate the applicability of the developed model,several reported experimental studies on the oxidation of Si NWs are modeled.Fazzini et al.[18]measured the thermal oxidation of Si NWs with initial radius R=25 nm at temperature T=1223 K, the experimental data are compared with the present model predictions and are shown in Fig.2.To simulate the experimental results,the following parameters were adopted:H = 1 nm,retrieved from Ref.[29]; C?=0.015 nm?3,D0=1.92 X 108nm2.h?1,h=1.0 X 1011nm.h?1,N1=22.5 nm?3,and kB=1.38 X 10?23J.K?1 determined from Ref.[18].The prediction of the 2D Deal-Grove model of Kao et al.[23]is also included.Unlike the oxidation of planar Si,Fig.2 shows that the oxidation of nanowires initially proceeds rapidly,before slowing down and even exhibiting selflimiting behavior for prolonged durations.It can be seen from Fig.2 that good agreement between the model predictions and the experimental results is achieved.Although the 2D Deal-Grove model is based on the reaction dominated assumption while the present model is essentially a diffusion controlled model with a finite reactive region included,the trends shown in Fig.2 indicate that their predictions are reasonably consistent for the studied system.

    Fig.3.(a)Curvature and(b)temperature dependence of the oxidation of Si NWs.Symbols denote experimental results,and solid lines show predictions of the presentmodel.

    To further check the reliability of the developed model and investigate the temperature and surface curvature dependence of the self-limiting oxidation,we apply the present model to two representative sets ofexperimentaldata[12,14],as shown in Fig.3. It can be seen that the self-limiting oxidation effect depends on the surface curvature and oxidation temperature and that the experimental data is well described by the present finite reactive region based kinetics model.For the temperature T=1198 K, Fig.3(a)shows that self-limiting behavior is predicted for the oxidation of Si NWs with different initial radii(R=20,30,and 40 nm).In addition,self-limiting oxidation is also found for Si NWs with R=15 nm under two different temperatures(see Fig.3(b), T = 1073 and 1123 K).Furthermore,for low temperatures and large curvatures,the finite reactive region exhibits high compressive stress and the self-limiting effect becomes stronger. In addition,it can be found that the limit oxidation thickness canbe approached when the oxidation time tends to infinity for a given sample curvature and temperature condition,and the limited thickness can be predicted numerically by Eq.(6).The self-limiting oxidation effect has been used to address various technological concerns(relating to surface,size,and shape)in the production of Si NWs.The developed modelcan be used as the predictive toolto determine appropriate oxidation conditions and ensure the quality of obtained Si NWs and is further applicable to a broader spectrum of 2D nanostructures.

    Fig.4.Simulated oxide thickness of WNWs compared with experimental data. Symbols denote experimental results,and solid lines show predictions of the present model.

    To further validate our presentmodelwith respectto functional nanostructures,we study the oxidation of WNWs.These materials exhibit interesting electronic,magnetic,and catalytic properties with a wide range of potential applications[39]and have been fabricated through various physic-chemical techniques including templating,thermal evaporation,and thermal oxidation[40-42]. Similar to Si NWs,self-limiting oxidation has also been observed in W NWs systems,at temperatures in the range between 673 and 773 K[42],where application of the 2D Deal-Grove model, which is based on oxide viscous flow,is problematic.Considering the similarity of the oxidation behavior in silicon and tungsten nanowires,we extend our derived 2D kinetic model to predict the self-limiting oxidation of W NWs using the expression for oxidation kinetics described in Eq.(6).

    In order to represent the experimental conditions,model parameters(i.e.,C?=7.5 X10?5nm?3,D0=3.6 X1010nm2.h?1, h=1.0 X 1011nm.h?1,and N1=16.5 nm?3)were retrieved from Ref.[42]and the Poisson's ratio was taken from Ref.[43].The temperature T was taken as 773 K,as used in the experimental method.Parameterswere determined on the basis of reported experimental data.The oxide thickness for conditions of different initialdiameters as predicted by the present model is plotted as the solid lines in Fig.4.For comparison,the experimental results by You and Thong[42]are included.Itis evidentfrom Fig.4 that the currentmodelpredictions are consistent with the experimental oxidation data,and can reproduce the observed self-limiting behavior.As with SiNWs,the self-limiting effect is stronger for larger curvature values.

    In this letter,we extend Watanabe's diffusion-controlled onedimensional kinetics model of planar Si oxidation to 2D cylindrical situation by introducing the concept of a finite reactive region and further considering the effects of reaction induced compressive stress on the oxidation rate in the finite region.The developed model can be easily applied to nanowires of smaller dimensions withoutnumericaldifficulty.Good agreement between the predictions given by the present model and the 2D Deal-Grove model and the experiential results of Siand WNWs implies that the predictions ofreaction and diffusion based models may be similar for certain systems.In addition,the experimentally observed curvature and temperature dependent oxidation behavior of nanowires is also predicted.The developed model allows us to quantify nanowires oxidation kinetics and may facilitate the optimization of 2D nanostructure fabrication via thermal oxidation processes.

    Acknowledgments

    The authors are grateful for the financial support of this work by the National Natural Science Foundation of China(11472149), and the Tsinghua University Initiative Scientific Research Program (2014z22074).Discussion ofthe numericalmethod for the implicit model with Pier-Francesco Fazzini is greatly appreciated.

    [1]Y.Cui,C.M.Lieber,Functionalnanoscale electronic devices assembled using silicon nanowire building blocks,Science 291(2001)851-853.

    [2]O.Hayden,A.B.Greytak,D.C.Bell,Core-shellnanowire light-emitting diodes, Adv.Mater.17(2005)701-704.

    [3]S.L.Wu,T.Zhang,R.T.Zheng,et al.,Photoelectrochemicalresponses of silicon nanowire arrays for lightdetection,Chem.Phys.Lett.538(2012)102-107.

    [4]K.Q.Peng,X.Wang,L.Li,et al.,Silicon nanowires for advanced energy conversion and storage,Nano Today 8(2013)75-97.

    [5]F.Q.Yang,Entropy change-induced elastic softening of lithiated materials, Theor.Appl.Mech.Lett.5(2015)255-257.

    [6]R.B.Marcus,T.T.Sheng,The oxidation of shaped silicon surfaces, J.Electrochem.Soc.129(1982)1278-1282.

    [7]X.Zhao,C.M.Wei,L.Yang,et al.,Quantum confinement and electronic properties ofsilicon nanowires,Phys.Rev.Lett.92(2004)236805.

    [8]F.-J.Ma,S.C.Rustagi,G.S.Samudra,etal.,Modeling ofstress-retarded thermal oxidation of nonplanar silicon structures for realization of nanoscale devices, IEEE Electron Device Lett.31(2010)719-721.

    [9]L.Han,M.Zeman,A.H.M.Smets,Size control,quantum confinement,and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermalplasma,Appl.Phys.Lett.106(2015)213106.

    [10]X.L.Han,G.Larrieu,C.Krzeminski,Modelling and engineering of stress based controlled oxidation effects for silicon nanostructure patterning, Nanotechnology 24(2013)495301.

    [11]J.Fan,R.Huang,R.Wang,et al.,Two-dimensionalself-limiting wet oxidation ofsilicon nanowires:experiments and modeling,IEEE Trans.Electron Device 60(2013)2747.

    [12]C.C.Buttner,M.Zacharias,Retarded oxidation of Sinanowires,Appl.Phys.Lett. 89(2006)263106.

    [13]C.D.Krzeminski,X.L.Han,G.Larrieu,Understanding ofthe retarded oxidation effects in silicon nanostructures,Appl.Phys.Lett.100(2012)263111.

    [14]H.I.Liu,D.K.Biegelsen,N.M.Johnson,et al.,Self-limiting oxidation of Si nanowires,J.Vac.Sci.Technol.B 11(1993)2532-2537.

    [15]H.I.Liu,D.K.Biegelsen,F.A.Ponce,etal.,Self-limiting oxidation for fabricating sub-5 nm silicon nanowires,Appl.Phys.Lett.64(1994)1383-1385.

    [16]D.Shir,B.Z.Liu,A.M.Mohammad,et al.,Oxidation ofsilicon nanowires,J.Vac. Sci.Technol.B 24(2006)1333-1336.

    [17]L.Vaccaro,R.Popescu,F.Messina,et al.,Self-limiting and complete oxidation ofsilicon nanostructures produced by laserablation in water,J.Appl.Phys.120 (2016)024303.

    [18]P.F.Fazzini,C.Bonafos,A.Claverie,etal.,Modeling stressretarded self-limiting oxidation of suspended silicon nanowires for the development of silicon nanowire-based nanodevices,J.Appl.Phys.110(2011)033524.

    [19]L.Li,Y.Fang,C.Xu,etal.,Fabricating vertically aligned sub-20 nm Sinanowire arrays by chemicaletching and thermaloxidation,Nanotechnology 27(2016) 165303.

    [20]B.E.Deal,A.S.Grove,Generalrelationship for the thermaloxidation of silicon, J.Appl.Phys.36(1965)3770-3778.

    [21]D.B.Kao,J.P.McVittie,W.D.Nix,etal.,Two-dimensionalthermaloxidation of silicon-I.Experiments,IEEE Trans.Electr.Dev.34(1987)1008-1017.

    [22]R.Okada,S.Iijima,Oxidation property of silicon small particles,Appl.Phys. Lett.58(1991)1662-1663.

    [23]D.B.Kao,J.P.McVittie,W.D.Nix,etal.,Two-dimensionalthermaloxidation of silicon-II.Modeling stress effects in wet oxides,IEEE Trans.Electron Device 35(1988)25-37.

    [24]H.Coffin,C.Bonafos,S.Schamm,et al.,Oxidation of Sinanocrystals fabricated by ultralow-energy ion implantation in thin SiO2layers,J.Appl.Phys.99(2006) 044302.

    [25]A.Bongiorno,A.Pasquarello,Reaction ofthe oxygen molecule at the Si(100)-SiO2interface during silicon oxidation,Phys.Rev.Lett.93(2004)086102.

    [26]T.Watanabe,K.Tatsumura,I.Ohdomari,SiO2/Si interface structure and its formation studied by large-scale molecular dynamics simulation,Appl.Surf. Sci.237(2004)125-133.

    [27]N.Awaji,Y.Sugita,Y.Horii,etal.,In situ observation ofepitaxialmicrocrystals in thermally grown SiO2on Si(100),Appl.Phys.Lett.74(1999)2669-2671.

    [28]T.Watanabe,K.Tatsumura,I.Ohdomari,New linear-parabolic rate equation for thermaloxidation ofsilicon,Phys.Rev.Lett.96(2006)196102.

    [29]H.Cui,Y.Sun,G.Z.Yang,et al.,Size-dependent oxidation behavior for the anomalous initial thermaloxidation process of Si,Appl.Phys.Lett.94(2009) 083108.

    [30]H.Cui,C.X.Wang,G.W.Yang,Origin ofself-limiting oxidation of Sinanowires, Nano Lett.8(2008)2731-2737.

    [31]L.C.Ciacchi,M.C.Payne,First-principles molecular-dynamics study of native oxide growth on Si(001),Phys.Rev.Lett.95(2005)196101.

    [32]M.A.Pamungkas,M.Joe,B.H.Kim,et al.,Reactive molecular dynamics simulation ofearly stage ofdry oxidation of Si(100)surface,J.Appl.Phys.110 (2011)053513.

    [33]S.Dumpala,S.R.Broderick,U.Khalilov,et al.,Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation,Appl.Phys.Lett.106(2015)011602.

    [34]J.Thangala,S.Vaddiraju,R.Bogale,et al.,Large-scale,hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires, Small3(2007)890-896.

    [35]A.Pasquarello,M.S.Hybertsen,R.Car,Interface structure between silicon and its oxide by first-principles molecular dynamics,Nature 396(1998)58-60.

    [36]A.Bongiorno,A.Pasquarello,Multiscale modeling ofoxygen diffusion through the oxide during silicon oxidation,Phys.Rev.B 70(2004)195312.

    [37]J.L.Lebowitz,H.Spohn,Microscopic basisfor Fick's lawforself-diffusion,J.Stat. Phys.28(1982)539-556.

    [38]Z.C.Xu,D.Q.Zheng,B.Q.Ai,et al.,Transport diffusion in one dimensional molecular systems:Power law and validity of Fick's law,AIP Adv.5(2015) 107145.

    [39]S.Gubbala,J.Thangala,M.K.Sunkara,Nanowire-basedelectrochromicdevices, Sol.Energy Mater.Sol.Cells 91(2007)813-820.

    [40]K.Zhu,H.He,S.Xie,et al.,Crystalline WO3 nanowires synthesized by templating method,Chem.Phys.Lett.377(2003)317-321.

    [41]Y.Baek,K.Yong,Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder,J.Phys.Chem.C 111 (2007)1213-1218.

    [42]G.F.You,J.T.Thong,Thermaloxidation of polycrystalline tungsten nanowire, J.Appl.Phys.108(2010)094312.

    [43]P.O.Renault,K.F.Badawi,L.Bimbault,et al.,Poisson's ratio measurement in tungsten thin films combining an X-ray diffractometer with in situ tensile tester,Appl.Phys.Lett.73(1998)1952-1954.

    ?Corresponding author.Fax:+86 10 62783488.

    E-mail address:chencq@tsinghua.edu.cn(C.Chen).

    http://dx.doi.org/10.1016/j.taml.2016.08.002

    2095-0349/?2016 The Author(s).Published by Elsevier Ltd on behalfof The Chinese Society of Theoreticaland Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Solid Mechanics

    亚洲午夜理论影院| 亚洲免费av在线视频| 91成年电影在线观看| 亚洲精品中文字幕在线视频| av天堂久久9| 午夜老司机福利片| 电影成人av| 午夜福利欧美成人| 亚洲成国产人片在线观看| 91成年电影在线观看| 韩国精品一区二区三区| 欧美最黄视频在线播放免费 | 中文字幕另类日韩欧美亚洲嫩草| 天堂√8在线中文| 色婷婷久久久亚洲欧美| 色婷婷av一区二区三区视频| 欧美成狂野欧美在线观看| 成人手机av| 久久精品亚洲熟妇少妇任你| 热re99久久国产66热| 日韩国内少妇激情av| av电影中文网址| 亚洲精品成人av观看孕妇| 久久久久久免费高清国产稀缺| 天堂俺去俺来也www色官网| 天天躁夜夜躁狠狠躁躁| 一二三四在线观看免费中文在| 老司机深夜福利视频在线观看| 一级毛片精品| 国产99久久九九免费精品| 成人三级做爰电影| 亚洲成国产人片在线观看| 老司机福利观看| 一级片'在线观看视频| 99久久精品国产亚洲精品| 国产亚洲欧美98| www国产在线视频色| 高清av免费在线| 国产片内射在线| 正在播放国产对白刺激| 国产在线精品亚洲第一网站| 看片在线看免费视频| 欧美最黄视频在线播放免费 | 伊人久久大香线蕉亚洲五| 亚洲伊人色综图| 亚洲第一av免费看| 亚洲精品中文字幕在线视频| 成年版毛片免费区| 91精品国产国语对白视频| 成人18禁在线播放| 91国产中文字幕| 黑丝袜美女国产一区| 婷婷六月久久综合丁香| 精品一区二区三区视频在线观看免费 | 亚洲国产精品sss在线观看 | 亚洲国产精品999在线| av中文乱码字幕在线| 午夜福利欧美成人| 国产精品日韩av在线免费观看 | 99国产精品一区二区蜜桃av| 极品教师在线免费播放| 黄片小视频在线播放| 国产成年人精品一区二区 | 亚洲中文日韩欧美视频| 国产亚洲精品一区二区www| 在线观看舔阴道视频| 欧美乱色亚洲激情| 一本大道久久a久久精品| 欧美 亚洲 国产 日韩一| 免费日韩欧美在线观看| 美女国产高潮福利片在线看| 亚洲欧美日韩另类电影网站| 日韩精品青青久久久久久| 波多野结衣高清无吗| av视频免费观看在线观看| 丰满的人妻完整版| 19禁男女啪啪无遮挡网站| 99国产综合亚洲精品| 久久精品国产清高在天天线| 丰满的人妻完整版| 午夜a级毛片| 日韩 欧美 亚洲 中文字幕| 国产高清激情床上av| 一区福利在线观看| 精品国产美女av久久久久小说| 国产精品一区二区三区四区久久 | 最新在线观看一区二区三区| 国产97色在线日韩免费| 中出人妻视频一区二区| 精品午夜福利视频在线观看一区| 校园春色视频在线观看| 免费在线观看日本一区| 国产精品野战在线观看 | 美女高潮到喷水免费观看| 国产一区二区在线av高清观看| 国产黄a三级三级三级人| 视频区欧美日本亚洲| 成在线人永久免费视频| 免费观看人在逋| 日韩欧美免费精品| 交换朋友夫妻互换小说| 99国产精品一区二区蜜桃av| 午夜a级毛片| 麻豆久久精品国产亚洲av | 精品乱码久久久久久99久播| 久久精品国产亚洲av香蕉五月| 精品少妇一区二区三区视频日本电影| 欧美精品啪啪一区二区三区| 久久人人爽av亚洲精品天堂| 多毛熟女@视频| 欧美色视频一区免费| 老司机午夜十八禁免费视频| 成人国语在线视频| 色尼玛亚洲综合影院| 精品一区二区三区av网在线观看| 精品国内亚洲2022精品成人| 欧美乱码精品一区二区三区| 岛国在线观看网站| 麻豆久久精品国产亚洲av | 91国产中文字幕| 人人妻人人澡人人看| 老司机午夜福利在线观看视频| 日本三级黄在线观看| av天堂久久9| 在线十欧美十亚洲十日本专区| 中文亚洲av片在线观看爽| 欧美日韩瑟瑟在线播放| 欧美一区二区精品小视频在线| 国产蜜桃级精品一区二区三区| 亚洲熟妇熟女久久| 丝袜美腿诱惑在线| 女警被强在线播放| 亚洲男人的天堂狠狠| 亚洲自偷自拍图片 自拍| 国产成人欧美| 一a级毛片在线观看| 久久久国产精品麻豆| 最近最新中文字幕大全免费视频| 在线看a的网站| 一区二区三区精品91| 无人区码免费观看不卡| 亚洲精品国产一区二区精华液| 两个人看的免费小视频| 欧美成人免费av一区二区三区| 黄色毛片三级朝国网站| 一本综合久久免费| 欧美日韩av久久| 黄色成人免费大全| 老司机在亚洲福利影院| 久久香蕉精品热| av免费在线观看网站| 成年版毛片免费区| 在线观看66精品国产| 免费在线观看影片大全网站| 精品久久久久久,| 中文字幕人妻丝袜一区二区| 久久99一区二区三区| 亚洲国产欧美一区二区综合| 女人精品久久久久毛片| 美女福利国产在线| 国产精品一区二区精品视频观看| 老司机亚洲免费影院| 亚洲专区国产一区二区| 一边摸一边做爽爽视频免费| 亚洲专区国产一区二区| 亚洲欧美精品综合一区二区三区| 日韩精品中文字幕看吧| 一本综合久久免费| 欧美精品啪啪一区二区三区| 欧美激情久久久久久爽电影 | 女人精品久久久久毛片| 成年女人毛片免费观看观看9| 首页视频小说图片口味搜索| 日韩欧美在线二视频| 丰满人妻熟妇乱又伦精品不卡| 精品第一国产精品| 亚洲欧美激情在线| 久久精品国产亚洲av香蕉五月| 日本免费a在线| www.www免费av| 成年女人毛片免费观看观看9| 久久热在线av| 看片在线看免费视频| 久热爱精品视频在线9| 男人舔女人的私密视频| 嫩草影视91久久| 亚洲国产看品久久| 国产三级黄色录像| 这个男人来自地球电影免费观看| 国产区一区二久久| 国产高清videossex| 99国产精品一区二区三区| 12—13女人毛片做爰片一| 久久天堂一区二区三区四区| 天堂中文最新版在线下载| 操出白浆在线播放| √禁漫天堂资源中文www| 怎么达到女性高潮| 中文字幕精品免费在线观看视频| 久久青草综合色| 亚洲专区字幕在线| 精品一区二区三区视频在线观看免费 | 国产精品免费视频内射| 三上悠亚av全集在线观看| 久热这里只有精品99| 国产免费现黄频在线看| 男人的好看免费观看在线视频 | 最近最新中文字幕大全电影3 | 国产一卡二卡三卡精品| 日本免费a在线| 黄色片一级片一级黄色片| 成人亚洲精品av一区二区 | 自线自在国产av| 亚洲国产看品久久| 久久人妻熟女aⅴ| 1024视频免费在线观看| 午夜福利在线免费观看网站| av在线天堂中文字幕 | www国产在线视频色| 久久久精品国产亚洲av高清涩受| 18禁黄网站禁片午夜丰满| 日本一区二区免费在线视频| 午夜成年电影在线免费观看| xxxhd国产人妻xxx| 一级黄色大片毛片| 99re在线观看精品视频| 精品免费久久久久久久清纯| aaaaa片日本免费| av天堂久久9| 侵犯人妻中文字幕一二三四区| 不卡一级毛片| 午夜a级毛片| 亚洲欧美一区二区三区黑人| 99热国产这里只有精品6| av网站在线播放免费| 看片在线看免费视频| 日本黄色视频三级网站网址| 国产一区二区三区视频了| 国产男靠女视频免费网站| 精品人妻在线不人妻| 嫩草影院精品99| 精品一区二区三区四区五区乱码| 亚洲 欧美一区二区三区| 妹子高潮喷水视频| 欧美av亚洲av综合av国产av| 国产主播在线观看一区二区| 亚洲精品美女久久久久99蜜臀| 黄频高清免费视频| 一级片免费观看大全| 午夜精品久久久久久毛片777| 91麻豆av在线| 脱女人内裤的视频| 亚洲欧美激情在线| 妹子高潮喷水视频| 国产精品香港三级国产av潘金莲| 久久精品人人爽人人爽视色| 免费看十八禁软件| 亚洲精品国产色婷婷电影| 又紧又爽又黄一区二区| 丰满的人妻完整版| 久久午夜亚洲精品久久| 成人18禁在线播放| 国产精品免费视频内射| 欧美午夜高清在线| 一级,二级,三级黄色视频| 日韩欧美在线二视频| 亚洲人成网站在线播放欧美日韩| 亚洲视频免费观看视频| 亚洲一码二码三码区别大吗| 欧美日韩视频精品一区| 久久久久精品国产欧美久久久| 老司机深夜福利视频在线观看| 女人高潮潮喷娇喘18禁视频| 久久久精品欧美日韩精品| 很黄的视频免费| 国产精品一区二区免费欧美| 老司机在亚洲福利影院| 亚洲国产看品久久| 男女之事视频高清在线观看| 久久精品国产99精品国产亚洲性色 | 欧美性长视频在线观看| 天天躁夜夜躁狠狠躁躁| 国产av精品麻豆| 久久这里只有精品19| 国产亚洲精品综合一区在线观看 | av欧美777| 亚洲精品国产精品久久久不卡| 日日干狠狠操夜夜爽| 在线视频色国产色| 女生性感内裤真人,穿戴方法视频| a级毛片在线看网站| 亚洲人成电影免费在线| 亚洲情色 制服丝袜| 亚洲欧美一区二区三区久久| 欧美日韩精品网址| 国产三级在线视频| 美女高潮喷水抽搐中文字幕| 亚洲精品国产精品久久久不卡| 十八禁人妻一区二区| 精品无人区乱码1区二区| www.精华液| 高清欧美精品videossex| 老熟妇仑乱视频hdxx| 亚洲久久久国产精品| 日韩人妻精品一区2区三区| 久久天躁狠狠躁夜夜2o2o| av网站在线播放免费| www日本在线高清视频| 欧美日韩亚洲高清精品| 十八禁网站免费在线| 女警被强在线播放| 国产亚洲精品一区二区www| 在线视频色国产色| 一级片免费观看大全| 欧美久久黑人一区二区| 久久精品91蜜桃| 国产成年人精品一区二区 | 在线观看舔阴道视频| 日本黄色视频三级网站网址| 精品一区二区三卡| 久久99一区二区三区| 久久久久国产一级毛片高清牌| 色婷婷久久久亚洲欧美| 日本 av在线| 国产极品粉嫩免费观看在线| 国产97色在线日韩免费| 无限看片的www在线观看| 午夜福利一区二区在线看| 国产精品偷伦视频观看了| 99精品在免费线老司机午夜| 成人av一区二区三区在线看| 在线天堂中文资源库| 国产亚洲欧美98| 岛国在线观看网站| 国产av一区二区精品久久| a在线观看视频网站| 怎么达到女性高潮| 婷婷精品国产亚洲av在线| 91av网站免费观看| 老司机福利观看| 国产精品免费视频内射| 日本精品一区二区三区蜜桃| 99热国产这里只有精品6| 国产成+人综合+亚洲专区| 在线观看一区二区三区激情| 精品福利永久在线观看| 级片在线观看| 热re99久久国产66热| 国产精品1区2区在线观看.| 亚洲国产毛片av蜜桃av| 深夜精品福利| 又大又爽又粗| 国产精品秋霞免费鲁丝片| 精品久久久久久久久久免费视频 | 亚洲精品一区av在线观看| 国产成人精品在线电影| 在线观看日韩欧美| 色播在线永久视频| 久久狼人影院| 在线观看免费日韩欧美大片| 日日爽夜夜爽网站| 男女午夜视频在线观看| 欧美成人性av电影在线观看| av天堂久久9| 久久久久久人人人人人| 欧美激情高清一区二区三区| 亚洲成国产人片在线观看| 午夜激情av网站| 亚洲成av片中文字幕在线观看| 黄色片一级片一级黄色片| 美国免费a级毛片| 国产高清激情床上av| 亚洲人成电影观看| svipshipincom国产片| 久久香蕉精品热| 99精品欧美一区二区三区四区| 久久久久久久午夜电影 | 亚洲午夜精品一区,二区,三区| 色在线成人网| 狠狠狠狠99中文字幕| 国产成人欧美在线观看| 午夜91福利影院| 久久人人精品亚洲av| 日本a在线网址| 免费久久久久久久精品成人欧美视频| 亚洲中文日韩欧美视频| 免费看a级黄色片| 亚洲狠狠婷婷综合久久图片| 欧美丝袜亚洲另类 | 老司机深夜福利视频在线观看| 国产av一区二区精品久久| 午夜精品久久久久久毛片777| 国产成+人综合+亚洲专区| 1024香蕉在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲在线自拍视频| 麻豆成人av在线观看| 国产精品日韩av在线免费观看 | 99久久综合精品五月天人人| 亚洲欧美一区二区三区久久| 国产av一区二区精品久久| 女警被强在线播放| 亚洲一区中文字幕在线| 午夜免费观看网址| 午夜精品在线福利| 色综合婷婷激情| 一进一出好大好爽视频| 久久精品亚洲av国产电影网| 黑人操中国人逼视频| 两个人免费观看高清视频| 成人手机av| 岛国在线观看网站| 1024香蕉在线观看| 国产精品秋霞免费鲁丝片| 一二三四在线观看免费中文在| 日韩视频一区二区在线观看| 日韩欧美在线二视频| 999久久久国产精品视频| 欧美在线一区亚洲| 啦啦啦在线免费观看视频4| 国产不卡一卡二| 99香蕉大伊视频| 啦啦啦在线免费观看视频4| 最好的美女福利视频网| 亚洲一码二码三码区别大吗| 午夜久久久在线观看| 久久国产精品影院| 五月开心婷婷网| 精品久久久久久电影网| 日韩精品中文字幕看吧| 日韩欧美三级三区| bbb黄色大片| 亚洲va日本ⅴa欧美va伊人久久| 国产av一区二区精品久久| 久久精品亚洲av国产电影网| 国产1区2区3区精品| 色在线成人网| 视频在线观看一区二区三区| 少妇的丰满在线观看| 久久国产精品影院| 亚洲精品美女久久久久99蜜臀| aaaaa片日本免费| 一边摸一边抽搐一进一出视频| 午夜a级毛片| 久久久国产成人免费| 亚洲自偷自拍图片 自拍| 精品国产一区二区三区四区第35| 男人的好看免费观看在线视频 | 国产av一区在线观看免费| 乱人伦中国视频| 1024视频免费在线观看| 99精品在免费线老司机午夜| 新久久久久国产一级毛片| 视频在线观看一区二区三区| 免费在线观看影片大全网站| 黑人猛操日本美女一级片| 亚洲 国产 在线| 视频在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 亚洲片人在线观看| 老司机午夜十八禁免费视频| 欧美日韩精品网址| 国产精品自产拍在线观看55亚洲| 久久午夜综合久久蜜桃| 亚洲全国av大片| av超薄肉色丝袜交足视频| 搡老熟女国产l中国老女人| 亚洲男人天堂网一区| 首页视频小说图片口味搜索| 午夜激情av网站| 在线永久观看黄色视频| 欧美成狂野欧美在线观看| bbb黄色大片| 亚洲精品av麻豆狂野| 宅男免费午夜| 久久中文字幕一级| 在线av久久热| 水蜜桃什么品种好| 国产成年人精品一区二区 | 久久香蕉精品热| 淫秽高清视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 欧美成人午夜精品| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久久久中文| 91精品三级在线观看| 熟女少妇亚洲综合色aaa.| 国产av在哪里看| 久久性视频一级片| 欧美日韩精品网址| 少妇裸体淫交视频免费看高清 | 制服诱惑二区| 亚洲专区国产一区二区| 一级a爱片免费观看的视频| 大香蕉久久成人网| 岛国在线观看网站| 美女高潮到喷水免费观看| 最新美女视频免费是黄的| 久久人人97超碰香蕉20202| 18禁美女被吸乳视频| 伦理电影免费视频| 波多野结衣av一区二区av| 久久久国产成人免费| 不卡av一区二区三区| 国产成人精品在线电影| xxx96com| 在线观看一区二区三区激情| 久99久视频精品免费| 亚洲欧美激情在线| 高清黄色对白视频在线免费看| 久久 成人 亚洲| 一进一出抽搐gif免费好疼 | 免费观看精品视频网站| 午夜福利一区二区在线看| av网站在线播放免费| 国产男靠女视频免费网站| tocl精华| 久久久久久免费高清国产稀缺| 亚洲欧美一区二区三区黑人| 国产熟女xx| 国产精品爽爽va在线观看网站 | 少妇粗大呻吟视频| www.www免费av| 在线观看66精品国产| 天天添夜夜摸| 两人在一起打扑克的视频| av免费在线观看网站| 俄罗斯特黄特色一大片| 黄色怎么调成土黄色| 深夜精品福利| 国产高清国产精品国产三级| 在线观看一区二区三区| 狠狠狠狠99中文字幕| 成人18禁高潮啪啪吃奶动态图| 亚洲国产毛片av蜜桃av| 一进一出抽搐动态| 亚洲一区二区三区色噜噜 | 美女扒开内裤让男人捅视频| 亚洲伊人色综图| 国产欧美日韩综合在线一区二区| 天堂俺去俺来也www色官网| 一夜夜www| 国产激情欧美一区二区| 亚洲成av片中文字幕在线观看| 国产日韩一区二区三区精品不卡| 免费少妇av软件| 免费在线观看黄色视频的| 国产高清视频在线播放一区| 麻豆国产av国片精品| 12—13女人毛片做爰片一| 亚洲人成电影观看| 亚洲欧美激情在线| 国产一区二区三区在线臀色熟女 | 婷婷精品国产亚洲av在线| 十八禁人妻一区二区| 欧美日韩瑟瑟在线播放| 国产成人系列免费观看| 成年人黄色毛片网站| 欧美精品亚洲一区二区| 国产av精品麻豆| 热re99久久国产66热| 黄色视频不卡| 9色porny在线观看| 一进一出好大好爽视频| 日韩欧美在线二视频| 国产成人系列免费观看| 国产精品秋霞免费鲁丝片| 成人av一区二区三区在线看| 久久天躁狠狠躁夜夜2o2o| 曰老女人黄片| 天堂中文最新版在线下载| 欧美乱码精品一区二区三区| 露出奶头的视频| 中文亚洲av片在线观看爽| 亚洲欧美一区二区三区黑人| 99久久99久久久精品蜜桃| 久久久国产精品麻豆| 久久国产亚洲av麻豆专区| 国产精品一区二区三区四区久久 | 亚洲专区字幕在线| 90打野战视频偷拍视频| 真人做人爱边吃奶动态| 国产一区二区在线av高清观看| 国产激情欧美一区二区| 久久精品人人爽人人爽视色| 国产精品电影一区二区三区| www.999成人在线观看| 国产成人av激情在线播放| 亚洲熟妇中文字幕五十中出 | 美女午夜性视频免费| 国产精品 欧美亚洲| 少妇被粗大的猛进出69影院| 天堂影院成人在线观看| 在线永久观看黄色视频| 久久午夜综合久久蜜桃| 国产一区二区激情短视频| 国产免费男女视频| 又大又爽又粗| 悠悠久久av| 日韩一卡2卡3卡4卡2021年| 曰老女人黄片| av有码第一页| 搡老熟女国产l中国老女人| 香蕉丝袜av| 久久精品亚洲精品国产色婷小说| 性色av乱码一区二区三区2| 一本大道久久a久久精品| av网站免费在线观看视频| 夜夜看夜夜爽夜夜摸 | 精品第一国产精品| 美女高潮到喷水免费观看| 成人永久免费在线观看视频| 一个人观看的视频www高清免费观看 | 免费高清在线观看日韩| 激情在线观看视频在线高清|