• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reliable single epoch ambiguity resolution for precise attitude determination using BeiDou triple-frequency observations

    2016-12-23 01:44:54WUMingkuiHEJunWANGHongChenSchoolofGeodesyandGeomaticsWuhanUniversityWuhan40079ChinaChinashipdesignanddevelopmentcenterWuhan40064ChinaResearchanddevelopmentofficeWuhanUniversityWuhan4007China
    中國慣性技術(shù)學(xué)報 2016年5期
    關(guān)鍵詞:吳明窄巷歷元

    WU Ming-kui, HE Jun, WANG Hong-Chen(. School of Geodesy and Geomatics, Wuhan University, Wuhan 40079, China; . China ship design and development center,Wuhan 40064, China; . Research and development office, Wuhan University, Wuhan 4007, China)

    Reliable single epoch ambiguity resolution for precise attitude determination using BeiDou triple-frequency observations

    WU Ming-kui1, HE Jun2, WANG Hong-Chen3
    (1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; 2. China ship design and development center,Wuhan 430064, China; 3. Research and development office, Wuhan University, Wuhan 430072, China)

    In view that the carrier-phase integer ambiguity resolution (AR) is critical to the high-precision attitude determination of GNSS, a fast and reliable single epoch AR approach is proposed for BeiDou triple-frequency attitude determination with baseline length constraint. Firstly, two extra wide-lane (EWL)ambiguities are reliably resolved using a geometry-free approach. Then a wide-lane (WL) combination,which is less affected by observation noise and ionospheric delay, is derived from the former two EWL ambiguities. Followed by the third narrow-lane (NL) ambiguity, which is linearly independent from the former two EWL ambiguities, is estimated using the geometry-free approach and is fixed using a constrained least-squares ambiguity decorrelation adjustment (C-LAMBDA) method. Finally, the three original carrier ambiguities are uniquely recovered and used for instantaneous attitude determination. The performance of the proposed approach is evaluated using raw BeiDou triple-frequency data collected by receivers from different manufacturers and types in both static and kinematic situations. The results demonstrate that the proposed approach can deliver relatively high AR success rate with high computational efficiency. Moreover, the proposed approach is insensitive to the occurrences of troublesome carrier-phase cycle slips as the ambiguities are resolved epoch by epoch. The proposed approach is fairly suitable for the data processing in multi-frequency GNSS based attitude determination applications with high data sampling rate under complicated kinematic environments.

    BeiDou; triple-frequency; single-epoch; attitude determination; C-LAMBDA

    The Chinese BeiDou navigation satellite system(BDS) has attained initial regional operational status over the Asian-Pacific region since December 27, 2012, with a constellation of five satellites in Geostationary Orbit(GEO), five satellites in Inclined Geosynchronous Orbit(IGSO), and four satellites in Medium Earth Orbit(MEO). Each of the satellites transmits signals on three frequencies, namely 1561.098 MHz on B1frequency,1207.14 MHz on B2frequency, and 1268.52 MHz on B3frequency respectively. As an alternative to GPS, BDS has attracted widespread interests in fields of high precision applications such as GNSS based attitude determination[1-3]. Because of its advantages of high precision,no error accumulation, low power consumption and low cost, GNSS based attitude determination has attracted much attention in recent researches with a variety of challenging applications on land, at sea, in air and space[4-8].

    The key to fast and high precision GNSS based attitude determination is the resolution of the unknown cycle ambiguities. Once this has been done successfully,the carrier phase observations will act as very precise pseudorange data, thus making very precise attitude determination possible. Many algorithms have been proposed and used for integer ambiguity resolution(AR) in GNSS based attitude determination[9-17], among which the constrained Least-squares AMBiguity Decorrelation Adjustment (C-LAMBDA) method is generally accepted as the optimal one. The C-LAMBDA method can fully integrate the nonlinear baseline constraint into the ambiguity objective function and does proper justice to this a priori information, thus leading to a higher success rate than other methods[15-16].

    The C-LAMBDA method is generally used with original observation equations on each frequency[2-6,15-16].In that case, the advantage of multi-frequency ambiguity resolution is not fully employed. Compared to singlefrequency and dual-frequency observations, various linear combinations with special properties (long wavelength, minimal ionospheric and noise scale factors)can be formed using triple-frequency observations. This means that there is no need to resolve all the ambiguities on three frequencies on a whole as it is time-consuming.Instead, we can fix them in a cascading approach[18-23].Unfortunately, most of the studies focus on the long baseline case. Little attention has been paid to its special application of attitude determination.

    In this contribution, a fast and reliable single epoch AR approach is proposed for BDS triple-frequency attitude determination with baseline length constraint.Two extra wide-lane (EWL) (λ>2.93 m) ambiguities are reliably fixed using the geometry-free approach. Then a wide-lane (WL) (0.75 m<λ<2.93 m) combination, which is less affected by observation noise and ionospheric delay, is derived from the former two ambiguity resolved EWL combinations. Followed by a narrow-lane (NL)(λ<0.75 m) ambiguity combination, which is linearly independent from the former two EWL ambiguities, is estimated using the ambiguity resolved WL observations and fixed using C-LAMBDA method. Finally the ambiguities of the three original carrier phase observations are uniquely recovered and used for precise attitude determination. Since the WL combination is less affected by ionospheric delay and observation noise, the estimated float NL ambiguities can be more accurate than those estimated from original pseudorange observations. In addition, the number of the float NL ambiguities for searching in the proposed approach is much less than those from the traditional methods. As a consequence,the proposed triple-frequency AR approach can be more computational efficient. Moreover, the resolution of the three linearly independent EWL/NL combinations is performed epoch by epoch, thus making it free from the troublesome cycle slips which occur frequently in the kinematic situations.

    1 BDS triple-frequency AR model for attitude determination

    1.1 Triple-frequency observation equations

    Considering BDS Bi(i=1,2,3) frequency pseudorange Riand carrier phase Li(expressed in unit of meters),the BDS triple-frequency combination of doubledifferenced (DD) pseudorange and carrier phase observation equations can be expressed as

    Where R(i,j,k)triple-frequency combination of DD pseudorange, L(i,j,k)triple-frequency combination of DD carrier phase observation in unit of meters, ρ geometric distance between satellite and receiver, μ(i,j,k)first-order ionospheric scale factor of combined observations, I firstorder ionospheric delay on B1frequency, T tropospheric delay, λ(i,j,k)wavelength of combined carrier phase observations, N(i,j,k)integer ambiguity of combined carrier phase observations, i, j, k integer combination coefficients on B1, B2, B3frequencies respectively, ξR(i,j,k)combined DD pseudorange noise, and ξL(i,j,k)combined DD carrier phase noise.

    Triple-frequency linear combination of pseudorange and carrier phase observations in Eq.(1) can be generally formulated as[19]

    Where firepresents BDS Bifrequency. Replacing Liwith λi·φiin the second equation of Eq.(2) yields

    Where φ(i,j,k)is the triple-frequency carrier phase combination expressed in unit of cycles, c is the speed of light in vacuum and

    Assuming the noise terms (in unit of meters) for the original pseudorange or carrier phase observations are independent and identical in variance, i.e.with “*=R” for pseudorange and “*=L” for carrier phase, the variances of the combined pseudorange and carrier phase measurements can be expressed as

    1.2 Geometry-free AR model

    By differencing the first and second observation equations in Eq.(1), one can obtain the geometry-free AR model

    Where the (i, j, k) and (p, q, r) are the coefficients of the carrier phase and pseudorange combinations respectively,and ξ is the combined observation noise of the phase and pseudorange combinations. Note that the pseudorange combination R(p,q,r)can be replaced by another ambiguity resolved phase combinationas

    N(i,,j,k)can be simply resolved by integer rounding.Whether the combined ambiguity N(i,,j,k)can be successfully rounded to an integer by Eq.(7) and Eq.(8)depends mainly on the effect of uncertainty terms. This requirement yields the criterion for selecting the optimal combination coefficients

    1.3 Geometry-based AR model with baseline length constraint

    Assuming n+1 satellites are simultaneously observed in a certain epoch, the linearized form of Eq.(1) with known baseline length l can be expressed as[15]

    The variance-covariance (VC) matrix Qyyis expressed as

    From Eq.(11), z and b can be solved for by applying the constrained least-squares adjustment with the objective function

    When applying the geometry-based AR model, the combinations with minimal ionospheric and noise scale factors with respect to their wavelengths are preferred.Taken this into account, the optimal combination for the geometry-based AR can be identified by[19]

    WhereTσ denotes the standard deviation for the tropospheric delay.

    Provided that the baseline vector of the two GNSS antennas is parallel to the moving direction of the corresponding platform. The heading H and the elevation E can be computed as

    Where e, n, u are the local coordinates with e the east direction, n the north direction and u the up direction,respectively.

    2 Instantaneous BDS triple-frequency AR approach

    Among the various triple-frequency linear combinations, the EWL combinations are outstanding for their extraordinary long wavelengths. AR for elaborately selected EWL combinations can even be accomplished epoch by epoch with the simple geometry-free approach.Consistent with most literatures[19-23], the BDS B2and B3Melbourne-Wübbena (MW) combination, which is free of both ionospheric and tropospheric delay, is used for geometry-free AR in the first step of our procedure. Fig.1 showsin Eq.(9) as a function of DD codestandard deviations (STD). It can be seen that the noise level for N(0,-1,1)would generally not exceed 0.2 cycles. This indicates that the probability of obtaining correct integers of N(0,-1,1)by the integer rounding with a single epoch observations can be above 98%[19].

    After the resolution of N(0,-1,1), the ambiguity resolved EWL observationand phase is used in Eq.(7)instead of the less precise pseudorange combination R(p,q,r). According to [18], the best combinations in terms of long wavelength and low ionospheric delay are all belong to the so-called S0group, which is characterized by

    Fig.1 vs. DD code and phase noise

    By substituting Eq.(16) into Eq.(9) and replacingL(p,q,r)with ambiguity resolved, one obtains:

    In order to identify the best integer coefficientsiandjthat satisfies Eq.(17), the standard deviations of the DD ionospheric delay and phase observation are fixed to a general value which best fits the ultra-short baseline case:Iσ=5 cm,Lσ=0.5 cm. By setting the range foriandjas –50 to 50, the minimal value foris obtained and shown in Table 1.

    Tab.1 The second optimal combination

    It can be seen from Table 1 that the second optimal combination is not unique. These optimal combinations can be classified into two groups: the first group with coefficientiequal to –1 and the second group withiequal to 1. The noise level for the ambiguity of the second optimal combination in geometry-free mode is about 0.1584 cycles in general. Fig.2 illustrates the wavelengths of these optimal combinations. It’s shown that most of the combinations have a wavelength close to zero. Only a few combinations have a wavelength longer than 1m and the longest one has a wavelength of about 21 m. We employL(1,4,-5)as the second optimal combination in this paper. Fig.3 shows the noise level forN(1,4,-5)with ambiguity resolved measurement combination. The standard deviations of the phase observation and ionosphere are assumed to vary from 0 to 0.01 m and from 0 to 0.1 m, respectively. From Fig.3, it can be concluded thatis more sensitive to the change of the phase standard deviation. When the standard deviation of the phase observation increases to 0.01 m,reaches its maximum value of about 0.3 cycles.As a consequence, the ambiguity resolution of the second optimal combination is still reliable using the geometryfree approach.

    Fig.2 λ of the second candidate optimal combination

    Fig.3 vs. ionosphere and phase noise

    After the resolution ofN(0,-1,1)andN(1,4,-5), any ambiguity combinations with the sum of coefficients being equal to 0, can be derived. In order to recover the original ambiguities onB1,B2andB3frequencies, a third ambiguity combination, which is linearly independent fromN(0,-1,1)andN(1,4,-5), should be resolved. In this step,the third admissible combination has to be taken from the S1group, which is characterized by the sum of coefficients being equal to 1. Fig.4 illustrates the noise level for ambiguity resolution of the third combination under geometry-free mode. The coefficientsiandjare selected between -10 and 10. According to the figure, the minimal noise level of the third combination in S1group exceeds 0.5 cycles, which is too noisy for reliable integer rounding. As a consequence, the geometry-based mode should be used instead. Eq.(14) is used as criterion to identify the optimal combination in the third step. Table 2 lists the first 10 optimal combinations for the third step,in which the double differenced troposphere, ionosphere and phase noise is set to 2 cm, 5 cm and 0.5 cm respecttively. It can be seen from the table that these optimal combinations all belong to the NL group with a wavelength smaller than 0.75 m. The noise level of all these combinations is almost the same. So it makes no sense to choose which one from the table. In this paper, linear combination ofL(3,-2,0)is used as the third combination.

    Fig.4 Nσof the third combination

    Tab.2 First 10 optimal combinations in the third step

    Tab.3 First 10 optimal combinations with minimum TNL in unit of meters from S0 group

    In order to get a more accurate float solution in the third step, the liner combination derived from the two ambiguity-fixed EWL combinations should be as precise as possible. Table 3 lists the best 10 combinations in S0group with a minimal TNL value in unit of meters. These combinations are also selected by setting coefficients from –10 to 10. As can be seen from the table, the TNLs for these combinations show insignificant difference between each other. This indicates that precise pseudorange observations with about decimeter accuracy (about 0.072 m) can be achieved in single epoch with the selected combinations. As a result, the combinations listed in Table 3 can be used to assist the ambiguity resolution of the linearly independent combination in the third step. In this paper, linear combination ofL(2,-1,-1)is used and can be calculated by

    Considering the discussion above, the proposed instantaneous triple-frequency attitude determination procedure is summarized as follows and shown in Fig.5:

    1) Geometry-free AR for the resolution ofN(0,-1,1)withB2/B3frequency MW combination;

    2) Geometry-free AR for the resolution ofN(1,4,-5)with the ambiguity resolved

    3) Compute the ambiguity ofN(2,-1,-1)by Eq. (18). Then perform geometry-based AR forN(3,-2,0)with the ambiguity resolved observation, during which the C-LAMBDA method is applied;

    4) Recover the original ambiguities onB1,B2,B3frequencies and perform instantaneous attitude determination.

    Fig.5 Flowchart of the proposed instantaneous triple-frequency attitude determination approach

    3 Performance of instantaneous triple-frequency AR of BDS based attitude determination

    In this section, the performance of the proposed approach is evaluated with four sets of raw BDS triplefrequency data collected in Wuhan, China. The receivers involved in the experiments include Trimble NetR9,ComNav K505, ComNav K508, and Unicore UB370. The detailed description of the data sets is listed in Table 4.The trajectory and velocity of the cars for each kinematic experiment are illustrated in Fig.6.

    Tab.4 BDS triple-frequency data sets

    Fig.6 Trajectory (top) and velocity (bottom) of the cars

    3.1 Geometry-free AR for N(0,-1,1) and N(1,4,-5)

    As mentioned above,N(0,-1,1)andN(1,4,-5)can be reliably resolved by the geometry-free approach. The offsets between the float ambiguities calculated by the geometry-free AR approach and their nearest integer values are shown in Fig.7. It can be seen that the offsets between the float and integer ambiguities forN(0,-1,1)would not exceed 0.2 cycles for all the four data sets.Most of the offsets are even below 0.1 cycles for experiments K508K and K505S (Fig.7(c) and Fig.7(d)).These results are consistent with the theoretical analysis demonstrated by Fig.1. With such small offsets between the float ambiguities and their nearest integers,N(0,-1,1)can be resolved reliably by integer rounding. Except for experiment NetR9K, the offsets between the float and integer ambiguities forN(1,4,-5)is a little larger thanN(0,-1,1), which means that the AR ofN(1,4,-5)is slightly difficult thanN(0,-1,1). However, these offsets are below 0.3 cycles for most epochs, which means thatN(1,4,-5)can still be reliably resolved.

    Fig.7 Offsets of float ambiguities and their corresponding integer values for N(0,-1,1) and N(1,4,-5)

    3.2 Geometry-based AR for N(3,-2,0)

    After the resolution ofN(0,-1,1)andN(1,4,-5), the ambiguity forL(2,-1,-1)can be easily derived from Eq.(18) and used for the resolution ofN(3,-2,0). Empirical success rate and computing time are used to evaluate the performance of geometry-based AR forN(3,-2,0). The empirical success rate is defined as

    These numbers are determined by comparing the estimated ambiguities to the true ambiguities, which are solved by using a combined system with multiple frequencies and a Kalman filter over the whole time-span.The computing time refers to the time consumed to get the integer ambiguities from the float ones in the C-LAMBDA method.

    Fig.8 demonstrates the empirical AR success rate for the above four data sets. “single”, “dual” and “trip”represent the traditional geometry-based AR using original single-frequency, dual-frequency, and triplefrequency observations with C-LAMBDA method respecttively. “trip-m” represents the proposed approach.

    It is shown that the empirical AR success rate using single-frequency observations is obviously lower than the dual-frequency or triple-frequency case. The proposed approach can provide almost identical AR success rate in comparison to the traditional triple-frequency geometrybased AR using C-LAMBDA method in the K508K and K505S experiments. However, it’s a little lower in the NetR9K and UB370K experiments. This is reasonable considering that the signal onB3frequency sometimes lose track for one or two satellites in the two experiments.These satellites cannot be used in the proposed approach while they can still be used in the traditional geometrybased AR using original triple-frequency observations.

    Fig.8 Empirical success rate for instantaneous AR

    Fig.9 Time consumed by the C-LAMBDA method

    Fig.9 demonstrates the time consumed by the C-LAMBDA method for the four approaches. It’s shown that the time consumed by the proposed triple-frequency AR approach is slightly less than that consumed by the traditional single-frequency approach in K508K and K505S experiments. However, the improvement is significant in NetR9K and UB379K experiments. This is because that the ambiguity fixed WL observations used for calculating the float ambiguities ofN(3,-2,0)in the proposed approach is more precise than the originalB1pseudorange, which is used to determine theB1float ambiguities in the traditional single-frequency approach.On the other hand, the time consumed by the proposed triple-frequency AR approach is much less than that consumed by the traditional dual-frequency or triplefrequency approach. This is reasonable considering that the number of float ambiguities for traditional dualfrequency and triple-frequency approach are twice and three times the number of the proposed triple-frequency approach.

    From Fig.8 and Fig.9, it can be concluded that the proposed approach can deliver relatively high AR success rate with high computational efficiency.

    4 Conclusions

    In this contribution, a fast and reliable single epoch AR approach is proposed for BDS triple-frequency attitude determination with baseline length constraint.The proposed approach consists of three major steps,namely the geometry-free AR for two EWL ambiguities and the geometry-based AR for a third independent NL ambiguity with C-LAMBDA method. In order to ensure the reliability of ambiguity resolution, a detailed analysis concerning the error characteristics of the geometry-free and geometry-based AR for the selected EWL, WL, and NL ambiguity combinations is carried out. The performance of the proposed approach is demonstrated using raw BDS triple-frequency data collected by different receivers in both static and kinematic situations.It’s demonstrated that the proposed approach can deliver relatively high AR success rate with less consuming time, in comparison to the traditional geometrybased AR using original observations with C-LAMBDA method.

    [1]Lu L, Li Y, Rizos C. Virtual baseline method for Beidou attitude determination: an improved long-short baseline ambiguity resolution method[J]. Advances in Space Research, 2013, 51(6): 1029-1034.

    [2]Nadarajah N, Teunissen P J G, Raziq N. Instantaneous BeiDou-GPS attitude determination: a performance analysis[J]. Advances in Space Research, 2014, 54(5): 851-862.

    [3]Nadarajah N, Teunissen P J G. Instantaneous GPS/BeiDou/Galileo attitude determination: a single-frequency robustness analysis under constrained environments[J].Navigation: Journal of the Institute of Navigation, 2014,61(1): 65-75.

    [4]Giorgi G, Teunissen P J G, Verhagen S, et al. Testing a new multivariate GNSS carrier phase attitude determination method for remote sensing platforms[J]. Advances in Space Research, 2010, 46(2): 118-129.

    [5]Giorgi G, Teunissen P J G, Gourlay T P. Instantaneous global navigation satellite system (GNSS)-based attitude determination for maritime applications[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3): 348-362.

    [6]Teunissen P J G, Giorgi G, Buist P J. Testing of a new single-frequency GNSS carrier phase attitude determination method: land, ship and aircraft experiments[J]. GPS Solutions, 2011, 15(1): 15-28.

    [7]Unwin M, Purivigraipong P, da Silva Curiel A, et al.Stand-alone spacecraft attitude determination using real flight GPS data from UOSAT-12[J]. Acta Astronautica,2002, 51(1): 261-268.

    [8]Zhang X, Wu M, Liu W. Receiver time misalignment correction for GPS-based attitude determination[J]. Journal of Navigation, 2015: 1-19.

    [9]Chen W, Qin H. New method for single epoch, single frequency land vehicle attitude determination using lowend GPS receiver[J]. GPS Solutions, 2012, 16(3): 329-338.

    [10]Dai L, Ling K V, Nagarajan N. Real-time attitude determination for microsatellite by LAMBDA method combined with Kalman filtering[C]//Proceedings 22nd AIAA International Communications Satellite Systems Conference and Exhibit. 2004.

    [11]Giorgi G, Teunissen P J G. Low-complexity instantaneous ambiguity resolution with the affine-constrained GNSS attitude model[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1745-1759.

    [12]Monikes R, Wendel J, Trommer G F. A modified LAMBDA method for ambiguity resolution in the presence of position domain constraints[C]//Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005). 2005: 81-87.

    [13]Park C, Kim I, Lee J G, et al. Efficient ambiguity resolution using constraint equation[C]//Position Location and Navigation Symposium. IEEE, 1996: 277-284.

    [14]Park C, Teunissen P J G. A new carrier phase ambiguity estimation for GNSS attitude determination systems[C]//Proceedings of International GPS/GNSS Symposium.Tokyo, 2003.

    [15]Teunissen P. The LAMBDA method for the GNSS compass[J]. Artificial Satellites, 2006, 41(3): 89-103.

    [16]Teunissen P J G. Integer least-squares theory for the GNSS compass[J]. Journal of Geodesy, 2010, 84(7): 433-447.

    [17]Wang B, Miao L, Wang S, et al. A constrained LAMBDA method for GPS attitude determination[J]. GPS Solutions,2009, 13(2): 97-107.

    [18]Cocard M, Bourgon S, Kamali O, et al. A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS[J]. Journal of Geodesy,2008, 82(9): 555-564.

    [19]Feng Y. GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals[J]. Journal of Geodesy,2008, 82(12): 847-862.

    [20]Li B, Feng Y, Shen Y. Three carrier ambiguity resolution:distance-independent performance demonstrated using semi-generated triple frequency GPS signals[J]. GPS Solutions, 2010, 14(2): 177-184.

    [21]Tang W, Deng C, Shi C, et al. Triple-frequency carrier ambiguity resolution for Beidou navigation satellite system[J]. GPS Solutions, 2014, 18(3): 335-344.

    [22]Zhang X H, He X Y. BDS triple-frequency carrier-phase linear combination models and their characteristics[J].Science China Earth Sciences, 2015, 58(6): 896-905.

    [23]Zhang X, He X. Performance analysis of triple-frequency ambiguity resolution with BeiDou observations[J]. GPS Solutions, 2016, 20(2): 269-281.

    北斗三頻精密姿態(tài)測量中整周模糊度的單歷元可靠固定

    吳明魁1,何 俊2,汪宏晨3

    (1. 武漢大學(xué)測繪學(xué)院, 武漢 430079;2. 中國艦船研究設(shè)計中心,武漢 430064;3. 武漢大學(xué)科學(xué)技術(shù)發(fā)展研究院,武漢 430072)

    載波相位模糊度固定是GNSS高精度姿態(tài)測量中的關(guān)鍵問題。針對附有基線長約束的姿態(tài)測量場景提出了一種可靠的 BeiDou三頻模糊度單歷元快速固定算法。首先使用無幾何模型可靠地固定兩個超寬巷模糊度;其次使用這兩個超寬巷模糊度計算一個寬巷模糊度;然后在固定模糊度的寬巷觀測值的輔助下,使用幾何相關(guān)模型對第三個窄巷模糊度(該模糊度需與兩個超寬巷模糊度線性獨立)的浮點解進(jìn)行估計,并使用C-LAMBDA方法對其進(jìn)行固定;最后對三個頻點上的原始模糊度進(jìn)行恢復(fù)并利用其進(jìn)行單歷元姿態(tài)測量。多組 BeiDou三頻實測數(shù)據(jù)的處理結(jié)果表明,提出的單歷元模糊度固定方法具有固定成功率高和計算速度快的特點,能夠有效地避免周跳的影響,非常適合高采樣、動態(tài)復(fù)雜環(huán)境下的多頻GNSS姿態(tài)測量數(shù)據(jù)處理應(yīng)用。

    北斗;三頻;單歷元;姿態(tài)測量;C-LAMBDA

    P228.41

    A

    1005-6734(2016)05-0624-09

    10.13695/j.cnki.12-1222/o3.2016.05.012

    2016-06-28;

    2016-09-28

    國家重點研發(fā)計劃(2016YFB0501803);國家自然科學(xué)基金(41204030);湖北省自然科學(xué)杰出青年基金(2015CFA039)

    吳明魁(1988—),男,博士研究生,從事GNSS精密導(dǎo)航定位技術(shù)及應(yīng)用研究。E-mail: wmk@whu.edu.cn

    聯(lián) 系 人:汪宏晨(1974—),男,副教授。E-mail: wanghc@whu.edu.cn

    猜你喜歡
    吳明窄巷歷元
    基于GF模型的BDS-3/GPS/Galileo三頻模糊度固定性能分析
    蘇州博物館西館:過去與未來,喚醒穿梭窄巷小道的回憶
    歷元間載波相位差分的GPS/BDS精密單點測速算法
    第一次獨自睡覺
    Recent advances of TCM treatment of childhood atopic dermatitis
    窄巷FCB估計方法改進(jìn)及時變特性分析
    男子贈女友汽車, 分手要收回不合法
    分憂(2016年7期)2016-07-14 02:55:27
    Clinical observation of Huatan Huoxue Formula in treating coronary heart disease with hyperlipidemia
    Mechanism of sex hormone level in biological clock disorder induced acne and analysis of TCM Pathogenesis
    沒有父母的吳明并不『孤獨』
    僑園(2016年9期)2016-02-01 04:05:41
    久久久精品欧美日韩精品| 999久久久国产精品视频| av天堂在线播放| 亚洲精品美女久久久久99蜜臀| 夜夜爽天天搞| 精品日产1卡2卡| 久久精品国产综合久久久| 色哟哟哟哟哟哟| 他把我摸到了高潮在线观看| 亚洲五月天丁香| 中出人妻视频一区二区| 国产高清videossex| 亚洲最大成人中文| 亚洲精品久久成人aⅴ小说| 午夜亚洲福利在线播放| 99久久精品国产亚洲精品| 脱女人内裤的视频| 日韩欧美 国产精品| 1024香蕉在线观看| 麻豆av在线久日| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区免费观看 | 日本撒尿小便嘘嘘汇集6| 中出人妻视频一区二区| 亚洲国产欧美网| 亚洲成人久久性| 美女黄网站色视频| 成年人黄色毛片网站| 国产av一区在线观看免费| 欧美日韩精品网址| 久久精品aⅴ一区二区三区四区| av在线天堂中文字幕| 毛片女人毛片| 久久久久久久久免费视频了| 欧美成人午夜精品| 国产蜜桃级精品一区二区三区| 色播亚洲综合网| 可以免费在线观看a视频的电影网站| 在线国产一区二区在线| 久久久国产欧美日韩av| 日本a在线网址| 亚洲欧洲精品一区二区精品久久久| 无限看片的www在线观看| 男女午夜视频在线观看| 久久久精品欧美日韩精品| 中文字幕精品亚洲无线码一区| 国内精品久久久久精免费| 精品不卡国产一区二区三区| 婷婷六月久久综合丁香| 国产成人精品无人区| 久久久久国产一级毛片高清牌| netflix在线观看网站| 久久精品人妻少妇| 亚洲精品国产精品久久久不卡| 欧美乱妇无乱码| 91大片在线观看| 精品不卡国产一区二区三区| 精品乱码久久久久久99久播| 久99久视频精品免费| 亚洲人成网站高清观看| 大型黄色视频在线免费观看| 嫩草影院精品99| 狂野欧美白嫩少妇大欣赏| 成人一区二区视频在线观看| 国产爱豆传媒在线观看 | 50天的宝宝边吃奶边哭怎么回事| 999精品在线视频| 国产成年人精品一区二区| 日韩高清综合在线| 高潮久久久久久久久久久不卡| 法律面前人人平等表现在哪些方面| 日韩欧美一区二区三区在线观看| 国产视频一区二区在线看| www日本在线高清视频| 我的老师免费观看完整版| 不卡一级毛片| 中文资源天堂在线| 免费在线观看日本一区| 国产精品野战在线观看| 一级毛片女人18水好多| 国产伦在线观看视频一区| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一区二区三区四区免费观看 | 久久久精品欧美日韩精品| 中文字幕熟女人妻在线| 亚洲av日韩精品久久久久久密| 淫秽高清视频在线观看| 国产精品爽爽va在线观看网站| 母亲3免费完整高清在线观看| 99精品久久久久人妻精品| 少妇的丰满在线观看| 亚洲天堂国产精品一区在线| 国产免费男女视频| 一区二区三区激情视频| 国产三级中文精品| 他把我摸到了高潮在线观看| 国产精品爽爽va在线观看网站| 男女视频在线观看网站免费 | 两个人看的免费小视频| 欧美最黄视频在线播放免费| 亚洲一区中文字幕在线| 三级男女做爰猛烈吃奶摸视频| 亚洲精品在线美女| 精品久久久久久,| 久久这里只有精品中国| 日韩精品免费视频一区二区三区| 一区福利在线观看| 国产一区二区激情短视频| 99国产精品一区二区蜜桃av| 桃红色精品国产亚洲av| 欧美日韩一级在线毛片| 高清在线国产一区| 亚洲av中文字字幕乱码综合| 色综合婷婷激情| 又紧又爽又黄一区二区| 久久久久久免费高清国产稀缺| 亚洲自拍偷在线| 一进一出好大好爽视频| 一夜夜www| 1024视频免费在线观看| x7x7x7水蜜桃| 亚洲国产精品久久男人天堂| 亚洲 欧美一区二区三区| 男男h啪啪无遮挡| 日韩精品中文字幕看吧| 精品少妇一区二区三区视频日本电影| 午夜免费成人在线视频| 亚洲av成人av| 国产精品精品国产色婷婷| 午夜福利在线观看吧| 国产精品亚洲av一区麻豆| 亚洲av成人精品一区久久| www日本在线高清视频| 12—13女人毛片做爰片一| 久久久久亚洲av毛片大全| 国产一区二区在线观看日韩 | 中文字幕熟女人妻在线| 亚洲色图 男人天堂 中文字幕| 两性夫妻黄色片| 精品午夜福利视频在线观看一区| 成人18禁高潮啪啪吃奶动态图| 人妻丰满熟妇av一区二区三区| 激情在线观看视频在线高清| 91字幕亚洲| 国产三级黄色录像| 丝袜人妻中文字幕| 18禁黄网站禁片午夜丰满| 1024手机看黄色片| 久久精品国产亚洲av高清一级| 亚洲欧美精品综合久久99| 在线国产一区二区在线| 久久国产精品影院| 搡老岳熟女国产| 淫秽高清视频在线观看| 亚洲人成电影免费在线| 99热这里只有是精品50| 日本熟妇午夜| 麻豆久久精品国产亚洲av| 色综合亚洲欧美另类图片| 狠狠狠狠99中文字幕| 狂野欧美激情性xxxx| 欧美一级毛片孕妇| 国产av一区在线观看免费| 丁香六月欧美| 久久久久国产精品人妻aⅴ院| 亚洲国产高清在线一区二区三| 日本五十路高清| 国产一区二区在线观看日韩 | 亚洲人成伊人成综合网2020| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美精品综合一区二区三区| 国产一级毛片七仙女欲春2| 91字幕亚洲| 视频区欧美日本亚洲| 亚洲精品久久国产高清桃花| 两性夫妻黄色片| 天堂影院成人在线观看| 欧美日韩国产亚洲二区| 97碰自拍视频| 精品国产乱码久久久久久男人| 国产高清有码在线观看视频 | 欧美极品一区二区三区四区| 搡老熟女国产l中国老女人| 亚洲乱码一区二区免费版| 制服丝袜大香蕉在线| 久久久久性生活片| 日本在线视频免费播放| 日韩大尺度精品在线看网址| 757午夜福利合集在线观看| 国产男靠女视频免费网站| 十八禁网站免费在线| 制服诱惑二区| 男女那种视频在线观看| 午夜激情av网站| 亚洲美女黄片视频| 90打野战视频偷拍视频| 制服诱惑二区| 50天的宝宝边吃奶边哭怎么回事| 两个人的视频大全免费| 精品久久久久久,| 日本免费a在线| 亚洲人成电影免费在线| 观看免费一级毛片| 日本黄大片高清| 国产91精品成人一区二区三区| 91av网站免费观看| 亚洲人与动物交配视频| 校园春色视频在线观看| 白带黄色成豆腐渣| 美女免费视频网站| 久久中文字幕人妻熟女| 国产麻豆成人av免费视频| 中文在线观看免费www的网站 | 精品国产乱码久久久久久男人| 美女扒开内裤让男人捅视频| 精品国产超薄肉色丝袜足j| 女生性感内裤真人,穿戴方法视频| 欧美黄色淫秽网站| 在线观看66精品国产| 天堂√8在线中文| 国产伦人伦偷精品视频| 婷婷丁香在线五月| 亚洲色图av天堂| 亚洲av成人不卡在线观看播放网| 哪里可以看免费的av片| 日韩高清综合在线| 日本一本二区三区精品| 亚洲精品中文字幕在线视频| 18禁黄网站禁片免费观看直播| 免费人成视频x8x8入口观看| 精品欧美一区二区三区在线| 成年版毛片免费区| 美女免费视频网站| 亚洲九九香蕉| 午夜成年电影在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲av日韩精品久久久久久密| 精品欧美国产一区二区三| 国产探花在线观看一区二区| 亚洲 欧美 日韩 在线 免费| 国产av不卡久久| 欧美zozozo另类| 欧美另类亚洲清纯唯美| 欧美不卡视频在线免费观看 | 国产日本99.免费观看| 亚洲 欧美一区二区三区| 亚洲精品在线美女| 亚洲精品美女久久久久99蜜臀| 十八禁人妻一区二区| 欧美国产日韩亚洲一区| 亚洲欧美日韩东京热| 国产av在哪里看| 两个人视频免费观看高清| 国产成人av激情在线播放| 久久国产精品影院| www.999成人在线观看| 99久久国产精品久久久| netflix在线观看网站| 免费看a级黄色片| 极品教师在线免费播放| 中出人妻视频一区二区| 日韩国内少妇激情av| 无遮挡黄片免费观看| 国产精品 国内视频| 日本在线视频免费播放| 久热爱精品视频在线9| 国产成年人精品一区二区| 欧美黑人巨大hd| 在线播放国产精品三级| 小说图片视频综合网站| 不卡av一区二区三区| 国产一级毛片七仙女欲春2| 国产高清视频在线观看网站| 热99re8久久精品国产| 国产99久久九九免费精品| 久久欧美精品欧美久久欧美| or卡值多少钱| 久久这里只有精品19| 久久久久免费精品人妻一区二区| 亚洲自拍偷在线| 成人午夜高清在线视频| 青草久久国产| 99精品在免费线老司机午夜| 亚洲熟女毛片儿| 色综合亚洲欧美另类图片| 欧美日韩亚洲综合一区二区三区_| 亚洲国产精品久久男人天堂| 亚洲成人中文字幕在线播放| xxxwww97欧美| 亚洲全国av大片| 日本一二三区视频观看| 久久国产精品影院| 日本a在线网址| 亚洲av片天天在线观看| 久久久国产精品麻豆| 亚洲在线自拍视频| 免费电影在线观看免费观看| 午夜成年电影在线免费观看| 欧美av亚洲av综合av国产av| 欧美丝袜亚洲另类 | 国内久久婷婷六月综合欲色啪| 免费无遮挡裸体视频| 国产欧美日韩一区二区三| av福利片在线| 色综合婷婷激情| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看| 婷婷精品国产亚洲av| 免费看美女性在线毛片视频| 一区二区三区国产精品乱码| www.999成人在线观看| 久久久久精品国产欧美久久久| 五月伊人婷婷丁香| 欧美一级毛片孕妇| 欧美在线黄色| 首页视频小说图片口味搜索| 最好的美女福利视频网| 亚洲成a人片在线一区二区| 精品电影一区二区在线| 久久香蕉激情| 精品一区二区三区视频在线观看免费| 禁无遮挡网站| 国产99白浆流出| 99riav亚洲国产免费| 午夜激情av网站| а√天堂www在线а√下载| 亚洲国产日韩欧美精品在线观看 | 男女午夜视频在线观看| 99热6这里只有精品| 国产高清视频在线播放一区| 一边摸一边抽搐一进一小说| 欧美精品亚洲一区二区| 国产成人精品无人区| 搞女人的毛片| 国内毛片毛片毛片毛片毛片| 熟妇人妻久久中文字幕3abv| 搡老妇女老女人老熟妇| 国产精品亚洲美女久久久| 琪琪午夜伦伦电影理论片6080| 人妻丰满熟妇av一区二区三区| 免费电影在线观看免费观看| 两个人看的免费小视频| 香蕉av资源在线| 欧美国产日韩亚洲一区| 亚洲片人在线观看| 亚洲国产中文字幕在线视频| 男女做爰动态图高潮gif福利片| 成人三级做爰电影| 男人舔女人下体高潮全视频| 老司机午夜福利在线观看视频| 亚洲美女黄片视频| 亚洲一区高清亚洲精品| 一级a爱片免费观看的视频| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 欧美色欧美亚洲另类二区| 国产精品久久久久久亚洲av鲁大| 中文字幕精品亚洲无线码一区| 91字幕亚洲| 可以在线观看的亚洲视频| ponron亚洲| 一进一出抽搐动态| 女人高潮潮喷娇喘18禁视频| 狂野欧美激情性xxxx| 国产精品久久久av美女十八| 少妇的丰满在线观看| 在线视频色国产色| 免费看日本二区| 国产成人系列免费观看| 熟女少妇亚洲综合色aaa.| 国产一区在线观看成人免费| 久久草成人影院| 丁香欧美五月| 欧美中文综合在线视频| 欧美午夜高清在线| 伦理电影免费视频| 1024香蕉在线观看| 怎么达到女性高潮| 亚洲av日韩精品久久久久久密| 真人做人爱边吃奶动态| 90打野战视频偷拍视频| 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 精品高清国产在线一区| 琪琪午夜伦伦电影理论片6080| 99国产精品99久久久久| 亚洲九九香蕉| 欧美激情久久久久久爽电影| 午夜福利在线观看吧| 国产精品1区2区在线观看.| 久久天躁狠狠躁夜夜2o2o| 日本成人三级电影网站| 久久久久九九精品影院| 每晚都被弄得嗷嗷叫到高潮| 非洲黑人性xxxx精品又粗又长| 久久欧美精品欧美久久欧美| 欧美色欧美亚洲另类二区| 国产三级在线视频| 久久精品国产99精品国产亚洲性色| 丁香欧美五月| 午夜成年电影在线免费观看| 免费电影在线观看免费观看| 看免费av毛片| 九九热线精品视视频播放| 久久精品国产综合久久久| 欧美日韩亚洲综合一区二区三区_| 又黄又粗又硬又大视频| 日日干狠狠操夜夜爽| 亚洲午夜精品一区,二区,三区| 国产成人精品久久二区二区91| 国产精品一区二区三区四区免费观看 | 三级国产精品欧美在线观看 | 国产激情欧美一区二区| or卡值多少钱| 成人高潮视频无遮挡免费网站| 亚洲黑人精品在线| 日本成人三级电影网站| 欧美色视频一区免费| 天天躁夜夜躁狠狠躁躁| 成人国语在线视频| 国产高清激情床上av| 天堂影院成人在线观看| www.999成人在线观看| 国产精品野战在线观看| 成在线人永久免费视频| 成人国产综合亚洲| 日本一二三区视频观看| 大型黄色视频在线免费观看| 桃色一区二区三区在线观看| 色噜噜av男人的天堂激情| 高清在线国产一区| 国产av不卡久久| 中文字幕高清在线视频| 亚洲av第一区精品v没综合| 午夜激情av网站| 桃红色精品国产亚洲av| 两个人的视频大全免费| 国产视频内射| 久久亚洲精品不卡| 男女那种视频在线观看| 麻豆国产97在线/欧美 | 老汉色av国产亚洲站长工具| 一级毛片高清免费大全| 99久久99久久久精品蜜桃| 国产精品日韩av在线免费观看| 国产成人精品久久二区二区免费| 国产伦人伦偷精品视频| 精品福利观看| 1024手机看黄色片| 日韩欧美国产一区二区入口| 人妻久久中文字幕网| 男女做爰动态图高潮gif福利片| 久久热在线av| 午夜福利免费观看在线| 亚洲国产精品合色在线| 91国产中文字幕| 精品电影一区二区在线| 亚洲第一欧美日韩一区二区三区| 一进一出好大好爽视频| 成人欧美大片| 国产黄色小视频在线观看| 国产精品免费视频内射| 久久香蕉激情| 亚洲欧美日韩无卡精品| 亚洲第一电影网av| 亚洲精品粉嫩美女一区| 无限看片的www在线观看| 一个人观看的视频www高清免费观看 | 欧美乱码精品一区二区三区| 色播亚洲综合网| 动漫黄色视频在线观看| 国产成人av教育| 国产成人系列免费观看| 亚洲天堂国产精品一区在线| 久久久久久久午夜电影| 亚洲欧美日韩东京热| 18禁裸乳无遮挡免费网站照片| 999精品在线视频| 99久久精品国产亚洲精品| 国产又色又爽无遮挡免费看| 亚洲在线自拍视频| 黄色视频,在线免费观看| 免费无遮挡裸体视频| 午夜精品在线福利| 国产av在哪里看| 亚洲国产中文字幕在线视频| 亚洲av美国av| 国产熟女xx| 最近最新免费中文字幕在线| 国内少妇人妻偷人精品xxx网站 | 搡老熟女国产l中国老女人| 一个人观看的视频www高清免费观看 | 亚洲国产精品sss在线观看| 美女扒开内裤让男人捅视频| 老汉色av国产亚洲站长工具| 欧美 亚洲 国产 日韩一| 一本久久中文字幕| 国产av在哪里看| 国内久久婷婷六月综合欲色啪| 亚洲精品美女久久av网站| 熟妇人妻久久中文字幕3abv| 国产精华一区二区三区| 亚洲乱码一区二区免费版| 亚洲欧洲精品一区二区精品久久久| av有码第一页| 国产乱人伦免费视频| 别揉我奶头~嗯~啊~动态视频| 国产成人系列免费观看| 久久久精品大字幕| 男女之事视频高清在线观看| 国产一级毛片七仙女欲春2| 欧美黄色淫秽网站| 99热只有精品国产| 国产伦一二天堂av在线观看| 91国产中文字幕| 午夜影院日韩av| 91大片在线观看| 国产精品精品国产色婷婷| 久久国产精品影院| 日本撒尿小便嘘嘘汇集6| 国产精品久久久人人做人人爽| 国产精品野战在线观看| 老鸭窝网址在线观看| 日韩免费av在线播放| 欧美另类亚洲清纯唯美| 国产三级黄色录像| av免费在线观看网站| 99久久国产精品久久久| 国产蜜桃级精品一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲五月天丁香| 男人舔奶头视频| 丰满人妻熟妇乱又伦精品不卡| 久久久国产精品麻豆| 亚洲欧美精品综合一区二区三区| 久久这里只有精品19| 色综合亚洲欧美另类图片| 亚洲国产欧美网| 在线观看午夜福利视频| 久久欧美精品欧美久久欧美| 午夜久久久久精精品| 99国产综合亚洲精品| 日韩中文字幕欧美一区二区| 久久久国产成人精品二区| 五月玫瑰六月丁香| 亚洲国产精品合色在线| 在线观看免费午夜福利视频| 久久这里只有精品中国| 午夜日韩欧美国产| 十八禁人妻一区二区| 色在线成人网| 人妻丰满熟妇av一区二区三区| 日日干狠狠操夜夜爽| 午夜视频精品福利| 日韩欧美在线二视频| 亚洲av电影在线进入| 国产亚洲精品久久久久久毛片| 国产区一区二久久| www.999成人在线观看| 岛国在线观看网站| 狂野欧美白嫩少妇大欣赏| 免费av毛片视频| 亚洲一区二区三区不卡视频| 日本一二三区视频观看| 97人妻精品一区二区三区麻豆| 精品国内亚洲2022精品成人| 夜夜爽天天搞| 亚洲真实伦在线观看| 国产在线精品亚洲第一网站| 国产高清有码在线观看视频 | 久久性视频一级片| 巨乳人妻的诱惑在线观看| 免费一级毛片在线播放高清视频| 久久精品91无色码中文字幕| 亚洲乱码一区二区免费版| 夜夜躁狠狠躁天天躁| 日韩av在线大香蕉| 亚洲精品在线观看二区| 精品久久久久久久久久免费视频| 国产成人精品久久二区二区91| 18禁观看日本| 久久午夜综合久久蜜桃| 18禁美女被吸乳视频| 午夜福利高清视频| 日韩欧美国产在线观看| 精品免费久久久久久久清纯| 日韩免费av在线播放| 亚洲欧洲精品一区二区精品久久久| 精品国产乱码久久久久久男人| 老司机靠b影院| 国产精品永久免费网站| 少妇裸体淫交视频免费看高清 | 久久久久九九精品影院| 精华霜和精华液先用哪个| 精品久久久久久久人妻蜜臀av| 十八禁人妻一区二区| www日本黄色视频网| 国产成人精品久久二区二区免费| 男插女下体视频免费在线播放| 国产一区在线观看成人免费| 色综合婷婷激情| 欧美成狂野欧美在线观看| 国产主播在线观看一区二区| 女人爽到高潮嗷嗷叫在线视频| 两性夫妻黄色片| 欧美黑人精品巨大| 国产精品亚洲美女久久久| 精品熟女少妇八av免费久了| 久久天堂一区二区三区四区| 国产精品乱码一区二三区的特点| 午夜老司机福利片| 99精品欧美一区二区三区四区| 午夜激情av网站| 女人被狂操c到高潮| 琪琪午夜伦伦电影理论片6080|