• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WELL-POSEDNESS AND SPACE-TIME REGULARITY OF SOLUTIONS TO THE LIQUID CRYSTAL EQUATIONSIN CRITICAL SPACE??

    2016-12-22 05:07:07CongchongGuo
    Annals of Applied Mathematics 2016年4期

    Congchong Guo

    (Longyan University,Longyan,364000,Fujian,PR China)

    WELL-POSEDNESS AND SPACE-TIME REGULARITY OF SOLUTIONS TO THE LIQUID CRYSTAL EQUATIONS
    IN CRITICAL SPACE??

    Congchong Guo?

    (Longyan University,Longyan,364000,Fujian,PR China)

    In this paper,we consider a hydrodynamic flow of nematic liquid crystal system.We prove the local well-posedness for the system in the critical Lebesgue space,and study the space-time regularity of the local solution.

    space-time regularity;liquid crystal system;critical Sobolev space

    2000 Mathematics Subject Classification 35B65

    Ann.of Appl.Math.

    32:4(2016),357-379

    1 Introduction

    In this paper,we consider the following hydrodynamic flow of nematic liquid crystal system:

    which was proposed by Lin and Liu[25,26],as a simplified system of Ericksen-Leslie model.Here u is the velocity of the flow,d(·,t):?n→S2,the unit sphere in ?3, is the unit vector field to depict the macroscopic molecular orientation of nematic liquid crystal material,P is pressure.We denote by?d??d the 3×3-matrix whose (i,j)-entry is?id·?jd and 1≤i,j≤3.

    The hydrodynamic theory of liquid crystal flow due to Ericksen and Leslie was developed in 1960’s[5,6,21,22].The model(1.1)is a simplified system of Ericksen-Leslie model,and it is a macroscopic continuum description of the time evolution ofmaterial under the influence of both the flow field u(x,t)and the macroscopic description of the microscopic orientation configuration d(x,t)of rod-like liquid crystal.

    Many efforts on rigorous mathematical analysis of system(1.1)have been made, see[23,25-27,29]etc.Since the liquid crystal system(1.1)is a coupling system between the incompressible Navier-Stokes equations and the heat flow of harmonic maps,we shall first recall some results of Navier-Stokes equations as follows.

    For the incompressible Navier-Stokes equations,in[19],Leray proved that for any finite square-integrable initial data there exists a(possibly not unique)global-in-time weak solution.Moreover,for two space dimensions case,[20]proved the uniqueness of the weak solution.Although the problems of uniqueness and regularity for n≥3 of Leray-Hopf weak solutions are still open,since the seminal work of Leray,there is an extensive literature on conditional results under various criteria.The most well-known condition is so-called Ladyzhenskaya-Prodi-Serrin condition,that is for some T>0,u∈Lp(0,T;Lq(?n)),where the pair(p,q)satisfies

    Under condition(1.2),the uniqueness of Leray-Hopf weak solutions was proved by Prodi[33]and Serrin[34],and the smoothness was obtained by Ladyzhenskaya[15]. The borderline case(p,q)=(∞,n)is much more subtle.

    Subsequently,[8]proved the well-posedness for the Navier-Stokes equations in a scaling invariant spaceThe scaling invariant in the context of the Navier-Stokes equations is defined as:if a pair of functions(u(x,t),P(x,t))solves the incompressible Navier-Stokes equations,then

    is also the solution of the incompressible Navier-Stokes equations with initial data (uλ(x,0),Pλ(x,0))=(λu0(λx),λ2P0(λx)).The spaces which are invariant under such a scaling are also called critical spaces.Examples of critical spaces for the Navier-Stokes in n dimensions are:

    The study of the Navier-Stokes equations in critical spaces was initiated by Fujita-Kato[8,13],and continued by many authors,see[1,7,10,14,32]etc.

    In 2003,Escauriaza,Seregin,and Sverak[7]obtained many perfect results,such as the backward uniqueness of the parabolic system and the regularity results for weak Leary-Hopf solutions u satisfying the additional condition u∈L∞(0,T;L3(?3)), as well as the local well-posedness in the critical Lebesgue space,which verified the borderline case of(1.2)for n=3.The results of[7]is the borderline case for theLadyzhenskaya-Prodi-Serrin condition(1.2),which implied that the bound of weak solution in L∞(0,T;L3(?3))plays a crucial role to the uniqueness of the weak solutions to the Navier-Stokes equations.And for the borderline case of(1.2)with n≥4,the results were established by Du and Dong[3].

    Subsequently,the space-time regularity for those local solutions in critical Lebesgue space of the Navier-Stokes equations was presented by[2]and[10].Similarly the space-time analyticity results of the Navier-Stokes equations in other critical spaces,please see[9,11,16,30,31]etc.

    Now,we turn to the liquid crystal system of(1.1).Recently,Lin,Lin,and Wang[24]studied the Dirichlet initial boundary value problem of(1.1),and proved the results that for any initial data(u0,d0)∈L2(?2)×H1(?,S2),there exists a global Leray-Hopf weak solution(u,d)that is smooth away from at most finitely many singularity times.Under the initial data(u0,d0)∈BMO?1×BMO,the local and global well-posedness were studied by Wang[35].Very recently,in[12], the authors were established some Serrin type(not in borderline case,see(1.2)) and Beal-Kato-Majida type regularity criterion for the weak solution to(1.1)in?3.In[28],Lin and Wang proved the borderline case for the Serrin type criterion which is more intrinsic and difficult.For classical solutions to the Cauchy problem in the two-dimensional incompressible liquid crystal equation and the heat flows of harmonic maps equation,under a natural geometric angle condition,in[17],Lei, Li,and Zhang proved the global smooth solutions to a class of large initial data in energy space.After that,the existence of a pair of exact strong solutions to the 2D incompressible liquid crystal equations with finite energy was constructed by Dong and Lei[4].

    Define

    then we can establish the critical space for the liquid crystal equations(1.1)as(1.4). There are similar results for the liquid crystal system(1.1)in the so-called critical spaces.For example in[29]and[35]the well-posedness to system(1.1)in critical Sobolev spaceand in BMO×BMO?1were studied respectively.

    Similar to the results of[7]of Navier-Stokes equations,the bound of the weak solutions(u,d)in the spacewill be crucial to determine the uniqueness of the weak solutions to the liquid crystal equations (1.1),see[28].In this paper,we shall present the well-posedness of the solutions to system(1.1)in critical Lebesgue spacesFurthermore,the space-time regularity of the solutions are also presented.

    There are several ingredients in this paper.Firstly,we shall prove the local well-posedness for system(1.1)in the critical Sobolev spaces.This part have extended the corresponding results of Navier-Stokes equations to the liquid crystal system. Subsequently,we shall study the space-time regularity of the local solutions,which implies not only the smoothness of the local solution,but also the decay rate about time t.To prove our results,we need to verify the space-time regularity of the local solution in the time interval[0,T0].By the standard method,it is easy to prove our results in[0,T1]with T1?T0,and then some iteration method to verity our results always hold on[T1,T0].

    Our results are stated as follows.

    Theorem 1.1(Local well-posedness)Suppose that(u0,d0)is a pair of initial data of(1.1)with(u0,d0)∈Ln(?n)× ˙W1,n(?n),then there exists a constant T>0, which depends on(u0,d0),such that system(1.1)admits a pair of unique solution (u,d)with the following properties:

    Moreover,if the initial data satisfying∥u0∥Ln(?n)+∥?d0∥Ln(?n)is small enough, then we can take T=+∞.

    Remark 1.1 In[28],when u∈L∞(0,T;L2(?n))∩C([0,T);Ln(?n))and d∈the Leray-Hopf type weak solution is unique on ?n×[0,T],moreover,the local solution is smooth on[0,T]×?n.

    Theorem 1.2Let(u,d)be the local solution presented in Theorem 1.1 on [0,T],then for any positive integers k and m,by letting(p,q)∈[2,∞]×[n,∞]withwe have

    This paper is organized as follows:In Section 2,we shall present some wellknown results for the Leray Projector operator and some estimates for linear stokes system.In Section 3,the local well-posedness of(1.1)in the critical Lebesgue spaces is proved.The space-time regularity properties of the local solutions are proved in Section 4.Throughout this paper,we sometimes use the notation A?B as an equivalent to A≤CB with a uniform constant C.The notation A≈B means that A?B and B?A.

    2 Preliminaries

    At the beginning,we recall some properties for the Leary projection operator P to divergence free vector fields,which is defined by its matrix valued Fourier multiplierFor any multi-indices α,this symbol satisfies Mihlin-HormanderconditionFurthermore,we have the following pointwise bound (see[18]Proposition 11.1).

    Lemma 2.1Denote etΔas the heat operator,n as the space dimension andas the kernel of?k+1P etΔrespectively,then there holds

    where C(k)is a constant depending only on k.

    with degree k+2m,such that

    Proof It can be proved by induction.

    We also need the following properties of the solution to the heat equation:

    Lemma 2.3 Denote φ to be the solution to the linear heat equation?tφ?Δφ=0 with the initial data φ|t=0=φ0.Then for n≥2 there hold:

    (1)For s≥s1≥1,denote

    Particularly,for the case n=s1≥2,s=l=n+2,we have

    (2)When the initial data φ0∈Ln(?n),for any positive integers M and K we have

    (3)For any positive integers m,n and p∈[n+2,+∞],q∈[n,n+2]satisfying the conditionwe have

    where C(m,k,n)is a constant depending on m,k and n.

    Proof The case(3)was proved by Dong-Du[2].For the case(1),when n=3, it was proved by Lemma 7.1 of[7].In fact(2.3)can easily be proved by using Younginequality.For the case n=s1=3,s=l=5,(2.4)is proved by[7](see Lemma 7.1).We shall prove(2.4)for arbitrary dimensions n≥2 for completeness.

    Multiplying|φ|s1?2φ to the heat equation and integrating on ?n,we have

    Now,we are going to prove(2.6).Let ω?be the smoother kernel and

    then

    For any positive integers m and k,by Lemma 2.2,we have

    Recalling that φ0∈Ln(?n)and(2.10),let ?→0 and t→0,we get

    The proof is completed.

    Remark 2.1 Particularly,for given positive constants m and k,we can prove the following estimate just similar to(2.3):

    We also recall some results for the following linear Stokes system:For given initial data u0∈Ln(?n),we have:

    Proposition 2.1 For any T>0,suppose thatand the initial data u0∈Ln(?n),then for the linear equation(2.15),there exists a uniform constant C0,such that the solution u satisfies:

    Proof This Proposition comes from[7],where the authors proved it for the case n=3.For completeness,we shall give a brief proof of(2.18)-(2.19)for the general case n≥2.

    Write g=|u|n/2,we have

    By multiplying|u|n?2u to(2.15)and integrating by parts,we have

    Then by Gronwall inequality,we get

    By(2.22)and(2.23),we verify(2.18)as follows:

    Similarly,(2.19)can be proved as

    The proof is complete.

    Lemma 2.4 For any constant k0>0 and d0(x)∈S2,there exists a constant C(k0)such that

    where dist(·,·)is the distance.

    Proof This Lemma follows directly from Lemma 2.1 of[35].

    3 Local Existence

    We prove Theorem 1.1 by using the fixed point argument.Given any T>0,we write

    At the beginning,we set a suitable space as follows(for more details of the suitable space see[18]):

    Definition 3.1 For the functions(f(x,t),g(x,t))defined on ?n×[0,T](0<T≤∞),we say that(f(x,t),g(x,t))∈ETif there hold:

    and

    where

    It is easy to check that both ETandare non-empty Banach spaces.

    Let u(1)and d(1)be solutions to the following equations respectively,

    Here and hereafter,we denote S(t)as the heat operator and P is the Leary projection operator.

    By Lemma 2.3,to prove Theorem 1.1,it is sufficient to estimate(u(2),d(2)).

    Proposition 3.1 There exists a constant t1,when 0<t≤t1we have

    Proof We need to prove

    as well as

    We shall prove(3.10)-(3.12)term by term.

    When 0<τ<t/2,by H?lder inequality we have

    For the case t/2<τ<t,we get

    Then(3.10)comes from(3.13)-(3.15).

    To verify(3.11),we begin with the term u(2)and we have

    By Lemma 2.1 we have

    therefore we have

    Furthermore,for a uniform constant C1,from(3.16)-(3.19)we have

    Similarly to the process of(3.16)-(3.21),we can get

    For a uniform constant C2,from(3.22)we have

    Then(3.11)follows from(3.20)and(3.22).

    By Proposition 2.1,we have

    where C3and C4are uniform constants.

    Claim There exists a constant t1,for 0<t<t1there holds

    Then from(3.21),(3.23)and(3.24)-(3.25),(3.12)follows immediately.

    In the following,we shall verify Claim(3.26).Denote

    where ω?is the usual smoother kernel.

    Taking t1small enough,such that for 0<t≤t1,we have

    Recalling that ω?is the smoother kernel,we can choose the parameter ? such that

    Then(3.26)follows from(3.28)-(3.30).The proof is completed.

    Proposition 3.2 There exists a constant t2>0,when 0<t≤t2,such that

    is a contraction map.More precisely, =(u0,d0),then there exists a constant t2>0,such that for 0<t≤t2there holds:

    Proof For simplicity,we writeRecalling(3.8),we obtain

    Repeating the proof as in Proposition 3.1,we have

    As the proof in(3.28)-(3.30),we can take t2>0,such that for 0<t≤t2,we have

    Then(3.32)follows from(3.35)-(3.37).The proof is completed.

    Proof of Theorem 1.1 By taking

    combing Lemma 2.3,Proposition 3.1 and Proposition 3.2,there exists a pair of unique solution(u,d)satisfying(1.6)-(1.7)in the time interval[0,T].To finish the proof of Theorem 1.1,we still need to verify that|d(x,t)|=1.

    Following the line of[35],by Lemma 2.4 and(3.13)-(3.15),we have

    Furthermore,we take the vectorwith

    where we used?Q,?2Q∈the tangent plate of S2and

    Then we finish the proof of Theorem 1.1.

    4 Space-time Regularity of the Local Solution

    In the following,we shall prove Theorem 1.2.For any positive integers M,K and(p,q)∈[2+n,∞]×[n,n+2]satisfying

    it is sufficient to prove that the local solution(u,d)of(1.1)satisfies

    To prove(4.2),it is sufficient to verify the special case m=0.Since when m≥1, by using the linear heat equation?tΦ?ΔΦ=F,we have

    with a small modification of the following proof,and the general case m≥1 can be proved by induction.

    We write

    Therefore,we verify(4.2),it is sufficient to prove

    To prove(4.5),we firstly give the following proposition.

    Proposition 4.1Let(u,d)be a local solution on t∈[0,T]to(1.1)with the initial data u0and?d0∈Ln(?n),for any positive integers M,K and(p,q)∈[2+n,∞]×[n,n+2]satisfying(4.1),then there exists a constant 0<δ<T,such that

    Proof We prove this proposition by fixed point argument.

    Recalling Lemma 2.3,it is sufficient to estimate(u(2),d(2))with(u(2),d(2))satisfying

    And we define the map T=(T1,T2)as in(3.8).

    Write

    we define the following space

    with

    Step 1 There exists a constant δ0>0 such that

    We begin the estimates with the term u(2).Taking the positive integers k≤K, we have

    therefore we have

    Similarly to the process of(4.11)-(4.14),we get

    Next,we give an estimate forDue to Minkovski inequality,we have

    From Lemma 2.2 and Young inequality

    Similarly to(4.13),we have

    From(4.16)-(4.18),we have

    Similarly to(4.16)-(4.18),we also have

    Now,we are going to estimate

    From Lemma 2.2 and Young inequality

    Similarly to(4.13),we have

    From(4.21)-(4.23)and Young inequality,we have

    Similarly to(4.21)-(4.25),we get

    From(4.11)-(4.15)and(4.25)-(4.26),applying the summationwe get

    Repeat the progress as in(3.26)-(3.30),we can choose a δ0>0 small enough, such that for any t∈[0,δ0],there holds

    then we finish the proof of Step 1.

    Step 2 There exists a δ1>0 such that T is a contraction map on

    We choose a δ1>0 small enough,such that for any t∈[0,δ1],there holds

    Then we finish the proof of Step 2.

    Taking δ=min{δ0,δ1},we conclude that there exists a unique pair of solutionBy the uniqueness of the solution,for(u,d),the local solution to (1.1),we have(u,d)=(u?,d?)in the time interval[0,δ].

    We finish the proof of Proposition 4.1.

    Remark 4.1If we take the initial datasmall enough,which implies the global existence,then after a slight modification of Proposition 4.1,we can prove the results of Proposition 4.1 on t∈(0,+∞).For this situation,we can get the following decay estimates immediately:

    for any t>0 and integer k≥0.

    Proof of(4.5)By Proposition 4.1,it is sufficient to prove Theorem 1.2 on [δ,T]with T<∞and δ≤T.

    Denote

    By the local existence in Theorem 1.1,(U,D)is the solution to(1.1)on[δ/2,T]with the initial dataDue to the results of Lin-Lin-Wang[24],we have

    We can write(U,D)as

    Similarly to(4.16),by using H?lder inequality and(4.25),we have

    From(4.34),(4.33)and Proposition 4.1,for any integer j≥0,we have

    Similarly to(4.37)-(4.38),we have

    By adding(4.38)and(4.39),and using Gronwall inequality,we get

    By Proposition 2.1,we have

    From(4.41),recalling that(4.33)and(4.40),we have

    From(4.35),(4.40)and(4.42),we have

    Similarly,we can also get

    Combining Proposition 4.1 and the estimates(4.40),(4.42)and(4.44),we finish the proof of(4.5).

    For the complete proof of Theorem 1.2,we use the induction as the explanation at the beginning of this Section.

    References

    [1]M.annone,A generalization of a theorem by Kato on Navier-Stokes equations,Revista Matematica Iberoamericana,13(1997),515-541.

    [2]H.Dong,D.Du,On the local smoothness of solutions of the Navier-Stokes equations, arXiv:math/0502104v1.

    [3]H.Dong,D.Du,The Navier-Stokes equations in the critical Lebesgue space,Comm. Math.Phy.,292(2009),811-827.

    [4]H.Dong,Z.Lei,On a family of exact solutions to the incompressible liquid crystals in two dimensions,arXiv:1205.3697v2.

    [5]J.Ericksen,Conservation laws for liquid crystals,Trans.Soc.Rheol.,5(1961),475-485.

    [6]J.Ericksen,Hydrostatic theory of liquid crystal,Arch.Rational Mech.Anal.,9(1962), 371-378.

    [7]L.Escauriaza,G.Seregin,V.Sverak,L3,∞solutions of the Navier-Stokes equations and backward uniqueness,Russian Math.Surveys,58(2003),211-250.

    [8]H.Fujita,T.Kato,On the Navier-Stokes initial value problem,Arch.Rational Mech. Anal.,16(1964),269-315.

    [9]P.Germain,N.Pavlovi?,G.Staffilani,Regularity of solutions to the Navier-Stokes equations evolving from small data in BMO?1,Int.Math.Res.Not.,21(2007),Art. ID rnm087,35p.

    [10]Y.Giga,O.Sawada,On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem,onlinear analysis and applications Kluwer Aacdemic:Dordrecht,2(2002),549-562.

    [11]Z.Grujic,I.Kukavica,Space analyticity for the Navier-Stokes and related equations with initial data in Lp,Journal of Functional Analysis,152(1998),247-266.

    [12]M.Hong,J.Li,Z.Xin,Blow-up criteria of strong solutions to the Ericksen-Leslie system in ?3,arXiv:1303.4488,2013.

    [13]T.Kato,Strong Lp-solutions of the Navier-Stokes equations in Rmwith applications to weak solutions,Mathematische Zeitschrift,187(1984),471-480.

    [14]H.Koch,D.Tataru,Well-posedness for the Navier-Stokes equations,Adv.Math., 157(2001),22-35.

    [15]O.Ladyzhenskaya,On the uniqueness and smoothness of generalized solutions to the Navier-Stokes equations,Zap.Nauchn.Sem.Leningrad.Otdel.Mat.Inst.Steklov.(LOMI),5(1967),169-185.(English transl.,Sem.Math.V.A.Steklov Math.Inst.Leningrad (1969),60-66.)

    [16]Y.Le Jan,A.Sznitman,Cascades aleatoires et equations de Navier-Stokes,Comptes Rendus de lAcademie des Sciences.Serie I.Mathematiques,324(1997),823-826.

    [17]Z.Lei,D.Li,X.Zhang,Remarks of global wellposedness of liquid crystal flows and heat flows of Harmonic maps in two dimensions,arXiv:1205.1269.

    [18]P.G.Lemarie-Rieusset,Recent developments in the Navier-Stokes problem,Boca Ration,FL:Chapman&Hall/CRC,(2002).

    [19]J.Leray,Sur le mouvement d’un liquide visqueux emplissant l’espace,Acta Matematica,63(1933),193-248.

    [20]J.Leray,Etude de diverse quations intgrales non linaires et de quelques problmes que pose l’hydrodynamique,Journal Math.Pures et Appliquees,12(1933),1-82.

    [21]F.Leslie,Some constitutive equations for anisotropic uids,Quart.J.Mech.Appl.Math., 19(1966),357-370.

    [22]F.Leslie,Some constitutive equations for liquid crystals,Arch.Ration.Mech.Anal., 28(1968),265-283.

    [23]F.Lin,Nonlinear theory of defects in nematic liquid crystal:phase transition and flow phenomena,Commun.Pure Appl.Math.,42(1989),789-814.

    [24]F.Lin,J.Lin,C.Wang,Liquid crystal ows in two dimensions,Arch.Rational Mech. Anal.,197(2010),297-336.

    [25]F.Lin,C.Liu,Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun.Pure Appl.Math.,XLVIII(1995),501-537.

    [26]F.Lin,C.Liu,Partial regularity of the dynamic system modeling the flow of liquid crystals,Discrete and Continuous Dynamical Systems-Series A,2(1998),1-22.

    [27]F.Lin,C.Liu,Existence of solutions for the Ericksen Leslie system,Arch.Rational Mech.Anal.,154(2000),135-156.

    [28]F.Lin,C.Wang,On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,Chinese Annals of Mathematics,Series B, 31(2010),921-938.

    [29]J.Lin,S.Ding,On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces,Math.Meth.Appl.Sci., 35(2012),158-173.

    [30]H.Miura,Remark on uniqueness of mild solutions to the Navier-Stokes equations, Journal of Functional Analysis,218(2005),110-129.

    [31]H.Miura,O.Sawada,On the regularizing rate estimates of Koch-Tatarus solution to the Navier-Stokes equations,Asymptotic Analysis,49(2006),1-15.

    [32]F.Planchon,Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in R3,Annales de lInstitut Henri Poincare-Analyse Non Linea 13,3(1996),319-336.

    [33]G.Prodi,Un teorema di unicit‘a(chǎn) per le equazioni di Navier-Stokes,Ann.Mat.Pura Appl.,48(1959),173-182.

    [34]J.Serrin,On the interior regularity of weak solutions of Navier-Sokes equations,Arch. Rat.Mech.Anal.,9(1962),187-195.

    [35]C.Wang,Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,Arch.Ration.Mech.Anal.,200(2011),1-19.

    (edited by Liangwei Huang)

    ?This work was supported by NSF of China(grant No.11471126).

    ?Manuscript October 17,2016

    ?.E-mail:guocongchong77@163.com

    宅男免费午夜| 天天躁狠狠躁夜夜躁狠狠躁| 日韩精品免费视频一区二区三区| 国产在线观看jvid| 男人添女人高潮全过程视频| 80岁老熟妇乱子伦牲交| 女人久久www免费人成看片| 欧美激情高清一区二区三区| 成在线人永久免费视频| 国产女主播在线喷水免费视频网站| 亚洲七黄色美女视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产极品粉嫩免费观看在线| 亚洲伊人久久精品综合| 精品第一国产精品| a级毛片黄视频| 久久久久久人人人人人| 国产精品国产av在线观看| av视频免费观看在线观看| 国产不卡av网站在线观看| 在线观看一区二区三区激情| 亚洲欧美日韩另类电影网站| 在线 av 中文字幕| 麻豆乱淫一区二区| 老汉色∧v一级毛片| 亚洲国产精品国产精品| 成人午夜精彩视频在线观看| 99国产精品免费福利视频| 叶爱在线成人免费视频播放| 国产精品 国内视频| 制服诱惑二区| 国产成人欧美在线观看 | 又粗又硬又长又爽又黄的视频| 91精品伊人久久大香线蕉| 亚洲国产欧美日韩在线播放| 久久久国产精品麻豆| 精品熟女少妇八av免费久了| 精品少妇内射三级| 亚洲专区中文字幕在线| 色网站视频免费| 性少妇av在线| 日本欧美国产在线视频| 少妇被粗大的猛进出69影院| 久久精品亚洲av国产电影网| 欧美久久黑人一区二区| 亚洲精品国产av蜜桃| 男女床上黄色一级片免费看| 欧美人与性动交α欧美精品济南到| 亚洲欧美日韩高清在线视频 | 久久久久网色| 美女中出高潮动态图| 欧美xxⅹ黑人| svipshipincom国产片| 下体分泌物呈黄色| a级片在线免费高清观看视频| 这个男人来自地球电影免费观看| 黄色怎么调成土黄色| 韩国高清视频一区二区三区| 亚洲av美国av| 欧美日韩视频精品一区| 视频在线观看一区二区三区| 欧美久久黑人一区二区| 欧美+亚洲+日韩+国产| 美女高潮到喷水免费观看| 操出白浆在线播放| 99久久99久久久精品蜜桃| 亚洲图色成人| 90打野战视频偷拍视频| 亚洲免费av在线视频| 美国免费a级毛片| 国产亚洲精品第一综合不卡| 亚洲av日韩在线播放| 91麻豆av在线| 黄色视频在线播放观看不卡| www.999成人在线观看| 亚洲美女黄色视频免费看| 我的亚洲天堂| 亚洲精品一区蜜桃| 51午夜福利影视在线观看| 在线av久久热| 91九色精品人成在线观看| 精品人妻1区二区| 久久中文字幕一级| 免费久久久久久久精品成人欧美视频| 黄色视频在线播放观看不卡| 十八禁网站网址无遮挡| 日韩制服骚丝袜av| 亚洲国产精品成人久久小说| 热99久久久久精品小说推荐| 亚洲人成电影免费在线| 人妻人人澡人人爽人人| 午夜福利一区二区在线看| 国产黄色免费在线视频| 国精品久久久久久国模美| 天天躁夜夜躁狠狠躁躁| 51午夜福利影视在线观看| 熟女少妇亚洲综合色aaa.| 97人妻天天添夜夜摸| 国产欧美日韩一区二区三 | 日本一区二区免费在线视频| av不卡在线播放| av欧美777| 久久精品成人免费网站| 亚洲色图综合在线观看| 巨乳人妻的诱惑在线观看| 亚洲av欧美aⅴ国产| 一级毛片电影观看| 丰满饥渴人妻一区二区三| 亚洲,欧美,日韩| av福利片在线| 免费日韩欧美在线观看| 国产av一区二区精品久久| 免费高清在线观看视频在线观看| 色播在线永久视频| 亚洲人成网站在线观看播放| 后天国语完整版免费观看| 日日摸夜夜添夜夜爱| 乱人伦中国视频| 亚洲九九香蕉| 国产精品三级大全| 久久人人97超碰香蕉20202| 天天添夜夜摸| 一级毛片电影观看| 老熟女久久久| 日本a在线网址| 国产精品 欧美亚洲| 日韩中文字幕欧美一区二区 | 日本欧美国产在线视频| 在线精品无人区一区二区三| 国产精品亚洲av一区麻豆| 亚洲午夜精品一区,二区,三区| 1024香蕉在线观看| 国产精品秋霞免费鲁丝片| 亚洲欧美清纯卡通| a级片在线免费高清观看视频| 欧美日韩一级在线毛片| 美女国产高潮福利片在线看| 久久av网站| 午夜老司机福利片| 一级a爱视频在线免费观看| 亚洲,欧美,日韩| 午夜老司机福利片| 久久人人爽人人片av| 老汉色av国产亚洲站长工具| 最新在线观看一区二区三区 | 欧美激情高清一区二区三区| 91老司机精品| 日本欧美视频一区| 嫁个100分男人电影在线观看 | 国产免费福利视频在线观看| 黄色怎么调成土黄色| 亚洲少妇的诱惑av| 欧美日韩成人在线一区二区| 91精品国产国语对白视频| 精品亚洲成a人片在线观看| 交换朋友夫妻互换小说| 黄色毛片三级朝国网站| 男女无遮挡免费网站观看| 母亲3免费完整高清在线观看| 天天添夜夜摸| 啦啦啦啦在线视频资源| 精品亚洲乱码少妇综合久久| 乱人伦中国视频| 亚洲av美国av| 久久精品久久久久久噜噜老黄| 午夜日韩欧美国产| 两个人免费观看高清视频| 99国产综合亚洲精品| 首页视频小说图片口味搜索 | 国产精品麻豆人妻色哟哟久久| 久久天躁狠狠躁夜夜2o2o | 99精国产麻豆久久婷婷| svipshipincom国产片| 最黄视频免费看| 女人爽到高潮嗷嗷叫在线视频| av欧美777| 欧美人与性动交α欧美精品济南到| 日韩免费高清中文字幕av| 国产午夜精品一二区理论片| 亚洲av男天堂| 日韩中文字幕欧美一区二区 | 水蜜桃什么品种好| 欧美日韩综合久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 国产xxxxx性猛交| 只有这里有精品99| 五月天丁香电影| 99re6热这里在线精品视频| 最新在线观看一区二区三区 | 天天操日日干夜夜撸| 欧美久久黑人一区二区| 精品视频人人做人人爽| 精品久久久久久电影网| 妹子高潮喷水视频| 久久久久久久久久久久大奶| 亚洲国产欧美一区二区综合| 一本久久精品| 大香蕉久久网| 国产精品一区二区在线不卡| 免费少妇av软件| 91国产中文字幕| 国语对白做爰xxxⅹ性视频网站| 少妇被粗大的猛进出69影院| 日本wwww免费看| 免费日韩欧美在线观看| 19禁男女啪啪无遮挡网站| 成人三级做爰电影| 亚洲少妇的诱惑av| 精品熟女少妇八av免费久了| 亚洲成人免费电影在线观看 | 97精品久久久久久久久久精品| 美女高潮到喷水免费观看| 熟女少妇亚洲综合色aaa.| 午夜精品国产一区二区电影| 亚洲国产精品一区二区三区在线| 热re99久久国产66热| 精品一品国产午夜福利视频| 女人精品久久久久毛片| 18禁观看日本| 国产一区二区三区av在线| 高清欧美精品videossex| 中文字幕人妻丝袜一区二区| 啦啦啦在线观看免费高清www| 欧美日韩亚洲高清精品| 久久天躁狠狠躁夜夜2o2o | 麻豆av在线久日| 国产免费视频播放在线视频| 欧美黑人欧美精品刺激| 国产亚洲午夜精品一区二区久久| 久久久国产欧美日韩av| 国产成人一区二区三区免费视频网站 | 国产精品久久久av美女十八| 亚洲一卡2卡3卡4卡5卡精品中文| 色婷婷久久久亚洲欧美| 男女无遮挡免费网站观看| 考比视频在线观看| 两个人看的免费小视频| 国产免费一区二区三区四区乱码| 色婷婷久久久亚洲欧美| 在线天堂中文资源库| 日本猛色少妇xxxxx猛交久久| 国产爽快片一区二区三区| 一级片免费观看大全| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av涩爱| 美女扒开内裤让男人捅视频| 国产精品麻豆人妻色哟哟久久| 国产熟女午夜一区二区三区| 秋霞在线观看毛片| 精品福利永久在线观看| 久久精品亚洲熟妇少妇任你| 欧美激情极品国产一区二区三区| 国产日韩一区二区三区精品不卡| 80岁老熟妇乱子伦牲交| 各种免费的搞黄视频| 免费在线观看影片大全网站 | 丰满迷人的少妇在线观看| 亚洲少妇的诱惑av| 精品国产一区二区久久| 飞空精品影院首页| 在线观看免费日韩欧美大片| 老司机影院成人| 亚洲av日韩精品久久久久久密 | 青春草视频在线免费观看| 18禁黄网站禁片午夜丰满| 国产亚洲av高清不卡| 天堂中文最新版在线下载| 国产成人免费无遮挡视频| 国产一卡二卡三卡精品| 欧美国产精品一级二级三级| 久久精品熟女亚洲av麻豆精品| 日韩一卡2卡3卡4卡2021年| 婷婷成人精品国产| 两性夫妻黄色片| 水蜜桃什么品种好| 欧美在线一区亚洲| 欧美精品啪啪一区二区三区 | 母亲3免费完整高清在线观看| 亚洲欧美一区二区三区久久| 老汉色av国产亚洲站长工具| 色视频在线一区二区三区| 国产主播在线观看一区二区 | 国产欧美日韩一区二区三 | 看免费av毛片| 亚洲久久久国产精品| 欧美另类一区| 两个人免费观看高清视频| 亚洲成国产人片在线观看| 三上悠亚av全集在线观看| 一区二区三区精品91| 国产精品久久久久久精品电影小说| 久久国产精品大桥未久av| 亚洲精品久久午夜乱码| 国产成人一区二区在线| 久久久精品94久久精品| 久久精品aⅴ一区二区三区四区| 一本色道久久久久久精品综合| 中文字幕制服av| 汤姆久久久久久久影院中文字幕| 久久国产精品影院| 久久精品成人免费网站| 亚洲一区中文字幕在线| 国产成人精品久久二区二区91| 久久精品国产综合久久久| 国产在线视频一区二区| 黄色a级毛片大全视频| 国产午夜精品一二区理论片| 久久这里只有精品19| 国产精品久久久久久精品电影小说| 亚洲自偷自拍图片 自拍| 女性被躁到高潮视频| 午夜影院在线不卡| 精品国产乱码久久久久久小说| 美女国产高潮福利片在线看| 在线精品无人区一区二区三| 婷婷丁香在线五月| 啦啦啦啦在线视频资源| 波野结衣二区三区在线| 国产精品 欧美亚洲| 2021少妇久久久久久久久久久| 一个人免费看片子| 国产成人一区二区三区免费视频网站 | www.自偷自拍.com| 又大又黄又爽视频免费| 亚洲专区中文字幕在线| 亚洲av成人精品一二三区| 老汉色∧v一级毛片| 嫁个100分男人电影在线观看 | 国产欧美日韩综合在线一区二区| 一边摸一边做爽爽视频免费| 久久99精品国语久久久| 建设人人有责人人尽责人人享有的| 精品福利永久在线观看| 国产精品99久久99久久久不卡| 男女免费视频国产| 亚洲一区中文字幕在线| 亚洲黑人精品在线| 国产精品熟女久久久久浪| 香蕉丝袜av| 天天躁日日躁夜夜躁夜夜| 视频区欧美日本亚洲| 亚洲精品av麻豆狂野| 久久精品国产亚洲av涩爱| 久久人人爽av亚洲精品天堂| 在线精品无人区一区二区三| 啦啦啦中文免费视频观看日本| 99re6热这里在线精品视频| 亚洲情色 制服丝袜| 考比视频在线观看| 中文字幕最新亚洲高清| 亚洲国产精品999| 在线观看国产h片| av视频免费观看在线观看| √禁漫天堂资源中文www| 青春草视频在线免费观看| 国产男人的电影天堂91| 精品一品国产午夜福利视频| 激情视频va一区二区三区| 免费高清在线观看视频在线观看| 精品国产超薄肉色丝袜足j| 婷婷色麻豆天堂久久| 一级黄片播放器| 亚洲激情五月婷婷啪啪| 日韩中文字幕欧美一区二区 | 日本五十路高清| 极品人妻少妇av视频| 国产在线一区二区三区精| 中文欧美无线码| 在线观看www视频免费| 国产黄频视频在线观看| 欧美亚洲日本最大视频资源| 美女主播在线视频| 99久久人妻综合| 日本vs欧美在线观看视频| 欧美+亚洲+日韩+国产| 少妇人妻 视频| 伊人久久大香线蕉亚洲五| 午夜老司机福利片| 午夜福利视频在线观看免费| 日韩一卡2卡3卡4卡2021年| 极品少妇高潮喷水抽搐| 大码成人一级视频| 成人午夜精彩视频在线观看| 丰满迷人的少妇在线观看| 亚洲国产精品999| 天堂8中文在线网| 久久精品国产亚洲av涩爱| 久久精品久久精品一区二区三区| 成人亚洲精品一区在线观看| 最近手机中文字幕大全| 天天操日日干夜夜撸| 777久久人妻少妇嫩草av网站| 久久久久久久久久久久大奶| 建设人人有责人人尽责人人享有的| 久久精品亚洲av国产电影网| 中文字幕制服av| 18禁黄网站禁片午夜丰满| 亚洲av成人不卡在线观看播放网 | 一本综合久久免费| 99国产精品一区二区蜜桃av | 欧美日韩一级在线毛片| 午夜免费成人在线视频| 777米奇影视久久| 午夜福利乱码中文字幕| 国产一区二区 视频在线| 国产成人一区二区在线| 国产1区2区3区精品| 日韩熟女老妇一区二区性免费视频| 午夜日韩欧美国产| 亚洲国产精品一区二区三区在线| 97精品久久久久久久久久精品| 汤姆久久久久久久影院中文字幕| 悠悠久久av| 国产成人一区二区三区免费视频网站 | 国产成人精品在线电影| 我要看黄色一级片免费的| 国产福利在线免费观看视频| 一级黄片播放器| 日本av免费视频播放| 晚上一个人看的免费电影| 精品国产一区二区久久| 久久国产精品男人的天堂亚洲| 少妇精品久久久久久久| 国产成人91sexporn| 无遮挡黄片免费观看| 中文精品一卡2卡3卡4更新| 两个人免费观看高清视频| 亚洲国产精品一区三区| 美女高潮到喷水免费观看| 亚洲国产最新在线播放| 在线看a的网站| 亚洲欧美精品综合一区二区三区| 午夜av观看不卡| 纯流量卡能插随身wifi吗| 国产麻豆69| 在线观看一区二区三区激情| 亚洲欧洲精品一区二区精品久久久| 亚洲av美国av| 王馨瑶露胸无遮挡在线观看| 永久免费av网站大全| 国产亚洲av高清不卡| 亚洲熟女精品中文字幕| 新久久久久国产一级毛片| 久久久国产一区二区| 国产欧美日韩一区二区三 | 欧美性长视频在线观看| 视频在线观看一区二区三区| 中文字幕亚洲精品专区| 一本色道久久久久久精品综合| av欧美777| 欧美久久黑人一区二区| 久久女婷五月综合色啪小说| 五月天丁香电影| 汤姆久久久久久久影院中文字幕| 久久久久久久国产电影| 亚洲精品乱久久久久久| 国产不卡av网站在线观看| 脱女人内裤的视频| 中文字幕人妻丝袜制服| 久久人人爽人人片av| 美女主播在线视频| 国产在线观看jvid| 丰满迷人的少妇在线观看| 国产亚洲欧美在线一区二区| 老司机影院成人| 欧美亚洲 丝袜 人妻 在线| 欧美 日韩 精品 国产| 七月丁香在线播放| 另类亚洲欧美激情| 亚洲,一卡二卡三卡| 丝袜美腿诱惑在线| 国产精品免费视频内射| 99精品久久久久人妻精品| 97在线人人人人妻| 一级毛片电影观看| av有码第一页| 成年人午夜在线观看视频| 久久精品亚洲av国产电影网| 日本五十路高清| 午夜久久久在线观看| 久久精品国产亚洲av涩爱| 91九色精品人成在线观看| 天天躁夜夜躁狠狠久久av| 婷婷色av中文字幕| 亚洲精品乱久久久久久| 亚洲国产精品999| 丝袜美足系列| 一级片免费观看大全| 亚洲国产欧美日韩在线播放| 少妇的丰满在线观看| 91麻豆精品激情在线观看国产 | 精品亚洲成a人片在线观看| 国产精品三级大全| 国产三级黄色录像| 国产老妇伦熟女老妇高清| 91国产中文字幕| 亚洲少妇的诱惑av| 男女高潮啪啪啪动态图| 国产免费现黄频在线看| 九色亚洲精品在线播放| 欧美日韩福利视频一区二区| 男人添女人高潮全过程视频| 看免费av毛片| 男女免费视频国产| 丝袜在线中文字幕| 成年女人毛片免费观看观看9 | 多毛熟女@视频| 岛国毛片在线播放| 手机成人av网站| 美女主播在线视频| 国产淫语在线视频| 丁香六月欧美| 母亲3免费完整高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情 高清一区二区三区| 王馨瑶露胸无遮挡在线观看| 视频在线观看一区二区三区| 亚洲精品一区蜜桃| 中文字幕最新亚洲高清| 欧美日韩综合久久久久久| 亚洲五月色婷婷综合| 精品一区二区三区四区五区乱码 | 少妇的丰满在线观看| 午夜福利,免费看| 午夜福利影视在线免费观看| 青草久久国产| 国产精品久久久av美女十八| 高潮久久久久久久久久久不卡| 男女之事视频高清在线观看 | 欧美精品人与动牲交sv欧美| 91字幕亚洲| 欧美少妇被猛烈插入视频| 久久精品人人爽人人爽视色| 一级黄色大片毛片| 99热网站在线观看| 人妻一区二区av| 老司机深夜福利视频在线观看 | 日日爽夜夜爽网站| 交换朋友夫妻互换小说| 男人舔女人的私密视频| 夫妻午夜视频| 国产成人精品在线电影| 欧美成人午夜精品| 首页视频小说图片口味搜索 | 亚洲精品国产av成人精品| 国产黄频视频在线观看| 国产日韩欧美在线精品| 日日夜夜操网爽| 纵有疾风起免费观看全集完整版| 国产欧美日韩一区二区三区在线| 国产亚洲午夜精品一区二区久久| 人人妻人人澡人人爽人人夜夜| 国产精品免费视频内射| 99热网站在线观看| 亚洲,欧美,日韩| 纯流量卡能插随身wifi吗| 成人三级做爰电影| av有码第一页| 一级黄片播放器| 成人国产av品久久久| 丝袜在线中文字幕| 美女扒开内裤让男人捅视频| 成人亚洲精品一区在线观看| 亚洲欧美激情在线| av又黄又爽大尺度在线免费看| 一二三四社区在线视频社区8| 亚洲午夜精品一区,二区,三区| 又大又黄又爽视频免费| 免费看不卡的av| 一本大道久久a久久精品| 午夜av观看不卡| 久久狼人影院| 好男人视频免费观看在线| 只有这里有精品99| 日韩视频在线欧美| 亚洲成人手机| 大香蕉久久成人网| 国产又爽黄色视频| 中文字幕av电影在线播放| 久久免费观看电影| 男女午夜视频在线观看| xxxhd国产人妻xxx| 一级,二级,三级黄色视频| 91成人精品电影| 人人妻人人添人人爽欧美一区卜| 男女下面插进去视频免费观看| www.自偷自拍.com| 久久久久久久久免费视频了| 满18在线观看网站| 丝袜在线中文字幕| svipshipincom国产片| 国产精品av久久久久免费| 欧美亚洲日本最大视频资源| 国产精品欧美亚洲77777| 国产av精品麻豆| 免费在线观看影片大全网站 | 国产免费又黄又爽又色| 美女福利国产在线| 在线观看免费日韩欧美大片| 男女无遮挡免费网站观看| netflix在线观看网站| 亚洲美女黄色视频免费看| 午夜福利乱码中文字幕| av电影中文网址| 亚洲人成电影免费在线| 国产91精品成人一区二区三区 | 女人爽到高潮嗷嗷叫在线视频| 欧美日韩视频精品一区| 考比视频在线观看| 老司机深夜福利视频在线观看 | 欧美乱码精品一区二区三区| 亚洲美女黄色视频免费看| 日韩欧美一区视频在线观看| 精品久久久精品久久久|