• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable Magnetic-Resistance for Topological Insulator Thin Film Modulated by a FM/N/FM Junction

    2016-12-23 05:44:05LIUYuZHOUXiaoyingZHOUGuanghui
    關(guān)鍵詞:信息科學(xué)絕緣體鐵磁

    LIU Yu, ZHOU Xiao-ying, ZHOU Guang-hui

    (1. College of Information Science and Engineering, Hunan First Normal University, Changsha 410205; 2. College of Physics and Information Sciences, Hunan Normal University, Changsha 410081, China)

    ?

    Tunable Magnetic-Resistance for Topological Insulator Thin Film Modulated by a FM/N/FM Junction

    LIU Yu1, ZHOU Xiao-ying2, ZHOU Guang-hui2*

    (1. College of Information Science and Engineering, Hunan First Normal University, Changsha 410205; 2. College of Physics and Information Sciences, Hunan Normal University, Changsha 410081, China)

    The quantum transport for a topological insulator thin film was studied by a ferromagnet/normal/ferromagnet junction with a gate voltage exert on the normal segment. A quantum phase transition occurs due to the competition between the exchange field and the hybridization gap. The conductance for the junction behaves like a conventional spin valve without gate-voltage applied and can be tuned like a spin field-effect transistor via the gate-voltage. Interestingly, a conductance plateau is emerged when the exchange field is twice of the hybridization gap in the absence of voltage. Further, the magnetic-resistance ratio can be up to 100%, and can also be negative due to the anomalous transport.

    topological insulator film; ferromagnet/normal/ferromagnet junction; surface state transport

    Topological insulators (TIs)[1], possess of unusual phases of quantum matter simultaneously with insulating bulk and conducting edge or surface states, have been extensively studied in recent years[2]. The two-dimensional (2D) TI phase was firstly predicted in a HgTe quantum well[3]and observed by the followed transport measurements[4]. Thereafter, Bi2Se3family of materials have been proposed[5]as three-dimensional (3D) strong TIs. And the single Dirac cone of surface states has been observed by the followed spin- and angle-resolved photoemission spectroscopy measurements[6-7]for Bi2Se3and Bi2Te3, respectively. These results have revealed that electron spins on the surface Dirac cone are locked with their momenta, giving rise to helical Dirac fermions without spin degeneracy[5-7]. The locking of the electron spin to the momentum comes from a combination of strong spin-orbit interaction and the breaking of the inversion symmetry at the surface[5]. Such a spin texture on the surface Dirac cone leads to antilocalization property and plays a central role in inducing exotic quantum phenomena. Moreover, surface states are protected by the time-reversal symmetry[8]and the topology of the bulk gap, and are robust against disorder scattering[9]and electron-electron interactions[10].

    Furthermore, 3D TI thin films have been extensively investigated theoretically[11-12]and experimentally[13-14]due to their quite different nature from that with a single surface. Recently, two effective Hamiltonians[11,15]were proposed to describe low energy electrons for 3D TI thin film. Consequently, various interesting properties of 3D TI thin films have been predicted, particularly those relevant to quantum Hall effect[16], Landau levels[15,17], quantum phase transitions[18-20], magnetic-resistive effect[21]and electron-electron interaction[22], etc. However, unlike the 3D TI single surface state, less attention has been paid to theoretical investigation on transport property modulated by ferromagnetic (FM) stripes. It is known that the top and bottom surfaces of a 3D TI thin film are hybridized. When the Fermi level is in the hybridization gap, exotic property such as quantum phase transition may appear[18-20], which is really distinct with single surface states[23-27]. Moreover, such a promising material is vital for device designing in nanoelectronics and spintronics. Therefore, the transport property for 3D TI thin film modulated by FM stripes is an important issue.

    In this work, we study the electronic structure and transport for a 3D TI thin film modulated by a ferromagnet/normal/ferromagnet (FM/N/FM) junction with the exchange filed configuration only in thezdirection and a gate voltage on the normal metal segment. A quantum phase transition occurs when the exchange field is equal to the hybridization gap of the film. Normalized conductance is calculated for two phases with the gate is present or absent. We demonstrate that the conductance for the junction behave like a conventional spin value when no gate-voltage applied and can be tuned like a spin field transistor via the gate-voltage. Interestingly, a conductance platform emerged when the exchange field is twice of the hybridization gap with no voltage applied. Furthermore, the magnetic-resistance ratio can be up to 100%, and can also be negative due to the anomalous transport.

    The organization of this paper is as follows. In Sec.Ⅰ, we explain the Hamiltonian and present the theoretical formulism for the system. In Sec.Ⅱ, we give some numerical examples with discussions for the analytical calculation. Sec.Ⅲ summarizes our results briefly.

    1 Model and Hamiltonian

    Fig.1 (Color online) (a) Schematic illustration of a 3D TI thin film attached by a FM/N/FM junction, where a gate voltage on the normal metal segment is presented

    As shown in Fig.1, we consider a FM/N/FM junction on the surface of a 3D TI thin film with a voltage exerted in the central normal region. The bulk ferromagnetic insulators interacts with electrons in the TI film by the proximity, and the ferromagnetism is induced in two surfaces states[23-27]. The interfaces between ferromagnet (FM) and normal segment are parallel to theydirection, and the normal segment is located betweenx=0 andx=Lwith gate voltageV0exerted on it and we presume the distance between two interfaces is shorter than the mean-free path as well as the spin coherence length for simplicity.

    According to the effective low-energy surface Hamiltonian for a clean 3D TI thin film[15], the Hamiltonian for our system reads

    (1)

    Fig.2 (Color online) Energy (in units of E0) spectrum for a 3D TI thin film with (a) Δt=1, mi=0, Vo=0, (b) Δt=1, mi=0, Vo=-1, (c) Δt=1, mi=1, Vo=0, (d) Δt=1, mi=2, Vo=0. In (a) and (b) the (black) dashed line is for spin-up and (red) solid line for spin-down electrons, respectively, but the slid/dashed line for conduction/valence band in (c) and (d).

    In Fig.2, for more intuitive comprehension, the energy (in units ofE0) dispersions in different cases are plotted for the system according to Eq.(2). For a clean film, as seen in Fig.2(a), the energy is degenerated for two spin orientations with a gapΔ=2Δtbetween conduction and valence bands. However, when a gate-voltage is applied both the conduction and valence bands are shifted down form the Fermi level but the degeneracy is still kept [see Fig.2(b)]. Furthermore, when an exchange field is presented, unlike the single surface states[24-26], an interesting spectrum feature emerged: the energy is spilt into four branches and a quantum phase transition occur due to the competition between the exchange field and hybridiztion. As shown in Figs. 2(c) and 2(d), in this case the thin film is conducting whenmi(t)=Δtand semiconducting with a gap Δ=2|mi(t)-Δt|, which has been well explained in Ref.[20].

    In order to investigate the transport property for 3D TI thin film modulated by the junction. We now calculate the charge transmission for the system. The thin film is divided into three regions as shown in Fig.1. In the incoming region, the wave function is

    (2)

    Inthecentralregionwhereagate-voltageisexerted,thewavefunctionis

    (3)

    wherea(b) is the left (right) going wave amplitude,kx/yis the wavevetor andky=qyfor the momentum conservation in the y direction. IfE=V0+sΔt,

    (4)

    Andthewavefunctioninthetransmittingregionis[31]

    (5)

    wheretis the transmission coefficient,Px/yis the wavevetor andpy=kyfor the momentum conservation in theydirection. Therefore, the transmission probability can express as

    (6)

    Inordertocalculatethetransmissionprobability,weapplythecontinuityconditionsforwavefunctionsatboundariesbetweendifferentregions: ψi(0,y)=ψc(0,y)andψc(L,y)=ψt(L,y).Unlikethesecond-orderderivativeSchr?dingerequation,oneonlyneedstomatchthewavefunctionbutnotitsderivative,becausetheHamiltonianemployedhereisafirst-orderlyderivative.ThenwecanobtainthetransmissionprobabilityT(E,θ).Inthispaper,weinvestigatetransportpropertiesforthestateassociatewiths=-1foritsinterestingbandstructure.Asaresult,accordingtotheLandauer-Büttikerformula[32],itisstraightforwardtoobtaintheballisticconductanceatzerotemperature

    (7)

    whereG0=2e2/hisconductanceunit.Note,weletmi=mt=moinvalueandparallel(P)oranti-parallel(AP)todistinguishtheorientationoftwoFMstripeslaterforconvenientexplanation.

    2 Numerical Examples and Discussions

    Inwhatfollowsweshowsomenumericalexamplesfora3DTIthinfilmmodulatedbythejunction.

    Fig.3 (Color online) Conductance vs transmitting energy with L=2 (a)Δt=1, V=0, mo=1, (b)Δt=1, V=0,mo=2, (c)Δt=1, V=-4, mo=1, (d)Δt=1, V=-4, mo=2, the blue solid line for parallel conductance GP and the red dashed line for the antiparallel conductance GAP.

    Fig.4 (Color online) Corresponding magnetic-resistance ratio(MR) for Fig.3

    Fig.3presentsthetunnelingconductanceGpandGAPv.s.energywithL=2and(a)Δt=1, V=0, mb=1, (b)Δt=1, V=0, m0=2, (c)Δt=1, V=-4, m0=1, (d)Δt=1, V=-4, m0=2,wherethe(blue)solidlineforparallelconductanceGpandthe(red)dashedlinefortheantiparallelconductanceGAP.Whennogate-voltageapplied,theconductanceinparallelconfigurationisalwayslargethanthatinantiparallelconfigurationasintheconventionalspinvalve[33]anditscounterpartingraphene[34]andtheconductanceisanoscillatedevenfunctionofEwhichmeanselectronsandholescontributetoconductanceequally(seeFig.3(a)and3(b)).InFig.3(a),theparallelconductanceGp(the(blue)solidline)showsanonzeroplatformatsmalltransmittingenergybecauseoftheevanescentwavesthoughatransmissiongap[-1,1]formedinthecentralregion(seeFig.2(a))fortheincomingregionisinmetalphase(seeFig.2(c)),while,theantiparallelconductanceGAP(the(red)dashedline)isvanishedwhenthetunnelingenergylocatesinthetunnelinggap[-2,2]whichisdeterminedbythebandstructureoftransmittingregionaccordingtoEq. (2).Interestingly,inFig.3(b), Gp(the(blue)solidline)isalwaysG0whenelectronenergyishigherthanacriticalvaluewhichseemsquitetooursurprise.Actually,thiscanbeunderstoodasfollow.ForFig.3(c)theFMstripesareinPalignmentwithm0=2andtheincomingregionisinsemiconductorphasewithagapΔ=1,sodothetransmittingregion,andthenormalregionisalsoasemiconductorwithaΔ=1inlinewiththebandstructure(seeFig.2(a)),whicheliminatethedistinguishesinthreedifferentregionsfromtheviewofbandstructureleadingtoaperfectwavfunctionmatchinthreedifferentregions.Moregeneralconclusionisthatwhentheexchangefiledistwiceofthehybridizationgap,thereisnodifferenceinthreedistinctregions,electronsmovefreelywhentheirenergyishigherthanthetunnelinggap.However,itseemsquitedifferentfortheantiparallelconductanceGAP(the(red)dashedline)forthetransmittingregionisanisotropicwiththeothersandtheexplanationissimilarwiththatinFig.3(a).However,whennogate-voltageapplied,theparallelconductanceGpcanbelessthantheantiparallelconductanceGAPwhichissimilarwiththeconductancefeatureinaspin-fieldtransistorandatopologicaljunction[27](seeFigs.3(c)and3(d)).Meanwhile,theconductanceisasymmetrywithtunnelingenergywhichmeanselectronsandholescontributeunequallytoconductanceduetotheasymmetrybandstructureincentralregion(seeFig.2(b)).InFig.3(c),noconductinggapformedforparallelconductanceGpowingtoanegativegate-voltagepushedtheconductingbandbelowtheFermienergy(seeFig.2(a)wesetEF=0).Yet,conductingisalwaysblockedforGAPwhenthetunnelingenergylocatesintheconductinggap[-2,2]determinedbythetransmittingregion.AsforFig.3(d),theconductingfeatureissimilartoFig.3(c)apartfromaconductinggapformedforbothGpandGAP.

    AfterobtainingtheconductanceGP(GAP)fortheparallel(antiparallel)configuration,wecangetthemagneticresistance(MR)directly,whichisdefinedasMR=(GP-GAP)/GP.Fig.4plottedthecorrespondingMRv.s.energyforFig.3.TheMRcanapproach100%inallcasesfordifferentconductinggapinPandAPalignment.Moreover,thegate-voltageinfluencedtheMRgreatlyfortheMRisalwayspositiveandsymmetrywithEwhenthegate-voltageisabsent,however,theMRisasymmetrywithEandcanbenegativeowingtoanomalouselectronictransport[23,26].ThebignegativeMRalsomeansabigvariationinconductancebetweentheparallelandantiparallelconfigurations.OnecanunderstandotherfeaturesaboutMRfromFig.3.

    3 Summary and Conclusion

    Insummary,wehavestudiedtheelectronicstructureandchargetransportforatopologicalinsulatorthinfilmmodulatedbyaferromagnet/normal/ferromagnetjunctionwithagatevoltageexertonthenormalsegment.Aquantumphasetransitionoccursowingtothecompetitionbetweentheexchangefieldandthehybridizationgap.Normalizedconductanceiscalculatedfortwophaseswiththegateispresentorabsent.Wedemonstratethattheconductanceforthejunctionbehavelikeaconventionalspinvaluewhennogate-voltageappliedandcanbetuninglikeaspinfieldtransistorviathegate-voltage.Interestingly,aconductanceplatformemergedwhentheexchangefieldistwiceofthehybridizationgapwithnovoltageapplied.Furthermore,themagnetic-resistanceratiocanbe100%,andcanalsobenegativeduetoanomaloustransport.TheseinterestingfindingsfortheFMmodulatednanostructurebasedonthe3DTIthinfilmmaybetestableinthepresentexperimentaltechnique[7,37],andmayprovideafurtherunderstandingthenatureof3DTIthinfilm.

    [1] KANE C L, MELE E J. A New Spin on the Insulating State [J]. Science, 2006,314(11):1692-1693.

    [2] HASAN M Z, KANE C L. Topological insulators [J]. Rev Mod Phys, 2010,82(1):3045-3057.

    [3] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin hall effect and topological phase transition in HgTe quantum wells [J]. Science, 2006,314(4):1757-1761.

    [4] KONIG M, WIEDMANN S, BRUNE C,etal. Quantum spin hall insulator state in HgTe quantum wells [J]. Science, 2007,318(3):766-770.

    [5] ZHANG H, LIU C X, QI X L,etal. Topological insulators in Bi2Se3and Sb2Te3with a single Dirac cone on the surface [J]. Nature Phys, 2009,5(2):483-442.

    [6] XIA Y, QIAN D, HSIEH D,etal. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface [J]. Nature Phys, 2009,5(2):398-402.

    [7] CHEN Y L, ANALYTIS J G, CHU J H,etal. Experimental realization of a three- dimensional topological insulator Bi2Te3[J]. Science, 2009,325(1):178-181.

    [8] FU L, KANE C L, MELE E J. Topological insulators in three dimensions [J]. Phys Rev Lett, 2007,98(4):106803.

    [9] JIANG H, CHENG S G, SUN Q F,etal. Topological insulator:a new quantized spin hall resistance robust to dephasing [J]. Phys Rev Lett, 2009,103:036803.

    [10] EGGER R, ZAZUNOV A, YEYATI A L. Helical luttinger liquid in topological insulator nanowires [J]. Phys Rev Lett, 2010,105:136403.

    [11] LU H Z, SHAN W Y, YAO W,etal. Massive dirac fermions and spin physics in an ultrathin film of topological insulator [J]. Phys Rew B, 2010,81:115407.

    [12] BIHLMAYER G, KOROTEEV Y M, CHULKOV E V,etal. Surface- and edge-states in ultrathin Bi-Sb films [J]. New J Phys, 2010,12:065006.

    [13] ZHANG Y, HE K, CHANG C Z,etal. Crossover of the three-dimensional topological insulator Bi2Se3to the two-dimensional limit [J]. Nature Phys, 2010,6(4):584-588.

    [14] PLUCINSKI L, MUSSLER G, KRUMRAIN J,etal. Robust surface electronic properties of topological insulators:Bi2Te3films grown by molecular beam epitaxy [J]. Appl Phys Lett, 2011,98:222503.

    [15] ZYUZIN A A, BURKOV A A. Thin topological insulator film in a perpendicular magnetic field [J]. Phys Rev B, 2011,83:195413.

    [16] LI H, SHENG L, XING D Y. Quantum hall effect in thin films of three-dimensional topological insulators [J]. Phys Rev B, 2011,84:035310.

    [17] YANG Z, HAN J H. Landau level states on a topological insulator thin film [J]. Phys Rev B, 2011,83:045415.

    [18] LI H, SHENG L, XING D Y. Quantum phase transitions in ultrathin films of three-dimensional topological insulators in the presence of an electrostatic potential and a Zeeman field [J]. Phys Rev B, 2012,85:045118.

    [19] ZYUZIN A A, HOOK M D, BURKOV A A. Parallel magnetic field driven quantum phase transition in a thin topological insulator film [J]. Phys Rev B, 2011,83:245428.

    [20] CHO G Y, MOORE J E. Quantum phase transition and fractional excitations in a topological insulator thin film with Zeeman and excitonic masses [J]. Phys Rev B, 2011,84:165101.

    [21] ZHANG H B, YU H L, BAO D H,etal. Magnetoresistance swich effect of a Sn-doped Bi2Te3topological insulator [J]. Adv Mater, 2012,24(1):132-136.

    [22] WANG J, DASILVA A M, CHANG C Z,etal. Evidence for electron-electron interaction in topological insulator thin films [J]. Phys Rev B, 2011,83:245438.

    [23] YOKOYAMA T, ZANG J, NAGAOSA N. Theoretical study of the dynamics of magnetization on the topological surface [J]. Phys Rev B, 2010,81:241410(R).

    [24] ZHU J J, YAO D X, ZHANG S C,etal. Electrically controllable surface magnetism on the surface of topological insulators [J]. Phys Rev Lett, 2011,106:097201.

    [25] ZHAI F, WU P. Tunneling transport of electrons on the surface of a topological insulator attached with a spiral multiferroic oxide [J]. Appl Phys Lett, 2011,98:022107.

    [26] WU Z, PEETERS F M, CHANG K. Spin and monentum filtering of electrons on the surface of a topological insulator [J]. Appl Phys Lett, 2011,98:162101.

    [27] ZHANG K H, WANG Z C, ZHENG Q R,etal. Gate-voltage controlled electronic transport through a ferromagnet/normal/ferromagnet junction on the surface of a topological insulator [J]. Phys Rev B, 2012,86:174416(R).

    [28] HAUGEN H, HERNANDO D H, BRATAAS A. Spin transport in proximity-induced ferromagnetic graphene [J]. Phys Rev B, 2008,77:115406.

    [29] CHAKHALIAN J, FREELAND J W, SRAJER G,etal. Magnetism at the interface between ferromagnetic and superconducting oxides [J]. Nature Phys, 2006,2(1):244-248.

    [30] PERSHOGUBA S S, YAKOVENKO V M. Spin-polarized tunneling current through a thin film of a topological insulator in a parallel magnetic field [J]. Phys Rev B, 2012,86:165404(R).

    [31] KATSNELSON M I. Zitterbewegung, chirality, and minimal conductivity in graphene [J]. Eur Phys J B, 2006,51:157-160.

    [32] DATTA S. Electronic transport in mesoscopic systems [M]. Cambridge: Cambridge University Press, 1995.

    [33] ZUTIC I, FABIAN J, SARMA S D. Spintronics: fundamentals and applications [J]. Rev Mod Phys, 2004,76(2):323-410.

    [34] BAI C, ZHANG X. Large oscillating tunnel magnetoresistance in ferromagnetic graphene single tunnel junction [J]. Phys Lett A, 2009,372(3):725-729.

    [35] DATTA S, DAS B. Electroic analog of the electro-optic modulator [J]. Appl Phys Lett, 1990,56(3):665.

    [36] SOODCHOMSHOM B. Magneto transport on the surface of a topological insulator spin valve [J]. Phys Lett A, 2010,374(9):2894-2899.

    [37] PAN Z H, VESCOVO E, FEDOROV A V,etal. Electronic structure of the topological insulator Bi2Se3using angle-resolved photoemission spectroscopy: evidence for a nearly full surface spin polarization [J]. Phys Rev Lett, 2011,106:257004.

    (編輯 CXM)

    2016-09-18

    國(guó)家自然科學(xué)基金資助項(xiàng)目(11274108)

    O441.6

    A

    1000-2537(2016)06-0061-07

    鐵磁/正常/鐵磁結(jié)調(diào)制的拓?fù)浣^緣體薄膜表面輸運(yùn)性質(zhì)

    劉 宇1, 周小英2, 周光輝2*

    (1.湖南第一師范學(xué)院信息科學(xué)與工程學(xué)院, 中國(guó) 長(zhǎng)沙 410205; 2.湖南師范大學(xué)物理與信息科學(xué)學(xué)院, 中國(guó) 長(zhǎng)沙 410081)

    研究了拓?fù)浣^緣體薄膜表面態(tài)在鐵磁/正常/鐵磁結(jié)調(diào)制下的電子自旋相關(guān)輸運(yùn). 發(fā)現(xiàn)由于交換場(chǎng)與雜化帶隙的競(jìng)爭(zhēng)而產(chǎn)生量子相變, 在結(jié)無(wú)門(mén)電壓時(shí)電導(dǎo)行為類(lèi)似于自旋閥, 加門(mén)電壓后為自旋場(chǎng)效應(yīng)管. 有趣的是, 無(wú)門(mén)電壓且交換場(chǎng)能是雜化帶隙的兩倍時(shí)出現(xiàn)一個(gè)電導(dǎo)平臺(tái), 磁阻比率可達(dá)100%.

    拓?fù)浣^緣體薄膜; 鐵磁/正常/鐵磁結(jié); 表面態(tài)輸運(yùn)

    10.7612/j.issn.1000-2537.2016.06.011

    *通訊作者,E-mail:ghzhou@hunnu.edu.cn

    猜你喜歡
    信息科學(xué)絕緣體鐵磁
    關(guān)于兩類(lèi)多分量海森堡鐵磁鏈模型的研究
    多孔位插頭絕緣體注塑模具設(shè)計(jì)分析
    玩具世界(2022年1期)2022-06-05 07:42:20
    山西大同大學(xué)量子信息科學(xué)研究所簡(jiǎn)介
    三元重要不等式的推廣及應(yīng)用
    光電信息科學(xué)與工程專(zhuān)業(yè)模塊化課程設(shè)計(jì)探究
    發(fā)電廠(chǎng)直流系統(tǒng)接地故障分析與處理策略解析
    你好,鐵磁
    基于文獻(xiàn)類(lèi)型矯正影響因子在信息科學(xué)與圖書(shū)館學(xué)期刊中的實(shí)證分析
    你好,鐵磁
    一維交替鐵磁-反鐵磁耦合的海森堡鏈[Mn(N3)2(pybox)]n
    蜜桃在线观看..| 欧美日韩成人在线一区二区| 久久人妻福利社区极品人妻图片| 两个人免费观看高清视频| 国产亚洲av片在线观看秒播厂| 久久精品国产a三级三级三级| 亚洲欧美日韩另类电影网站| 精品福利观看| 日韩免费高清中文字幕av| 国产亚洲精品一区二区www | 国产成人欧美| 妹子高潮喷水视频| 美女视频免费永久观看网站| 婷婷色av中文字幕| 欧美成人午夜精品| av国产精品久久久久影院| 脱女人内裤的视频| 我的亚洲天堂| 我的亚洲天堂| 国精品久久久久久国模美| 脱女人内裤的视频| 大片电影免费在线观看免费| 黄色 视频免费看| 飞空精品影院首页| 亚洲精品乱久久久久久| 国产亚洲欧美精品永久| 国产黄色免费在线视频| 国产福利在线免费观看视频| 欧美精品人与动牲交sv欧美| 成人手机av| 欧美精品一区二区免费开放| 后天国语完整版免费观看| 大香蕉久久成人网| 最新的欧美精品一区二区| 亚洲av日韩在线播放| 国产免费福利视频在线观看| 亚洲国产精品一区二区三区在线| 黄色视频,在线免费观看| 美女高潮到喷水免费观看| 久久国产精品男人的天堂亚洲| av天堂在线播放| 大片免费播放器 马上看| 久久ye,这里只有精品| 国产男人的电影天堂91| 大码成人一级视频| 成人国产av品久久久| 国产亚洲欧美在线一区二区| www.999成人在线观看| www.999成人在线观看| 日韩视频一区二区在线观看| 视频区欧美日本亚洲| 一个人免费在线观看的高清视频 | 亚洲熟女精品中文字幕| 操出白浆在线播放| 后天国语完整版免费观看| 成人黄色视频免费在线看| 免费观看a级毛片全部| 最黄视频免费看| 亚洲欧美成人综合另类久久久| 日韩制服骚丝袜av| 日本wwww免费看| 日韩有码中文字幕| 后天国语完整版免费观看| 日本一区二区免费在线视频| 日本wwww免费看| 国产一区二区在线观看av| 女人精品久久久久毛片| 婷婷丁香在线五月| 久久久久国产一级毛片高清牌| 老司机午夜福利在线观看视频 | 国产精品二区激情视频| 99国产精品免费福利视频| 99国产精品一区二区蜜桃av | 国产一区有黄有色的免费视频| 久久精品aⅴ一区二区三区四区| 久热这里只有精品99| 国产精品久久久人人做人人爽| 深夜精品福利| 一二三四社区在线视频社区8| 91精品三级在线观看| 成人亚洲精品一区在线观看| 少妇裸体淫交视频免费看高清 | 久久热在线av| 免费一级毛片在线播放高清视频 | 久久精品成人免费网站| 亚洲精品自拍成人| 亚洲色图 男人天堂 中文字幕| 三级毛片av免费| 日韩中文字幕视频在线看片| 丰满人妻熟妇乱又伦精品不卡| av国产精品久久久久影院| 天天躁日日躁夜夜躁夜夜| 亚洲欧美精品综合一区二区三区| 午夜视频精品福利| 涩涩av久久男人的天堂| 精品视频人人做人人爽| 亚洲第一青青草原| 免费高清在线观看日韩| 最近最新中文字幕大全免费视频| 桃红色精品国产亚洲av| 大型av网站在线播放| 亚洲五月婷婷丁香| 桃花免费在线播放| 久久久久精品国产欧美久久久 | 日本猛色少妇xxxxx猛交久久| 一级毛片电影观看| 精品国产乱子伦一区二区三区 | 欧美日韩黄片免| 精品久久久精品久久久| 在线十欧美十亚洲十日本专区| 秋霞在线观看毛片| 嫩草影视91久久| 极品少妇高潮喷水抽搐| 日韩视频在线欧美| 欧美黑人欧美精品刺激| 国产成人精品在线电影| 最近最新中文字幕大全免费视频| 久久九九热精品免费| 女人精品久久久久毛片| 欧美精品av麻豆av| 91精品伊人久久大香线蕉| 老司机亚洲免费影院| 黄网站色视频无遮挡免费观看| 在线观看www视频免费| 老熟妇乱子伦视频在线观看 | 日韩视频在线欧美| av视频免费观看在线观看| 人人妻人人爽人人添夜夜欢视频| 岛国毛片在线播放| 亚洲欧美一区二区三区黑人| 麻豆av在线久日| 免费少妇av软件| 午夜福利视频在线观看免费| 在线观看免费视频网站a站| 欧美黑人欧美精品刺激| 久久人妻福利社区极品人妻图片| 男女边摸边吃奶| 日本一区二区免费在线视频| 99久久精品国产亚洲精品| 婷婷丁香在线五月| 久久99热这里只频精品6学生| 亚洲欧美清纯卡通| 建设人人有责人人尽责人人享有的| 亚洲全国av大片| av视频免费观看在线观看| 黄色视频,在线免费观看| 免费人妻精品一区二区三区视频| 桃花免费在线播放| 天堂8中文在线网| 老司机在亚洲福利影院| 男人舔女人的私密视频| 一区二区日韩欧美中文字幕| 久久久国产精品麻豆| 1024视频免费在线观看| 一区二区av电影网| 夫妻午夜视频| 黑人操中国人逼视频| 一级a爱视频在线免费观看| 国产日韩欧美亚洲二区| 久久亚洲国产成人精品v| 亚洲av欧美aⅴ国产| 日韩有码中文字幕| 男女国产视频网站| 一本大道久久a久久精品| 老汉色∧v一级毛片| 成年动漫av网址| 人人妻人人澡人人爽人人夜夜| 麻豆av在线久日| 日本撒尿小便嘘嘘汇集6| 久久久久久久久免费视频了| 我要看黄色一级片免费的| 丰满饥渴人妻一区二区三| 女人高潮潮喷娇喘18禁视频| 亚洲精品美女久久久久99蜜臀| 国产有黄有色有爽视频| 国产精品偷伦视频观看了| 日韩中文字幕视频在线看片| 午夜免费鲁丝| 久久精品国产综合久久久| 九色亚洲精品在线播放| 99国产极品粉嫩在线观看| 久久久久精品人妻al黑| av超薄肉色丝袜交足视频| 少妇人妻久久综合中文| 国产精品一区二区在线不卡| 欧美日韩国产mv在线观看视频| 777久久人妻少妇嫩草av网站| 精品人妻一区二区三区麻豆| 亚洲国产日韩一区二区| av网站免费在线观看视频| 亚洲欧美成人综合另类久久久| 搡老乐熟女国产| 热99国产精品久久久久久7| 亚洲全国av大片| 国产精品久久久人人做人人爽| 亚洲精品中文字幕一二三四区 | 国产欧美日韩综合在线一区二区| 午夜久久久在线观看| av电影中文网址| 午夜精品国产一区二区电影| 少妇被粗大的猛进出69影院| 免费观看av网站的网址| 女警被强在线播放| 黑人欧美特级aaaaaa片| 欧美日韩av久久| 极品少妇高潮喷水抽搐| 久久av网站| 色精品久久人妻99蜜桃| 一区二区av电影网| 亚洲精品国产色婷婷电影| 亚洲专区字幕在线| 老汉色∧v一级毛片| 亚洲av美国av| 精品久久久久久久毛片微露脸 | 黑人欧美特级aaaaaa片| 777久久人妻少妇嫩草av网站| 国产日韩欧美亚洲二区| 19禁男女啪啪无遮挡网站| 亚洲美女黄色视频免费看| 欧美日韩亚洲国产一区二区在线观看 | 后天国语完整版免费观看| 国产精品 欧美亚洲| 无限看片的www在线观看| 伊人久久大香线蕉亚洲五| 欧美黑人欧美精品刺激| 最近最新免费中文字幕在线| 亚洲精品乱久久久久久| 一本综合久久免费| 久久人人97超碰香蕉20202| 亚洲久久久国产精品| 国产成人影院久久av| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇内射三级| 国产无遮挡羞羞视频在线观看| 欧美变态另类bdsm刘玥| 亚洲七黄色美女视频| 日韩一卡2卡3卡4卡2021年| 日日爽夜夜爽网站| 国产日韩欧美视频二区| 亚洲视频免费观看视频| 亚洲国产欧美一区二区综合| 成人国语在线视频| 久久国产亚洲av麻豆专区| 精品国产超薄肉色丝袜足j| 国产主播在线观看一区二区| 乱人伦中国视频| 亚洲国产毛片av蜜桃av| 成在线人永久免费视频| 日韩一卡2卡3卡4卡2021年| 国产成人免费无遮挡视频| 午夜精品国产一区二区电影| 亚洲精品国产精品久久久不卡| 亚洲色图 男人天堂 中文字幕| 淫妇啪啪啪对白视频 | 亚洲少妇的诱惑av| 久久久国产精品麻豆| 18禁黄网站禁片午夜丰满| 91精品伊人久久大香线蕉| 亚洲精品国产av蜜桃| 捣出白浆h1v1| 国产极品粉嫩免费观看在线| 亚洲国产欧美网| 精品亚洲成a人片在线观看| 狠狠狠狠99中文字幕| 亚洲avbb在线观看| 成年人午夜在线观看视频| 日韩电影二区| 满18在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 三级毛片av免费| 亚洲欧洲日产国产| 99久久综合免费| 国产日韩欧美亚洲二区| 叶爱在线成人免费视频播放| 最新在线观看一区二区三区| 精品久久久精品久久久| 亚洲欧美色中文字幕在线| 国产成人精品无人区| 亚洲欧洲日产国产| 九色亚洲精品在线播放| 国产一卡二卡三卡精品| 青草久久国产| 一区二区三区四区激情视频| 久久久久久久国产电影| 欧美激情极品国产一区二区三区| 日本wwww免费看| 精品久久久精品久久久| 亚洲av成人不卡在线观看播放网 | www.熟女人妻精品国产| 国产精品国产三级国产专区5o| 高清视频免费观看一区二区| 国产欧美日韩一区二区精品| 午夜福利视频精品| 三上悠亚av全集在线观看| 国产一区二区激情短视频 | 在线亚洲精品国产二区图片欧美| 色94色欧美一区二区| 久久这里只有精品19| 两性午夜刺激爽爽歪歪视频在线观看 | 一区二区av电影网| 亚洲国产欧美网| 新久久久久国产一级毛片| 丝袜美腿诱惑在线| 美女扒开内裤让男人捅视频| 777久久人妻少妇嫩草av网站| 蜜桃在线观看..| 18禁黄网站禁片午夜丰满| 国产亚洲精品一区二区www | 啦啦啦在线免费观看视频4| 亚洲全国av大片| 亚洲国产精品一区二区三区在线| 可以免费在线观看a视频的电影网站| 欧美国产精品va在线观看不卡| 亚洲全国av大片| 久久精品人人爽人人爽视色| 日韩制服骚丝袜av| 亚洲精品国产av成人精品| av视频免费观看在线观看| 桃红色精品国产亚洲av| 一区二区三区四区激情视频| 国产亚洲精品第一综合不卡| 51午夜福利影视在线观看| 欧美另类一区| 999精品在线视频| 视频区欧美日本亚洲| 在线av久久热| 国产精品一区二区精品视频观看| 亚洲成人国产一区在线观看| 成年人黄色毛片网站| 99久久综合免费| 午夜福利乱码中文字幕| 波多野结衣一区麻豆| 在线十欧美十亚洲十日本专区| 自线自在国产av| 视频区欧美日本亚洲| 成人三级做爰电影| 亚洲欧美激情在线| 亚洲久久久国产精品| 母亲3免费完整高清在线观看| 国产男女内射视频| 国产精品久久久久久精品电影小说| 久久久久久久国产电影| 成在线人永久免费视频| 黄色片一级片一级黄色片| 午夜福利影视在线免费观看| 日韩电影二区| 久久九九热精品免费| 大片免费播放器 马上看| 天天影视国产精品| 麻豆av在线久日| 真人做人爱边吃奶动态| 无遮挡黄片免费观看| 男女边摸边吃奶| 色视频在线一区二区三区| 999精品在线视频| 国产男女超爽视频在线观看| 老司机福利观看| 午夜两性在线视频| 国产成人精品在线电影| 午夜福利免费观看在线| 国产精品成人在线| 国产成人免费无遮挡视频| 国产真人三级小视频在线观看| 久久精品成人免费网站| 少妇猛男粗大的猛烈进出视频| 久热这里只有精品99| 精品熟女少妇八av免费久了| 国产精品熟女久久久久浪| 91精品三级在线观看| 日韩大片免费观看网站| 亚洲专区国产一区二区| 亚洲国产日韩一区二区| 亚洲精品乱久久久久久| 国产精品99久久99久久久不卡| 欧美激情极品国产一区二区三区| 欧美一级毛片孕妇| 国产精品1区2区在线观看. | 成人手机av| 欧美日韩国产mv在线观看视频| 精品一品国产午夜福利视频| 制服诱惑二区| 国产亚洲精品一区二区www | 天堂8中文在线网| 女人高潮潮喷娇喘18禁视频| 伊人亚洲综合成人网| av国产精品久久久久影院| 国产在线观看jvid| 欧美亚洲 丝袜 人妻 在线| 午夜日韩欧美国产| 久久精品aⅴ一区二区三区四区| 亚洲天堂av无毛| 午夜福利影视在线免费观看| 人妻 亚洲 视频| 欧美日韩一级在线毛片| 欧美性长视频在线观看| 日韩,欧美,国产一区二区三区| 精品欧美一区二区三区在线| 丰满饥渴人妻一区二区三| 最近最新中文字幕大全免费视频| 脱女人内裤的视频| 日本欧美视频一区| 大香蕉久久成人网| 高清欧美精品videossex| 国产91精品成人一区二区三区 | 日本av免费视频播放| 夜夜骑夜夜射夜夜干| 人人妻人人爽人人添夜夜欢视频| 99久久精品国产亚洲精品| 久久人人爽人人片av| 90打野战视频偷拍视频| 丰满迷人的少妇在线观看| 在线观看人妻少妇| 91国产中文字幕| 久久精品国产综合久久久| 欧美午夜高清在线| 性少妇av在线| 国产日韩欧美视频二区| 俄罗斯特黄特色一大片| 欧美国产精品一级二级三级| 丝瓜视频免费看黄片| 亚洲av国产av综合av卡| 咕卡用的链子| 国产精品久久久人人做人人爽| 久久久精品国产亚洲av高清涩受| 亚洲专区国产一区二区| 久久人妻福利社区极品人妻图片| 黄片播放在线免费| 欧美在线黄色| 一区在线观看完整版| 国产精品久久久久久精品电影小说| 大香蕉久久网| 国产男女内射视频| 悠悠久久av| 纵有疾风起免费观看全集完整版| 黄片播放在线免费| 一区福利在线观看| 亚洲国产av影院在线观看| av网站在线播放免费| 国产精品香港三级国产av潘金莲| 久久精品国产亚洲av高清一级| 亚洲精品乱久久久久久| 在线 av 中文字幕| 久久久国产精品麻豆| av天堂久久9| 精品亚洲成国产av| 国产熟女午夜一区二区三区| 欧美激情久久久久久爽电影 | 丝袜在线中文字幕| a级毛片在线看网站| 9191精品国产免费久久| 一本一本久久a久久精品综合妖精| 午夜激情久久久久久久| 丁香六月天网| 最黄视频免费看| 国产精品国产三级国产专区5o| 高清黄色对白视频在线免费看| 丰满少妇做爰视频| 大香蕉久久网| 久久热在线av| 一区福利在线观看| 国产97色在线日韩免费| 亚洲全国av大片| 欧美日韩成人在线一区二区| 精品福利观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久精品精品| 久久久欧美国产精品| 国产精品免费大片| 国产精品久久久av美女十八| 国产一区二区在线观看av| 黄色 视频免费看| 国产黄色免费在线视频| 下体分泌物呈黄色| 美女高潮到喷水免费观看| 久久午夜综合久久蜜桃| 久久精品熟女亚洲av麻豆精品| 桃花免费在线播放| 成人av一区二区三区在线看 | 亚洲精品粉嫩美女一区| 成人影院久久| 啦啦啦免费观看视频1| e午夜精品久久久久久久| 国产精品久久久久久精品古装| 免费看十八禁软件| 曰老女人黄片| 51午夜福利影视在线观看| 大片免费播放器 马上看| 日本精品一区二区三区蜜桃| 国产精品 欧美亚洲| 免费少妇av软件| 首页视频小说图片口味搜索| 极品少妇高潮喷水抽搐| 午夜老司机福利片| 蜜桃国产av成人99| 欧美日韩成人在线一区二区| 亚洲专区国产一区二区| 51午夜福利影视在线观看| 午夜91福利影院| 亚洲av日韩精品久久久久久密| 黄色a级毛片大全视频| kizo精华| 精品一区在线观看国产| 久久亚洲精品不卡| 大片电影免费在线观看免费| 国产在线观看jvid| 夜夜夜夜夜久久久久| 亚洲精品国产av蜜桃| 精品熟女少妇八av免费久了| 国产一级毛片在线| 制服诱惑二区| 老司机靠b影院| 成人黄色视频免费在线看| 日韩中文字幕欧美一区二区| 麻豆av在线久日| 又紧又爽又黄一区二区| 亚洲一码二码三码区别大吗| 一本综合久久免费| 黑丝袜美女国产一区| 91精品国产国语对白视频| 青春草视频在线免费观看| 最新的欧美精品一区二区| 人人妻人人添人人爽欧美一区卜| 悠悠久久av| 国产精品二区激情视频| 亚洲国产欧美一区二区综合| 国产高清videossex| 王馨瑶露胸无遮挡在线观看| 日本黄色日本黄色录像| 午夜免费鲁丝| 国产伦理片在线播放av一区| 久久久久精品国产欧美久久久 | 俄罗斯特黄特色一大片| 99久久综合免费| 欧美激情极品国产一区二区三区| 亚洲情色 制服丝袜| 一区二区日韩欧美中文字幕| 欧美一级毛片孕妇| 少妇精品久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲全国av大片| 三级毛片av免费| 久久精品国产a三级三级三级| 菩萨蛮人人尽说江南好唐韦庄| 午夜免费成人在线视频| 日本wwww免费看| 好男人电影高清在线观看| 日韩一卡2卡3卡4卡2021年| 99国产极品粉嫩在线观看| 精品国产一区二区久久| 亚洲av成人不卡在线观看播放网 | 国产无遮挡羞羞视频在线观看| 日本av免费视频播放| 丝袜在线中文字幕| 日韩有码中文字幕| 999久久久国产精品视频| 人人妻人人澡人人看| av天堂在线播放| 中文字幕色久视频| 黄色 视频免费看| 亚洲人成电影免费在线| 激情视频va一区二区三区| 免费人妻精品一区二区三区视频| 国产无遮挡羞羞视频在线观看| 香蕉国产在线看| 女人被躁到高潮嗷嗷叫费观| 久久久久国内视频| 一级黄色大片毛片| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品古装| 别揉我奶头~嗯~啊~动态视频 | 又大又爽又粗| 黄网站色视频无遮挡免费观看| 国产色视频综合| 欧美日韩亚洲高清精品| 欧美在线一区亚洲| 曰老女人黄片| 亚洲激情五月婷婷啪啪| 亚洲欧美激情在线| 后天国语完整版免费观看| 好男人电影高清在线观看| 亚洲av男天堂| 国产又爽黄色视频| 免费久久久久久久精品成人欧美视频| 在线永久观看黄色视频| av天堂久久9| 日韩三级视频一区二区三区| 91精品国产国语对白视频| 大陆偷拍与自拍| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲国产中文字幕在线视频| 少妇被粗大的猛进出69影院| 久久热在线av| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美日韩高清在线视频 | 色94色欧美一区二区| 国产成+人综合+亚洲专区| 亚洲一码二码三码区别大吗| 亚洲专区国产一区二区| 成年人黄色毛片网站| 国产高清视频在线播放一区 | 亚洲专区中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄| 亚洲第一av免费看| av一本久久久久| 久久久水蜜桃国产精品网| 在线观看舔阴道视频| 久久精品国产亚洲av高清一级| 亚洲欧美精品综合一区二区三区| tocl精华| videos熟女内射| 美女扒开内裤让男人捅视频| 国产不卡av网站在线观看| 一级毛片女人18水好多| 国产精品av久久久久免费|