• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON ALMOST AUTOMORPHIC SOLUTIONS OF THIRD-ORDER NEUTRAL DELAY-DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT??

    2016-12-22 05:07:23RongkunZhuang
    Annals of Applied Mathematics 2016年4期

    Rongkun Zhuang

    (Dept.of Math.,Huizhou University,Huizhou 516007,Guangdong,PR China)

    Hongwu Wu

    (School of Mathematical Sciences,South China University of Technology, Guangzhou 510640,Guangdong,PR China)

    ON ALMOST AUTOMORPHIC SOLUTIONS OF THIRD-ORDER NEUTRAL DELAY-DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT??

    Rongkun Zhuang?

    (Dept.of Math.,Huizhou University,Huizhou 516007,Guangdong,PR China)

    Hongwu Wu

    (School of Mathematical Sciences,South China University of Technology, Guangzhou 510640,Guangdong,PR China)

    We present some conditions for the existence and uniqueness of almost automorphic solutions of third order neutral delay-differential equations with piecewise constant of the form

    (x(t)+px(t?1))′′=a0x([t])+a1x([t?1])+f(t),

    where[·]is the greatest integer function,p,a0and a1are nonzero constants, and f(t)is almost automorphic.

    almost automorphic solutions;neutral delay equation;piecewise constant argument

    2000 Mathematics Subject Classification 34K14

    Ann.of Appl.Math.

    32:4(2016),429-438

    1 Introduction

    In this paper we study certain functional differential equations of neutral delay type with piecewise constant argument of the form

    (x(t)+px(t?1))′′=a0x([t])+a1x([t?1])+f(t),(1)

    here[·]is the greatest integer function,p,a0and a1are nonzero constants,and f(t) is almost automorphic.

    By a solution x(t)of(1)on ? we mean a function continuous on ?,satisfying (1)for all t∈?,t≠n∈?,and such that the one sided third derivatives of x(t)+px(t?1)exist at n∈?.

    The concept of almost automorphic functions is more general than that of almost periodic functions,which were introduced by S.Bochner[1,2],for more details about this topics we refer to[3,4,6-9]and references therein.

    Differential equations with piecewise constant argument(EPCA),which were firstly considered by Cooke and Wiener[11],and Shah and Wiener[12],describe the hybrid of continuous and discrete dynamical systems,which combine the properties of both differential equations and difference equations and have applications in certain biomedical models in the works of Busenberg and Cooke in[13].Therefore, there are many papers concerning the differential equations with piecewise constant argument(see e.g.[14-20]and references therein).However,there are only a few works on the almost automorphy of solutions of EPCAs.To the best of our knowledge,only Minh et al[21]in 2006,Dimbour[22]in 2011 and Li[23]in 2013 studied in this line.They give sufficient conditions for the almost automorphy of bounded solutions of differential equation EPCAs.

    Motivated by the above works,in this paper we investigate the existence of almost automorphy solutions of equation(1).The paper is organized as follows.In Section 2,some notation,preliminary definitions and lemmas are presented.The man result and its proofs is put in Sections 3.

    2 Preliminary Definitions and Lemmas

    Throughout this paper,?,?,? and ? denote the sets of natural numbers, integers,real and complex numbers,respectively.l∞(?)denotes the space of all bounded(two-sided)sequences x:?→? with sup-norm.We always denote by|·| the Euclidean norm in ?kor ?k,and by BC(?,?)the space of bounded continuous functions u:?→?.

    Definition 2.1 A continuous function f:?→? is called almost automorphic if for every sequence of real numbersthere exists a subsequence(sn)n∈?such that

    is well defined for each t∈? and

    for each t∈?.The collection of such functions is denoted by AA(?).

    It is clear that the function g in Definition 2.1 is bounded and measurable.

    Remark 2.1 A classical example of an automorphic function given by[10]is defined as follows

    but f(t)is not almost periodic as it is not uniformly continuous.

    Some properties of the almost automorphic functions are listed below.

    Proposition 2.1[3,4]Let f,f1,f2∈AA(?).Then the following statements hold:

    (i)αf1+βf2∈AA(?)for α,β∈?.

    (ii)fτ:=f(·+τ)∈AA(?)for every fixed τ∈?.

    (iii)?f=f(?·)∈AA(?).

    (iv)The range Rfof f is precompact,so f is bounded.

    (v)If{fn}?AA(?)such that fn→f uniformly on ?,then f∈AA(?).

    By(v)in Proposition 2.1,AA(?)is a Banach space equipped with the sup norm

    Definition 2.2[5]A sequence x∈l∞(?)is said to be almost automorphic if for any sequence of integers{k′n},there exists a subsequence{kn}such that

    for any p∈?.Denote by AAS(?)the set of all such sequences.

    This limit means that

    is well defined for each p∈? and

    for each p∈?.

    It is obvious that AAS(?)is a closed subspace of l∞(?),and the range of an almost automorphic sequence is precompact.

    Proposition 2.2{x(n)}={(xn1,xn2,···,xnk)}∈AAS(?k)(resp.AAS(?k)) if and only if{xni}∈AAS(?)(resp.AAS(?)),i=1,2,···,k.

    Lemma 2.1[10]Let B be a bounded linear operator in ?nwith σΓ(B)(the part of the spectrum of B on the unit circle of the complex plane)being countable,and let ?nnot contain any subspace isomorphic to c0.Assume further that x={xn}∈l∞(?) satisfies

    where{yn}∈AAS(?).Then x∈AAS(?).

    3 Main Results

    We first rewrite equation(1)to the following equivalent system

    Let(x(t),y(t),z(t))be a solution of(2)-(4)on ?,for n≤t<n+1,n∈?. Using(4)we obtain

    From this with(3)we obtain

    This together with(2)we obtain

    Since x(t)must be continuous at n+1,using the above equations we get for n∈?,

    where

    Next we express system(5)in terms of an equivalent system in ?4given by

    where

    vn=(x(n),y(n),z(n),x(n?1))T,

    Lemma 3.1 If f∈AA(?),then the sequences

    Consequently,it follows from the Lebesgue dominated convergence theorem that, for each n∈?,

    Lemma 3.2 Suppose that all eigenvalues of A are simple(denoted by λ1,λ2,λ3, λ4)and|λi|≠1,1≤i≤4.Then there exists a unique almost automorphic solution vn:?→?4of(7).

    Proof By Lemma 3.1 we have thatIt is clear that ?4does not contain any subspace isomorphic to c0,and the bounded linear operator A on ?4has finite spectrum.So Lemma 2.1 implies that{vn}∈AA(?4).

    From our hypotheses,there exists a 4×4 nonsingular matrix P with in general complex entries such that PAP?1=Λ where Λ=diag(λ1,λ2,λ3,λ4).Define= Pvn;then(7)becomes

    Lemma 3.3For any solution vn=(x(n),y(n),z(n),x(n?1))T,n∈?,of (7)there exists a solution(x(t),y(t),z(t)),t∈R,of(2)-(4)such that x(n)=cn, y(n)=dn,z(n)=en,n∈?.

    Proof Define

    for t∈[n,n+1),n∈?.It can easily be verified that w(t)is continuous on ?.The rest proof is similar to that of Lemma 2 in[19],we omit the details.

    Lemma 3.4 Let{cn},{dn},{en}∈AAS(?),f∈AA(?)and w(t)define as in (10)for t∈[n,n+1),n∈?,then w∈AA(?).

    Proof The proof is divided into the following two steps.

    Step 1 For any{n′k}??,there exist a subsequence{nk}of{n′k},three sequencesand a function e f:?→? such that

    Let

    for t∈[n,n+1),n∈?.Noticing that f andare bounded measurable,by(11) and(12),

    Step 2 We consider the general case wheremay not be an integer sequence.Letfor each k.Then by Step 1, there exist subsequencesrespectively, such thatholds and for each t∈?,

    Now there are two cases to be considered:Assume thatfor sufficiently large k.Noticing the boundedness of f(t),{cn},{dn}and{en},for sufficiently large k,we obtain

    This together with(13)implies that

    for any m∈?.Then for sufficiently large k,

    This together with(13)leads to

    Theorem 1 If|p|≠1.Suppose that all eigenvalues of A are simple(denoted by λ1,λ2,λ3,λ4)and|λi|≠1,1≤i≤4.Then equation(1)has a unique almost automorphic solution x(t),which can,in fact be determined explicitly in terms of w(t)as defined in the proof of Lemma 3.3.

    Proof From Lemma 3.2,we know that system(7)has a unique bounded solution {vn}n∈?∈PAAS(?4).Let(cn,dn,en)be the first three components of vn,now it follows from Lemma 3.3 that(1)has a unique bounded solution x(t)such that x(n)=cn,y(n)=dn,z(n)=dn,n∈?,where y(n)and z(n)are defined in(2)-(4), and for t∈[n,n+1),n∈?,and for t∈?,

    From Lemma 3.4,we have that w∈AA(?).It is easy to get

    Therefore x∈AA(?)by Proposition 2.1.

    The uniqueness of x(t)as an almost automorphic solution of(1)follows from the uniqueness of the almost automorphic solution vn:?→ ?4of(7)given by Lemma 3.3,which determines the uniqueness of w(t),and therefore from(16)the uniqueness of x(t).This completes the proof.

    Acknowledgments The authors would like to express the great appreciation to the referees for his/her helpful comments and suggestions.

    References

    [1]S.Bochner,Continuous mappings of almost automorphic and almost automorphic functions,Proc.Natl.Sci.USA,52(1964),907-910.

    [2]S.Bochner,A new approach to almost automorphicity,Proc.Natl.Sci.USA,48(1962), 2039-2043.

    [3]G.M.N’Guérékata,Almost Automorphic and Almost periodic Functions in Abstract Spaces,Kluwer,Amsterdam,2001.

    [4]G.M.N’Guérékata,Topics in Almost Automorphy,Spring-Verlag,New York,2005.

    [5]N.V.Minh,T.Naito,G.M.N’Guérékata,A spectral countability condition for almost automorphy of solutions of differential equations,Proc.Amer.Math.Soc., 134(2006),3257-3266.

    [6]T.Diagana,G.M.N’Guérékata,N.V.Minh,Almost automorphic solutions of evolution equations,Proc.Amer.Math.Soc.,132(2004),3289-3298.

    [7]J.Liang,J.Zhang,T.J.Xiao,Composition of pseudo almost automorphic and asymptotically almost automorphic functions,J.Math.Anal.Appl.,340(2008),1493-1499.

    [8]H.S.Ding,J.Liang,T.J.Xiao,Almost automorphic solutions to nonautonomous semilinear evolution equations in Banach spaces,Nonlinear Anal.,73(2010),1426-1438.

    [9]Z.M Zheng,H.S Ding,On completeness of the space of weighted pseudo almost automorphic functions,J.Funct.Anal.,268:10(2015),3211-3218.

    [10]B.M.Levitan,V.V.Zhikov,Almost Periodic Functions and Differential Equations, Moscow Univ.Publ.House,1978.English translation by Cambridge University Press, 1982.

    [11]K.L.Cooke,J.Wiener,Retarded differential equations with piecewise constant delays, J.Math.Anal.Appl.,99(1984),265-297.

    [12]S.M.Shah,J.Wiener,Advanced differential equations with piecewise constant argument deviations,Int.J.Math.Math.Soc.,6(1983),671-703.

    [13]S.Busenberg,K.L.Cooke,Models of vertically transmitted diseases with sequentialcontinuous dynamics,in:V.Lakshmikantham(Ed.),Nonlinear Phenomena in Mathematical Sciences,Academic Press,New York,1982.

    [14]R.Yuan,On the existence of almost periodic solutions of second order neutral delay differential equations with piecewise constant argument,Sci.China,41:3(1998),232-241.

    [15]G.Seifert,Second-order neutral delay-differential equations with piecewise constant time dependence,J.Math.Anal.Appl.,281(2003),1-9.

    [16]H.X.Li,Almost periodic solutions of second-order neutral delay-differential equations with piecewise constant arguments,J.Math.Anal.Appl.,298(2004),693-709.

    [17]H.X.Li,Almost periodic solutions of second-order neutral equations with piecewise constant arguments,Nolinear Anal.,65(2006),1512-1520.

    [18]E.A.Dads,L.Lhachimi,New approach for the existence of pseudo almost periodic solutions for some second order differential equation with piecewise constant argument, Nonliear Anal.,64(2006),1307-1324.

    [19]R.K.Zhuang,H.W.Wu,On almost periodic solutions of third-order neutral delaydifferential equations with piecewise constant argument,Ann.of Diff.Eqs.,29:1(2013), 114-120.

    [20]R.K.Zhuang,R.Yuan,Weighted pseudo almost periodic solutions of N-th order neutral differential equations with piecewise constant arguments,Acta Math.Sin.(Engl.Ser.), 30:7(2014),1259-1272.

    [21]N.V.Minh,T.Dat,On the almost automorphy of bounded solutions of differential equations with piecewise constant argument,J.Math.Anal.Appl.,236(2007),165-178.

    [22]W.Dimbour,Almost automorphic solutions for differential equations with piecewise constant argument in a Banach space,Nonlinear Anal.,74(2011),2351-2357.

    [23]C.H.Chen,H.X.Li,Almost automorphy for bounded solutions to second-order neutral differential equations with piecewise constant arguments,Electronic Journal of Differential Equations,140(2013),1-16.

    (edited by Mengxin He)

    ?This project was supported by National Natural Science Foundation of China(Grant Nos.11271380,11501238),Natural Science Foundation of Guangdong Province(Grant Nos. 2014A030313641,2016A030313119,S2013010013212)and the Major Project Foundation of Guangdong Province Education Department(No.2014KZDXM070).

    ?Manuscript April 18,2016;Revised August 31,2016

    ?.E-mail:rkzhuang@163.com

    成人午夜高清在线视频| a级毛色黄片| a级毛色黄片| 国产淫语在线视频| 精品国产一区二区三区久久久樱花 | 欧美激情久久久久久爽电影| 免费看a级黄色片| 麻豆国产97在线/欧美| 99久国产av精品国产电影| 蜜桃久久精品国产亚洲av| 日本熟妇午夜| 少妇丰满av| 综合色av麻豆| 国产亚洲一区二区精品| 国产伦一二天堂av在线观看| 村上凉子中文字幕在线| 搡老妇女老女人老熟妇| 男人狂女人下面高潮的视频| 九草在线视频观看| 国内揄拍国产精品人妻在线| 91久久精品国产一区二区成人| 婷婷色av中文字幕| 亚洲国产精品合色在线| 热99在线观看视频| 欧美zozozo另类| 又爽又黄无遮挡网站| 亚洲欧美成人精品一区二区| 日韩人妻高清精品专区| av又黄又爽大尺度在线免费看 | 内射极品少妇av片p| 国产极品天堂在线| 观看美女的网站| 久久99热6这里只有精品| 久久久欧美国产精品| 国产高潮美女av| 国产男人的电影天堂91| 欧美xxxx性猛交bbbb| 成人一区二区视频在线观看| 国产三级中文精品| 国产精品爽爽va在线观看网站| 成人性生交大片免费视频hd| 国产精品不卡视频一区二区| 亚洲国产精品sss在线观看| a级毛片免费高清观看在线播放| 麻豆成人午夜福利视频| av在线老鸭窝| 亚洲欧美精品自产自拍| 欧美一区二区国产精品久久精品| 精品无人区乱码1区二区| 成人午夜精彩视频在线观看| av播播在线观看一区| 国产精品精品国产色婷婷| 午夜激情福利司机影院| 伊人久久精品亚洲午夜| 亚洲怡红院男人天堂| 好男人视频免费观看在线| 蜜桃久久精品国产亚洲av| 久久久久久久久久久免费av| 热99在线观看视频| 插阴视频在线观看视频| 一级毛片aaaaaa免费看小| 我的老师免费观看完整版| 国产高清视频在线观看网站| 在线免费观看不下载黄p国产| 看片在线看免费视频| 久久热精品热| 观看美女的网站| 特大巨黑吊av在线直播| h日本视频在线播放| 成人国产麻豆网| 亚洲高清免费不卡视频| 内地一区二区视频在线| 日韩欧美国产在线观看| 亚洲欧美成人综合另类久久久 | 成人av在线播放网站| 一夜夜www| 超碰av人人做人人爽久久| 久久久久久国产a免费观看| 国产成人91sexporn| 免费观看性生交大片5| 成人二区视频| 国产精品一区二区三区四区免费观看| 国产精品久久久久久精品电影| 能在线免费看毛片的网站| 精品久久久久久久久久久久久| 亚洲成人av在线免费| 亚洲综合色惰| 热99re8久久精品国产| 小蜜桃在线观看免费完整版高清| 欧美日韩精品成人综合77777| av视频在线观看入口| 老司机福利观看| 少妇高潮的动态图| 亚洲国产精品专区欧美| 亚洲国产色片| 久久久久免费精品人妻一区二区| 男人舔女人下体高潮全视频| videossex国产| 十八禁国产超污无遮挡网站| 日韩一本色道免费dvd| 日韩强制内射视频| 欧美成人免费av一区二区三区| 白带黄色成豆腐渣| 亚洲精品色激情综合| 日韩亚洲欧美综合| 久久亚洲国产成人精品v| 日本午夜av视频| 天美传媒精品一区二区| 午夜久久久久精精品| 在线a可以看的网站| 97超视频在线观看视频| 国产黄色视频一区二区在线观看 | 亚洲欧美日韩卡通动漫| 天堂影院成人在线观看| 寂寞人妻少妇视频99o| 九色成人免费人妻av| 免费黄色在线免费观看| 一个人看视频在线观看www免费| 国产不卡一卡二| 亚洲五月天丁香| 久久人妻av系列| 午夜爱爱视频在线播放| 免费观看精品视频网站| 只有这里有精品99| av国产久精品久网站免费入址| 日韩欧美国产在线观看| 汤姆久久久久久久影院中文字幕 | 最近手机中文字幕大全| 免费一级毛片在线播放高清视频| 五月伊人婷婷丁香| 一级毛片我不卡| 夜夜爽夜夜爽视频| 中文欧美无线码| 91精品伊人久久大香线蕉| 国产大屁股一区二区在线视频| 精品一区二区三区人妻视频| 久久久久久大精品| 老司机福利观看| 欧美日韩一区二区视频在线观看视频在线 | 美女被艹到高潮喷水动态| 久久久午夜欧美精品| 少妇裸体淫交视频免费看高清| 亚洲美女搞黄在线观看| 久久久亚洲精品成人影院| 美女xxoo啪啪120秒动态图| 午夜福利成人在线免费观看| 你懂的网址亚洲精品在线观看 | 国内精品一区二区在线观看| 久久人人爽人人爽人人片va| 国产精品蜜桃在线观看| 日本黄色视频三级网站网址| 国产黄色小视频在线观看| 蜜桃久久精品国产亚洲av| 大话2 男鬼变身卡| 偷拍熟女少妇极品色| 欧美成人午夜免费资源| 国产精品综合久久久久久久免费| 亚洲aⅴ乱码一区二区在线播放| 51国产日韩欧美| 一级毛片aaaaaa免费看小| 国产爱豆传媒在线观看| 久久人人爽人人爽人人片va| 国产精品蜜桃在线观看| 午夜福利高清视频| 六月丁香七月| 亚洲人成网站在线观看播放| 国产成人免费观看mmmm| 最近2019中文字幕mv第一页| 国产精品一区二区在线观看99 | 岛国在线免费视频观看| 国产精品电影一区二区三区| 久久亚洲精品不卡| 最近2019中文字幕mv第一页| 网址你懂的国产日韩在线| 亚洲精品色激情综合| 国产精品一二三区在线看| av天堂中文字幕网| 听说在线观看完整版免费高清| 免费黄网站久久成人精品| 亚洲中文字幕一区二区三区有码在线看| 日韩强制内射视频| 国产精品麻豆人妻色哟哟久久 | 少妇裸体淫交视频免费看高清| av黄色大香蕉| 亚洲欧美精品专区久久| 精品一区二区三区视频在线| 伊人久久精品亚洲午夜| 色综合站精品国产| 国产亚洲av片在线观看秒播厂 | 九九久久精品国产亚洲av麻豆| 久久久久网色| 国产高清不卡午夜福利| 青青草视频在线视频观看| 高清毛片免费看| 两个人的视频大全免费| 一边摸一边抽搐一进一小说| 国产探花极品一区二区| 97在线视频观看| 免费黄网站久久成人精品| 男的添女的下面高潮视频| 久久精品久久精品一区二区三区| 久久这里有精品视频免费| 最新中文字幕久久久久| 韩国av在线不卡| 黄色日韩在线| 亚洲av一区综合| 久久人妻av系列| 国产午夜精品久久久久久一区二区三区| 最后的刺客免费高清国语| 在线播放无遮挡| 国产精品一及| 中文字幕制服av| 边亲边吃奶的免费视频| 亚洲综合精品二区| av在线亚洲专区| 久久久久久伊人网av| 秋霞在线观看毛片| 亚洲av日韩在线播放| 综合色丁香网| 亚洲人成网站在线观看播放| 在线观看av片永久免费下载| 国产极品天堂在线| 婷婷六月久久综合丁香| 性插视频无遮挡在线免费观看| 国产在视频线精品| 99热6这里只有精品| av黄色大香蕉| 国产激情偷乱视频一区二区| 日韩中字成人| 99热这里只有是精品在线观看| 99视频精品全部免费 在线| 青春草亚洲视频在线观看| 久久精品国产亚洲av天美| 日韩一本色道免费dvd| 91在线精品国自产拍蜜月| 免费黄色在线免费观看| 夜夜看夜夜爽夜夜摸| 床上黄色一级片| 国内精品宾馆在线| 夫妻性生交免费视频一级片| 免费大片18禁| 久久久久久久久中文| 国产私拍福利视频在线观看| 午夜精品国产一区二区电影 | 亚洲成av人片在线播放无| 97超视频在线观看视频| 国产精品久久久久久久久免| 自拍偷自拍亚洲精品老妇| 国产精品熟女久久久久浪| 天天一区二区日本电影三级| 国产一区二区在线av高清观看| 亚洲精品一区蜜桃| eeuss影院久久| 国产成人aa在线观看| 欧美最新免费一区二区三区| 18禁在线播放成人免费| 午夜视频国产福利| 久久久久久久久大av| 久久精品国产99精品国产亚洲性色| 国产老妇女一区| 搡老妇女老女人老熟妇| a级一级毛片免费在线观看| 国产精品一及| 国产乱人偷精品视频| 国产三级在线视频| 欧美xxxx性猛交bbbb| 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品美女特级片免费视频播放器| 日韩国内少妇激情av| 国产成人福利小说| 欧美97在线视频| 亚洲伊人久久精品综合 | 亚洲精品亚洲一区二区| 精品欧美国产一区二区三| h日本视频在线播放| 偷拍熟女少妇极品色| 成人欧美大片| 精品午夜福利在线看| 国产精品久久电影中文字幕| 国产一区二区三区av在线| 国产美女午夜福利| 国产爱豆传媒在线观看| 麻豆成人午夜福利视频| av在线蜜桃| 最后的刺客免费高清国语| 欧美激情久久久久久爽电影| 日日干狠狠操夜夜爽| 午夜视频国产福利| 欧美精品国产亚洲| 99热这里只有是精品50| 我的女老师完整版在线观看| 亚洲国产精品国产精品| 亚洲欧洲国产日韩| 欧美高清性xxxxhd video| 国产精品福利在线免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕一区二区三区有码在线看| 国产成人a∨麻豆精品| 欧美+日韩+精品| 久久久久久国产a免费观看| 亚洲人成网站高清观看| 亚洲伊人久久精品综合 | 久久99精品国语久久久| 中文字幕精品亚洲无线码一区| 国产免费一级a男人的天堂| 午夜福利在线观看吧| 天天一区二区日本电影三级| 69人妻影院| 中国美白少妇内射xxxbb| 精品久久久久久久久av| 青春草视频在线免费观看| 国产精品,欧美在线| 亚洲人成网站在线播| 久久国产乱子免费精品| 亚洲精品456在线播放app| 日产精品乱码卡一卡2卡三| 水蜜桃什么品种好| 欧美一区二区精品小视频在线| 国产在视频线精品| 国产黄片美女视频| 91在线精品国自产拍蜜月| 国产午夜精品论理片| 91久久精品国产一区二区三区| 午夜精品一区二区三区免费看| 国产私拍福利视频在线观看| 久久久a久久爽久久v久久| 久久亚洲精品不卡| 国产在线一区二区三区精 | 99热全是精品| 亚洲精品日韩在线中文字幕| 免费在线观看成人毛片| 亚洲真实伦在线观看| 国产精品美女特级片免费视频播放器| 日韩av不卡免费在线播放| 亚洲国产精品成人久久小说| 午夜福利网站1000一区二区三区| 精品欧美国产一区二区三| 久久精品91蜜桃| 97热精品久久久久久| 国产精品一区二区三区四区免费观看| 少妇猛男粗大的猛烈进出视频 | 日韩欧美在线乱码| 色哟哟·www| 99热精品在线国产| 国产精品日韩av在线免费观看| 免费观看精品视频网站| 亚洲国产欧美人成| 97超碰精品成人国产| 国产精品日韩av在线免费观看| 成人一区二区视频在线观看| 久久精品综合一区二区三区| 国产午夜精品一二区理论片| 亚洲最大成人av| 午夜免费男女啪啪视频观看| 亚洲最大成人av| 18+在线观看网站| 综合色av麻豆| 伦精品一区二区三区| 免费大片18禁| 伦精品一区二区三区| 免费大片18禁| 欧美激情久久久久久爽电影| 亚洲精品影视一区二区三区av| 欧美激情久久久久久爽电影| 亚洲婷婷狠狠爱综合网| 国产av码专区亚洲av| 一级毛片我不卡| 99视频精品全部免费 在线| 日韩欧美精品免费久久| 日本黄色视频三级网站网址| 精品一区二区三区视频在线| 午夜日本视频在线| 成人鲁丝片一二三区免费| av播播在线观看一区| 欧美3d第一页| 日韩中字成人| 高清在线视频一区二区三区 | 久久精品国产99精品国产亚洲性色| 亚洲自拍偷在线| 亚洲精品456在线播放app| 国产 一区精品| 99久国产av精品| 26uuu在线亚洲综合色| 亚洲av电影不卡..在线观看| 亚洲伊人久久精品综合 | 男人舔女人下体高潮全视频| 精品久久久久久久久久久久久| 国产私拍福利视频在线观看| 国产精品麻豆人妻色哟哟久久 | 午夜爱爱视频在线播放| 汤姆久久久久久久影院中文字幕 | videos熟女内射| 日日撸夜夜添| 中文字幕久久专区| 91久久精品国产一区二区三区| 欧美高清成人免费视频www| 青春草亚洲视频在线观看| 亚洲,欧美,日韩| 日韩成人av中文字幕在线观看| 国产精品99久久久久久久久| 99久久无色码亚洲精品果冻| 你懂的网址亚洲精品在线观看 | 全区人妻精品视频| 亚洲18禁久久av| 蜜桃亚洲精品一区二区三区| 亚洲人成网站在线观看播放| 亚洲欧美日韩无卡精品| av在线天堂中文字幕| 国产一区有黄有色的免费视频 | 人人妻人人澡人人爽人人夜夜 | 亚洲激情五月婷婷啪啪| 免费观看人在逋| 久久久久久久亚洲中文字幕| 22中文网久久字幕| 99国产精品一区二区蜜桃av| 联通29元200g的流量卡| 精品国产三级普通话版| 国产淫片久久久久久久久| 亚洲av二区三区四区| 亚洲av电影在线观看一区二区三区 | 成人毛片a级毛片在线播放| 一二三四中文在线观看免费高清| 亚洲丝袜综合中文字幕| 亚洲av.av天堂| 99久国产av精品| 成人毛片a级毛片在线播放| 午夜福利视频1000在线观看| 亚洲经典国产精华液单| 日韩欧美精品免费久久| 一区二区三区高清视频在线| 啦啦啦啦在线视频资源| 热99在线观看视频| 午夜精品一区二区三区免费看| 亚洲国产欧美人成| 不卡视频在线观看欧美| 日韩高清综合在线| 亚洲中文字幕一区二区三区有码在线看| av视频在线观看入口| 一个人看视频在线观看www免费| 久久韩国三级中文字幕| 国产女主播在线喷水免费视频网站 | 男人的好看免费观看在线视频| 三级国产精品欧美在线观看| 国产视频内射| 免费播放大片免费观看视频在线观看 | 亚洲成人av在线免费| 一本一本综合久久| 国产av在哪里看| 欧美极品一区二区三区四区| 黑人高潮一二区| 久久久久久久久中文| 69人妻影院| 最近中文字幕2019免费版| 男人和女人高潮做爰伦理| 午夜日本视频在线| 午夜精品国产一区二区电影 | 大话2 男鬼变身卡| 桃色一区二区三区在线观看| 日韩制服骚丝袜av| 国产免费又黄又爽又色| 嫩草影院精品99| 欧美激情国产日韩精品一区| 午夜老司机福利剧场| 国产女主播在线喷水免费视频网站 | 一卡2卡三卡四卡精品乱码亚洲| 日日撸夜夜添| 久久久久久久久中文| 岛国在线免费视频观看| 天堂中文最新版在线下载 | 18禁在线播放成人免费| 夫妻性生交免费视频一级片| 国产精品一区www在线观看| 免费看a级黄色片| 九九爱精品视频在线观看| 精品午夜福利在线看| 在线播放无遮挡| 免费搜索国产男女视频| 边亲边吃奶的免费视频| 极品教师在线视频| 国产精品,欧美在线| 赤兔流量卡办理| 精品免费久久久久久久清纯| 国产熟女欧美一区二区| 韩国av在线不卡| 成人国产麻豆网| 亚洲三级黄色毛片| 综合色丁香网| 亚洲国产高清在线一区二区三| 午夜激情福利司机影院| 亚洲av成人精品一二三区| 国产探花在线观看一区二区| 日本爱情动作片www.在线观看| 国产熟女欧美一区二区| 日韩一区二区三区影片| 亚洲国产精品专区欧美| 国产成人午夜福利电影在线观看| 天天躁日日操中文字幕| 久久久久久九九精品二区国产| 久热久热在线精品观看| av又黄又爽大尺度在线免费看 | 亚洲国产欧美人成| 精品酒店卫生间| 欧美色视频一区免费| 欧美日本亚洲视频在线播放| 乱码一卡2卡4卡精品| 国产精品爽爽va在线观看网站| 久久久久久久久久久免费av| 亚洲成人久久爱视频| 国产不卡一卡二| 免费观看精品视频网站| 日日干狠狠操夜夜爽| 国产一级毛片七仙女欲春2| 国产乱来视频区| 精品久久久久久电影网 | 一二三四中文在线观看免费高清| 我的老师免费观看完整版| 男人狂女人下面高潮的视频| av又黄又爽大尺度在线免费看 | 一级毛片电影观看 | 中文字幕熟女人妻在线| 一级黄色大片毛片| 韩国av在线不卡| 免费av毛片视频| 免费av观看视频| 亚洲国产最新在线播放| 久久久午夜欧美精品| 国产精品永久免费网站| 噜噜噜噜噜久久久久久91| h日本视频在线播放| 国产美女午夜福利| 久久婷婷人人爽人人干人人爱| 午夜视频国产福利| 好男人视频免费观看在线| 亚洲精品亚洲一区二区| 高清在线视频一区二区三区 | 啦啦啦韩国在线观看视频| 搡老妇女老女人老熟妇| 成人毛片60女人毛片免费| 男人狂女人下面高潮的视频| 国产亚洲91精品色在线| 岛国毛片在线播放| 久99久视频精品免费| 欧美bdsm另类| 国产在线男女| 午夜老司机福利剧场| 亚洲精品,欧美精品| 男女那种视频在线观看| 一个人免费在线观看电影| 欧美三级亚洲精品| 女人被狂操c到高潮| 久久久久久久久久黄片| 麻豆成人av视频| 男人的好看免费观看在线视频| 国产精品无大码| 日本一本二区三区精品| 精品免费久久久久久久清纯| 日韩欧美 国产精品| 蜜桃久久精品国产亚洲av| 九九热线精品视视频播放| 国产黄片美女视频| 日韩一区二区三区影片| 黑人高潮一二区| 少妇熟女aⅴ在线视频| 亚洲国产精品成人久久小说| 久久这里只有精品中国| 国产亚洲精品av在线| 99久久精品国产国产毛片| 97人妻精品一区二区三区麻豆| 免费人成在线观看视频色| 亚洲欧美日韩卡通动漫| 日韩av在线免费看完整版不卡| 天堂影院成人在线观看| 综合色丁香网| 男的添女的下面高潮视频| 一级av片app| 亚洲av成人精品一二三区| 亚洲人成网站高清观看| 国产黄片视频在线免费观看| 午夜福利网站1000一区二区三区| 国产精品一二三区在线看| 成人国产麻豆网| 国产成人精品一,二区| 一区二区三区四区激情视频| 91午夜精品亚洲一区二区三区| videos熟女内射| 久久99热这里只频精品6学生 | 免费观看的影片在线观看| 成人三级黄色视频| 国产淫语在线视频| 欧美成人一区二区免费高清观看| 自拍偷自拍亚洲精品老妇| 成人综合一区亚洲| 亚洲精品影视一区二区三区av| 2021天堂中文幕一二区在线观| 国产免费又黄又爽又色| 嫩草影院入口| 亚洲自拍偷在线| 日韩一区二区视频免费看| 能在线免费看毛片的网站| 成人三级黄色视频| a级一级毛片免费在线观看| 久久久久九九精品影院| 少妇被粗大猛烈的视频| 在线播放无遮挡| 久久久久网色| 国产精品久久久久久精品电影| 内射极品少妇av片p| 国产成人aa在线观看| 97超视频在线观看视频| 成年版毛片免费区| 色视频www国产| 亚洲欧洲日产国产| 在线天堂最新版资源| 中文字幕制服av|