• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    喹啉類單核錳(Ⅱ)和鈷(Ⅱ)配合物的合成、結(jié)構(gòu)、DNA/BSA鍵合及DNA切割活性

    2016-12-20 02:21:44張永坡楊佳佳呂佳苑高春艷趙晉忠
    關(guān)鍵詞:單核喹啉農(nóng)業(yè)大學(xué)

    張永坡 楊佳佳 呂佳苑 高春艷 趙晉忠

    喹啉類單核錳(Ⅱ)和鈷(Ⅱ)配合物的合成、結(jié)構(gòu)、DNA/BSA鍵合及DNA切割活性

    張永坡楊佳佳呂佳苑高春艷*趙晉忠*

    (山西農(nóng)業(yè)大學(xué)文理學(xué)院,太谷030801)

    合成了2個(gè)結(jié)構(gòu)類似的喹啉類單核錳和鈷配合物[ML(H2O)3]·H2O,其中M為Mn(1)、Co(2),Na2L為8-(羧基鈉甲氧基)喹啉-2-甲酸鈉。運(yùn)用紅外光譜、元素分析和X射線單晶衍射表征了其結(jié)構(gòu)。利用電子吸收和發(fā)射光譜法研究了配合物與CT-DNA及BSA的鍵合作用及配合物對(duì)DNA的切割作用。晶體解析結(jié)果表明2個(gè)配合物為同構(gòu)結(jié)構(gòu),配合物中心均為七配位的畸變五角雙錐結(jié)構(gòu)。鈷配合物2與CT-DNA的鍵合能力強(qiáng)于錳配合物1,兩者與BSA的作用機(jī)理為靜態(tài)淬滅機(jī)理,而鍵合常數(shù)值大小為1>2。在以H2O2作為誘導(dǎo)劑時(shí),在同等條件下,2切割DNA的能力明顯增強(qiáng)。通過加入自由基捕獲劑證明了配合物對(duì)DNA的切割機(jī)理為氧化切割機(jī)理,其中活性氧為OH·。

    配合物;喹啉類配體;DNA/BSA鍵合;DNA切割

    0 Introduction

    Metal complexes are a significant class of compounds with biological activities that can be potentially used in gene regulation,probing of DNA specific structures and interactions,and design of therapeutic agents[1-3].Since the discovery of antitumor activity of cisplatin in the 1960s[4-5],the research field of metal-based therapeutics has received considerable attention and broad interest[6-7].Metal complexes have natural propensity to interact with DNA due to their cationic characteristic,and based on theirwide spectrum of ligands and broad range of structural geometries[8]as well as kinetic properties and mechanisms of drug action[9].

    It has been widely accepted that DNA is the primary biological targets of metal-based therapeutics in vivo[10].Interactions of metal complexes with DNA range from electrostatic interaction to strong covalent bonding,DNA intercalation,groove binding,hydrogen -bonding with ligands,and cleavage of DNA[11-14].Transition metal complexes as synthetic metallonucleases have been studied extensively due to their supporting a multitude of coordination numbers and geometries. Among them,application of cobalt and manganese are important because of their biologically relevant and lessertoxicity[15-16].Mn and Co are widely distributed in naturalnucleases.Severalmetalloenzymes in biosystem require Mn or Co as cofactor for their catalytic activities.This prompted us to study the DNA interaction as well as nuclease activity of Mn and Co complexes.

    Apart from the choice of metal ion centers, purposeful design of these metal-based pharmaceuticals mainly depends on the various ligand frameworks.Structures and functionalities of ligands can significantly alter the biological properties by modifying the physical and chemical properties of the ion (s),including limiting the adverse effects of metal ion overload,inhibiting selected metalloenzymes,and facilitating metal ion redistribution[8].Due to coplanar aromatic rings,quinoline is regarded as an efficient DNA intercalating group.8-Hydroxylquinoline is a monoprotic bidentate chelating agent able to form a bis-substituted metal complex that inhibited proteasome activity,resulting in proliferation suppression and apoptosis induction in cultured breast and prostate cancer cells,showing potential anticancer activity[17-18].

    Herein,we selected a typical 2-carboxyl and 8-oxo-ethyl acetate derived quinoline as ligand(Scheme 1).Similar hepta-coordinated Mn(Ⅱ)and Co(Ⅱ)compounds have been synthesized and characterized.In this paper an attempt has been made to investigate the effect of two different metal ions in the same ligand environment on the DNA/BSA binding ability ofthe complexes.

    Scheme 1 Synthesis of Na2L(sodium 8-(carboxylatomethoxy)quinoline-2-carboxylate)

    1 Experimental

    1.1Materials and methods

    All reagents and solvents were purchased from commercial sources and used without further purification.Plasmid pBR322 DNA,calf thymus(CTDNA),bovine serum albumin(BSA)and ethidium bromide(EB)were purchased from Sigma-Aldrich. Stock solutions of Mn(Ⅱ)(1.0 mmol·L-1in 32%DMF/ H2O)and Co(Ⅱ)(1.0 mmol·L-1in 6%DMF/H2O) complexes were stored at 4℃and prepared to series concentrations for all experiments.Phosphate buffer and Tris-HCl solution were prepared using tripledistilled deionized sonicated water.Elemental analyses for C,H and N were performed on a Perkin-Elmer analyzer.IR spectra were obtained on a Perkin-Elmer FTIR spectrometer in the range of 4 000~400 cm-1.Electronic spectra were measured on a JASCO V-570 spectrophotometer.Fluorescence spectral data were collected on a MPF-4 fluorescence spectrophotometer at room temperature.Gel Imaging and documentation DigiDoc-It System were assessed using Labworks Imaging and UVI(England)Analysis Software.

    1.2Preparation of compounds

    1.2.1Synthesis ofthe ligand Na2L

    Ligand Na2L was prepared using a similar method of the literature[19].A mixture of 8-hydroxy-2-methylquinoline(2.4 g,15 mmol),ethyl bromoacetate (2.5 g,15 mmol)and powdered K2CO3(8 g,58 mmol) in acetone(30 mL)was refluxed for 24h.After cooled to room temperature,the mixture was centrifuged and filtered.The filtrate was evaporated to generate crude oilresidue,which was redissolved in 25 mL ofdioxane. 1.8 g SeO2(16 mmol)was added and the mixture was refluxed under an open air for 10 h.After cooled,the solvent was removed under vacuum.50 mL 0.5 mol· L-1HCl was added and the mixture was extracted by ethyl acetate.The organic phase was combined and concentrated to generate crude oil residue.The residue was redissolved in 25 mL of ethanol,and a solution of NaOH(1.8 g,45 mmol)in water(10 mL) was slowly added.The mixture was refluxed for 2 h. 25 mL of ethanol was added and the mixture was cooled to temperature slowly and dark yellow solid precipitated.The product was isolated by filtration and washed with cold ethanol,with a yield of 47%. Elemental analysis calcd.for C12H7NNa2O5(%):C, 49.50;H,2.42;N,4.81.Found(%):C,49.41;H,2.67; N,4.79.FTIR(KBr,cm-1):3 348,1 615,1 507,1 480, 1 421,1 385,1 315,1 265,1 107,948,824.

    1.2.2Synthesis of[MnL(H2O)3]·H2O(1)

    To an aqueous solution(5 mL)of MnCl2·4H2O (0.2 mmol,39.6 mg)was added a methanol solution (15 mL)of Na2L(0.2 mmol,58.2 mg).The resulting mixture was stirred for 3 h at room temperature.After filtration,yellow prism crystals suitable for X-ray diffraction were obtained by slow evaporation of the filtrate after ten days,which were collected by filtration,washed with diethyl ether and dried in air (Yield:28%).Elemental analysis calcd.for C12H7MnNO9(%):C,39.58;H,1.94;N,3.85.Found (%):C,39.49;H,2.01;N,3.78.FTIR(KBr,cm-1): 3 333,1 634,1 506,1 480,1 420,1 380,1 318,1 262, 1 108,946,924,821,614.

    1.2.3Synthesis of[CoL(H2O)3]·H2O(2)

    Complex 2 was prepared using a similar procedure with the case of 1,using Co(NO3)2·6H2O instead of adding MnCl2·4H2O to the reaction mixture.Red prism crystals suitable for X-ray diffraction were precipitated by slow evaporation of the filtrate after seven days,which were collected by filtration,washed with cold diethyl ether and dried in vacuum(Yield: 37%).Elemental analysis calcd.for C12H7CoNO9(%): C,39.15;H,1.92;N,3.80.Found(%):C,39.08;H, 1.99;N,3.62.FTIR(KBr,cm-1):3 381,1 624,1 509, 1 480,1 423,1 383,1 316,1 266,1 110,948,884, 822,697.

    1.3X-ray crystallography

    Single crystals of the complexes with suitable size(0.20 mm×0.10 mm×0.05 mm for 1 and 0.25 mm×0.20 mm×0.10 mm for 2)were selected.X-ray diffraction data were collected on a Bruker Smart 1000 CCD diffractometer using Mo Kαradiation(λ= 0.071 073 nm)with theω-2θscan technique.Diffraction data were collected at 113(2)and 293(2)K for 1 and 2,respectively.All the crystal structures were solved using direct methods(SHELXS-97)[20]and refined with full-matrix least-squares technique on F2using the SHELXL-97[21].The hydrogen atoms were added theoretically,and riding on the concerned atoms and refined with fixed thermal factors. Crystallographic data details and structure refinement parameters are presented in Table 1.Selected bond lengths and angles are listed in Table S1.

    CCDC:1040326,1;1040325,2.

    1.4DNA-binding and cleavage experiments

    DNA-binding and cleavage experiments were conducted using the similar methods described previously[22-24].Electronic absorption spectroscopy was an effective method in examining the binding mode of DNA with the metal complex[25].Specifically,concentration of CT-DNA was measured from the UV absorption intensity at 260 nm with a molar extinction coefficient of 6 600 L·mol-1·cm-1[26].The DNA was demonstrated sufficiently free of protein as a ratio of 1.8~1.9 was obtained for the absorbance at 260 nm and 280 nm ofthe CT-DNA solution,which was carried out in 5 mmol·L-1Tris-HCl/50 mmol·L-1NaCl buffer (pH=7.2)[25].The absorption spectra of the complexes binding to DNA were performed by increasing addition of CT-DNA to the complexes in Tris-HCl buffer(pH=7.2).

    Table 1 Crystallographic data for complexes 1 and 2

    The fluorescence spectra were recorded at room temperature with excitation at 510 nm and emission at about 602 nm.The relative binding of complexes to CT-DNA were carried out with an EB-bound CT-DNA solution in 5 mmol·L-1Tris-HCl and 50 mmol·L-1NaClbuffer(pH=7.2).Absorption titration experiments were performed by titrating complexes into EB-DNA solution,which contains 2.4×10-6mol·L-1EB and 4.8×10-5mol·L-1CT-DNA.

    To explore the DNA cleavage abilities of complexes,the supercoiled(SC)pBR322 plasmid DNA as a substrate was incubated with complexes.The DNA cleavage experiments were performed by agarose gel electrophoresis,Details of the measurement was carried out as follows:A solution of pBR322 DNA (0.1μg·μL-1)in Tris-HCl(50 mmol·L-1)and NaCl (18 mmol·L-1)buffer(pH=7.2)was treated with 1 and 2.After incubation at 37℃for 3 h,the buffer of bromophenol blue(0.25%),glycerol(45%)and EDTA (2 mmol·L-1))was added.The samples were electrophoresed at 120 V on 0.9%agarose gel for 2 h,using Tris-boric acid-EDTA buffer.The extent of cleavage ofthe super coiled DNA(SC DNA)was determined by measuring the intensities of the bands,which were visualized by UV light and photographed using the Gel Documentation System[27].

    Cleavage mechanistic of pBR322 DNA was investigated in the presence of reaction inhibitors and standard radical scavengers.KI,NaN3,methyl green,SYBR green,EDTA and SOD were used as standard radical scavengers,which were added to pBR322 DNA prior to complex loading.After the addition of complex,cleavage experiment was initiated,and it was quenched with addition of 2μL buffer.Further analysis was carried out using the above standard method.

    1.5Protein binding studies

    The protein binding study was conducted with tryptophan fluorescence quenching experiments using BSA stock solution(1.5 mmol·L-1)in 10 mmol·L-1phosphate buffer(pH=7.0)[23].Briefly,a similar stock solution was prepared as the DNA binding experiments,except that phosphate buffer was used instead of Tris-HClbuffer.Fluorescence spectra were recorded at room temperature with excitation wavelength of BSA at 280 nm and emission at 342 nm.The concentration of BSA was kept constant(36.6μmol·L-1) while the complex concentration varying from 0 to 6.39μmol·L-1.Absorption titration experiments with BSA(15μmol·L-1)were carried out in the absence and presence of complex(2μmol·L-1)(pH=7.0).

    2 Results and discussion

    2.1Description of the crystal structures

    Mononuclear complexes 1 and 2 have been structurally characterized by X-ray crystallography. Since the two complexes are isostructural,the molecular structure of 1 was shown representatively in Fig.1(A similar structure of 2 was shown as Fig.S1). Parameters of refinement process and selected bond lengths and angles are listed in Table 1 and S1, respectively.

    Fig.1 ORTEP view of the molecular structure and atomlabeling scheme of complex 1 with 30% probability ellipsoid

    The complexes are isostructural and crystallize in a triclinic cell with P1 space group.Both metal centers are hepta-coordinated with O6Ndonor sets and the geometry around metal centers can be best described as distorted pentagonal bipyramidal.It is worth mentioning that weak M-O(1)coordinated interactions(Mn(1)-O(1)0.249 7(10)nm,Co(1)-O(1) 0.251 4(7)nm)exist in the[ML(H2O)3]units,which are supposed to be caused by the rigid structure of 8-hydroxy-2-methylquinoline[19].The nitrogen atom(N(1)), three oxygen atoms(O(1),O(2)and O(4))of the ligand and an oxygen atom(O(7))ofcoordinate water molecule form the basal plane.Another two oxygen atoms(O(6) and O(8))ofwater molecule occupy the axial positions with normal M-O bond distances,and the trans-axial angles(O6-M-O8)are 176.8(4)°for 1 and 174.9(3)°for 2,respectively.The angles(Table S1)around the metal ion within the pentagonal basal plane vary from 64.3(4)°to 81.4(4)°for complex 1(64.0(2)°~80.7(3)° for complex 2),and the sum of angles spanning these five bonds is 360°for complex 1(360.2°for complex 2),underscoring the flat nature of this equatorial plane.

    2.2DNA-binding and cleavage activities

    2.2.1DNA-binding studies

    The interaction of complexes with CT-DNA was monitored by absorption spectral titrations.The typical titration curve as wellas a plot of(εa-εf)/(εbεf)versus cDNAfor the titration of DNA to complex 2 is shown in Fig.2(similar spectrum of 1 is provided as Fig.S2).The observed intense absorption peaks at 217~221 nm for the two complexes are assigned to theπ-π*transition of intraligand.Addition of increasing amounts of CT-DNA results in an appreciable hypochromism of complexes and slight red shifts(3 nm)in band position,which indicates partial intercalation between complexes and DNA[28].Due to the strong stacking interaction between an aromatic chromophore and the base pairs of DNA,the intercalation between complexes and DNA would lead to hypochromism or bathochromism in UV absorptionspectra.In order to determine the binding strength of the complexes with CT-DNA,the intrinsic binding constants Kbfor complexes 1 and 2 were determined from the spectral titration according to the following equation[29]:cDNA/(εa-εf)=cDNA/(εb-εf)+1/[Kb(εb-εf)],where cDNAis the DNA concentration in nucleotides.The apparentabsorption coefficientεa,εbandεfcorrespond to the extinction coefficient observed for the charge transfer absorption band at a given DNA concentration,the complex free in solution,the complex when fully bound to DNA,respectively.The binding constant Kbvalues(Table 2)follow the order:2 (7.45×105L·mol-1)>1(4.09×105L·mol-1),which suggest that complex 2 has stronger binding affinity than 1.

    Fig.2 Absorption spectra of complex 2(2.5μmol·L-1, 0.015%DMF/H2O)in the absence(dashed line) and presence(solid line)of increasing amounts of CT-DNA in 5 mmol·L-1Tris-HCl/50 mmol·L-1NaCl buffer(pH=7.2)

    Table 2 DNA and BSA binding data for complexes 1 and 2

    Fig.3(a)Fluorescence emission spectra of the EB(2.4μmol·L-1)bound to CT-DNA(48μmol·L-1)system in the absence (dashed line)and presence(solid lines)of complex 2;(b)Plots of I0/I versus the concentrations of complexes 1 and 2

    As a means for better understanding of the interaction of the compound with DNA,fluorescence spectral measurements were performed on CT-DNA by varying the concentration of the complexes.Since no luminescence is observed for both complexes at room temperature,ethidium bromide(EB)was employed as fluorescence probe and the binding propensity of the complexes to CT-DNA is evaluated by fluorescence emission intensity of EB bound to DNA.Due to the strong intercalation to the adjacent DNA base pairs, EB could emit intense fluorescent light in the presence of DNA[30]and could be quenched by addition of another molecule.Fig.3(a)shows the relativebinding propensity of the complex 2 to EB bound CTDNA and similar spectrum of 1 is presented as Fig. S3.Plots of I0/I versus ccomplexfor the quenched intensity of 1~2 to EB-DNA is shown in Fig.3(b).The reduction extent of the emission intensity at 602 nm (510 nm excitation)provides an evaluation of the binding propensity of the complex to DNA.On the basis of the Stern-Volmer equation[31],I0/I=1+KcQ,in which I0and I represent the fluorescence intensities in the absence and presence of quencher,K is the Stern-Volmer quenching constant,and cQis the concentration of the quencher,the quenching plots showed that the quenching of EB bound to CT-DNA by complex 1 or 2 is in agreement with the linear Stern-Volmer equation,which also indicates that the complexes performed good bind ability to DNA. According to equation KEBcEB=Kappccomplex,where the ccomplexwas the concentration value at half reduction of the fluorescence intensity of EB,and KEBwas a constant of 1.0×107mol·L-1(cEB=2.4μmol·L-1).The calculated apparent binding constant values(Kapp) (Table 2)follow the order:2(6.76×105L·mol-1)>1 (4.16×105L·mol-1),which is consistent with the results of Kbvalues by UV spectroscopy.The two complexes show better binding propensity than the previous reported Co(Ⅱ)and Mn(Ⅱ)complexes[32-34].On the whole,the binding constants are less than that of the classical intercalators and metallointercalators(107L·mol-1)[35],indicating medium binding strength of the complexes with CT-DNA.

    2.2.2DNA cleavage studies

    The concentration-dependent DNA cleavage activity by complex 2 was observed without any external agents,as shown in Fig.4(a)(similar study of 1 is presented as Fig.S4(a)).2 could notinduce obvious DNA cleavage with the increase of concentration(50~650μmol·L-1),while the percentages of FormⅠ(SC DNA)and FormⅡ(NC DNA)of complex 1 both gradually reduce with the increase of concentration, which suggests thatthe complex partially degraded SC DNA into undetectable minor fragments[36].

    The concentration-dependent DNA cleavage activities by complex 1 and 2 were also performed in the presence of reductive reagent H2O2.The results showed that DNA cleavage efficiency of complex 2 exhibited remarkable increases at the same conditions (Fig.4(b)).It has been observed that complex 2 is an efficient cleaver of SC DNA and produces~93%of NC DNA at 20μmol·L-1concentration,which implies that H2O2plays a vital role as a revulsant or an activator.While 1 shows relatively weak chemical nuclease activity which implies little impact on the reductive reagent.As shown in the Fig.S4(b)and Fig. 4(b),at 50μmol·L-1concentration,the DNA cleavage efficiencies(FormⅠinto FormⅡand FormⅢ) follow the order of 2(90.3%FormⅡand 9.7%FormⅢ)>1(47.5%FormⅡ).

    Fig.4 Gel electrophoresis diagram showing the cleavage of p BR322 DNA(0.1μg·μL-1)at different complex concentrations in Tris-HCl/NaCl buffer(pH=7.2)and 37℃

    In order to get further information about the reactive oxygen species(ROS)which was responsible for the DNA damage,the potential DNA cleavage mechanism of the complexes in the presence of H2O2were investigated.Series of DNA cleavage experiments (Fig.5 and Fig.S5)were performed using additional reagents like KIas hydroxylradical(OH·)scavengers, NaN3as singlet oxygen(1O2)quencher,methyl green as DNA major groove-binder,SYBR green as DNA minor groove-binder,EDTA as the chelator of complexes and superoxide dismutase(SOD)as O2-·radical scavenger.As Fig.5 shows,the complexes showed complete or partial inhibition in the DNA-cleavageactivity in the presence of the hydroxyl radial scavenger KI,no obvious inhibitions were observed for other radical scavengers(Fig.6),which suggested the involvementofhydroxyl radicals(OH·)as reactive oxygen species.The EDTA,a metal chelating agent that strongly binds to Mmetal chelating agent that strongly binds toforming a stable complex, can efficiently inhibit DNA cleavage,indicating the metal ion play the key role in the cleavage.Moreover, the additions of DNA major groove-binder methyl green and minor groove-binder SYBR Green showed no inhibition DNA cleavage by complexes 1 and 2, which suggested that the complexes didn′t bind at the grooves of DNA[37].

    Fig.5 Cleavage of plasmid pBR322 DNA(0.1μg·μL-1)in presence of 35μmol·L-1complex 2 (0.1%DMF/H2O)and different inhibitors after 3 h incubation at 37℃

    Fig.6 Histogram of relative amounts according to Fig.S5 and Fig.5 shows the cleavage of plasmid pBR322 DNA(0.1μg·μL-1)in presence of complex and different inhibitors after 3 h incubation at 37℃

    2.3Protein binding studies

    The interactions between drugs with blood plasma proteins have attracted increasing research interest in recent years,particularly regarding serum albumin.Since serum albumin constitutes more than half of the total protein in blood plasma and it plays an important role in drug transport and drug metabolism[37-38],and may lead to enhancement of the biological properties of the original drug[39].Bovine serum albumin(BSA)is extensively studied for its structuralhomology with human serum albumin(HSA). The fluorescence property of BSA is due to the presence of tryptophan,tyrosine and phenylalanine residues,and tryptophan is the most primary contributor[38].Fig.7(a)shows the fluorescence emission spectrum of BSA with increasing concentration of complex 1(similar spectrum of2 is presented as Fig. S6).When complexes concentration was increased,the intensity of the characteristic broad emission band at 348 nm decreased regularly,which demonstrate that the interactions between complexes and BSA have indeed occurred.The fluorescence quenching can be described according to Stern-Volmer equation,F0/F= 1+Kqτ0cQ=1+KSVcQ.F0and F respectively represent the fluorescence intensities in the absence and presence ofquencher,Kqrepresents the quenching rate constant, τ0is the average life-time of biomolecule without quencher(about 10-8s)[31],KSVis the Stern-Volmer quenching constant and cQrepresents the quencher concentration.Fig.7(b)shows the Stern-Volmer plots of F0/F vs cQof the complexes,and KSVcan be obtained by the slope from the plot.Table 2 listed the values of KSVand Kqfor the interaction of the complexes with BSA and the KSVvalues follow the order:1(2.46×104mol·L-1)>2(1.58×104mol·L-1).

    In general,quenching mechanisms can be classified as dynamic and static quenching.Dynamic quenching takes a process of interaction between the fluorophore and the quencher during the transientexistence of the exited state while static quenching tends to the formation offluorophore-quenchercomplex. The Kqvalues(~1012L·mol-1·s-1)of 1 and 2 are higher than the maximum scatter collision-quenching constantof diverse kinds of quenchers for biopolymers fluorescence(2×1010L·mol-1·s-1,the maximum possible value for dynamic quenching),suggesting the presence ofstatic quenching mechanism[40].

    Fig.7(a)Fluorescence emission spectra of the BSA(36.6μmol·L-1)system in the absence(dashed line)and presence(solid lines)of complex 1;(b)Plot of F0/F versus the concentration of complexes 1 and 2

    Fig.8 Plot of lg[(F0-F)/F]vs lgcQfor BSA in the presence of complexes 1 and 2

    On the basis of the Scatchard equation[41]:lg[(F0-F)/F]=lg K+n lg cQ,for the static quenching interaction, the binding constant(K)and the number of binding sites(n)can be respectively calculated from the slope and the intercept of the double logarithm regression plots of lg[(F0-F)/F]versus lgcQ(Fig.8).Table 2 shows the K and n values following the order:1(3.67×103L·mol-1,0.84)>2(48.2 L·mol-1,0.52),indicating that 1 exhibits higher binding constants for BSA than 2, which is inconsistent with the results of DNA interaction.As expected,the values of n are associated with binding constants K,which verify the conclusion[42]that a direct relation between the binding constant and number ofbinding sites.

    UV-Vis absorption spectroscopy,which is a simple but effective method for detecting complex formation,was employed to detect changes of the intensity and wavelength of complex with BSA.The absorption band obtained in the spectra of 15μmol· L-1BSA at 279 nm in the absence of complex,and the intensity showed an increase without any shift after the addition of 2μmol·L-1Mn(Ⅱ)and Co(Ⅱ)complexes,respectively(Fig.9),which can be attributed to the formation of a ground state complex between metal complex and BSA[43].Mn(Ⅱ)complex showed a larger hyperchromism of 3.6%than that of Co(Ⅱ)complexes(0.9%),indicating that Mn(Ⅱ)behaved stronger ability of BSA binding,which was consistentwith the results offluorescence tests.

    Fig.9 Absorption spectra of BSA(15μmol·L-1)in the absence(dot line)and presence(solid line)of complexes 1(a)and 2(b)(2μmol·L-1)in phosphate buffer(pH=7.0)

    3 Conclusions

    Two new mononuclear Mn(Ⅱ)and Co(Ⅱ)complexes have been synthesized and characterized by using various physico-chemicaltechniques.Crystalstructures of the complexes are isostructural and both metal centers are hepta-coordinated and the geometry can be described as distorted pentagonal bipyramidal.The complexes display binding propensity to the CT-DNA giving a relative order:2(Co(Ⅱ)complex)>1(Mn(Ⅱ)complex).Compared with complex 1,the DNA cleavage efficiency of 2 exhibited more remarkable increases at the same condition in the presence of H2O2.Oxidative mechanism has been demonstrated by adding standard radical scavengers and the reactive oxygen species (ROS)responsible for the DNA cleavage is likely hydroxyl radicals(OH·).While binding abilities of the complexes to BSA are inconsistentwith the results of DNA interaction which follow the order:1>2,and the quenching mechanisms of BSA by the complexes are static procedures.

    Acknowledgements:This work was supported by the PhD Research Startup Foundation of Shanxi Agricultural University(Grants No.2013YJ40 and 2013YJ41),Science and Technology Innovation Fund of Shanxi Agricultural University (Grants No.2014005 and 2014013),College students Innovation and Entreprenecuship Training Project of Shanxi province (Grants No.2015085 and 2015/06)and the Key Scientific Research Projects of Coal Fund in Shanxi(Grant No.FT201402-01).

    Supporting information is available athttp://www.wjhxxb.cn

    References:

    [1]Barone G,Terenzi A,Lauria A,et al.Coord.Chem.Rev., 2013,257(19):2848-2862

    [2]Jiang Q,Xiao N,Shi P,et al.Coord.Chem.Rev.,2007,251 (15):1951-1972

    [3]Pages B J,Ang D L,Wright E P,et al.Dalton Trans.,2015, 44(8):3505-3526

    [4]Rosenberg B,Van Camp L,Krigas T.Nature,1965,205:698-699

    [5]Rosenberg B,Van camp L.Nature,1969,222:385-386

    [6]Mjos K D,Orvig C.Chem.Rev.,2014,114(8):4540-4563

    [7]Wilson J J,Lippard S J.Chem.Rev.,2013,114(8):4470-4495

    [8]Storr T,Thompson K H,Orvig C.Chem.Soc.Rev.,2006,35 (6):534-544

    [9]Reedijk J.Proc.Natl.Acad.Sci.U.S.A.,2003,100(7):3611-3616

    [10]Komor A C,Barton J K.Chem.Commun.,2013,49(35):3617 -3630

    [11]Leung C H,He H Z,Liu L J,et al.Coord.Chem.Rev., 2013,257(21):3139-3151

    [12]Liu H K,Sadler P J.Acc.Chem.Res.,2011,44(5):349-359

    [13]Aiba Y,Sumaoka J,Komiyama M.Chem.Soc.Rev.,2011, 40(12):5657-5668

    [14]Munteanu C R,Suntharalingam K.Dalton Trans.,2015,44 (31):13796-13808

    [15]Ghosh K,Tyagi N,Kumar P.Inorg.Chem.Commun.,2010, 13(3):380-383

    [16]Ghosh K,Mohan V,Kumar P,et al.Polyhedron,2013,49(1): 167-176

    [17]Daniel K G,Chen D,Orlu S,et al.Breast Cancer Res.,2005,7(6):R897-R908

    [18]Chen D,Peng F,Cui Q C,et al.Front.Biosci.,2005,10(2): 2932-2939

    [19]Zheng Q,Wang S,Liu W.Tetrahedron,2014,70(42):7686-7690

    [20]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structure,University of G?ttingen,Germany,1997.

    [21]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G?ttingen,Germany,1997.

    [22]Gao C Y,Ma Z Y,Zhang Y P,et al.RSC Adv.,2015,5(39): 30768-30779

    [23]Gao C Y,Qiao X,Ma Z Y,et al.Dalton Trans.,2012,41 (39):12220-12232

    [24]Zhang Y P,Ma Z Y,Gao C Y,et al.New J.Chem.,2016,40 (9):7513-7521

    [25]Marmur J.J.Mol.Biol.,1961,3(2):208-218

    [26]Gultneh Y,Khan A R,Blaise D,et al.J.Inorg.Biochem., 1999,75(1):7-18

    [27]Bernadou J,Pratviel G,Bennis F,et al.Biochemistry,1989, 28(18):7268-7275

    [28]Baldini M,Belicchi-Ferrari M,Bisceglie F,et al.Inorg. Chem.,2004,43(22):7170-7179

    [29]Wolfe A,Shimer Jr G H,Meehan T.Biochemistry,1987,26 (20):6392-6396

    [30]Meyer-Almes F J,Porschke D.Biochemistry,1993,32(16): 4246-4253

    [31]Lakowicz J R,Weber G.Biochemistry,1973,12(21):4171-4179

    [32]Ramachandran E,Thomas S P,Poornima P,et al.Eur.J. Med.Chem.,2012,50:405-415

    [33]Kellett A,O′Connor M,McCann M,et al.MedChemComm, 2011,2(7):579-584

    [34]Wu H,Shi F,Wang X,et al.Transition Met.Chem.,2014, 39(3):261-270

    [35]Cory M,McKee D D,Kagan J,et al.J.Am.Chem.Soc., 1985,107(8):2528-2536

    [36]Ramakrishnan S,Shakthipriya D,Suresh E,et al.Inorg. Chem.,2011,50(14):6458-6471

    [37]Gibellini D,Vitone F,Schiavone P,et al.J.Clin.Virol., 2004,29(4):282-289

    [38]Lakowicz J R.Principles of Fluorescence Spectroscopy.3rd Ed.New York:Springer,2006:530-573

    [39]Villarreal W,Colina-Vegas L,Rodrigues de Oliveira C,et al. Inorg.Chem.,2015,54(24):11709-11720

    [40]Ware W R.J.Phys.Chem.,1962,66(3):455-458

    [41]Scatchard G.Ann.N.Y.Acad.Sci.,1949,51(4):660-672

    [42]Sathyadevi P,Krishnamoorthy P,Butorac R R,et al.Dalton Trans.,2011,40(38):9690-9702

    [43]Hu Y J,Ou-Yang Y,Dai C M,et al.Biomacromolecules, 2009,11(1):106-112

    Syntheses,Structures,DNA/BSA Binding and DNA Cleavage of Mononuclear Manganese(Ⅱ)and Cobalt(Ⅱ)Complexes with N,O-Chelating Quinoline Derivative Ligand

    ZHANG Yong-Po YANG Jia-Jia LüJia-Yuan GAO Chun-Yan*ZHAO Jin-Zhong*
    (College of Arts and Sciences,Shanxi Agricultural University,Taigu,Shanxi 030801,China)

    Two new mononuclear complexes[ML(H2O)3]·H2O(M=Mn(1)and Co(2))ofquinoline derivative ligand (Na2L=sodium 8-(carboxylatomethoxy)quinoline-2-carboxylate)have been synthesized and characterized.The complexes are isostructural and both metal centers are heptacoordinated with O6N donor sets and the geometry around metal centers can be best described as distorted pentagonal bipyramidal.Interactions of the complexes with CT-DNA and BSA have been explored by absorption and emission spectralmethods.Binding abilities of the complexes to CT-DNA display a relative order:2>1,while the quenching mechanisms of BSA by both complexes are static procedures and the binding constant values follow the order:1>2.In the presence of H2O2as a revulsant or an activator,compared with complex 1,the DNA cleavage efficiency of 2 exhibited more remarkable increases at the same conditions.Oxidative mechanism has been demonstrated by adding standard radical scavengers and the reactive oxygen species(ROS)responsible for the DNA cleavage is likely hydroxyl radicals (OH·).CCDC:1040326,1;1040325,2.

    complexes;quinoline ligand;DNA/BSA binding;DNA cleavage

    O614.71+1;O614.81+2

    A

    1001-4861(2016)12-2172-11

    10.11862/CJIC.2016.265

    2016-06-15。收修改稿日期:2016-09-29。

    山西農(nóng)業(yè)大學(xué)引進(jìn)人才科研啟動(dòng)金(No.2013YJ40,2013YJ41)、山西農(nóng)業(yè)大學(xué)科技創(chuàng)新基金(No.2014013,2014005)、山西農(nóng)業(yè)大學(xué)大學(xué)生科技創(chuàng)新項(xiàng)目(No.13-017,2015085)、山西省高等學(xué)校大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項(xiàng)目(No.2015085,2015106)和山西省煤基重點(diǎn)項(xiàng)目(No.FT201402-01)資助。

    *通信聯(lián)系人。E-mail:gaocynk@163.com,zhaojinzhongnd@126.com;會(huì)員登記號(hào):S06N2534M1605。

    猜你喜歡
    單核喹啉農(nóng)業(yè)大學(xué)
    湖南農(nóng)業(yè)大學(xué)通知教育中心
    《云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué))》征稿簡則
    HPLC-Q-TOF/MS法鑒定血水草中的異喹啉類生物堿
    中成藥(2017年7期)2017-11-22 07:33:25
    ??? ???? ??? ???????? ?? ?? ??―??? ????? ????
    喹啉和喹諾酮:優(yōu)秀的抗結(jié)核藥物骨架
    新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
    一種簡單的分離、培養(yǎng)及鑒定小鼠外周血單核巨噬細(xì)胞方法的建立
    間歇精餾分離喹啉和異喹啉的模擬
    單核Ru(Ⅲ)-edta類配合物的合成﹑結(jié)構(gòu)及性質(zhì)研究
    苯并咪唑衍生的單核鈷(Ⅱ)和單核鎳(Ⅱ)配合物與DNA和蛋白質(zhì)的結(jié)合反應(yīng)性及細(xì)胞毒活性研究
    亚洲人成网站高清观看| 动漫黄色视频在线观看| 天堂av国产一区二区熟女人妻| 欧美丝袜亚洲另类 | 国产亚洲精品av在线| 国产不卡一卡二| 国产精品人妻久久久久久| 久9热在线精品视频| 丰满的人妻完整版| 国产成人a区在线观看| 亚洲精品影视一区二区三区av| 色哟哟·www| 国产三级在线视频| 日韩欧美 国产精品| 亚洲国产精品合色在线| 在线a可以看的网站| 成人特级黄色片久久久久久久| 日韩欧美 国产精品| 人人妻人人澡欧美一区二区| 亚洲精品一区av在线观看| 国产午夜精品久久久久久一区二区三区 | 国产在线精品亚洲第一网站| 淫妇啪啪啪对白视频| av专区在线播放| 少妇的逼水好多| 国产午夜精品论理片| 人人妻人人看人人澡| 日日摸夜夜添夜夜添av毛片 | 免费无遮挡裸体视频| 国产成+人综合+亚洲专区| 黄色一级大片看看| 1000部很黄的大片| 不卡一级毛片| 人人妻,人人澡人人爽秒播| 18禁黄网站禁片免费观看直播| 热99在线观看视频| 他把我摸到了高潮在线观看| 99热只有精品国产| 国产av不卡久久| 少妇的逼好多水| 亚洲av一区综合| 一边摸一边抽搐一进一小说| 亚洲欧美日韩高清专用| 麻豆av噜噜一区二区三区| 在线播放国产精品三级| 美女被艹到高潮喷水动态| 午夜日韩欧美国产| 伊人久久精品亚洲午夜| 国产毛片a区久久久久| av在线蜜桃| 人人妻,人人澡人人爽秒播| 日本 av在线| 日本精品一区二区三区蜜桃| 有码 亚洲区| 少妇裸体淫交视频免费看高清| 成人午夜高清在线视频| 97热精品久久久久久| 久9热在线精品视频| av女优亚洲男人天堂| 国内精品久久久久久久电影| 特大巨黑吊av在线直播| 久久久国产成人精品二区| 国产久久久一区二区三区| 中文字幕久久专区| 欧美乱色亚洲激情| 精品人妻偷拍中文字幕| xxxwww97欧美| 精品人妻偷拍中文字幕| av黄色大香蕉| 国内久久婷婷六月综合欲色啪| 亚洲精华国产精华精| 欧美精品国产亚洲| 美女免费视频网站| 一区福利在线观看| 精品久久久久久久末码| 又爽又黄无遮挡网站| 精品国内亚洲2022精品成人| 成人欧美大片| 亚洲电影在线观看av| 2021天堂中文幕一二区在线观| eeuss影院久久| 国产精品电影一区二区三区| 少妇人妻一区二区三区视频| 最好的美女福利视频网| 一级黄片播放器| 日韩欧美国产一区二区入口| av在线老鸭窝| 欧美色视频一区免费| 日本熟妇午夜| 床上黄色一级片| 日本熟妇午夜| 中亚洲国语对白在线视频| 亚洲第一区二区三区不卡| 成人鲁丝片一二三区免费| 国产精品女同一区二区软件 | 美女免费视频网站| 精品不卡国产一区二区三区| 精品福利观看| 看十八女毛片水多多多| 婷婷亚洲欧美| 小蜜桃在线观看免费完整版高清| 久久久久性生活片| 午夜精品在线福利| 国产成人影院久久av| 2021天堂中文幕一二区在线观| 99热6这里只有精品| 亚洲av.av天堂| 少妇熟女aⅴ在线视频| 美女cb高潮喷水在线观看| 欧美又色又爽又黄视频| 国产精品美女特级片免费视频播放器| 亚洲av.av天堂| 一区二区三区激情视频| 99热这里只有精品一区| 亚洲国产精品成人综合色| 神马国产精品三级电影在线观看| av专区在线播放| www.www免费av| 成人午夜高清在线视频| 免费看美女性在线毛片视频| 哪里可以看免费的av片| 国产91精品成人一区二区三区| 午夜影院日韩av| 欧美最新免费一区二区三区 | 色尼玛亚洲综合影院| 午夜亚洲福利在线播放| 亚洲真实伦在线观看| 亚洲第一欧美日韩一区二区三区| 无人区码免费观看不卡| 日韩有码中文字幕| 精品久久久久久久末码| 中国美女看黄片| 最后的刺客免费高清国语| 精品午夜福利在线看| 国产私拍福利视频在线观看| 最新中文字幕久久久久| 老熟妇仑乱视频hdxx| 亚洲经典国产精华液单 | .国产精品久久| 亚洲av熟女| 18禁黄网站禁片免费观看直播| 国产精品1区2区在线观看.| 久久99热6这里只有精品| 亚洲av第一区精品v没综合| 久久热精品热| 国产精品国产高清国产av| 欧美中文日本在线观看视频| 一区二区三区免费毛片| 天堂网av新在线| 两个人的视频大全免费| 欧美性猛交╳xxx乱大交人| 桃色一区二区三区在线观看| 成人国产综合亚洲| 国产私拍福利视频在线观看| 一级黄片播放器| 亚洲,欧美,日韩| 精华霜和精华液先用哪个| 少妇高潮的动态图| or卡值多少钱| 欧美xxxx性猛交bbbb| 一区二区三区高清视频在线| 舔av片在线| 成人av一区二区三区在线看| 中文在线观看免费www的网站| 国产不卡一卡二| 国产免费av片在线观看野外av| 88av欧美| 亚洲av成人av| 亚洲最大成人av| 在线观看午夜福利视频| 国产亚洲欧美98| 成年版毛片免费区| 欧美午夜高清在线| 一进一出抽搐动态| 国语自产精品视频在线第100页| 美女黄网站色视频| 欧美黄色淫秽网站| 亚洲精品在线美女| 少妇裸体淫交视频免费看高清| 久久伊人香网站| 亚洲第一区二区三区不卡| 午夜福利免费观看在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜a级毛片| 亚洲av免费高清在线观看| 亚洲午夜理论影院| 搡女人真爽免费视频火全软件 | 国产91精品成人一区二区三区| 亚洲人成电影免费在线| 白带黄色成豆腐渣| 色综合站精品国产| 国产综合懂色| 日韩成人在线观看一区二区三区| 欧美色视频一区免费| 国产伦在线观看视频一区| 日本 av在线| 欧美成狂野欧美在线观看| 波多野结衣巨乳人妻| 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 伦理电影大哥的女人| 国产成年人精品一区二区| 午夜激情福利司机影院| 欧美日韩综合久久久久久 | 午夜亚洲福利在线播放| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 真人做人爱边吃奶动态| 亚洲综合色惰| 亚洲一区高清亚洲精品| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区国产精品久久精品| 国产aⅴ精品一区二区三区波| 成人毛片a级毛片在线播放| 日韩欧美免费精品| 直男gayav资源| 97碰自拍视频| 亚洲av免费高清在线观看| 国产精品亚洲美女久久久| 色综合亚洲欧美另类图片| 99在线视频只有这里精品首页| 一个人看视频在线观看www免费| 欧美黄色片欧美黄色片| 麻豆av噜噜一区二区三区| 又紧又爽又黄一区二区| 偷拍熟女少妇极品色| 久久久久精品国产欧美久久久| 亚洲 国产 在线| 嫩草影院入口| 免费av观看视频| 丰满的人妻完整版| 国产单亲对白刺激| 我的老师免费观看完整版| 日日干狠狠操夜夜爽| 夜夜躁狠狠躁天天躁| 日韩欧美精品v在线| 俺也久久电影网| 9191精品国产免费久久| 我的女老师完整版在线观看| 欧美极品一区二区三区四区| 97碰自拍视频| 1024手机看黄色片| 婷婷精品国产亚洲av| 亚洲国产欧洲综合997久久,| 黄色丝袜av网址大全| 国产精品久久久久久亚洲av鲁大| 国产黄色小视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 黄色配什么色好看| 国产精品日韩av在线免费观看| 高清在线国产一区| 亚洲国产精品999在线| 性插视频无遮挡在线免费观看| 国产精品野战在线观看| 精品乱码久久久久久99久播| 婷婷丁香在线五月| 久久人人精品亚洲av| 午夜福利视频1000在线观看| 中文资源天堂在线| 国产精品免费一区二区三区在线| 欧美高清性xxxxhd video| 1000部很黄的大片| 午夜老司机福利剧场| 色5月婷婷丁香| 欧美黄色片欧美黄色片| 高清在线国产一区| 久久精品久久久久久噜噜老黄 | 久久久精品大字幕| av在线观看视频网站免费| 亚洲最大成人手机在线| 国产黄片美女视频| 两个人视频免费观看高清| 小蜜桃在线观看免费完整版高清| 国产高清视频在线观看网站| 国产成人啪精品午夜网站| 国产三级中文精品| 午夜精品在线福利| 三级男女做爰猛烈吃奶摸视频| 国产精品爽爽va在线观看网站| 久久人妻av系列| 村上凉子中文字幕在线| 简卡轻食公司| 国产免费一级a男人的天堂| 国产黄色小视频在线观看| 啦啦啦观看免费观看视频高清| 91av网一区二区| 热99re8久久精品国产| av天堂中文字幕网| 久久6这里有精品| 亚洲av中文字字幕乱码综合| 免费av毛片视频| 99热6这里只有精品| 精品国产亚洲在线| 嫁个100分男人电影在线观看| 国内精品一区二区在线观看| 国产伦人伦偷精品视频| 18+在线观看网站| 色吧在线观看| 直男gayav资源| 丁香欧美五月| 三级毛片av免费| 亚洲国产高清在线一区二区三| 欧美在线一区亚洲| 一个人看视频在线观看www免费| 久久久久久久午夜电影| av专区在线播放| 国产成年人精品一区二区| 日本三级黄在线观看| 村上凉子中文字幕在线| 美女高潮的动态| 嫩草影视91久久| 男插女下体视频免费在线播放| 精品福利观看| 男女视频在线观看网站免费| 亚洲欧美日韩东京热| АⅤ资源中文在线天堂| 国产亚洲精品av在线| 久久精品影院6| 亚洲天堂国产精品一区在线| 99久久精品热视频| 免费黄网站久久成人精品 | 黄色丝袜av网址大全| 国产不卡一卡二| 久久精品国产99精品国产亚洲性色| 三级国产精品欧美在线观看| 禁无遮挡网站| 国产老妇女一区| 国产精品久久久久久人妻精品电影| 久久久久免费精品人妻一区二区| 亚洲av电影在线进入| 脱女人内裤的视频| 欧美精品国产亚洲| 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 精品一区二区三区av网在线观看| 国产91精品成人一区二区三区| 欧美高清性xxxxhd video| www日本黄色视频网| 97超级碰碰碰精品色视频在线观看| 亚洲成人久久性| 亚洲精华国产精华精| 少妇高潮的动态图| 国内毛片毛片毛片毛片毛片| 国产亚洲精品av在线| a级毛片免费高清观看在线播放| 午夜精品一区二区三区免费看| 国产欧美日韩一区二区三| 欧美极品一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| 老司机福利观看| 一级a爱片免费观看的视频| 欧美3d第一页| 日韩成人在线观看一区二区三区| 99久国产av精品| 日本与韩国留学比较| 在线看三级毛片| 神马国产精品三级电影在线观看| 国产日本99.免费观看| av福利片在线观看| 欧美黑人巨大hd| 人妻制服诱惑在线中文字幕| 国产一区二区激情短视频| 国内精品久久久久精免费| 欧美黑人欧美精品刺激| 啦啦啦韩国在线观看视频| 欧美黑人欧美精品刺激| 99精品在免费线老司机午夜| 国产一区二区在线av高清观看| 成人一区二区视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美在线乱码| 偷拍熟女少妇极品色| 搡老熟女国产l中国老女人| 最近视频中文字幕2019在线8| 国产激情偷乱视频一区二区| 久久精品综合一区二区三区| 成人精品一区二区免费| 亚洲av电影在线进入| 国产亚洲精品综合一区在线观看| 嫩草影院精品99| 在线观看舔阴道视频| 俄罗斯特黄特色一大片| 91九色精品人成在线观看| 精品久久国产蜜桃| 9191精品国产免费久久| 搡老妇女老女人老熟妇| 熟妇人妻久久中文字幕3abv| 18禁在线播放成人免费| 特级一级黄色大片| 亚洲黑人精品在线| 国产亚洲精品久久久久久毛片| 嫁个100分男人电影在线观看| 精品国产亚洲在线| 国产人妻一区二区三区在| 我的老师免费观看完整版| 最近在线观看免费完整版| 国产一级毛片七仙女欲春2| 毛片女人毛片| 日韩人妻高清精品专区| 一级黄片播放器| 日本与韩国留学比较| 国产成人欧美在线观看| 国产一区二区在线观看日韩| 尤物成人国产欧美一区二区三区| 97超视频在线观看视频| 国产精品野战在线观看| 美女xxoo啪啪120秒动态图 | 国产成人影院久久av| 欧美三级亚洲精品| 日韩 亚洲 欧美在线| 久久精品人妻少妇| 一级av片app| 亚洲精品成人久久久久久| 婷婷丁香在线五月| 丰满的人妻完整版| 怎么达到女性高潮| 成人特级av手机在线观看| 中文字幕高清在线视频| 美女xxoo啪啪120秒动态图 | av女优亚洲男人天堂| 国产高潮美女av| 欧美日韩福利视频一区二区| 人人妻,人人澡人人爽秒播| 午夜激情福利司机影院| av在线蜜桃| 十八禁人妻一区二区| 国产精品亚洲av一区麻豆| 色尼玛亚洲综合影院| 2021天堂中文幕一二区在线观| 亚洲最大成人手机在线| 又紧又爽又黄一区二区| 观看美女的网站| 日日摸夜夜添夜夜添av毛片 | 999久久久精品免费观看国产| 亚洲av熟女| 在线国产一区二区在线| 宅男免费午夜| 中文字幕免费在线视频6| 日韩中文字幕欧美一区二区| 国产探花极品一区二区| 日韩欧美三级三区| 在线播放国产精品三级| 日本黄大片高清| av视频在线观看入口| 好看av亚洲va欧美ⅴa在| 色哟哟·www| 精品久久久久久久久久久久久| 午夜福利18| 亚洲国产色片| 亚洲专区中文字幕在线| 久99久视频精品免费| 成人av一区二区三区在线看| 亚洲欧美清纯卡通| 又紧又爽又黄一区二区| 色播亚洲综合网| 国内精品一区二区在线观看| 国产一区二区三区在线臀色熟女| 亚洲avbb在线观看| 五月伊人婷婷丁香| 极品教师在线视频| eeuss影院久久| 最近在线观看免费完整版| 国产精品国产高清国产av| 大型黄色视频在线免费观看| 日韩高清综合在线| 在线观看免费视频日本深夜| 女人十人毛片免费观看3o分钟| 赤兔流量卡办理| 欧美精品国产亚洲| 国内精品久久久久精免费| 男女床上黄色一级片免费看| 亚洲av成人精品一区久久| 久久99热这里只有精品18| 蜜桃亚洲精品一区二区三区| 亚洲精品亚洲一区二区| 男插女下体视频免费在线播放| 国产探花极品一区二区| 精品国内亚洲2022精品成人| 热99在线观看视频| 别揉我奶头~嗯~啊~动态视频| 一区二区三区激情视频| 老鸭窝网址在线观看| h日本视频在线播放| 超碰av人人做人人爽久久| 欧美国产日韩亚洲一区| 国产三级中文精品| 欧美成人a在线观看| 国产伦在线观看视频一区| 亚洲熟妇中文字幕五十中出| 精品人妻一区二区三区麻豆 | 日本a在线网址| 国产精品不卡视频一区二区 | 中文字幕av在线有码专区| 麻豆国产97在线/欧美| 亚洲人成网站高清观看| 黄片小视频在线播放| 亚洲第一电影网av| 久久亚洲精品不卡| 国产日本99.免费观看| 亚洲精品在线观看二区| 一进一出抽搐动态| 午夜福利高清视频| 亚洲人与动物交配视频| 国产精品一区二区性色av| 嫩草影院入口| 欧美日韩综合久久久久久 | 精品一区二区三区视频在线| 91午夜精品亚洲一区二区三区 | 婷婷精品国产亚洲av| 别揉我奶头~嗯~啊~动态视频| 成人三级黄色视频| 99久久成人亚洲精品观看| 热99在线观看视频| 国产在线男女| 亚洲av一区综合| 在线观看66精品国产| 99riav亚洲国产免费| 午夜福利在线在线| av黄色大香蕉| 乱人视频在线观看| 波野结衣二区三区在线| 中文字幕精品亚洲无线码一区| 午夜福利欧美成人| 国产精品电影一区二区三区| 99国产精品一区二区蜜桃av| 国产精品一区二区性色av| 蜜桃亚洲精品一区二区三区| 波多野结衣高清作品| 中文资源天堂在线| 男插女下体视频免费在线播放| 国产男靠女视频免费网站| 天堂影院成人在线观看| 床上黄色一级片| 国产激情偷乱视频一区二区| 欧美zozozo另类| 日韩欧美 国产精品| 久久草成人影院| 十八禁网站免费在线| 午夜日韩欧美国产| 性色avwww在线观看| 国产男靠女视频免费网站| 国产综合懂色| 国产精品精品国产色婷婷| av天堂中文字幕网| 99久久精品国产亚洲精品| 高清日韩中文字幕在线| 国产伦一二天堂av在线观看| 桃红色精品国产亚洲av| 深夜a级毛片| 国产精品一区二区免费欧美| 我要搜黄色片| 亚洲电影在线观看av| 男人狂女人下面高潮的视频| 天堂√8在线中文| 99国产精品一区二区三区| 久久久国产成人免费| 最新中文字幕久久久久| 波多野结衣巨乳人妻| 中国美女看黄片| 免费看a级黄色片| 男女那种视频在线观看| 狠狠狠狠99中文字幕| 亚洲一区二区三区色噜噜| 色综合欧美亚洲国产小说| 久久精品影院6| 伦理电影大哥的女人| 欧美xxxx性猛交bbbb| 日韩欧美一区二区三区在线观看| 中文字幕av在线有码专区| 日韩高清综合在线| 深夜a级毛片| 欧美最黄视频在线播放免费| 毛片一级片免费看久久久久 | av欧美777| 在线国产一区二区在线| 午夜免费激情av| 美女免费视频网站| a级一级毛片免费在线观看| 欧美成人性av电影在线观看| 亚洲专区中文字幕在线| 级片在线观看| 日本免费a在线| 一区二区三区高清视频在线| 国内久久婷婷六月综合欲色啪| 欧美性猛交╳xxx乱大交人| 亚洲中文字幕一区二区三区有码在线看| 性欧美人与动物交配| 亚洲国产欧洲综合997久久,| 伦理电影大哥的女人| 国内精品久久久久久久电影| 久久久久久久久久黄片| 欧美激情久久久久久爽电影| 中文字幕精品亚洲无线码一区| 美女黄网站色视频| 成人高潮视频无遮挡免费网站| 99精品久久久久人妻精品| 少妇丰满av| 欧美一级a爱片免费观看看| 99久久无色码亚洲精品果冻| 波多野结衣高清无吗| 国产综合懂色| av视频在线观看入口| 此物有八面人人有两片| 国产综合懂色| 亚洲av熟女| 亚洲精品在线观看二区| 高潮久久久久久久久久久不卡| 丝袜美腿在线中文| av天堂在线播放| 亚洲人成网站高清观看| 国产精品久久久久久人妻精品电影| 日本五十路高清| 欧美一级a爱片免费观看看| 日本 欧美在线|