• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable Magnetic-Resistance for Topological Insulator Thin Film Modulated by a FM/N/FM Junction

    2016-12-23 05:44:05LIUYuZHOUXiaoyingZHOUGuanghui
    關(guān)鍵詞:信息科學(xué)絕緣體鐵磁

    LIU Yu, ZHOU Xiao-ying, ZHOU Guang-hui

    (1. College of Information Science and Engineering, Hunan First Normal University, Changsha 410205; 2. College of Physics and Information Sciences, Hunan Normal University, Changsha 410081, China)

    ?

    Tunable Magnetic-Resistance for Topological Insulator Thin Film Modulated by a FM/N/FM Junction

    LIU Yu1, ZHOU Xiao-ying2, ZHOU Guang-hui2*

    (1. College of Information Science and Engineering, Hunan First Normal University, Changsha 410205; 2. College of Physics and Information Sciences, Hunan Normal University, Changsha 410081, China)

    The quantum transport for a topological insulator thin film was studied by a ferromagnet/normal/ferromagnet junction with a gate voltage exert on the normal segment. A quantum phase transition occurs due to the competition between the exchange field and the hybridization gap. The conductance for the junction behaves like a conventional spin valve without gate-voltage applied and can be tuned like a spin field-effect transistor via the gate-voltage. Interestingly, a conductance plateau is emerged when the exchange field is twice of the hybridization gap in the absence of voltage. Further, the magnetic-resistance ratio can be up to 100%, and can also be negative due to the anomalous transport.

    topological insulator film; ferromagnet/normal/ferromagnet junction; surface state transport

    Topological insulators (TIs)[1], possess of unusual phases of quantum matter simultaneously with insulating bulk and conducting edge or surface states, have been extensively studied in recent years[2]. The two-dimensional (2D) TI phase was firstly predicted in a HgTe quantum well[3]and observed by the followed transport measurements[4]. Thereafter, Bi2Se3family of materials have been proposed[5]as three-dimensional (3D) strong TIs. And the single Dirac cone of surface states has been observed by the followed spin- and angle-resolved photoemission spectroscopy measurements[6-7]for Bi2Se3and Bi2Te3, respectively. These results have revealed that electron spins on the surface Dirac cone are locked with their momenta, giving rise to helical Dirac fermions without spin degeneracy[5-7]. The locking of the electron spin to the momentum comes from a combination of strong spin-orbit interaction and the breaking of the inversion symmetry at the surface[5]. Such a spin texture on the surface Dirac cone leads to antilocalization property and plays a central role in inducing exotic quantum phenomena. Moreover, surface states are protected by the time-reversal symmetry[8]and the topology of the bulk gap, and are robust against disorder scattering[9]and electron-electron interactions[10].

    Furthermore, 3D TI thin films have been extensively investigated theoretically[11-12]and experimentally[13-14]due to their quite different nature from that with a single surface. Recently, two effective Hamiltonians[11,15]were proposed to describe low energy electrons for 3D TI thin film. Consequently, various interesting properties of 3D TI thin films have been predicted, particularly those relevant to quantum Hall effect[16], Landau levels[15,17], quantum phase transitions[18-20], magnetic-resistive effect[21]and electron-electron interaction[22], etc. However, unlike the 3D TI single surface state, less attention has been paid to theoretical investigation on transport property modulated by ferromagnetic (FM) stripes. It is known that the top and bottom surfaces of a 3D TI thin film are hybridized. When the Fermi level is in the hybridization gap, exotic property such as quantum phase transition may appear[18-20], which is really distinct with single surface states[23-27]. Moreover, such a promising material is vital for device designing in nanoelectronics and spintronics. Therefore, the transport property for 3D TI thin film modulated by FM stripes is an important issue.

    In this work, we study the electronic structure and transport for a 3D TI thin film modulated by a ferromagnet/normal/ferromagnet (FM/N/FM) junction with the exchange filed configuration only in thezdirection and a gate voltage on the normal metal segment. A quantum phase transition occurs when the exchange field is equal to the hybridization gap of the film. Normalized conductance is calculated for two phases with the gate is present or absent. We demonstrate that the conductance for the junction behave like a conventional spin value when no gate-voltage applied and can be tuned like a spin field transistor via the gate-voltage. Interestingly, a conductance platform emerged when the exchange field is twice of the hybridization gap with no voltage applied. Furthermore, the magnetic-resistance ratio can be up to 100%, and can also be negative due to the anomalous transport.

    The organization of this paper is as follows. In Sec.Ⅰ, we explain the Hamiltonian and present the theoretical formulism for the system. In Sec.Ⅱ, we give some numerical examples with discussions for the analytical calculation. Sec.Ⅲ summarizes our results briefly.

    1 Model and Hamiltonian

    Fig.1 (Color online) (a) Schematic illustration of a 3D TI thin film attached by a FM/N/FM junction, where a gate voltage on the normal metal segment is presented

    As shown in Fig.1, we consider a FM/N/FM junction on the surface of a 3D TI thin film with a voltage exerted in the central normal region. The bulk ferromagnetic insulators interacts with electrons in the TI film by the proximity, and the ferromagnetism is induced in two surfaces states[23-27]. The interfaces between ferromagnet (FM) and normal segment are parallel to theydirection, and the normal segment is located betweenx=0 andx=Lwith gate voltageV0exerted on it and we presume the distance between two interfaces is shorter than the mean-free path as well as the spin coherence length for simplicity.

    According to the effective low-energy surface Hamiltonian for a clean 3D TI thin film[15], the Hamiltonian for our system reads

    (1)

    Fig.2 (Color online) Energy (in units of E0) spectrum for a 3D TI thin film with (a) Δt=1, mi=0, Vo=0, (b) Δt=1, mi=0, Vo=-1, (c) Δt=1, mi=1, Vo=0, (d) Δt=1, mi=2, Vo=0. In (a) and (b) the (black) dashed line is for spin-up and (red) solid line for spin-down electrons, respectively, but the slid/dashed line for conduction/valence band in (c) and (d).

    In Fig.2, for more intuitive comprehension, the energy (in units ofE0) dispersions in different cases are plotted for the system according to Eq.(2). For a clean film, as seen in Fig.2(a), the energy is degenerated for two spin orientations with a gapΔ=2Δtbetween conduction and valence bands. However, when a gate-voltage is applied both the conduction and valence bands are shifted down form the Fermi level but the degeneracy is still kept [see Fig.2(b)]. Furthermore, when an exchange field is presented, unlike the single surface states[24-26], an interesting spectrum feature emerged: the energy is spilt into four branches and a quantum phase transition occur due to the competition between the exchange field and hybridiztion. As shown in Figs. 2(c) and 2(d), in this case the thin film is conducting whenmi(t)=Δtand semiconducting with a gap Δ=2|mi(t)-Δt|, which has been well explained in Ref.[20].

    In order to investigate the transport property for 3D TI thin film modulated by the junction. We now calculate the charge transmission for the system. The thin film is divided into three regions as shown in Fig.1. In the incoming region, the wave function is

    (2)

    Inthecentralregionwhereagate-voltageisexerted,thewavefunctionis

    (3)

    wherea(b) is the left (right) going wave amplitude,kx/yis the wavevetor andky=qyfor the momentum conservation in the y direction. IfE=V0+sΔt,

    (4)

    Andthewavefunctioninthetransmittingregionis[31]

    (5)

    wheretis the transmission coefficient,Px/yis the wavevetor andpy=kyfor the momentum conservation in theydirection. Therefore, the transmission probability can express as

    (6)

    Inordertocalculatethetransmissionprobability,weapplythecontinuityconditionsforwavefunctionsatboundariesbetweendifferentregions: ψi(0,y)=ψc(0,y)andψc(L,y)=ψt(L,y).Unlikethesecond-orderderivativeSchr?dingerequation,oneonlyneedstomatchthewavefunctionbutnotitsderivative,becausetheHamiltonianemployedhereisafirst-orderlyderivative.ThenwecanobtainthetransmissionprobabilityT(E,θ).Inthispaper,weinvestigatetransportpropertiesforthestateassociatewiths=-1foritsinterestingbandstructure.Asaresult,accordingtotheLandauer-Büttikerformula[32],itisstraightforwardtoobtaintheballisticconductanceatzerotemperature

    (7)

    whereG0=2e2/hisconductanceunit.Note,weletmi=mt=moinvalueandparallel(P)oranti-parallel(AP)todistinguishtheorientationoftwoFMstripeslaterforconvenientexplanation.

    2 Numerical Examples and Discussions

    Inwhatfollowsweshowsomenumericalexamplesfora3DTIthinfilmmodulatedbythejunction.

    Fig.3 (Color online) Conductance vs transmitting energy with L=2 (a)Δt=1, V=0, mo=1, (b)Δt=1, V=0,mo=2, (c)Δt=1, V=-4, mo=1, (d)Δt=1, V=-4, mo=2, the blue solid line for parallel conductance GP and the red dashed line for the antiparallel conductance GAP.

    Fig.4 (Color online) Corresponding magnetic-resistance ratio(MR) for Fig.3

    Fig.3presentsthetunnelingconductanceGpandGAPv.s.energywithL=2and(a)Δt=1, V=0, mb=1, (b)Δt=1, V=0, m0=2, (c)Δt=1, V=-4, m0=1, (d)Δt=1, V=-4, m0=2,wherethe(blue)solidlineforparallelconductanceGpandthe(red)dashedlinefortheantiparallelconductanceGAP.Whennogate-voltageapplied,theconductanceinparallelconfigurationisalwayslargethanthatinantiparallelconfigurationasintheconventionalspinvalve[33]anditscounterpartingraphene[34]andtheconductanceisanoscillatedevenfunctionofEwhichmeanselectronsandholescontributetoconductanceequally(seeFig.3(a)and3(b)).InFig.3(a),theparallelconductanceGp(the(blue)solidline)showsanonzeroplatformatsmalltransmittingenergybecauseoftheevanescentwavesthoughatransmissiongap[-1,1]formedinthecentralregion(seeFig.2(a))fortheincomingregionisinmetalphase(seeFig.2(c)),while,theantiparallelconductanceGAP(the(red)dashedline)isvanishedwhenthetunnelingenergylocatesinthetunnelinggap[-2,2]whichisdeterminedbythebandstructureoftransmittingregionaccordingtoEq. (2).Interestingly,inFig.3(b), Gp(the(blue)solidline)isalwaysG0whenelectronenergyishigherthanacriticalvaluewhichseemsquitetooursurprise.Actually,thiscanbeunderstoodasfollow.ForFig.3(c)theFMstripesareinPalignmentwithm0=2andtheincomingregionisinsemiconductorphasewithagapΔ=1,sodothetransmittingregion,andthenormalregionisalsoasemiconductorwithaΔ=1inlinewiththebandstructure(seeFig.2(a)),whicheliminatethedistinguishesinthreedifferentregionsfromtheviewofbandstructureleadingtoaperfectwavfunctionmatchinthreedifferentregions.Moregeneralconclusionisthatwhentheexchangefiledistwiceofthehybridizationgap,thereisnodifferenceinthreedistinctregions,electronsmovefreelywhentheirenergyishigherthanthetunnelinggap.However,itseemsquitedifferentfortheantiparallelconductanceGAP(the(red)dashedline)forthetransmittingregionisanisotropicwiththeothersandtheexplanationissimilarwiththatinFig.3(a).However,whennogate-voltageapplied,theparallelconductanceGpcanbelessthantheantiparallelconductanceGAPwhichissimilarwiththeconductancefeatureinaspin-fieldtransistorandatopologicaljunction[27](seeFigs.3(c)and3(d)).Meanwhile,theconductanceisasymmetrywithtunnelingenergywhichmeanselectronsandholescontributeunequallytoconductanceduetotheasymmetrybandstructureincentralregion(seeFig.2(b)).InFig.3(c),noconductinggapformedforparallelconductanceGpowingtoanegativegate-voltagepushedtheconductingbandbelowtheFermienergy(seeFig.2(a)wesetEF=0).Yet,conductingisalwaysblockedforGAPwhenthetunnelingenergylocatesintheconductinggap[-2,2]determinedbythetransmittingregion.AsforFig.3(d),theconductingfeatureissimilartoFig.3(c)apartfromaconductinggapformedforbothGpandGAP.

    AfterobtainingtheconductanceGP(GAP)fortheparallel(antiparallel)configuration,wecangetthemagneticresistance(MR)directly,whichisdefinedasMR=(GP-GAP)/GP.Fig.4plottedthecorrespondingMRv.s.energyforFig.3.TheMRcanapproach100%inallcasesfordifferentconductinggapinPandAPalignment.Moreover,thegate-voltageinfluencedtheMRgreatlyfortheMRisalwayspositiveandsymmetrywithEwhenthegate-voltageisabsent,however,theMRisasymmetrywithEandcanbenegativeowingtoanomalouselectronictransport[23,26].ThebignegativeMRalsomeansabigvariationinconductancebetweentheparallelandantiparallelconfigurations.OnecanunderstandotherfeaturesaboutMRfromFig.3.

    3 Summary and Conclusion

    Insummary,wehavestudiedtheelectronicstructureandchargetransportforatopologicalinsulatorthinfilmmodulatedbyaferromagnet/normal/ferromagnetjunctionwithagatevoltageexertonthenormalsegment.Aquantumphasetransitionoccursowingtothecompetitionbetweentheexchangefieldandthehybridizationgap.Normalizedconductanceiscalculatedfortwophaseswiththegateispresentorabsent.Wedemonstratethattheconductanceforthejunctionbehavelikeaconventionalspinvaluewhennogate-voltageappliedandcanbetuninglikeaspinfieldtransistorviathegate-voltage.Interestingly,aconductanceplatformemergedwhentheexchangefieldistwiceofthehybridizationgapwithnovoltageapplied.Furthermore,themagnetic-resistanceratiocanbe100%,andcanalsobenegativeduetoanomaloustransport.TheseinterestingfindingsfortheFMmodulatednanostructurebasedonthe3DTIthinfilmmaybetestableinthepresentexperimentaltechnique[7,37],andmayprovideafurtherunderstandingthenatureof3DTIthinfilm.

    [1] KANE C L, MELE E J. A New Spin on the Insulating State [J]. Science, 2006,314(11):1692-1693.

    [2] HASAN M Z, KANE C L. Topological insulators [J]. Rev Mod Phys, 2010,82(1):3045-3057.

    [3] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin hall effect and topological phase transition in HgTe quantum wells [J]. Science, 2006,314(4):1757-1761.

    [4] KONIG M, WIEDMANN S, BRUNE C,etal. Quantum spin hall insulator state in HgTe quantum wells [J]. Science, 2007,318(3):766-770.

    [5] ZHANG H, LIU C X, QI X L,etal. Topological insulators in Bi2Se3and Sb2Te3with a single Dirac cone on the surface [J]. Nature Phys, 2009,5(2):483-442.

    [6] XIA Y, QIAN D, HSIEH D,etal. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface [J]. Nature Phys, 2009,5(2):398-402.

    [7] CHEN Y L, ANALYTIS J G, CHU J H,etal. Experimental realization of a three- dimensional topological insulator Bi2Te3[J]. Science, 2009,325(1):178-181.

    [8] FU L, KANE C L, MELE E J. Topological insulators in three dimensions [J]. Phys Rev Lett, 2007,98(4):106803.

    [9] JIANG H, CHENG S G, SUN Q F,etal. Topological insulator:a new quantized spin hall resistance robust to dephasing [J]. Phys Rev Lett, 2009,103:036803.

    [10] EGGER R, ZAZUNOV A, YEYATI A L. Helical luttinger liquid in topological insulator nanowires [J]. Phys Rev Lett, 2010,105:136403.

    [11] LU H Z, SHAN W Y, YAO W,etal. Massive dirac fermions and spin physics in an ultrathin film of topological insulator [J]. Phys Rew B, 2010,81:115407.

    [12] BIHLMAYER G, KOROTEEV Y M, CHULKOV E V,etal. Surface- and edge-states in ultrathin Bi-Sb films [J]. New J Phys, 2010,12:065006.

    [13] ZHANG Y, HE K, CHANG C Z,etal. Crossover of the three-dimensional topological insulator Bi2Se3to the two-dimensional limit [J]. Nature Phys, 2010,6(4):584-588.

    [14] PLUCINSKI L, MUSSLER G, KRUMRAIN J,etal. Robust surface electronic properties of topological insulators:Bi2Te3films grown by molecular beam epitaxy [J]. Appl Phys Lett, 2011,98:222503.

    [15] ZYUZIN A A, BURKOV A A. Thin topological insulator film in a perpendicular magnetic field [J]. Phys Rev B, 2011,83:195413.

    [16] LI H, SHENG L, XING D Y. Quantum hall effect in thin films of three-dimensional topological insulators [J]. Phys Rev B, 2011,84:035310.

    [17] YANG Z, HAN J H. Landau level states on a topological insulator thin film [J]. Phys Rev B, 2011,83:045415.

    [18] LI H, SHENG L, XING D Y. Quantum phase transitions in ultrathin films of three-dimensional topological insulators in the presence of an electrostatic potential and a Zeeman field [J]. Phys Rev B, 2012,85:045118.

    [19] ZYUZIN A A, HOOK M D, BURKOV A A. Parallel magnetic field driven quantum phase transition in a thin topological insulator film [J]. Phys Rev B, 2011,83:245428.

    [20] CHO G Y, MOORE J E. Quantum phase transition and fractional excitations in a topological insulator thin film with Zeeman and excitonic masses [J]. Phys Rev B, 2011,84:165101.

    [21] ZHANG H B, YU H L, BAO D H,etal. Magnetoresistance swich effect of a Sn-doped Bi2Te3topological insulator [J]. Adv Mater, 2012,24(1):132-136.

    [22] WANG J, DASILVA A M, CHANG C Z,etal. Evidence for electron-electron interaction in topological insulator thin films [J]. Phys Rev B, 2011,83:245438.

    [23] YOKOYAMA T, ZANG J, NAGAOSA N. Theoretical study of the dynamics of magnetization on the topological surface [J]. Phys Rev B, 2010,81:241410(R).

    [24] ZHU J J, YAO D X, ZHANG S C,etal. Electrically controllable surface magnetism on the surface of topological insulators [J]. Phys Rev Lett, 2011,106:097201.

    [25] ZHAI F, WU P. Tunneling transport of electrons on the surface of a topological insulator attached with a spiral multiferroic oxide [J]. Appl Phys Lett, 2011,98:022107.

    [26] WU Z, PEETERS F M, CHANG K. Spin and monentum filtering of electrons on the surface of a topological insulator [J]. Appl Phys Lett, 2011,98:162101.

    [27] ZHANG K H, WANG Z C, ZHENG Q R,etal. Gate-voltage controlled electronic transport through a ferromagnet/normal/ferromagnet junction on the surface of a topological insulator [J]. Phys Rev B, 2012,86:174416(R).

    [28] HAUGEN H, HERNANDO D H, BRATAAS A. Spin transport in proximity-induced ferromagnetic graphene [J]. Phys Rev B, 2008,77:115406.

    [29] CHAKHALIAN J, FREELAND J W, SRAJER G,etal. Magnetism at the interface between ferromagnetic and superconducting oxides [J]. Nature Phys, 2006,2(1):244-248.

    [30] PERSHOGUBA S S, YAKOVENKO V M. Spin-polarized tunneling current through a thin film of a topological insulator in a parallel magnetic field [J]. Phys Rev B, 2012,86:165404(R).

    [31] KATSNELSON M I. Zitterbewegung, chirality, and minimal conductivity in graphene [J]. Eur Phys J B, 2006,51:157-160.

    [32] DATTA S. Electronic transport in mesoscopic systems [M]. Cambridge: Cambridge University Press, 1995.

    [33] ZUTIC I, FABIAN J, SARMA S D. Spintronics: fundamentals and applications [J]. Rev Mod Phys, 2004,76(2):323-410.

    [34] BAI C, ZHANG X. Large oscillating tunnel magnetoresistance in ferromagnetic graphene single tunnel junction [J]. Phys Lett A, 2009,372(3):725-729.

    [35] DATTA S, DAS B. Electroic analog of the electro-optic modulator [J]. Appl Phys Lett, 1990,56(3):665.

    [36] SOODCHOMSHOM B. Magneto transport on the surface of a topological insulator spin valve [J]. Phys Lett A, 2010,374(9):2894-2899.

    [37] PAN Z H, VESCOVO E, FEDOROV A V,etal. Electronic structure of the topological insulator Bi2Se3using angle-resolved photoemission spectroscopy: evidence for a nearly full surface spin polarization [J]. Phys Rev Lett, 2011,106:257004.

    (編輯 CXM)

    2016-09-18

    國(guó)家自然科學(xué)基金資助項(xiàng)目(11274108)

    O441.6

    A

    1000-2537(2016)06-0061-07

    鐵磁/正常/鐵磁結(jié)調(diào)制的拓?fù)浣^緣體薄膜表面輸運(yùn)性質(zhì)

    劉 宇1, 周小英2, 周光輝2*

    (1.湖南第一師范學(xué)院信息科學(xué)與工程學(xué)院, 中國(guó) 長(zhǎng)沙 410205; 2.湖南師范大學(xué)物理與信息科學(xué)學(xué)院, 中國(guó) 長(zhǎng)沙 410081)

    研究了拓?fù)浣^緣體薄膜表面態(tài)在鐵磁/正常/鐵磁結(jié)調(diào)制下的電子自旋相關(guān)輸運(yùn). 發(fā)現(xiàn)由于交換場(chǎng)與雜化帶隙的競(jìng)爭(zhēng)而產(chǎn)生量子相變, 在結(jié)無(wú)門(mén)電壓時(shí)電導(dǎo)行為類(lèi)似于自旋閥, 加門(mén)電壓后為自旋場(chǎng)效應(yīng)管. 有趣的是, 無(wú)門(mén)電壓且交換場(chǎng)能是雜化帶隙的兩倍時(shí)出現(xiàn)一個(gè)電導(dǎo)平臺(tái), 磁阻比率可達(dá)100%.

    拓?fù)浣^緣體薄膜; 鐵磁/正常/鐵磁結(jié); 表面態(tài)輸運(yùn)

    10.7612/j.issn.1000-2537.2016.06.011

    *通訊作者,E-mail:ghzhou@hunnu.edu.cn

    猜你喜歡
    信息科學(xué)絕緣體鐵磁
    關(guān)于兩類(lèi)多分量海森堡鐵磁鏈模型的研究
    多孔位插頭絕緣體注塑模具設(shè)計(jì)分析
    玩具世界(2022年1期)2022-06-05 07:42:20
    山西大同大學(xué)量子信息科學(xué)研究所簡(jiǎn)介
    三元重要不等式的推廣及應(yīng)用
    光電信息科學(xué)與工程專(zhuān)業(yè)模塊化課程設(shè)計(jì)探究
    發(fā)電廠(chǎng)直流系統(tǒng)接地故障分析與處理策略解析
    你好,鐵磁
    基于文獻(xiàn)類(lèi)型矯正影響因子在信息科學(xué)與圖書(shū)館學(xué)期刊中的實(shí)證分析
    你好,鐵磁
    一維交替鐵磁-反鐵磁耦合的海森堡鏈[Mn(N3)2(pybox)]n
    99久久99久久久精品蜜桃| 动漫黄色视频在线观看| 黄片播放在线免费| 精品欧美一区二区三区在线| 在线观看日韩欧美| 大型av网站在线播放| 老鸭窝网址在线观看| 最新的欧美精品一区二区| 老鸭窝网址在线观看| 最新的欧美精品一区二区| 成年人黄色毛片网站| 亚洲人成电影观看| 亚洲av欧美aⅴ国产| 黄频高清免费视频| 国产精品成人在线| 亚洲人成电影观看| 免费在线观看亚洲国产| 女人被狂操c到高潮| 国产片内射在线| 国产成人免费无遮挡视频| av不卡在线播放| 老熟妇乱子伦视频在线观看| 精品福利观看| 老熟妇仑乱视频hdxx| 老汉色∧v一级毛片| 国产野战对白在线观看| 国产一卡二卡三卡精品| 天堂√8在线中文| 露出奶头的视频| 国产有黄有色有爽视频| 满18在线观看网站| 男女下面插进去视频免费观看| 十八禁人妻一区二区| 男人操女人黄网站| 欧美黄色淫秽网站| 男女高潮啪啪啪动态图| 亚洲欧美日韩高清在线视频| 日日摸夜夜添夜夜添小说| 国产在视频线精品| 欧美成人午夜精品| 12—13女人毛片做爰片一| 老熟女久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产蜜桃级精品一区二区三区 | 99久久国产精品久久久| x7x7x7水蜜桃| 亚洲免费av在线视频| 免费av中文字幕在线| 亚洲成国产人片在线观看| 国产激情久久老熟女| 欧美久久黑人一区二区| 久久国产亚洲av麻豆专区| 91在线观看av| 精品福利观看| 日韩中文字幕欧美一区二区| 亚洲欧美日韩另类电影网站| 国产激情欧美一区二区| 十分钟在线观看高清视频www| 国产精品永久免费网站| 久久青草综合色| 亚洲一区中文字幕在线| 12—13女人毛片做爰片一| 黑人巨大精品欧美一区二区蜜桃| 亚洲伊人色综图| 久久久久精品人妻al黑| 免费女性裸体啪啪无遮挡网站| 亚洲熟女精品中文字幕| 成熟少妇高潮喷水视频| 久久午夜综合久久蜜桃| 国产精品久久久久成人av| 每晚都被弄得嗷嗷叫到高潮| 欧美午夜高清在线| 欧美老熟妇乱子伦牲交| 亚洲成人国产一区在线观看| 色94色欧美一区二区| 人成视频在线观看免费观看| 母亲3免费完整高清在线观看| 99香蕉大伊视频| 亚洲综合色网址| 国产高清国产精品国产三级| 人人妻人人添人人爽欧美一区卜| 丝袜美足系列| 一级黄色大片毛片| 亚洲av成人不卡在线观看播放网| 啦啦啦免费观看视频1| 99在线人妻在线中文字幕 | 久久热在线av| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美日韩另类电影网站| 亚洲少妇的诱惑av| 精品人妻在线不人妻| 女性生殖器流出的白浆| 免费看十八禁软件| 无人区码免费观看不卡| 老司机福利观看| av天堂久久9| 天天躁日日躁夜夜躁夜夜| 一边摸一边做爽爽视频免费| 涩涩av久久男人的天堂| 国产蜜桃级精品一区二区三区 | 精品少妇久久久久久888优播| 又黄又粗又硬又大视频| 国产视频一区二区在线看| 亚洲精品在线观看二区| 国产不卡av网站在线观看| 色94色欧美一区二区| 1024视频免费在线观看| 午夜精品久久久久久毛片777| 欧美一级毛片孕妇| 精品久久久久久久久久免费视频 | 久久草成人影院| 久久精品国产99精品国产亚洲性色 | 亚洲午夜理论影院| av免费在线观看网站| 久久久国产欧美日韩av| 国产91精品成人一区二区三区| 欧美在线一区亚洲| 99热国产这里只有精品6| 国产精品久久电影中文字幕 | 国产日韩欧美亚洲二区| 亚洲精品一二三| 18禁美女被吸乳视频| 日本a在线网址| 亚洲人成电影免费在线| 9色porny在线观看| 9热在线视频观看99| 好男人电影高清在线观看| avwww免费| 一本一本久久a久久精品综合妖精| 久久中文字幕一级| 国产精华一区二区三区| 久久草成人影院| netflix在线观看网站| 国产精品综合久久久久久久免费 | 精品国产一区二区久久| 免费av中文字幕在线| 欧美乱码精品一区二区三区| 国产精品98久久久久久宅男小说| 伊人久久大香线蕉亚洲五| 国产免费av片在线观看野外av| 91成年电影在线观看| 在线观看午夜福利视频| 久久精品国产99精品国产亚洲性色 | 久久久久国内视频| 欧美乱妇无乱码| 成年女人毛片免费观看观看9 | 热re99久久精品国产66热6| 国产又爽黄色视频| 捣出白浆h1v1| 久久精品成人免费网站| 国产精品亚洲av一区麻豆| 无人区码免费观看不卡| 交换朋友夫妻互换小说| 女警被强在线播放| 国产有黄有色有爽视频| 国产精品久久久久久人妻精品电影| 亚洲欧美一区二区三区黑人| 午夜福利,免费看| 亚洲欧美精品综合一区二区三区| 成人三级做爰电影| 国产精品 国内视频| 亚洲色图 男人天堂 中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 黑人操中国人逼视频| 每晚都被弄得嗷嗷叫到高潮| 久久精品熟女亚洲av麻豆精品| 午夜福利免费观看在线| 国产精品久久视频播放| 欧美黄色淫秽网站| 欧美最黄视频在线播放免费 | 亚洲欧洲精品一区二区精品久久久| 精品卡一卡二卡四卡免费| 亚洲成人免费电影在线观看| av在线播放免费不卡| 国产精品自产拍在线观看55亚洲 | 天堂俺去俺来也www色官网| 日本五十路高清| 亚洲中文av在线| 国产精华一区二区三区| 国产成人欧美在线观看 | 日本黄色日本黄色录像| 亚洲精品中文字幕一二三四区| 女警被强在线播放| 欧美大码av| 老司机在亚洲福利影院| 乱人伦中国视频| 国产欧美亚洲国产| 91国产中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 高清欧美精品videossex| 极品少妇高潮喷水抽搐| 捣出白浆h1v1| 大香蕉久久成人网| 国产激情久久老熟女| 国产亚洲精品一区二区www | 中亚洲国语对白在线视频| 最新在线观看一区二区三区| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区mp4| 国产在线观看jvid| 欧美激情极品国产一区二区三区| 两性夫妻黄色片| 精品第一国产精品| 国产精品99久久99久久久不卡| 精品视频人人做人人爽| 女人久久www免费人成看片| 这个男人来自地球电影免费观看| 亚洲精品乱久久久久久| 色综合婷婷激情| 每晚都被弄得嗷嗷叫到高潮| 91麻豆精品激情在线观看国产 | 一边摸一边抽搐一进一小说 | 国产精品久久久av美女十八| 五月开心婷婷网| 久久精品亚洲av国产电影网| 亚洲在线自拍视频| 建设人人有责人人尽责人人享有的| 久热这里只有精品99| 日本a在线网址| 久久这里只有精品19| 午夜免费鲁丝| 老司机靠b影院| 精品国产美女av久久久久小说| 最近最新中文字幕大全免费视频| 很黄的视频免费| 国产99久久九九免费精品| 精品国产亚洲在线| 久久精品国产清高在天天线| 亚洲七黄色美女视频| 欧美成人免费av一区二区三区 | 日韩欧美国产一区二区入口| 大香蕉久久网| 久久精品亚洲av国产电影网| 多毛熟女@视频| 国产成+人综合+亚洲专区| 午夜精品国产一区二区电影| 亚洲精品美女久久av网站| 99riav亚洲国产免费| 搡老乐熟女国产| 黑人巨大精品欧美一区二区mp4| 午夜福利视频在线观看免费| 黄色视频,在线免费观看| 免费在线观看黄色视频的| 国产1区2区3区精品| 中文字幕制服av| 欧美日韩中文字幕国产精品一区二区三区 | 狠狠婷婷综合久久久久久88av| 99久久国产精品久久久| 国产激情欧美一区二区| av线在线观看网站| 色94色欧美一区二区| 女警被强在线播放| av国产精品久久久久影院| 超碰97精品在线观看| 午夜免费观看网址| 久久精品成人免费网站| 久久影院123| 在线观看免费视频日本深夜| 国产又色又爽无遮挡免费看| 亚洲av欧美aⅴ国产| 国产精品欧美亚洲77777| 中文字幕精品免费在线观看视频| 精品亚洲成a人片在线观看| 久久中文字幕一级| 久久久久久亚洲精品国产蜜桃av| 色播在线永久视频| 99国产极品粉嫩在线观看| 夜夜爽天天搞| 国产乱人伦免费视频| 在线观看舔阴道视频| svipshipincom国产片| 两个人免费观看高清视频| 九色亚洲精品在线播放| 最新在线观看一区二区三区| 欧美在线黄色| 男人操女人黄网站| 啦啦啦免费观看视频1| 宅男免费午夜| 国产亚洲av高清不卡| 人人妻人人添人人爽欧美一区卜| 黄色女人牲交| 精品高清国产在线一区| 日韩欧美免费精品| 黄色 视频免费看| 黄色女人牲交| 免费看a级黄色片| 国产亚洲精品第一综合不卡| 欧美 日韩 精品 国产| 一级黄色大片毛片| 国产精品98久久久久久宅男小说| 黑人欧美特级aaaaaa片| 精品无人区乱码1区二区| videos熟女内射| 亚洲自偷自拍图片 自拍| www日本在线高清视频| 婷婷成人精品国产| 国产欧美日韩一区二区三区在线| 狂野欧美激情性xxxx| 国产伦人伦偷精品视频| 亚洲国产精品一区二区三区在线| 麻豆av在线久日| 亚洲人成伊人成综合网2020| 91大片在线观看| 精品国产国语对白av| 欧美日韩黄片免| 国产淫语在线视频| 久久久久久久午夜电影 | 精品欧美一区二区三区在线| 精品国内亚洲2022精品成人 | 亚洲欧美色中文字幕在线| 丝瓜视频免费看黄片| 日韩欧美三级三区| 亚洲一区二区三区欧美精品| 在线观看免费午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 高潮久久久久久久久久久不卡| 一级毛片高清免费大全| 久久国产亚洲av麻豆专区| 中文字幕人妻熟女乱码| 欧美黑人欧美精品刺激| 国产一区二区三区综合在线观看| 嫩草影视91久久| 亚洲专区中文字幕在线| 美女福利国产在线| 欧美日韩精品网址| 在线视频色国产色| 香蕉丝袜av| 国产亚洲欧美在线一区二区| 久久久久国内视频| 一级片'在线观看视频| 热re99久久国产66热| 男男h啪啪无遮挡| 校园春色视频在线观看| 超色免费av| 大片电影免费在线观看免费| 免费看a级黄色片| 99精品久久久久人妻精品| 国产乱人伦免费视频| 欧美日韩乱码在线| 精品卡一卡二卡四卡免费| 欧美黑人欧美精品刺激| 两个人看的免费小视频| 1024香蕉在线观看| svipshipincom国产片| 搡老岳熟女国产| 国产成人av教育| 一二三四在线观看免费中文在| 水蜜桃什么品种好| 国产精品亚洲一级av第二区| 久久草成人影院| 亚洲av日韩在线播放| 亚洲七黄色美女视频| 国产成+人综合+亚洲专区| 亚洲五月天丁香| 亚洲 国产 在线| 丝袜在线中文字幕| 搡老乐熟女国产| 欧美午夜高清在线| 亚洲精品在线美女| 法律面前人人平等表现在哪些方面| 这个男人来自地球电影免费观看| 久久人妻av系列| 精品一品国产午夜福利视频| 性少妇av在线| 美女视频免费永久观看网站| 久久精品亚洲av国产电影网| 精品一区二区三区视频在线观看免费 | 亚洲午夜精品一区,二区,三区| 99香蕉大伊视频| 亚洲精品美女久久av网站| 久久中文字幕一级| 男女下面插进去视频免费观看| 男人的好看免费观看在线视频 | 午夜影院日韩av| 亚洲国产精品一区二区三区在线| 十分钟在线观看高清视频www| 亚洲午夜精品一区,二区,三区| 精品国产超薄肉色丝袜足j| 亚洲男人天堂网一区| 午夜福利在线观看吧| 亚洲情色 制服丝袜| 天天影视国产精品| 老司机福利观看| 亚洲欧美色中文字幕在线| 久久草成人影院| 久久国产精品男人的天堂亚洲| 亚洲精品乱久久久久久| 一a级毛片在线观看| 欧美一级毛片孕妇| 国产aⅴ精品一区二区三区波| 美女福利国产在线| 国产99白浆流出| 免费女性裸体啪啪无遮挡网站| xxx96com| 在线视频色国产色| 香蕉国产在线看| 成人永久免费在线观看视频| 丝瓜视频免费看黄片| 啪啪无遮挡十八禁网站| 国产高清videossex| 少妇 在线观看| 女人被躁到高潮嗷嗷叫费观| 久久亚洲精品不卡| 国产亚洲欧美98| 悠悠久久av| 免费观看人在逋| 精品午夜福利视频在线观看一区| 飞空精品影院首页| 桃红色精品国产亚洲av| 一级毛片精品| ponron亚洲| 亚洲色图 男人天堂 中文字幕| 国产乱人伦免费视频| 高清黄色对白视频在线免费看| 啦啦啦在线免费观看视频4| 80岁老熟妇乱子伦牲交| 亚洲国产中文字幕在线视频| 97人妻天天添夜夜摸| 老汉色av国产亚洲站长工具| 国产亚洲欧美98| 午夜视频精品福利| 黄片大片在线免费观看| 亚洲国产精品合色在线| 国产一区二区三区综合在线观看| 操美女的视频在线观看| 9191精品国产免费久久| 精品一品国产午夜福利视频| 久久久国产成人精品二区 | 高清在线国产一区| 精品国产亚洲在线| 日韩精品免费视频一区二区三区| 国产精品自产拍在线观看55亚洲 | 亚洲精品国产区一区二| 久久99一区二区三区| 国产激情欧美一区二区| 好男人电影高清在线观看| 一个人免费在线观看的高清视频| 亚洲精品乱久久久久久| 国产男靠女视频免费网站| 欧美日韩乱码在线| 九色亚洲精品在线播放| 制服诱惑二区| 老汉色∧v一级毛片| 欧美亚洲 丝袜 人妻 在线| 中文字幕高清在线视频| 人妻一区二区av| 在线天堂中文资源库| 国产片内射在线| 在线观看一区二区三区激情| 18在线观看网站| 又黄又爽又免费观看的视频| 欧美老熟妇乱子伦牲交| 黄色片一级片一级黄色片| 午夜影院日韩av| 狠狠婷婷综合久久久久久88av| av天堂久久9| 精品一区二区三卡| 欧美日韩视频精品一区| 无限看片的www在线观看| 国产免费av片在线观看野外av| 色婷婷av一区二区三区视频| 国产亚洲精品一区二区www | 久久人人爽av亚洲精品天堂| 男女午夜视频在线观看| 99热国产这里只有精品6| 亚洲精品中文字幕在线视频| 大陆偷拍与自拍| 热re99久久国产66热| 国产欧美日韩精品亚洲av| 最新美女视频免费是黄的| 涩涩av久久男人的天堂| 国产亚洲精品久久久久5区| 日本撒尿小便嘘嘘汇集6| 国产成人精品久久二区二区免费| 精品电影一区二区在线| 亚洲色图 男人天堂 中文字幕| 亚洲熟女毛片儿| 99riav亚洲国产免费| 国产亚洲精品久久久久久毛片 | 热99国产精品久久久久久7| 99国产综合亚洲精品| 777米奇影视久久| 不卡一级毛片| 满18在线观看网站| 日日夜夜操网爽| 高清视频免费观看一区二区| 免费不卡黄色视频| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利欧美成人| 国产91精品成人一区二区三区| 久久亚洲真实| 91在线观看av| 捣出白浆h1v1| 伦理电影免费视频| 精品人妻在线不人妻| 一级片'在线观看视频| 女人高潮潮喷娇喘18禁视频| 一区在线观看完整版| 一级a爱视频在线免费观看| 亚洲精品国产精品久久久不卡| 国产片内射在线| 精品一品国产午夜福利视频| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 国产欧美日韩综合在线一区二区| 12—13女人毛片做爰片一| 男人操女人黄网站| 欧美亚洲日本最大视频资源| 最近最新中文字幕大全免费视频| 午夜福利影视在线免费观看| 狠狠婷婷综合久久久久久88av| 国产在视频线精品| 一个人免费在线观看的高清视频| 亚洲午夜理论影院| 久久中文字幕一级| 亚洲va日本ⅴa欧美va伊人久久| 日本a在线网址| 精品高清国产在线一区| 国产一区二区三区在线臀色熟女 | 国产激情久久老熟女| 亚洲国产精品sss在线观看 | 亚洲aⅴ乱码一区二区在线播放 | 大型av网站在线播放| 国产精品乱码一区二三区的特点 | 女同久久另类99精品国产91| 天天操日日干夜夜撸| 欧美精品啪啪一区二区三区| 69av精品久久久久久| 欧美日韩瑟瑟在线播放| 国产有黄有色有爽视频| 欧美人与性动交α欧美软件| 午夜福利在线免费观看网站| 99国产精品99久久久久| 亚洲,欧美精品.| 欧美中文综合在线视频| 久久久精品免费免费高清| 国产精品 欧美亚洲| 午夜福利一区二区在线看| 亚洲情色 制服丝袜| 国产一区二区激情短视频| 免费观看精品视频网站| 人人妻人人澡人人爽人人夜夜| 黄色怎么调成土黄色| 欧美激情 高清一区二区三区| 在线播放国产精品三级| 午夜免费成人在线视频| 视频区图区小说| 乱人伦中国视频| 日韩有码中文字幕| 激情视频va一区二区三区| 亚洲 国产 在线| 国产亚洲精品久久久久5区| 好看av亚洲va欧美ⅴa在| 美女高潮到喷水免费观看| 久久热在线av| 久久精品国产清高在天天线| 国产成人av教育| 欧美亚洲日本最大视频资源| 69精品国产乱码久久久| 午夜两性在线视频| 一区二区三区精品91| 一区二区三区激情视频| 久久香蕉激情| 精品电影一区二区在线| 成人国语在线视频| 日本欧美视频一区| 成人18禁在线播放| 老汉色av国产亚洲站长工具| 精品高清国产在线一区| 露出奶头的视频| 久久国产亚洲av麻豆专区| 国产av精品麻豆| 国产成+人综合+亚洲专区| 母亲3免费完整高清在线观看| 侵犯人妻中文字幕一二三四区| 久久精品亚洲av国产电影网| 日韩中文字幕欧美一区二区| 99riav亚洲国产免费| 每晚都被弄得嗷嗷叫到高潮| 国产极品粉嫩免费观看在线| 热re99久久精品国产66热6| 午夜精品久久久久久毛片777| 亚洲伊人色综图| 99热网站在线观看| 亚洲精品久久成人aⅴ小说| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩精品亚洲av| 王馨瑶露胸无遮挡在线观看| 亚洲av熟女| 黑人巨大精品欧美一区二区mp4| 国产精品成人在线| 中文字幕制服av| 在线观看免费午夜福利视频| 村上凉子中文字幕在线| 大片电影免费在线观看免费| 亚洲精品一二三| 一级毛片女人18水好多| 老司机影院毛片| 下体分泌物呈黄色| 香蕉国产在线看| 十八禁高潮呻吟视频| 欧美中文综合在线视频| 人人妻人人爽人人添夜夜欢视频| 国产成人精品久久二区二区免费| 狠狠狠狠99中文字幕| 国产精品免费视频内射| 欧美人与性动交α欧美精品济南到| 涩涩av久久男人的天堂| 亚洲国产中文字幕在线视频| 精品人妻熟女毛片av久久网站| 亚洲成人手机| 高清黄色对白视频在线免费看| 丰满饥渴人妻一区二区三| 精品无人区乱码1区二区|