• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GLOBAL EXISTENCE AND LONG-TIME BEHAVIOR FOR THE STRONG SOLUTIONS IN H2TO THE 3D COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS?

    2016-12-22 05:07:01JinchengGaoBolingGuo
    Annals of Applied Mathematics 2016年4期

    Jincheng Gao,Boling Guo

    (Institute of Applied Physics and Computational Math.,100088,Beijing,PR China)

    Xiaoyu Xi?

    (Graduate School of China Academy of Engineering Physics,100088,Beijing,PR China)

    GLOBAL EXISTENCE AND LONG-TIME BEHAVIOR FOR THE STRONG SOLUTIONS IN H2TO THE 3D COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS?

    Jincheng Gao,Boling Guo

    (Institute of Applied Physics and Computational Math.,100088,Beijing,PR China)

    Xiaoyu Xi?

    (Graduate School of China Academy of Engineering Physics,100088,Beijing,PR China)

    In this paper,we investigate the global existence and long time behavior of strong solutions for compressible nematic liquid crystal flows in threedimensional whole space.The global existence of strong solutions is obtained by the standard energy method under the condition that the initial data are close to the constant equilibrium state in H2-framework.If the initial datas in L1-norm are finite additionally,the optimal time decay rates of strong solutions are established.With the help of Fourier splitting method,one also establishes optimal time decay rates for the higher order spatial derivatives of director.

    compressible nematic liquid crystal flows;global solution; Green function;long-time behavior

    2010 Mathematics Subject Classification 35Q35;35B40;76A15

    Ann.of Appl.Math.

    32:4(2016),331-356

    1 Introduction

    In this paper,we investigate the motion of compressible nematic liquid crystal flows,which are governed by the following simplified version of the Ericksen-Leslie equations

    where ρ,u and d stand for the density,velocity and macroscopic average of the nematic liquid crystal orientation field respectively.The pressure P(ρ)is a smoothfunction in a neighborhood of 1 with P′(1)=1.The constantsμand ν are shear viscosity and the bulk viscosity coefficients of the fluid respectively,that satisfy the physical assumptions

    The positive constants γ and θ present the competition between the kinetic energy and the potential energy,and the microscopic elastic relaxation time for the molecular orientation field,respectively.For simplicity,we set the constants γ and θ to be 1. The symbol?denotes the Kronecker tensor product such that u?u=(uiuj)1≤i,j≤3. To complete system(1.1),the initial data are given by

    Furthermore,as the space variable tends to infinity,we assume

    where w0is a fixed unit constant vector.The system is a coupling between the compressible Navier-Stokes equations and a transported heat flow of harmonic maps into S2.Generally speaking,we can obtain any better results for system(1.1)than those for the compressible Navier-Stokes equations.

    The hydrodynamic theory of liquid crystals in the nematic case has been established by Ericksen[1]and Leslie[2]during the period of 1958 through 1968.Since then,the mathematical theory is still progressing and the study of the full Ericksen-Leslie model presents relevant mathematical difficulties.The pioneering work comes from[3-6].For example,Lin and Liu[5]obtained the global weak and smooth solutions for the Ginzburg-Landau approximation to relax the nonlinear constraint d∈S2.They also discussed the uniqueness and some stability properties of the system.Later,the decay rates for this approximate system were given by Wu[7] in a bounded domain.On the other hand,Dai et al.[8],Dai and Schonbek[9]established the time decay rates for the Cauchy problem respectively.More precisely, Dai and Schonbek[9]obtained the global existence of solutions in the Sobolev space HN(?3)×HN+1(?3)(N≥1)only requiring the smallness of, where w0is a fixed unit constant vector.If the initial data in L1-norm are finitely additionally,they also established the following time decay rates

    for k=0,1,2,···,N.Recently,Liu and Zhang[10],for the density-dependent model,obtained the global weak solutions in dimension three with the initial density ρ0∈L2,which was improved by Jiang and Tan[11]for the caseUnder the constraint d∈S2,Wen and Ding[12]established the local existence ofthe strong solutions and obtained the global solutions under the assumptions of small energy and positive initial density,which was improved by Li[13]to be of vacuum.Later,Hong[14]and Lin,Lin and Wang[15]showed independently the global existence of weak solutions in two-dimensional space.Recently,Wang [16]established a global well-posedness theory for rough initial data provided that∥u0∥BMO?1+[d0]BMO≤ε0for some ε0>0.Under this condition,Du and Wang[17] obtained arbitrary space-time regularity for the Koch and Tataru type solution (u,d).As a corollary,they also got the decay rates.For more results,the readers can refer to[18-22]and the references therein.

    Considering the compressible nematic liquid crystal flows(1.1),Ding,Lin,Wang and Wen[23]gained both the existence and uniqueness of global strong solutions for one dimensional space.And this result about the classical solutions was improved by Ding,Wang and Wen[24]by generalizing the fluids to be of vacuum.For the case of multi-dimensional space,Jiang,Jiang and Wang[25]established the global existence of weak solutions for the initial-boundary problem with large initial energy and without any smallness condition on the initial density and velocity if some component of initial direction field is small.Recently,Lin,Lai and Wang[26]established the existence of global weak solutions in three-dimensional space,provided the initial orientational director field d0lies in the hemisphere S+2.Local existence of unique strong solutions was proved provided that the initial datas were sufficiently regular and satisfied a natural compatibility condition in a recent work[27].Some blow-up criterions that were derived for the possible breakdown of such local strong solutions at finite time could be found in[28–30].The local existence and uniqueness of classical solutions to(1.1)were established by Ma in[31].On one hand,Hu and Wu[32]obtained the existence and uniqueness of global strong solutions in critical Besov spaces provided that the initial data were close to an equilibrium statewith a constant vector;on the other hand,Gao et al.[30]attained the global small classical solution in Sobolev spaces Hm(m≥3)and established decay rates for the compressible nematic liquid crystal flows(1.1).For more results,the readers can refer to[34]for some recent developments of analysis for hydrodynamic flow of nematic liquid crystal flows and references therein.

    Recently,Wang and Tan[35]established the global existence of strong solutions and built the time decay rates for the compressible Navier-Stokes equations in H2-framework(See Matsumura and Nishida[36]in H3-framework).Precisely,if small initial perturbation belongs to H2and initial perturbation in L1-norm is finite,they built optimal time decay rates as follows

    where k=0,1.This framework of time convergence rates for compressible flows has been applied to other compressible models,refer to[37-39].

    In this paper,motivated by the work[35],we hope to establish the global existence and time decay rates of strong solutions for the compressible nematic liquid crystal flows under the H2-framework.First,we construct the global existence of strong solutions by the standard energy method under the condition that the initial data are close to the constant equilibrium state(1,0,w0)(w0is a fixed unit constant vector)in H2-framework.Second,if the initial data in L1-norm are finite additionally,the optimal time decay rates of strong solutions are established by the method of Green function.Precisely,we obtain the following time decay rates for all t≥0

    where k=0,1.Although angular momentum equations(1.1)3are nonlinear parabolic equations,we hope to establish optimal time decay rates for higher order spatial derivatives of director under the condition of small initial perturbation.Motivated by Lemma 3.2,we move the nonlinear terms to the right hand side of(1.1)3and deal with the nonlinear terms as external force with the property on fast time decay rates.Then,the optimal time decay rates for higher order spatial derivatives of director are built with the help of Fourier splitting method by Schonbek[40].Finally,we also study the decay rates for the time derivatives of velocity and the mixed space-time derivatives of density and director.

    Notation In this paper,we use Hs(?3)(s∈?)to denote the usual Sobolev spaces with the norm∥·∥Hs and Lp(?3)(1≤p≤∞)to denote the usual Lpspaces with the norm∥·∥Lp.The symbol?lwith an integer l≥0 stands for the usual any spatial derivatives of order l.When l is not a positive integer,?lstands for Λldefined by,whereis the usual Fourier transform operatoris its inverse.We will employ the notation a?b to mean that a≤Cb for a universal constant C>0 independent of time t.a≈b means a?b and b?a.For simplicity,we write∥(A,B)∥X:=∥A∥X+∥B∥Xand

    Now,we establish the first result concerning the global existence of solutions for the compressible nematic liquid crystal flows(1.1)-(1.3).

    Theorem 1.1 Assume that the initial data(ρ0?1,u0,?d0)∈H2,|d0(x)|=1 in ?3and there exists a small constant δ0>0 such that

    then problem(1.1)-(1.3)admits a unique global solution(ρ,u,d)satisfying for all t≥0,

    After obtaining the global existence of strong solutions at hand,we investigate the long-time behavior for the density,velocity and direction field.

    Theorem 1.2 Under the assumptions in Theorem 1.1,suppose the initial data∥d0?w0∥L2and∥(ρ0?1,u0,d0?w0)∥L1are finite additionally,then the solution (ρ,u,d)obtained in Theorem 1.1 satisfies for all t≥0,

    where k=0,1,and l=0,1,2,3.

    Remark 1.1For any 2≤p≤6,by virtue of Theorem 1.2 and the Sobolev interpolation inequality,we also obtain the following time decay rates:

    where k=0,1,2.Furthermore,in the same manner,we also have

    where k=0,1.

    Remark 1.2Under the assumption of finiteness of∥d0?w0∥L2 in Theorem 1.2,one can obtain the rate of director d(x,t)converging to the constant equilibrium state w0in L∞(?3)-norm.

    Finally,we also study the convergence rates for time derivatives of velocity and mixed space-time derivatives of density and director.

    Theorem 1.3Under the assumptions in Theorem 1.2,the global solution (ρ,u,d)of problem(1.1)-(1.3)has the following time decay rates for all t≥0,

    where k=0,1.

    This paper is organized as follows.In Section 2,we establish some energy estimates that will play an important role for us to construct the global existence of strong solutions.Then,we close the estimates by the standard continuity argument and the global existence of strong solutions follows immediately.In Section 3,webuild the time decay rates by taking the method of Green function and establish optimal time decay rates for the higher order spatial derivatives of director.Finally, we also study the decay rates for the time derivatives of velocity and the mixed space-time derivatives of density and director.

    2 Proof of Theorem 1.1

    In this section,we construct the global existence of strong solutions for the compressible nematic liquid crystal flows(1.1)-(1.3).By a classical argument(see [36]),the global existence of solutions are obtained by combining the local existence result with a priori estimates.Since the local existence and uniqueness of strong solutions were established by Huang et al.[27],the global solutions follow in a standard continuity argument after we establish(1.5)a priori.

    2.1Energy estimates

    Denoting ?=ρ?1 and n=d?w0,we rewrite(1.1)in the perturbation form as

    Here Si(i=1,2,3)are defined as

    where the three nonlinear functions of ? are defined by

    The associated initial condition is given by

    Assume there exists a small positive constant δ satisfying the following estimate

    for all t∈[0,T].By virtue of(2.5)and Sobolev inequality,it is easy to get

    Hence,we immediately have

    which can be used frequently to derive a priori estimates.The following analytic tool has been proved in Wang and Tan[41].For simplicity,we only state the results here and omit the proof for brevity.

    Lemma 2.1 Let 2≤p≤∞and 0≤m,α≤l;when p=∞we require further

    that m≤α+1 and l≥α+2.Then we have that for any

    where 0≤θ≤1 and α satisfy

    Remark 2.1 If∥f∥H2≤M,then according to Lemma 2.1 we obtain

    for any α∈[0,2].Hence,under assumption(2.5),it is easy to obtain

    for any α∈[0,2].

    First of all,we will derive the following energy estimates.

    Lemma 2.2 Under condition(2.5),then for k=0,1,we have

    Proof Taking k-th spatial derivatives to(2.1)1and(2.1)2respectively,multiplying the resulting identities by?k? and?ku respectively and integrating over ?3(by parts),it is easy to obtain

    Taking(k+1)-th spatial derivatives to(2.1)3,multiplying the resulting identities?k+1n and integrating over ?3(by parts),we have

    Ading(2.8)to(2.9),it follows immediately that

    For the case k=0,the differential identity(2.10)has the following form

    Applying the H?lder,Sobolev and Young inequalities,it is easy to obtain

    Integrating by parts and applying(2.6),H?lder,Sobolev and Young inequalities,it arrives at directly

    Hence,with the help of(2.6),H?lder,Sobolev and Young inequalities,we deduce

    By virtue of|d|=1(that is,|n+w0|=1),it follows immediately from the H?lder and Sobolev inequalities that

    Substituting(2.12),(2.14)and(2.15)into(2.11)completes the proof of(2.7)for the case of k=0.Now,we turn to give the proof of(2.7)for the case of k=1.Indeed, taking k=1 in(2.10)and integrating by part yield

    Applying H?lder,Sobolev and Young inequalities,we obtain

    Similarly,it is easy to deduce

    and

    Substituting(2.17)-(2.19)into(2.16),then we complete the proof of(2.7)for the case of k=1.The proof is completed.

    Next,we derive the second type of energy estimates involving the higher order spatial derivatives of ? and u.

    Lemma 2.3 Under condition(2.5),then we have

    Proof Taking 2-th spatial derivatives to(2.1)1and(2.1)2respectively,multiplying the resulting identities by?2? and?2u respectively and integrating over ?3(by parts),we obtain

    Applying H?lder,Sobolev and Young inequalities,it is easy to obtain

    Integrating by part and applying H?lder,Sobolev and Young inequalities,it arrives at

    The combination of(2.22)and(2.23)gives rise to

    Now,we turn to give the estimate for the second term on the right hand side of (2.21).First of all,by virtue of H?lder and Sobolev inequalities,we have

    In view of(2.6),H?lder and Sobolev inequalities,we have

    and

    Similarly,it is easy to deduce

    Combining(2.25)-(2.27)with(2.28),we deduce

    Inserting(2.24)and(2.29)into(2.21),it arrives at immediately

    Taking 3-th spatial derivatives to(2.1)3,multiplying the resulting identities by?3n and integrating over ?3(by parts),we obtain

    The application of H?lder,Sobolev and Young inequalities,it is easy to deduce

    Substituting(2.32)into(2.31),we have

    The combination of(2.30)and(2.33)completes the proof of lemma.

    Finally,we will use equations(2.1)to recover the dissipation estimate for ?.

    Lemma 2.4 Under condition(2.5),then for k=0,1,we have

    Proof Taking k-th spatial derivatives to the second equation of(2.1),multiplying by?k+1? and integrating over ?3,then we obtain

    In order to deal with∫?kut·?k+1?d x,following the idea in Guo and Wang[42], we turn the time derivatives of velocity to the density.Then,applying the mass equation(2.1)1,we can transform time derivatives to the spatial derivatives,that is,

    Substituting(2.36)into(2.35),it is easy to deduce

    For the case k=0,applying H?lder,Sobolev and Young inequalities,we obtain

    By virtue of H?lder inequality and(2.5),it is easy to deduce

    and

    The combination of(2.38),(2.39)and(2.40)complete the proof of(2.34)for the case of k=0.As for the case k=1,applying H?lder,Sobolev and Young inequalities, we deduce

    With the help of H?lder inequality and Lemma 2.3,it arrives at

    and

    The combination of(2.41),(2.42)and(2.43)gives rise to the proof of(2.34)for the case of k=1.The proof is completed.

    2.2Global existence of solutions

    In this subsection,we shall combine the energy estimates derived in the previous section to prove the global existence of strong solutions in Theorem 1.1.Summing up(2.7)from k=l(l=0,1)to k=1,we obtain

    which,together with(2.20),arrives at

    On the other hand,summing(2.34)from k=l(l=0,1)to k=1,we obtain immediately

    Multiplying(2.45)by 2δC1/C2and adding the resulting inequality to(2.44),it arrives at

    By virtue of the smallness of δ,it is easy to obtain

    Choosing l=0 in(2.46)and integrating over[0,t]yield

    Since∥(?,u,?n)(t)∥H2is a continuous function with respect to time(see[27]),there exists a small and positive constant T0such that

    Choosing

    this,together with(2.49),gives directly

    Then,applying estimate(2.48),it is easy to deduce

    Thus,problem(2.1)-(2.4)with the initial data(?,u,?n)(x,T0)admits a unique solution on[T0,2T0]×?3satisfying the estimate

    which,together with(2.48),yields directly

    Thus,we can continue the same process for 0≤t≤nT0(n=1,2,···)and finally get a global solution on[0,∞)×?3.The uniqueness of global strong solutions follows immediately from the uniqueness of local existence of solutions.Choosing l=0 in(2.46),integrating over[0,t]and applying the equivalent relation of(2.47), we obtain

    which completes the proof of Theorem 1.1.

    3 Proof of Theorems 1.2 and 1.3

    In this section,we will establish the time decay rates for the compressible nematic liquid crystal flows(1.1)-(1.3).First of all,the decay rates are built by the method of the Green function.Secondly,motivated by Lemma 3.2,we enhance the time decay rates for the higher order derivatives of director.Finally,we also establish the convergence rates for the time derivatives of density,velocity and director.

    3.1Decay rates for the nonlinear systems

    First of all,let us to consider the following linearized systems

    with the initial data

    Obviously,the solution(?,u,n)for the linear problem(3.1)-(3.2)can be expressed as

    Here G(t):=G(x,t)is the Green matrix for system(3.1)and the exact expression of the Fourier transform b G(ξ,t)of Green function G(x,t)as

    where

    Since systems(3.1)is an independent coupling of the classical linearized Navier-Stokes equation and heat equation,the representation of Green function b G(ξ,t)is easy to be verified.Furthermore,we have the following decay rates for systems (3.1)-(3.2),refer to[33,43].

    Proposition 3.1Assume that(?,u,n)is a solution of the linearized compressible nematic liquid crystal system(3.1)-(3.2)with the initial data(?0,u0,n0)∈L1∩H2,then

    for 0≤k≤2.

    In the sequel,we want to verify some simplified inequalities that play an important role to derive the time decay rates for the compressible nematic liquid crystal flows(2.1)-(2.4).More precisely,we have

    Next,we establish decay rates for the compressible nematic liquid crystal flows (2.1)-(2.4).

    Lemma 3.1 Under the assumptions in Theorem 1.2,the global solution(?,u,n) of problem(2.1)-(2.4)satisfies

    for k=0,1.

    Proof First of all,taking k=0 in(2.9),which together with inequality(2.15), we obtain the following inequality immediately

    Taking l=1 specially in(2.46),it arrives at directly

    which,together with(3.6),yields directly

    With the help of Young inequality,it is easy to deduce

    Ading both hand sides of(3.7)byand applying the equivalent relation (3.8),we have

    In view of the Gronwall inequality,it follows immediately

    In order to derive the time decay rates forwe need to control the termIn fact,by Duhamel principle,we can represent the solution for system(2.1)-(2.4)as

    where we have used the fact

    Inserting(3.12)into(3.10),it follows immediately

    where we have used the fact

    Hence,by virtue of the definition of F(t)and(3.13),it follows immediately

    which,in view of the smallness of δ,gives

    Therefore,we have the following time decay rates

    On the other hand,by(3.4),(3.11),(3.14)and Proposition 3.1,it is easy to deduce

    where we have used the fact

    Hence,we have the following decay rates

    Therefore,the combination of(3.14)and(3.15)completes the proof of the lemma.

    3.2 Optimal decay rates for the higher order derivatives of director

    In this subsection,we will enhance the time decay rates for the higher order spatial derivatives of direction field.This improvement is motivated by the following lemma.

    Lemma 3.2For some smooth function F(x,t),suppose the smooth function v(x,t)is a solution of heat equation

    for(x,t)∈?3×R+with the smooth initial data v(x,0)=v0(x).If the function F(x,t)and the solution v(x,t)have the time decay rates

    Proof Taking(k+1)-th spatial derivatives on both hand sides of(3.16),multiplying by?k+1v and integrating over ?3,we obtain

    which implies

    For some constant R defined below,denoting the time sphere(see[40])

    it follows immediately

    or equivalently

    Choosing R=k+3 and combining inequalities(3.18),(3.19)and the time decay rates(3.17),it arrives at directly

    Multiplying(3.20)by(1+t)k+3and integrating over[0,t],we have

    which implies the time decay rates

    Therefore,we complete the proof of the lemma.

    Motivated by Lemma 3.2,we will improve the time decay rates for the second and third order derivatives of director.

    Lemma 3.3 Under the assumptions in Theorem 1.2,the global solution(?,u,n) for problem(2.1)-(2.4)satisfies

    where k=2,3.

    Proof Taking k=1 in(2.9),it follows immediately

    In view of(2.19),we have

    By virtue of(3.5),H?lder,Sobolev and Young inequalities,it arrives at

    Inserting(3.23)and(3.24)into(3.22)and applying the smallness of ε and δ,we have

    On the other hand,from inequality(2.31),we have

    By virtue of H?lder,Sobolev and Young inequalities,we obtain

    Following from the idea of inequality(2.32),we have

    Inserting(3.27)and(3.28)into(3.26)and applying the smallness of ε and δ,it arrives at immediately

    Combining(3.25)and(3.29)and applying the time decay rates(3.5),we get

    Similar to the analysis of inequality(3.19),it follows immediately

    and

    The combination of(3.30),(3.31)and(3.32)yields directly

    where have used the convergence rates(3.5).Multiplying(3.33)by(1+t)4,we obtain

    Integrating(3.34)over[0,t],we have the following decay rate

    On the other hand,applying the convergence rates(3.5),(3.35)and inequality(3.29), it arrives at

    which,together with(3.32)and(3.35),yields

    Multiplying(3.36)by(1+t)5and integrating over[0,t],it follows immediately

    Therefore,we complete the proof of the lemma.

    Proof of Theorem 1.2 With the help of Lemmas 3.1 and 3.3,we complete the proof of Theorem 1.2.

    Remark 3.1 In order to obtain the rate of d(x,t)converging to w0,we suppose the finiteness of∥d0?w0∥L2 in Theorem 1.2 additionally.Then,the density and velocity(ρ,u)enjoy the same decay rate with the director field d(x,t)?w0.However, (ρ,u)will have the same decay rate with?(d(x,t)?w0)without the assumption of finiteness of∥d0?w0∥L2.

    3.3 Decay rates for the mixed space-time derivatives of density and velocity

    In this subsection,we will establish the decay rates for the time derivatives of velocity and the mixed space-time derivatives of density and director.

    Lemma 3.4 Under the assumptions in Theorem 1.2,the global solution(?,u,n) of problem(2.1)-(2.4)satisfies

    for k=0,1.

    Proof By virtue of equation(2.1)1and the convergence rates(1.6),we have

    Similarly,it follows immediately that

    and

    By virtue of(2.1)3,(1.6),H?lder and Sobolev inequalities,we obtain

    In the same manner,it arrives at directly

    Therefore,we complete the proof of the lemma.

    Proof of Theorem 1.3 With the help of Lemma 3.4,we complete the proof of Theorem 1.3.

    References

    [1]J.L.Ericksen,Hydrostatic theory of liquid crystals,Arch.Rational Mech.Anal., 9(1962),371-378.

    [2]F.M.Leslie,Some constitutive equations for liquid crystals,Arch.Rational Mech.Anal., 28(1968),265-283.

    [3]R.Hardt,D.Kinderlehrer,F.H.Lin,Existence and partial regularity of static liquid configurations,Commun.Math.Phys.,105(1986),547-570.

    [4]F.H.Lin,Nonlinear theory of defects in nematic liquid crystals:Phsse transition and flow phenomena,Commun.Pure Appl.Math.,42(1989),789-814.

    [5]F.H.Lin,C.Liu,Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun.Pure Appl.Math.,48(1995),501-537.

    [6]F.H.Lin,C.Liu,Partial regularity of the dynamic system modeling the flow of liquid crystals,Discrete Contin.Dyn.Syst.,2(1996),1-22.

    [7]H.Wu,Long-time behavior for nonlinear hydrodynamic system modeling the namatic liquid crystal flows,Discrete Contin.Dyn.Syst.,26(2010),379-396.

    [8]M.M.Dai,J.Qing,M.E.Schonbek,Asymptotic behavior of solutions to the liquid crystals systems in ?3,Comm.Partial Differential Equations,37(2012),2138-2164.

    [9]M.M.Dai,M.E.Schonbek,Asymptotic behavior of solutions to the liquid crystal system in Hm(?3),SIAM J.Math.Anal.,46(2014),3131-3150.

    [10]X.Liu,Z.Zhang,Existence of the flow of liquid crystals system,Chinese Ann.Math., 30A(2009),1-20.

    [11]F.Jiang,Z.Tan,Global weak solution to the flow of liquid crystals system,Math. Methods Appl.Sci.,32(2009),2243-2266.

    [12]H.Y.Wen,S.J.Ding,Solution of incomressible hydrodynamic flow of liquid crystals, Nonlinear Anal.Real World Appl.,12(2011),1510-1531.

    [13]J.K.Li,Global strong solutions to incompressible nematic liquid crystal flow,arX-iv:1211.5864v1.

    [14]M.C.Hong,Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,Calc.Var.Partial Differential Equations,40(2011),15-36.

    [15]F.H.Lin,J.Y.Lin,C.Y.Wang,Liquid crystal flows in two dimensions,Arch.Ration. Mech.Anal.,197(2010),297-336.

    [16]C.Y.Wang,Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,Arch.Ration.Mech.Anal.,200(2011),1-19.

    [17]Y.Du,K.Y.Wang,Space-time regularity of the Koch and Tataru solutions to the liquid crystal equations,SIAM J.Math.Anal.,45(2013),3838-3853.

    [18]Y.Du,K.Y.Wang,Regularity of the solutions to the liquid crystal equations with small rough data,J.Differential Equations,256(2014),65-81.

    [19]J.K.Li,Global strong and weak solutions to nematic liquid crystal flow in two dimensions,Nonlinear Anal.,99(2014),80-94.

    [20]X.L.Li,D.H.Wang,Global solution to the incompressible flow of liquid crystals,J. Differential Equations,252(2012),745-767.

    [21]X.L.Li,D.H.Wang,Global strong solution to the density-dependent incompressible flow of liquid crystal,arXiv:1202.1011v1.

    [22]Y.H.Hao,X.G.Liu,The existence and blow-up criterion of liquid crystals system in critical Besov space,arXiv:1305.1395v2.

    [23]S.J.Ding,J.L.Lin,C.Y.Wang,H.Y.Wen,Compressible hydrodynamic flow of liquid crystals in 1-D,Discrete Contin.Dyn.Syst.,32(2012),539-563.

    [24]S.J.Ding,C.Y.Wang,H.Y.Wen,Weak solution to comprssible hydrodynamic flow of liquid crystals in dimension one,Discrete Contin.Dyn.Syst.,15(2011),357-371.

    [25]F.Jiang,S.Jiang,D.H.Wang,On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain,J.Funct.Anal., 265(2013),3369-3397.

    [26]J.Y.Lin,B.S.Lai,C.Y.Wang,Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three,arXiv:1408.4149.

    [27]T.Huang,C.Y.Wang,H.Y.Wen,Strong solutions of the compressible nematic liquid crystal,J.Differential Equations,252(2012),2222-2265.

    [28]T.Huang,C.Y.Wang,H.Y.Wen,Blow up criterion for compressible nematic liquid crystal flows in dimension three,Arch.Rational Mech.Anal.,204(2012),285-311.

    [29]X.D.Huang,Y.Wang,A Serrin criterion for compressible nematic liquid crystal flows, Math.Meth.Appl.Sci.,36(2013),1363-1375.

    [30]J.C.Gao,Q.Tao,Z.A.Yao,A blowup criterion for the compressible nematic liquid crystal flows in dimension two,J.Math.Anal.Appl.,415(2014),33-52.

    [31]S.X.Ma,Classical solutions for the compressible liquid crystal flows with nonnegative initial densities,J.Math.Anal.Appl.,397(2013),595-618.

    [32]X.P.Hu,H.Wu,Global solution to the three-dimensional compressible flow of liquid crystals,SIAM J.Math.Anal.,45(2013),2678-2699.

    [33]J.C.Gao,Q.Tao,Z.A.Yao,Long-time behavior of solution for the compressible nematic liquid crystal flows in ?3,J.Differential Equations,261(2016),2334-2383.

    [34]F.H.Lin,C.Y.Wang,Recent developments of analysis for hydrodynamic flow of nematic liquid crystals,arXiv:1408.4138.

    [35]Y.J.Wang,Z.Tan,Global existence and optimal decay rate for the strong solutions in H2to the compressible Navier-Stokes equations,Appl.Math.Lett.,24(2011),1778-1784.

    [36]A.Matsumura,T.Nishida,The initial value problems for the equations of motion of viscous and heat-conductive gases,J.Math.Kyoto Univ.,20(1980),67-104.

    [37]X.P.Hu,G.C.Wu,Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows,SIAM J.Math.Anal.,45(2013),2815-2833.

    [38]W.J.Wang,W.K.Wang,Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces,Discrete Contin.Dyn.Syst.,35(2015).513-536.

    [39]W.J.Wang,Large time behavior of solutions to the compressible Navier-Stokes equations with potential force,J.Math.Anal.Appl.,423(2015),1448-1468.

    [40]M.E.Schonbek,L2decay for weak solutions of the Navier-Stokes equations,Arch. Rational Mech.Anal.,88(1985),209-222.

    [41]Z.Tan,Y.Wang,Global solution and large-time behavior of the 3D compressible Euler equations with damping,J.Differential Equations,254(2013),1686-1704.

    [42]Y.Guo,Y.J.Wang,Decay of dissipative equations and negative Sobolev spaces,Comm. Partial Differential Equations,37(2012),2165-2208.

    [43]R.J.Duan,H.X.Liu,S.J.Ukai,T.Yang,Optimal Lp?Lqconvergence rates for the compressible Navier-Stokes equations with potential force,J.Differential Equations, 238(2007),220-233.

    (edited by Mengxin He)

    ?Manuscript August 6,2016

    ?.E-mail:xixiaoyu1357@126.com

    岛国在线免费视频观看| 亚洲av成人不卡在线观看播放网| 久久久久久久久中文| 久久国产精品人妻蜜桃| 国产久久久一区二区三区| 成人18禁在线播放| 国产精品久久久久久久久免 | 亚洲av成人av| 亚洲,欧美精品.| 国产免费av片在线观看野外av| 国内揄拍国产精品人妻在线| 日韩成人在线观看一区二区三区| 亚洲美女黄片视频| 精品人妻1区二区| 久久久久久九九精品二区国产| 中文字幕av成人在线电影| 悠悠久久av| 麻豆久久精品国产亚洲av| 日韩免费av在线播放| 97碰自拍视频| 日韩欧美精品v在线| 日韩 欧美 亚洲 中文字幕| 美女免费视频网站| 午夜免费成人在线视频| 大型黄色视频在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩黄片免| 国产乱人视频| 神马国产精品三级电影在线观看| 国产男靠女视频免费网站| 国产av在哪里看| 搡女人真爽免费视频火全软件 | 成人国产一区最新在线观看| av天堂在线播放| 男人舔女人下体高潮全视频| 高清日韩中文字幕在线| 97超视频在线观看视频| 亚洲精品国产精品久久久不卡| 欧美一区二区国产精品久久精品| 欧美性感艳星| 亚洲aⅴ乱码一区二区在线播放| 性色avwww在线观看| 国产麻豆成人av免费视频| 欧美中文日本在线观看视频| 欧美大码av| 欧美最黄视频在线播放免费| 免费av观看视频| 无限看片的www在线观看| 日韩精品中文字幕看吧| 三级男女做爰猛烈吃奶摸视频| 一区二区三区高清视频在线| 日韩欧美国产一区二区入口| 搡老岳熟女国产| 黄片小视频在线播放| 国产三级黄色录像| 精品免费久久久久久久清纯| 噜噜噜噜噜久久久久久91| 日韩欧美免费精品| 男女视频在线观看网站免费| 亚洲成av人片免费观看| 中文字幕精品亚洲无线码一区| 国产成人啪精品午夜网站| 国产男靠女视频免费网站| 小说图片视频综合网站| 身体一侧抽搐| 国产亚洲精品久久久久久毛片| 在线观看免费视频日本深夜| 中文字幕av成人在线电影| 18禁黄网站禁片免费观看直播| 日韩欧美一区二区三区在线观看| 日韩欧美三级三区| 亚洲性夜色夜夜综合| 久久6这里有精品| 最后的刺客免费高清国语| 国产成人aa在线观看| 欧美成人免费av一区二区三区| 精品国内亚洲2022精品成人| 无限看片的www在线观看| 国产亚洲精品久久久久久毛片| 久久久久久人人人人人| 美女大奶头视频| 18禁国产床啪视频网站| 中文字幕人妻丝袜一区二区| 午夜福利免费观看在线| 国产精品自产拍在线观看55亚洲| 狠狠狠狠99中文字幕| 午夜精品在线福利| 免费在线观看成人毛片| 亚洲久久久久久中文字幕| 国产探花在线观看一区二区| 色综合婷婷激情| 一个人看的www免费观看视频| 国产精品久久久久久久电影 | 精品久久久久久久末码| 最近最新免费中文字幕在线| 好男人在线观看高清免费视频| 国产视频内射| 日韩欧美国产在线观看| 免费观看精品视频网站| 天堂av国产一区二区熟女人妻| 欧美绝顶高潮抽搐喷水| 99久久九九国产精品国产免费| 动漫黄色视频在线观看| 久久欧美精品欧美久久欧美| 亚洲片人在线观看| 久久久国产精品麻豆| www.www免费av| 国产97色在线日韩免费| 久久伊人香网站| 成人精品一区二区免费| 又紧又爽又黄一区二区| 亚洲av成人不卡在线观看播放网| 国产高清激情床上av| 天天添夜夜摸| 一级作爱视频免费观看| 色综合欧美亚洲国产小说| 精品久久久久久久久久免费视频| 特级一级黄色大片| 欧美区成人在线视频| 亚洲精品亚洲一区二区| 国产免费av片在线观看野外av| 久久久久久大精品| 一区二区三区免费毛片| 三级毛片av免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲人与动物交配视频| 一卡2卡三卡四卡精品乱码亚洲| 日韩大尺度精品在线看网址| 天天一区二区日本电影三级| 国产高清视频在线播放一区| 午夜a级毛片| 亚洲国产欧美人成| 国产精品久久视频播放| 欧美3d第一页| 久久久精品大字幕| 国产精品一区二区三区四区免费观看 | 欧美xxxx黑人xx丫x性爽| 两人在一起打扑克的视频| 国产又黄又爽又无遮挡在线| 国产伦一二天堂av在线观看| 国产高清视频在线播放一区| 国产伦精品一区二区三区视频9 | 很黄的视频免费| 蜜桃久久精品国产亚洲av| 可以在线观看毛片的网站| 国产真人三级小视频在线观看| 久久久久久久久中文| 在线观看66精品国产| 村上凉子中文字幕在线| 国产av不卡久久| 国产精品久久视频播放| 99久久综合精品五月天人人| 亚洲中文日韩欧美视频| 欧美三级亚洲精品| 国产男靠女视频免费网站| 色吧在线观看| 欧美日韩乱码在线| 一级黄片播放器| 操出白浆在线播放| 我要搜黄色片| 久久国产精品人妻蜜桃| 在线观看一区二区三区| bbb黄色大片| 男人的好看免费观看在线视频| 俄罗斯特黄特色一大片| 亚洲最大成人手机在线| 亚洲第一欧美日韩一区二区三区| 看黄色毛片网站| 国产一级毛片七仙女欲春2| 久久婷婷人人爽人人干人人爱| 免费看美女性在线毛片视频| 在线观看日韩欧美| 久久人妻av系列| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久亚洲av鲁大| 88av欧美| 日本 欧美在线| 特大巨黑吊av在线直播| 日日夜夜操网爽| 日韩人妻高清精品专区| 美女黄网站色视频| 天天躁日日操中文字幕| 欧美日韩亚洲国产一区二区在线观看| 日日夜夜操网爽| 国产一级毛片七仙女欲春2| 久久婷婷人人爽人人干人人爱| 欧美日韩乱码在线| 热99re8久久精品国产| 日本一本二区三区精品| 亚洲av二区三区四区| 亚洲乱码一区二区免费版| 综合色av麻豆| 午夜精品久久久久久毛片777| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久久久性生活片| 脱女人内裤的视频| 日本成人三级电影网站| 久久精品夜夜夜夜夜久久蜜豆| 日日干狠狠操夜夜爽| 人妻久久中文字幕网| 国产亚洲精品综合一区在线观看| 91久久精品电影网| 欧美黑人欧美精品刺激| 成人特级av手机在线观看| 国产黄色小视频在线观看| 毛片女人毛片| 欧美色欧美亚洲另类二区| 一区二区三区国产精品乱码| 身体一侧抽搐| 久久这里只有精品中国| av视频在线观看入口| 欧美中文日本在线观看视频| 亚洲午夜理论影院| 成人特级黄色片久久久久久久| 久久中文看片网| 中亚洲国语对白在线视频| 熟女少妇亚洲综合色aaa.| 好看av亚洲va欧美ⅴa在| 97碰自拍视频| 亚洲内射少妇av| 成年人黄色毛片网站| 国产av一区在线观看免费| 国产精品一区二区三区四区免费观看 | 亚洲av五月六月丁香网| 在线观看一区二区三区| 91久久精品国产一区二区成人 | 国产探花极品一区二区| av中文乱码字幕在线| 久久香蕉国产精品| 亚洲五月婷婷丁香| 国产视频内射| 热99re8久久精品国产| 窝窝影院91人妻| 身体一侧抽搐| 国产国拍精品亚洲av在线观看 | 天堂影院成人在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 村上凉子中文字幕在线| 欧美性猛交╳xxx乱大交人| 日韩有码中文字幕| 美女被艹到高潮喷水动态| 两个人的视频大全免费| 麻豆国产97在线/欧美| 欧美色视频一区免费| 精品一区二区三区av网在线观看| 午夜两性在线视频| 午夜福利欧美成人| 99国产精品一区二区蜜桃av| 国产成人欧美在线观看| 少妇熟女aⅴ在线视频| 美女免费视频网站| 午夜福利在线观看吧| 国产高清videossex| 99视频精品全部免费 在线| 精品乱码久久久久久99久播| 好男人在线观看高清免费视频| 欧美一级a爱片免费观看看| 精品一区二区三区人妻视频| 久久精品影院6| 非洲黑人性xxxx精品又粗又长| 韩国av一区二区三区四区| 精品久久久久久,| 国产伦人伦偷精品视频| www国产在线视频色| 少妇高潮的动态图| 精品久久久久久,| 国产蜜桃级精品一区二区三区| 一个人免费在线观看电影| 特大巨黑吊av在线直播| 黄色成人免费大全| 久久亚洲精品不卡| 国产精品 国内视频| 久久伊人香网站| 中文亚洲av片在线观看爽| 麻豆国产97在线/欧美| 国产日本99.免费观看| 国产探花极品一区二区| 村上凉子中文字幕在线| 亚洲aⅴ乱码一区二区在线播放| 欧美成人免费av一区二区三区| 动漫黄色视频在线观看| 男女做爰动态图高潮gif福利片| 成人无遮挡网站| 天堂网av新在线| 国产精品亚洲一级av第二区| 国产伦人伦偷精品视频| 国产真实乱freesex| 中文字幕高清在线视频| 久久欧美精品欧美久久欧美| 欧美性猛交黑人性爽| 免费在线观看亚洲国产| 国产亚洲精品一区二区www| 亚洲乱码一区二区免费版| 欧美成人性av电影在线观看| 久久草成人影院| 亚洲最大成人中文| 婷婷六月久久综合丁香| 国产精华一区二区三区| 日日夜夜操网爽| 久久国产乱子伦精品免费另类| 免费观看人在逋| 特大巨黑吊av在线直播| 在线天堂最新版资源| 久久精品影院6| bbb黄色大片| 欧美日韩瑟瑟在线播放| 久久久久久久久大av| 久久久国产成人免费| 中文字幕高清在线视频| 日本与韩国留学比较| 99国产精品一区二区蜜桃av| 国内久久婷婷六月综合欲色啪| 亚洲成人免费电影在线观看| 天堂√8在线中文| 女人被狂操c到高潮| 久久国产精品影院| 九色成人免费人妻av| 免费在线观看成人毛片| 老司机在亚洲福利影院| 91av网一区二区| 日本 欧美在线| 日日夜夜操网爽| 亚洲精品在线观看二区| 51午夜福利影视在线观看| 法律面前人人平等表现在哪些方面| 国产精品一区二区三区四区免费观看 | h日本视频在线播放| 国产精品av视频在线免费观看| 亚洲五月天丁香| 国产色爽女视频免费观看| 久久久久久人人人人人| 免费看美女性在线毛片视频| 亚洲av电影不卡..在线观看| 精品不卡国产一区二区三区| 天堂√8在线中文| 国内精品久久久久久久电影| 99久久九九国产精品国产免费| 欧美日韩精品网址| 国产精品久久久人人做人人爽| 欧美在线一区亚洲| 日本三级黄在线观看| 国产亚洲精品久久久久久毛片| 成年女人永久免费观看视频| 色视频www国产| 波野结衣二区三区在线 | 18禁美女被吸乳视频| 日韩欧美在线二视频| 国产精品综合久久久久久久免费| 俄罗斯特黄特色一大片| 亚洲欧美精品综合久久99| 在线a可以看的网站| 长腿黑丝高跟| 国产69精品久久久久777片| 天天一区二区日本电影三级| 国产私拍福利视频在线观看| 狂野欧美白嫩少妇大欣赏| 少妇熟女aⅴ在线视频| 亚洲,欧美精品.| 一卡2卡三卡四卡精品乱码亚洲| 香蕉久久夜色| 国产精品免费一区二区三区在线| 一进一出抽搐动态| 亚洲av二区三区四区| 欧美性猛交黑人性爽| 欧美国产日韩亚洲一区| 国内精品美女久久久久久| 国产精品精品国产色婷婷| 久久伊人香网站| 亚洲成人久久性| 51午夜福利影视在线观看| 免费观看精品视频网站| 搡老岳熟女国产| 日韩亚洲欧美综合| 波多野结衣巨乳人妻| 亚洲激情在线av| 免费在线观看成人毛片| 国产精品1区2区在线观看.| 淫秽高清视频在线观看| 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 免费观看的影片在线观看| a级一级毛片免费在线观看| 男女做爰动态图高潮gif福利片| 欧美成狂野欧美在线观看| 亚洲一区二区三区不卡视频| 他把我摸到了高潮在线观看| 三级毛片av免费| 婷婷精品国产亚洲av| 国产一区二区亚洲精品在线观看| 久久草成人影院| 国产一区二区三区视频了| 超碰av人人做人人爽久久 | 又紧又爽又黄一区二区| 久久精品综合一区二区三区| 亚洲欧美精品综合久久99| av在线蜜桃| 两个人视频免费观看高清| 99热精品在线国产| 国产成人系列免费观看| 国产成人影院久久av| 中文字幕av在线有码专区| 亚洲美女视频黄频| 国产成人av教育| 欧美日韩综合久久久久久 | 99久久综合精品五月天人人| 精品国产亚洲在线| 国产伦人伦偷精品视频| 日韩大尺度精品在线看网址| 美女免费视频网站| 国产精品美女特级片免费视频播放器| 成人高潮视频无遮挡免费网站| 一二三四社区在线视频社区8| 色综合欧美亚洲国产小说| 欧美+亚洲+日韩+国产| 日韩欧美精品免费久久 | 亚洲国产中文字幕在线视频| 黄色成人免费大全| 午夜福利免费观看在线| 国产高清三级在线| 精品人妻1区二区| 欧美zozozo另类| 99热精品在线国产| 色噜噜av男人的天堂激情| 性色avwww在线观看| 日韩国内少妇激情av| 久久精品影院6| 蜜桃久久精品国产亚洲av| av中文乱码字幕在线| tocl精华| 婷婷精品国产亚洲av| 18禁在线播放成人免费| 国产在线精品亚洲第一网站| 国产成人系列免费观看| 亚洲av免费高清在线观看| 欧美日韩瑟瑟在线播放| 国产成人福利小说| 观看免费一级毛片| 亚洲片人在线观看| 99久久精品国产亚洲精品| 国产毛片a区久久久久| 午夜福利免费观看在线| 国产精品一区二区免费欧美| 18禁黄网站禁片免费观看直播| 嫩草影院入口| 美女高潮的动态| 久久久久久人人人人人| 国产精品 国内视频| 久久精品亚洲精品国产色婷小说| 深夜精品福利| 亚洲av不卡在线观看| 男人舔奶头视频| 欧美成狂野欧美在线观看| 亚洲人成网站在线播放欧美日韩| 日日干狠狠操夜夜爽| 人人妻人人看人人澡| 久久久久久久久久黄片| 久久伊人香网站| 亚洲欧美日韩无卡精品| 精品一区二区三区视频在线 | 在线观看美女被高潮喷水网站 | 国产亚洲欧美98| 国产高潮美女av| 日本一二三区视频观看| 激情在线观看视频在线高清| 色综合站精品国产| 一本精品99久久精品77| 在线观看一区二区三区| 亚洲人成伊人成综合网2020| 人妻夜夜爽99麻豆av| 日韩欧美精品免费久久 | 欧美日韩精品网址| 亚洲av电影在线进入| 色尼玛亚洲综合影院| 日韩成人在线观看一区二区三区| 无人区码免费观看不卡| 身体一侧抽搐| 男插女下体视频免费在线播放| 色老头精品视频在线观看| 国产精品自产拍在线观看55亚洲| 成人欧美大片| 十八禁网站免费在线| 黄色丝袜av网址大全| 精品国产三级普通话版| 亚洲欧美精品综合久久99| 国产av在哪里看| 国产中年淑女户外野战色| 日韩免费av在线播放| 禁无遮挡网站| 夜夜看夜夜爽夜夜摸| 午夜福利视频1000在线观看| 国产亚洲精品久久久久久毛片| 亚洲五月天丁香| 一个人看的www免费观看视频| 老鸭窝网址在线观看| 国产精品1区2区在线观看.| 亚洲国产精品成人综合色| 国产精品一区二区三区四区免费观看 | 美女高潮喷水抽搐中文字幕| av黄色大香蕉| 久久99热这里只有精品18| 精品久久久久久成人av| 亚洲美女视频黄频| 尤物成人国产欧美一区二区三区| 国产伦精品一区二区三区视频9 | 国产黄片美女视频| 久久6这里有精品| 亚洲av二区三区四区| 欧美黑人巨大hd| 波野结衣二区三区在线 | 国产 一区 欧美 日韩| 欧美午夜高清在线| 黄色丝袜av网址大全| 久久久久久久久大av| 欧美日韩福利视频一区二区| av在线蜜桃| 日韩有码中文字幕| 国产精品久久久久久亚洲av鲁大| 午夜激情欧美在线| 亚洲精品一区av在线观看| 桃色一区二区三区在线观看| 男女午夜视频在线观看| 欧美一级毛片孕妇| 成人三级黄色视频| 免费看日本二区| 男女下面进入的视频免费午夜| 色av中文字幕| 久久亚洲精品不卡| 欧美日韩亚洲国产一区二区在线观看| 久久这里只有精品中国| 国产av一区在线观看免费| 91麻豆精品激情在线观看国产| 制服人妻中文乱码| 深夜精品福利| 国产激情欧美一区二区| 亚洲av日韩精品久久久久久密| 色综合婷婷激情| 叶爱在线成人免费视频播放| 两性午夜刺激爽爽歪歪视频在线观看| 69av精品久久久久久| 精品福利观看| 国产精品久久视频播放| 99视频精品全部免费 在线| 亚洲五月婷婷丁香| 久久久久久人人人人人| 三级毛片av免费| 神马国产精品三级电影在线观看| 非洲黑人性xxxx精品又粗又长| 久久久久亚洲av毛片大全| aaaaa片日本免费| 丁香欧美五月| 99久久综合精品五月天人人| 亚洲成人中文字幕在线播放| 亚洲av不卡在线观看| 国产主播在线观看一区二区| 高清在线国产一区| 黄片小视频在线播放| 国产精品电影一区二区三区| 九色成人免费人妻av| 99久久99久久久精品蜜桃| 少妇裸体淫交视频免费看高清| 午夜日韩欧美国产| 国产一区二区三区在线臀色熟女| 亚洲av中文字字幕乱码综合| 欧美一区二区国产精品久久精品| 9191精品国产免费久久| 免费观看人在逋| 老司机在亚洲福利影院| 一区二区三区免费毛片| 亚洲国产中文字幕在线视频| 男女下面进入的视频免费午夜| xxx96com| 90打野战视频偷拍视频| 国产精品亚洲美女久久久| 国产高清有码在线观看视频| 又黄又爽又免费观看的视频| 国产精品久久视频播放| 岛国在线观看网站| 99国产精品一区二区蜜桃av| 亚洲av二区三区四区| 亚洲成av人片免费观看| 精品人妻偷拍中文字幕| 欧美3d第一页| 3wmmmm亚洲av在线观看| 一本精品99久久精品77| 亚洲内射少妇av| 久久久久久久久中文| 69人妻影院| 久久香蕉精品热| 欧美日韩一级在线毛片| 村上凉子中文字幕在线| 午夜福利成人在线免费观看| 国产精品一及| 美女被艹到高潮喷水动态| 18禁在线播放成人免费| 老司机在亚洲福利影院| 国产亚洲精品久久久com| 悠悠久久av| 欧美色欧美亚洲另类二区| 国产真人三级小视频在线观看| 欧美国产日韩亚洲一区| 亚洲精品美女久久久久99蜜臀| 日韩欧美在线乱码| 丝袜美腿在线中文| 九九在线视频观看精品| 男人和女人高潮做爰伦理| 99国产极品粉嫩在线观看| 色综合欧美亚洲国产小说| 午夜免费观看网址| 天堂av国产一区二区熟女人妻| 免费观看人在逋| 久久国产精品影院| 久久久国产成人免费| 亚洲欧美日韩无卡精品| 欧美中文综合在线视频| 亚洲,欧美精品.|