• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE IMPROVED FOURIER SPLITTING METHOD AND DECAY ESTIMATES OF THE GLOBAL SOLUTIONS OF THE CAUCHY PROBLEMS FOR NONLINEAR SYSTEMS OF FLUID DYNAMICS EQUATIONS?

    2016-12-22 05:07:16LinghaiZhang
    Annals of Applied Mathematics 2016年4期

    Linghai Zhang

    (Dept.of Math.,Lehigh University,14 East Packer Avenue, Bethlehem,Pennsylvania 18015 USA)

    THE IMPROVED FOURIER SPLITTING METHOD AND DECAY ESTIMATES OF THE GLOBAL SOLUTIONS OF THE CAUCHY PROBLEMS FOR NONLINEAR SYSTEMS OF FLUID DYNAMICS EQUATIONS?

    Linghai Zhang?

    (Dept.of Math.,Lehigh University,14 East Packer Avenue, Bethlehem,Pennsylvania 18015 USA)

    Dedicated to Professor Boling Guo on the occasion of his eightieth birthday!

    Consider the Cauchy problems for an n-dimensional nonlinear system of fluid dynamics equations.The main purpose of this paper is to improve the Fourier splitting method to accomplish the decay estimates with sharp rates of the global weak solutions of the Cauchy problems.We will couple together the elementary uniform energy estimates of the global weak solutions and a well known Gronwall’s inequality to improve the Fourier splitting method. This method was initiated by Maria Schonbek in the 1980’s to study the optimal long time asymptotic behaviours of the global weak solutions of the nonlinear system of fluid dynamics equations.As applications,the decay estimates with sharp rates of the global weak solutions of the Cauchy problems for n-dimensional incompressible Navier-Stokes equations,for the n-dimensional magnetohydrodynamics equations and for many other very interesting nonlinear evolution equations with dissipations can be established.

    nonlinear systems of fluid dynamics equations;global weak solutions;decay estimates;uniform energy estimates;Fourier transformation; Plancherel’s identity;Gronwall’s inequality;improved Fourier splitting method

    2000 Mathematics Subject Classification 35Q20

    Ann.of Appl.Math.

    32:4(2016),396-417

    1 Introduction

    1.1The mathematical model equations

    First of all,consider the Cauchy problems for the n-dimensional incompressible Navier-Stokes equations

    The real vector valued function u=u(x,t)represents the velocity of the fluid at position x and time t.The real scalar function p=p(x,t)represents the pressure of the fluid at x and t.

    Secondly,consider the Cauchy problems for the n-dimensional magnetohydrodynamics equations

    In this system,the real vector valued function u=u(x,t)represents the velocity of the fluid at position x and time t,the real vector valued function A=A(x,t) represents the magnetic field at position x and time t.The real scalar functionrepresents the total pressure,where the real scalar function p=p(x,t)represents the pressure of the fluid andrepresents the magnetic pressure.Additionally,M >0 represents the Hartman constant, RE represents the Reynolds constant and RM represents the magnetic Reynolds constant.

    Now let us consider the Cauchy problems for the following n-dimensional nonlinear system of fluid dynamics equations

    In this system,α>0 is a positive constant,x=(x1,x2,···,xn)represents the spatial variable,the dimension n≥3.Moreover,u(x,t)=(u1(x,t),u2(x,t),···,um(x,t)) represents the unknown function,f(x,t)=(f1(x,t),f2(x,t),···,fm(x,t))represents the external force,and N(u,?u)=(N1(u,?u),N2(u,?u),···,Nm(u,?u))represents the nonlinear function,which is sufficiently smooth,m≥n is an integer.

    The general system(7)-(8)contains the n-dimensional incompressible Navier-Stokes equations(1)-(2)and the n-dimensional magnetohydrodynamics equations (3)-(6)as particular examples.The general system also contains many other interesting nonlinear evolution equations with dissipations as examples.

    Many mathematicians have accomplished the existence of the global weak solutions of the Cauchy problems for the n-dimensional incompressible Navier-Stokesequations.They have also established the existence of the global smooth solutions with small initial functions and small external forces.However,the uniform energy estimates of all order derivatives of the global weak solutions with large initial functions or large external forces have been open,see[4,8,9].For the n-dimensional magnetohydrodynamics equations,there hold very similar results.Very recently, Lei and Lin[1],Lei,Lin and Zhou[2],Peng and Zhou[5]established the existence of large global smooth solution of three-dimensional incompressible Navier-Stokes equations for special cases.

    1.2The main purpose

    The decay estimates with sharp rates of the global weak solutions of the Cauchy problems for the n-dimensional incompressible Navier-Stokes equations(1)-(2),the global weak solutions of the Cauchy problems for the n-dimensional magnetohydrodynamics equations(3)-(6)and the global weak solutions of the Cauchy problems for many other interesting nonlinear evolution equations with dissipations are of great interests and importance in applied mathematics.The Fourier splitting method was developed by Maria Schonbek[6,7]to accomplish the optimal long time asymptotic behaviors of the global weak solutions.Today,it has become a very popular tool to study the asymptotic behaviors and thus has been widely used,see[3,10–12]for closely related results.To obtain the optimal decay rate,one must iterate some of the most important steps in the Fourier splitting method for finitely many times, see[6,7].We will make complete use of the uniform energy estimates(see Lemmas 3,4 and 8 in Section 2)and the Gronwall’s inequality to avoid the iteration process for n-dimensional problems,where n≥3.Therefore,the main purpose of this paper is to improve the Fourier splitting method so that it may become the most powerful tool to accomplish the decay estimates with sharp rates for the global weak solutions of many nonlinear evolution equations with dissipations.

    1.3The main results—decay estimates with sharp rates

    First of all,let us make several reasonable assumptions needed for the main results.

    (A1)Suppose that the initial function u0∈L1(?n)∩L2(?n)and the external force f∈L1(?n×?+)∩L1(?+,L2(?n)).

    (A2)Suppose that there exist real scalar functions φkl∈C1(?n)∩L1(?n)and ψkl∈C1(?n×?+)∩L1(?n×?+),such that

    and

    for all k=1,2,···,m and l=1,2,···,n.

    (A3)Suppose that there holds the condition

    (A4)Suppose that there holds the condition

    (A5)Suppose that the nonlinear function satisfies

    for all u∈L∞(?+,L2(?n))with?u∈L2(?+,L2(?n)).

    (A6)Suppose that the nonlinear function satisfies the condition

    for all u∈C1(?n),where C1>0 is a positive constant,independent of u and?u.

    (A7)Suppose that the nonlinear function satisfies

    for all u∈L∞(?+,L2(?n))with?u∈L2(?+,L2(?n))and for all(ξ,t)∈?n×?+, where C2>0 is a positive constant,independent of u,?u and(ξ,t).

    (A8)Suppose that there exists a global weak solution to the Cauchy problems for the nonlinear system of fluid dynamics equations(7)-(8):

    Theorem 1(I)Suppose that assumptions(A1),(A3),(A5)-(A8)hold.There holds the decay estimate

    for all time t>0,where C3>0 is a positive constant,independent of u and(x,t).

    (II)Suppose that assumptions(A1)-(A8)hold.There holds the decay estimate with sharp rate

    for all time t>0,where C4>0 is a positive constant,independent of u and(x,t).

    The global weak solutions of the Cauchy problems for the n-dimensional incompressible Navier-Stokes equations(1)-(2)and for the n-dimensional magnetohydrodynamics equations(3)-(6)satisfy these conditions and results.

    2 The Mathematical Analysis and the Proofs of the Main Results

    We will couple together the elementary uniform energy estimates,the Fourier transformation,the Plancherel’s identity and the Gronwall’s inequality to improve the Fourier splitting method to accomplish the decay estimates with sharp rates for the global weak solutions of the Cauchy problems for the nonlinear systems of fluid dynamics equations(7)-(8).The improved Fourier splitting method involves the splitting of the frequency space into two time-dependent subspaces(a small ball with radius proportional to(1+t)?1/2and the exterior of the small ball)and the delicate estimates of the Fourier transformation of the global weak solutions.The key point of the improvement is that for many nonlinear evolution equations with dissipations,we may apply the improved Fourier splitting method to accomplish the decay estimates with sharp rates for the global weak solutions.

    2.1The uniform energy estimates

    The main purpose is to use traditional ideas,methods and techniques to establish some uniform energy estimates.

    Lemma 1(The Cauchy-Schwartz’s inequality)Let the functions f∈L2(?n) and g∈L2(?n).There holds the following Cauchy-Schwartz’s inequality

    Lemma 2(The H?lder’s inequality)Let f∈Lp(?n)and g∈Lq(?n),where p≥ 1 and q≥ 1 are positive constants,such thatThere holds the following estimate

    Lemma 3 Suppose that the initial function u0∈L2(?n)and the external force f∈L1(?+,L2(?n)).There holds the following uniform energy estimate

    In particular,if the initial function u0∈L2(?n)and the external force f=0,then there holds the following uniform energy estimate

    Proof Multiplying system(7)by 2u and integrating the result with respect to x over ?nyield the following energy equation

    where

    By using Cauchy-Schwartz’s inequality,there hold the following estimates

    Now the above energy equation becomes the differential inequality

    Simplifying the inequality gives

    Integrating this inequality with respect to time t leads to the desired energy estimate

    If f=0,then the uniform energy estimate

    follows immediately.The proof of Lemma 3 is finished.

    2.2The Fourier transformation of the global weak solutions

    Lemma 4(I)There holds the following Fourier representation

    for all(ξ,t)∈?n×?+.

    (II)There holds the following estimate

    for all(ξ,t)∈?n×?+,where C5>0 is a positive constant,independent ofand (ξ,t).

    (III)There holds the following estimate

    where C6>0 is a positive constant,independent ofand(ξ,t),if

    for all time t>0 and for another positive constant C7>0,independent of u and (x,t).

    Proof Performing the Fourier transformation to(7)leads to

    Multiplying this equation by the integrating factor exp(α|ξ|2t)gives

    Integrating with respect to time t yields

    Finally,we have the representation.

    Now let us make estimates aboutFirst of all,there hold the following estimates

    In particular,for the n-dimensional incompressible Navier-Stokes equations(1)-(2), there hold the following estimates

    for all(ξ,t)∈?n×?+.

    Therefore,there hold the following estimates

    Moreover,if there exist real scalar functions φkl∈C1(?n)∩L1(?n)and ψkl∈C1(?n×?+)∩L1(?n×?+),such that

    for all k=1,2,···,m and l=1,2,···,n,then we have

    By applying Cauchy-Schwartz’s inequality to the Fourier transformations,we get the following estimates

    Recall that there exists a positive constant C2>0,independent ofand(ξ,t), such that

    for all(ξ,t)∈?n×?+.Now we obtain the following estimate

    for all(ξ,t)∈?n×?+.The proof of Lemma 4 is finished.

    2.3The Fourier splitting method

    Now let us review the Fourier splitting method developed in[6,7]to establish the decay estimates for the global weak solutions of system(7)-(8).

    Lemma 5(The Plancherel’s identity)There holds the following Plancherel’s identity for all real vector valued functions f∈L2(?n)

    Lemma 6(The Gronwall’s inequality)Suppose that the nonnegative continuous functions f≥0,g≥0 and h≥0 satisfy the inequality

    for all t>0,where the derivative f′≥0.Then

    for all t>0.

    Lemma 7 Let t>0 and define

    There holds the following estimate

    Proof Multiplying system(7)by 2u and integrating the result with respect to x over ?nyield

    where

    Applying the Plancherel’s identity to this equation gives

    Multiplying it by(1+t)2nto get the energy equation

    By applying Cauchy-Schwartz’s inequality,we have

    Now the above energy equation becomes the inequality

    Recall that ?(t)={ξ∈?n:α|ξ|2(1+t)≤2n}.Then we have the following estimates

    Now the energy inequality

    becomes the new differential inequality

    The proof of Lemma 7 is finished.

    2.4The improved Fourier splitting method

    Lemma 8(I)There holds the following decay estimate for the global weak solutions of the Cauchy problems(7)-(8)if assumptions(A1),(A3),(A5)-(A8)hold:

    for all time t>0,where C11>0 is a positive constant,independent of u and(x,t).

    (II)There holds the following decay estimate with sharp rate for the global weak solutions of the Cauchy problems for the nonlinear system of fluid dynamics equations(7)-(8)if assumptions(A1)-(A8)hold:

    for all time t>0,where C12>0 is a positive constant,independent of u and(x,t).

    Proof(I)Recall that there exists a positive constant C5>0,independent ofand(ξ,t),such that

    for all(ξ,t)∈?n×?+.

    Therefore,by using Lemma 7,we have

    Integrating this inequality with respect to time t yields

    That is

    where C17>0 and C18>0 are positive constants,independent ofand (ξ,t).Note that

    Recall that there holds the following uniform energy estimate

    By using Gronwall’s inequality,it follows that

    where C19>0 and C20>0 are positive constants,independent of b u(ξ,t)and(ξ,t).

    (II)Recall that

    for all(ξ,t)∈?n×?+.Now we have the following estimates

    Integrating the inequality in time t yields the estimate

    That is

    The proof of Lemma 8 is finished.

    Therefore,the proofs of the main results stated in Theorem 1 are finished.

    RemarkBoth the global weak solutions of the Cauchy problems for the ndimensional incompressible Navier-Stokes equations(1)-(2)and the global weak solutions of the Cauchy problems for the n-dimensional magnetohydrodynamics equations(3)-(6)enjoy the decay estimates.

    3 Conclusions and Remarks

    3.1Summary

    The main purpose of this paper is to improve the Fourier splitting method to simplify the mathematical analysis to accomplish the decay estimates with sharp rates.

    We considered the Cauchy problems for the following n-dimensional nonlinear system of fluid dynamics equations

    The general system contains the n-dimensional incompressible Navier-Stokes equations(1)-(2)and the n-dimensional magnetohydrodynamics equations(3)-(6)as particular examples.There holds the following decay estimate with sharp rate

    for all time t>0,where C25>0 is a positive constant,independent of u and(x,t). The uniform energy estimate played a key role in the mathematical analysis.

    3.2Summary about the n-dimensional incompressible Navier-Stokes equations

    Consider the Cauchy problems for the n-dimensional incompressible Navier-Stokes equations

    Suppose that the initial function u0∈L1(?n)∩L2(?n)and the external force f∈L1(?n×?+)∩L1(?+,L2(?n)).There exists a global weak solution u∈L∞(?+,L2(?n)),such that?u∈L2(?+,L2(?n)).

    There holds the following uniform energy estimate

    Due to the divergence free conditions?·u0=0 and?·f=0,it is necessarily true that∫

    ?nu0(x)d x=0 and∫?nf(x,t)d x=0,for all t>0.

    Suppose that there exist real scalar functions φkl∈C1(?n)∩L1(?n)and ψkl∈C1(?n×?+)∩L1(?n×?+),such that

    and that

    for all k=1,2,···,n and l=1,2,···,n.

    There holds the following decay estimate for the global weak solutions of the Cauchy problems for the n-dimensional incompressible Navier-Stokes equations

    for all time t>0,where C26>0 is a positive constant,independent of u and(x,t).

    Let us review some important open problems about the global smooth solutions and their influences.Suppose that the initial function u0∈L1(?n)∩H2m+1(?n) and the external force f∈L1(?n×?+)∩L1(?+,L2(?n))∩L2(?+,H2m(?n)).The following uniform energy estimates have been open

    for all positive integers m ≥1 and for all time t>0,where C27>0,C28>0, C29>0 and C30>0 are positive constants,independent of u and(x,t).Therefore, the existence of the global smooth solution u∈L∞(?+,H2m+1(?n))such that?u∈L2(?+,H2m+1(?n))has been open.

    Suppose that the initial function u0∈L1(?n)∩H2m+1(?n)and the external force f∈L1(?n×?+)∩L1(?+,L2(?n))∩L2(?+,H2m(?n)).Suppose that there exists a global smooth solution to the Cauchy problems for the n-dimensional incompressible Navier-Stokes equations(1)-(2):u∈L∞(?+,H2m+1(?n)),such that?u∈L2(?+,H2m+1(?n)),where m ≥ 1 is a positive integer.There hold the following decay estimates with sharp rates

    and

    for all positive integers m ≥1 and for all time t>0,where C31>0,C32>0, C33>0,C34>0,C35>0,C36>0,C37>0,C38>0 are positive constants, independent of u and(x,t).

    Now let us consider a very interesting question for the global smooth solutions of the Cauchy problems for the n-dimensional incompressible Navier-Stokes equations (1)-(2).As t→∞,how do the following exact limits

    depend on the nonlinear function,the initial function,the nonhomogeneous function,the dimension n and the order of the derivative(that is,the integer m)?Do the global smooth solutions carry initial information(e.g.mass,energy and momentum of physical objects)to the very end?In another word,can the global smooth solutions“remember the very beginning”at“the very end”?We will couple together existing ideas,methods,results and new ideas to generate a very different method to solve these complicated mathematical problems and accomplish very general results.

    Again consider the Cauchy problems for the n-dimensional incompressible Navier-Stokes equations

    The following estimate has been open

    for all(ξ,t)∈?n×?+,where κ1=κ1(t)and κ2=κ2(t)are positive,continuous, increasing functions defined on(0,∞),0<ε?1 is a constant.

    If this estimate is true,then there exists a unique global smooth solution u∈C∞(?n×?+)to(1)-(2)and there hold the following decay estimates with sharp rates

    for all positive integers m ≥1 and for all time t>0,where C39>0 is a positive constant,independent of u and(x,t).

    If there exists a global smooth solution u∈C∞(?n×?+)to the Cauchy problems for the n-dimensional incompressible Navier-Stokes equations(1)-(2),then there holds the following solution representation

    3.3Summary about the n-dimensional magnetohydrodynamics equations

    Consider the Cauchy problems for the n-dimensional magnetohydrodynamics equations

    Suppose that the initial functions

    Suppose that the external forces

    There exists a global weak solution

    such that

    There holds the following uniform energy estimate

    Suppose that there exist real scalar functions

    such that

    and that

    for all k=1,2,···,n and l=1,2,···,n.

    There holds the following decay estimate with sharp rate

    for all time t>0,where C40>0 is a positive constant,independent of(u,A)and (x,t).

    Let us review some open problems and their influences about system(3)-(6). Suppose that the initial functions

    Suppose that the external forces

    The following uniform energy estimates have been open

    for all positive integers m ≥1 and for all time t>0,where C41>0,C42>0, C43>0,C44>0 are positive constants,independent of(u,A)and(x,t).

    The existence of the global smooth solution of the Cauchy problems for the n-dimensional magnetohydrodynamics equations(3)-(6):

    such that

    has been open.

    Suppose that there exists a global smooth solution to the Cauchy problems for the n-dimensional magnetohydrodynamics equations:

    such that

    where m≥1 is a positive integer.

    For the global smooth solution of the n-dimensional magnetohydrodynamicsequations(3)-(6),there hold the following decay estimates with sharp rates

    and

    for all positive integers m≥1 and for all time t>0,where C45>0,C46>0,C47>0,C48>0,C49>0,C50>0,C51>0,C52>0 are positive constants,independent of(u,A)and(x,t).The proofs follow from the Fourier splitting method.

    References

    [1]Zhen Lei and Fanghua Lin,Global mild solutions of Navier-Stokes equations,Communications in Pure and Applied Mathematics,64(2011),1297-1304.

    [2]Zhen Lei,Fanghua Lin and Yi Zhou,Structure of helicity and global solution of incompressible Navier-Stokes equations,Archive for Rational Mechanics and Analysis, 218(2015),1417-1430.

    [3]Boling Guo and Linghai Zhang,Decay of solutions to magnetohydrodynamics equations in two space dimensions,Proceedings of the Royal Society of London,Series A: Mathematical and Physical Sciences,449(1995),79-91.

    [4]Fanghua Lin,A new proof of the Caffarelli-Kohn-Nirenberg theorem,Communications in Pure and Applied Mathematics,51(1998),241-257.

    [5]Weimin Peng and Yi Zhou,Global large solutions to incompressible Navier-Stokes equations with gravity,Mathematical Methods in Applied Sciences,38(2015),590-597.

    [6]Maria E.Schonbek,L2decay for weak solutions of the nonlinear Navier-Stokes equations,Archive for Rational Mechanics and Analysis,88(1985),209-222.

    [7]Maria E.Schonbek,Large time behaviour to the Navier-Stokes equations,Communications in Partial Differential Equations,10(1986),943-956.

    [8]Roger Temam,Navier-Stokes equations,Theory and numerical analysis,Reprint of the 1984 edition.AMS Chelsea Publishing,Providence,Rhode Island,2001.xiv+408 pp. ISBN:0-8218-2737-5.

    [9]Gang Tian and Zhouping Xin,Gradient estimation on Navier-Stokes equations,Communications in Analysis and Geometry,7(1999),221-257.

    [10]Linghai Zhang,Decay of solutions to 2-dimensional Navier-Stokes equations,Chinese Advances in Mathematics,22(1993),469-472.

    [11]Linghai Zhang,Decay estimates for the solutions of some nonlinear evolution equations, Journal of Differential Equations,116(1995),31-58.

    [12]Linghai Zhang,Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equations,Communications in Partial Differential Equations,20(1995),119-127.

    (edited by Mengxin He)

    ?Manuscript June 16,2016

    ?.E-mail:liz5@lehigh.edu.

    videos熟女内射| 免费黄频网站在线观看国产| 老熟妇仑乱视频hdxx| 亚洲精品成人av观看孕妇| 婷婷色av中文字幕| 另类精品久久| 午夜两性在线视频| 久久人人爽人人片av| 午夜两性在线视频| 亚洲伊人色综图| 亚洲视频免费观看视频| 欧美日本中文国产一区发布| 国产免费福利视频在线观看| 久久九九热精品免费| 日韩制服骚丝袜av| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦中文免费视频观看日本| 亚洲成人手机| 女性被躁到高潮视频| 午夜日韩欧美国产| 成人影院久久| 国产免费一区二区三区四区乱码| 下体分泌物呈黄色| 国产亚洲一区二区精品| 在线 av 中文字幕| 丝袜脚勾引网站| 国产日韩欧美视频二区| 自线自在国产av| 日韩欧美一区视频在线观看| av欧美777| 精品一品国产午夜福利视频| 亚洲少妇的诱惑av| 国产又爽黄色视频| 日本91视频免费播放| 国产xxxxx性猛交| 啦啦啦啦在线视频资源| 色婷婷久久久亚洲欧美| 在线观看舔阴道视频| 天堂8中文在线网| 一本—道久久a久久精品蜜桃钙片| 超碰成人久久| 黑人巨大精品欧美一区二区mp4| 精品亚洲成a人片在线观看| 午夜福利视频在线观看免费| 人妻 亚洲 视频| 国产精品久久久av美女十八| 少妇被粗大的猛进出69影院| www.av在线官网国产| 天堂中文最新版在线下载| 成人手机av| 久久这里只有精品19| 一进一出抽搐动态| 亚洲精品自拍成人| 国产成人欧美| 亚洲欧美清纯卡通| 夜夜骑夜夜射夜夜干| 麻豆乱淫一区二区| 丝瓜视频免费看黄片| 一区二区日韩欧美中文字幕| 国产欧美亚洲国产| 精品福利永久在线观看| 欧美日韩福利视频一区二区| 熟女少妇亚洲综合色aaa.| 久久ye,这里只有精品| 久久精品国产综合久久久| 日韩 亚洲 欧美在线| 天天躁夜夜躁狠狠躁躁| av又黄又爽大尺度在线免费看| 日韩一卡2卡3卡4卡2021年| 久久影院123| 国产在视频线精品| 男人添女人高潮全过程视频| 亚洲一区二区三区欧美精品| 日日夜夜操网爽| 久久久久久久国产电影| 国产亚洲精品久久久久5区| 亚洲国产欧美在线一区| 岛国在线观看网站| 亚洲,欧美精品.| 91国产中文字幕| 国产精品一区二区免费欧美 | 国产成人欧美| 精品国产乱码久久久久久男人| 亚洲成国产人片在线观看| 高清欧美精品videossex| 日本91视频免费播放| 亚洲欧美一区二区三区黑人| 2018国产大陆天天弄谢| 另类精品久久| 国产有黄有色有爽视频| 成人国语在线视频| 亚洲欧美日韩另类电影网站| 亚洲中文av在线| 菩萨蛮人人尽说江南好唐韦庄| 天天躁日日躁夜夜躁夜夜| 国产亚洲av片在线观看秒播厂| 国产亚洲精品久久久久5区| 国产精品秋霞免费鲁丝片| 免费观看人在逋| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美清纯卡通| 亚洲午夜精品一区,二区,三区| 久久久久久久大尺度免费视频| 在线观看免费视频网站a站| 在线永久观看黄色视频| 美女高潮到喷水免费观看| 欧美精品一区二区大全| 最近中文字幕2019免费版| 老司机影院毛片| 在线天堂中文资源库| 99国产精品一区二区蜜桃av | 久久人人爽人人片av| 在线观看人妻少妇| 成年人免费黄色播放视频| 视频在线观看一区二区三区| 日韩中文字幕视频在线看片| 脱女人内裤的视频| 欧美成人午夜精品| 国产又爽黄色视频| 久久国产精品大桥未久av| 国产色视频综合| 国产亚洲午夜精品一区二区久久| 又黄又粗又硬又大视频| 国产野战对白在线观看| 国产精品.久久久| 99香蕉大伊视频| netflix在线观看网站| 亚洲欧美色中文字幕在线| a级毛片在线看网站| 久久热在线av| av线在线观看网站| 中亚洲国语对白在线视频| 青青草视频在线视频观看| 国产一级毛片在线| 成在线人永久免费视频| 国产精品 欧美亚洲| 热re99久久精品国产66热6| 五月开心婷婷网| 日韩大片免费观看网站| 97精品久久久久久久久久精品| 精品乱码久久久久久99久播| 一本—道久久a久久精品蜜桃钙片| 777久久人妻少妇嫩草av网站| 宅男免费午夜| 99久久精品国产亚洲精品| 女性被躁到高潮视频| 精品乱码久久久久久99久播| 亚洲精品乱久久久久久| 亚洲精品中文字幕在线视频| 国产亚洲欧美在线一区二区| 欧美国产精品一级二级三级| 国产深夜福利视频在线观看| 丝袜人妻中文字幕| 少妇猛男粗大的猛烈进出视频| 亚洲成人免费av在线播放| 亚洲激情五月婷婷啪啪| 午夜福利视频精品| 1024香蕉在线观看| 桃花免费在线播放| 国产亚洲av高清不卡| 捣出白浆h1v1| 18禁裸乳无遮挡动漫免费视频| 午夜激情av网站| 欧美黑人欧美精品刺激| 中文精品一卡2卡3卡4更新| 午夜两性在线视频| 天堂中文最新版在线下载| 搡老乐熟女国产| 国产欧美日韩一区二区三区在线| av网站免费在线观看视频| 欧美大码av| 天堂俺去俺来也www色官网| 国产99久久九九免费精品| 中文精品一卡2卡3卡4更新| 人妻久久中文字幕网| 夜夜骑夜夜射夜夜干| 亚洲国产毛片av蜜桃av| 天堂中文最新版在线下载| 大香蕉久久成人网| 黑人欧美特级aaaaaa片| 曰老女人黄片| 一个人免费看片子| 丝袜美腿诱惑在线| 18禁裸乳无遮挡动漫免费视频| 国产在视频线精品| 在线观看一区二区三区激情| 久久狼人影院| 午夜福利,免费看| 男女免费视频国产| 最新在线观看一区二区三区| 黑人操中国人逼视频| 18禁观看日本| 国产三级黄色录像| 免费在线观看黄色视频的| 亚洲 欧美一区二区三区| 国产精品久久久久久精品古装| 久久久久精品国产欧美久久久 | 丰满饥渴人妻一区二区三| 久久久欧美国产精品| 高清黄色对白视频在线免费看| 午夜成年电影在线免费观看| 丁香六月天网| 欧美精品一区二区免费开放| 亚洲国产精品成人久久小说| 欧美老熟妇乱子伦牲交| 精品熟女少妇八av免费久了| 亚洲av成人一区二区三| 国产精品av久久久久免费| 天天添夜夜摸| 欧美另类亚洲清纯唯美| 五月天丁香电影| 久久精品aⅴ一区二区三区四区| 国产成人精品无人区| 91麻豆av在线| 国产成人精品久久二区二区免费| 亚洲国产毛片av蜜桃av| 国产xxxxx性猛交| 一区二区三区精品91| 国产成人av激情在线播放| 亚洲专区国产一区二区| 久久亚洲国产成人精品v| 汤姆久久久久久久影院中文字幕| 久久影院123| 国产精品一二三区在线看| 色94色欧美一区二区| 日韩一卡2卡3卡4卡2021年| 欧美性长视频在线观看| 他把我摸到了高潮在线观看 | 99国产精品一区二区蜜桃av | 国产一卡二卡三卡精品| 亚洲天堂av无毛| 日日夜夜操网爽| 亚洲伊人色综图| cao死你这个sao货| 国产精品欧美亚洲77777| 手机成人av网站| 另类亚洲欧美激情| 天堂中文最新版在线下载| 桃花免费在线播放| 丰满少妇做爰视频| 91字幕亚洲| 男女之事视频高清在线观看| 久久久久精品国产欧美久久久 | 免费在线观看完整版高清| 视频在线观看一区二区三区| 操美女的视频在线观看| 欧美精品啪啪一区二区三区 | 亚洲人成电影免费在线| 久久久久网色| kizo精华| 久久精品久久久久久噜噜老黄| 老熟妇乱子伦视频在线观看 | 亚洲av男天堂| a 毛片基地| 久久天堂一区二区三区四区| 最黄视频免费看| 91九色精品人成在线观看| 国产主播在线观看一区二区| 成年人黄色毛片网站| 一级毛片女人18水好多| 国产高清视频在线播放一区 | 丰满人妻熟妇乱又伦精品不卡| 侵犯人妻中文字幕一二三四区| 黄片小视频在线播放| 午夜福利在线观看吧| 人人澡人人妻人| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久av网站| 欧美日韩一级在线毛片| 高清欧美精品videossex| 亚洲精品久久成人aⅴ小说| 最新的欧美精品一区二区| 久久ye,这里只有精品| 丝袜在线中文字幕| 性高湖久久久久久久久免费观看| 两人在一起打扑克的视频| 热99国产精品久久久久久7| 久久精品国产亚洲av香蕉五月 | 乱人伦中国视频| 国产免费福利视频在线观看| 国产男女内射视频| 亚洲专区国产一区二区| 国产欧美日韩精品亚洲av| 亚洲国产av影院在线观看| 国产老妇伦熟女老妇高清| 亚洲,欧美精品.| 热99re8久久精品国产| 亚洲精品国产av成人精品| 波多野结衣av一区二区av| 欧美成狂野欧美在线观看| 老熟妇乱子伦视频在线观看 | 国产免费视频播放在线视频| 深夜精品福利| 国产日韩一区二区三区精品不卡| 亚洲视频免费观看视频| 国产成人欧美在线观看 | 蜜桃国产av成人99| 国产亚洲欧美在线一区二区| 视频区图区小说| 在线观看免费高清a一片| 精品国产乱子伦一区二区三区 | 欧美日韩亚洲综合一区二区三区_| 成年女人毛片免费观看观看9 | 叶爱在线成人免费视频播放| 婷婷丁香在线五月| 建设人人有责人人尽责人人享有的| 欧美激情极品国产一区二区三区| 日韩大片免费观看网站| 亚洲三区欧美一区| 免费高清在线观看日韩| 亚洲欧洲日产国产| 国产成人欧美| 黄频高清免费视频| 国产日韩一区二区三区精品不卡| 精品人妻1区二区| 午夜福利在线观看吧| 91精品伊人久久大香线蕉| 美女中出高潮动态图| 国产精品成人在线| 亚洲精品国产av成人精品| 中亚洲国语对白在线视频| 久久久久久久久免费视频了| av天堂在线播放| 91av网站免费观看| 亚洲精品久久午夜乱码| 亚洲国产日韩一区二区| 窝窝影院91人妻| 亚洲,欧美精品.| 亚洲精品国产色婷婷电影| 青春草视频在线免费观看| 极品人妻少妇av视频| 久久久久久久国产电影| 热99re8久久精品国产| 久久久久久人人人人人| 久久久国产成人免费| 久久久久久免费高清国产稀缺| 汤姆久久久久久久影院中文字幕| 韩国高清视频一区二区三区| 制服诱惑二区| 12—13女人毛片做爰片一| 91国产中文字幕| 亚洲成人免费电影在线观看| 国产精品成人在线| 飞空精品影院首页| 别揉我奶头~嗯~啊~动态视频 | 最新在线观看一区二区三区| 丝袜喷水一区| 午夜激情久久久久久久| 久热这里只有精品99| 亚洲国产中文字幕在线视频| 另类亚洲欧美激情| 久久国产精品人妻蜜桃| 人妻一区二区av| 久久热在线av| 久久久久精品人妻al黑| 高潮久久久久久久久久久不卡| 美女高潮喷水抽搐中文字幕| 国产精品欧美亚洲77777| 一区二区日韩欧美中文字幕| 亚洲欧洲精品一区二区精品久久久| 久久精品国产亚洲av香蕉五月 | 久久久久国产一级毛片高清牌| av在线app专区| 国产欧美日韩一区二区精品| 国产精品一区二区精品视频观看| 国产三级黄色录像| 熟女少妇亚洲综合色aaa.| 欧美亚洲日本最大视频资源| 性高湖久久久久久久久免费观看| 亚洲熟女精品中文字幕| 精品一区在线观看国产| 人人妻,人人澡人人爽秒播| 岛国毛片在线播放| 国产精品欧美亚洲77777| 伊人久久大香线蕉亚洲五| 久久精品成人免费网站| 丰满迷人的少妇在线观看| 纯流量卡能插随身wifi吗| 国产成人精品久久二区二区91| 色视频在线一区二区三区| 国产野战对白在线观看| 大香蕉久久成人网| 99国产精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 一本色道久久久久久精品综合| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 亚洲国产精品一区三区| 精品亚洲乱码少妇综合久久| 视频在线观看一区二区三区| netflix在线观看网站| 亚洲,欧美精品.| 欧美一级毛片孕妇| 欧美亚洲日本最大视频资源| 国产福利在线免费观看视频| 国产99久久九九免费精品| av欧美777| 性少妇av在线| 又紧又爽又黄一区二区| 免费观看av网站的网址| 久久99热这里只频精品6学生| 99国产极品粉嫩在线观看| 欧美亚洲 丝袜 人妻 在线| 午夜福利影视在线免费观看| 亚洲精品美女久久久久99蜜臀| 美女扒开内裤让男人捅视频| 久久久久久人人人人人| 天堂中文最新版在线下载| 青青草视频在线视频观看| 天天影视国产精品| 久久精品亚洲av国产电影网| 国产免费视频播放在线视频| 亚洲精品久久成人aⅴ小说| 1024视频免费在线观看| 精品少妇内射三级| 十八禁网站网址无遮挡| 夫妻午夜视频| 天天影视国产精品| 国产成人av教育| 亚洲中文字幕日韩| 久久人妻熟女aⅴ| 色视频在线一区二区三区| 亚洲精品久久成人aⅴ小说| e午夜精品久久久久久久| 自线自在国产av| 亚洲天堂av无毛| 99热全是精品| cao死你这个sao货| 夜夜骑夜夜射夜夜干| videosex国产| 电影成人av| 国产极品粉嫩免费观看在线| 亚洲自偷自拍图片 自拍| 在线天堂中文资源库| 人妻久久中文字幕网| 日韩制服丝袜自拍偷拍| 成人黄色视频免费在线看| 黄网站色视频无遮挡免费观看| 欧美亚洲 丝袜 人妻 在线| 少妇 在线观看| 中亚洲国语对白在线视频| 一级a爱视频在线免费观看| 一级片免费观看大全| 无限看片的www在线观看| 国产成人精品在线电影| 99久久综合免费| 色94色欧美一区二区| 色播在线永久视频| 成人亚洲精品一区在线观看| 天堂8中文在线网| 久久中文看片网| 国产精品欧美亚洲77777| 欧美精品高潮呻吟av久久| 中文字幕人妻熟女乱码| 不卡一级毛片| 电影成人av| 亚洲va日本ⅴa欧美va伊人久久 | 桃红色精品国产亚洲av| 777久久人妻少妇嫩草av网站| 亚洲欧美精品自产自拍| 99九九在线精品视频| 极品人妻少妇av视频| 50天的宝宝边吃奶边哭怎么回事| 在线永久观看黄色视频| 亚洲avbb在线观看| 亚洲第一av免费看| 日韩大片免费观看网站| 久久久久久免费高清国产稀缺| 免费高清在线观看视频在线观看| 脱女人内裤的视频| 99国产精品一区二区三区| videosex国产| 精品国产乱子伦一区二区三区 | 桃红色精品国产亚洲av| 女性被躁到高潮视频| 欧美日韩亚洲综合一区二区三区_| 中文字幕高清在线视频| 国产欧美日韩精品亚洲av| 久久久久久久久免费视频了| 宅男免费午夜| 成人影院久久| 欧美午夜高清在线| 男女国产视频网站| 青春草视频在线免费观看| 午夜激情久久久久久久| 国产xxxxx性猛交| 老司机福利观看| 欧美97在线视频| av又黄又爽大尺度在线免费看| 波多野结衣av一区二区av| 成人国产av品久久久| 日韩中文字幕欧美一区二区| 视频在线观看一区二区三区| 国产精品1区2区在线观看. | 亚洲午夜精品一区,二区,三区| 国产成人精品久久二区二区91| 在线 av 中文字幕| av网站免费在线观看视频| 男人爽女人下面视频在线观看| 纵有疾风起免费观看全集完整版| 国产亚洲av高清不卡| 国产极品粉嫩免费观看在线| avwww免费| 久久久久久久久免费视频了| 91av网站免费观看| 激情视频va一区二区三区| 亚洲伊人久久精品综合| 欧美变态另类bdsm刘玥| 国产成人精品久久二区二区免费| av超薄肉色丝袜交足视频| 每晚都被弄得嗷嗷叫到高潮| 狂野欧美激情性xxxx| 国产91精品成人一区二区三区 | 丁香六月天网| 久久国产精品人妻蜜桃| 国产有黄有色有爽视频| 久久久精品区二区三区| 亚洲av男天堂| 久久av网站| 99九九在线精品视频| 久久久久国内视频| 精品人妻1区二区| 亚洲精品国产色婷婷电影| 午夜福利免费观看在线| 欧美性长视频在线观看| 久久久国产成人免费| 美女午夜性视频免费| 久久99热这里只频精品6学生| 男女之事视频高清在线观看| 老汉色∧v一级毛片| 国产成人欧美在线观看 | 在线永久观看黄色视频| 99久久99久久久精品蜜桃| 亚洲av国产av综合av卡| 男女午夜视频在线观看| 黑人欧美特级aaaaaa片| 欧美xxⅹ黑人| 欧美日韩亚洲高清精品| 午夜激情久久久久久久| 亚洲中文av在线| av免费在线观看网站| 一进一出抽搐动态| 在线观看免费视频网站a站| 国产成人免费无遮挡视频| 日韩人妻精品一区2区三区| 久久久久久久国产电影| 欧美少妇被猛烈插入视频| 精品久久久久久久毛片微露脸 | 人成视频在线观看免费观看| 亚洲精品国产av蜜桃| 国产精品 欧美亚洲| 午夜福利在线免费观看网站| 亚洲成人免费电影在线观看| 中文字幕色久视频| 十八禁网站免费在线| 亚洲一区中文字幕在线| 欧美日韩一级在线毛片| 久久精品国产亚洲av香蕉五月 | 亚洲色图综合在线观看| 国产成人精品无人区| 天天躁夜夜躁狠狠躁躁| 欧美精品av麻豆av| 99国产综合亚洲精品| 亚洲中文字幕日韩| 大码成人一级视频| 捣出白浆h1v1| 国产精品一区二区精品视频观看| 亚洲伊人久久精品综合| 一本一本久久a久久精品综合妖精| 亚洲va日本ⅴa欧美va伊人久久 | 热re99久久精品国产66热6| 国产成人欧美在线观看 | 国产伦理片在线播放av一区| 国产在视频线精品| 久久香蕉激情| 久久久精品免费免费高清| 在线观看舔阴道视频| 伊人亚洲综合成人网| 久久久久久免费高清国产稀缺| 午夜福利在线观看吧| 国产一区二区在线观看av| 丁香六月天网| 国产精品免费大片| 99re6热这里在线精品视频| 黄色a级毛片大全视频| 十八禁网站网址无遮挡| 色播在线永久视频| 伊人亚洲综合成人网| 久久久久国产精品人妻一区二区| 久久精品成人免费网站| 妹子高潮喷水视频| 精品久久久久久电影网| 欧美97在线视频| av天堂久久9| 大香蕉久久网| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 又紧又爽又黄一区二区| 久久精品亚洲av国产电影网| 少妇粗大呻吟视频| 亚洲伊人久久精品综合| 男女无遮挡免费网站观看| 亚洲欧洲精品一区二区精品久久久| 国产在线视频一区二区| 一本久久精品| 午夜福利在线观看吧| 午夜视频精品福利| 在线av久久热| 国产精品国产av在线观看| 精品国内亚洲2022精品成人 | 大片电影免费在线观看免费| 精品乱码久久久久久99久播| 国产免费一区二区三区四区乱码| av网站免费在线观看视频| 国产一级毛片在线|