• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    喹啉類單核錳(Ⅱ)和鈷(Ⅱ)配合物的合成、結(jié)構(gòu)、DNA/BSA鍵合及DNA切割活性

    2016-12-20 02:21:44張永坡楊佳佳呂佳苑高春艷趙晉忠
    關(guān)鍵詞:單核喹啉農(nóng)業(yè)大學(xué)

    張永坡 楊佳佳 呂佳苑 高春艷 趙晉忠

    喹啉類單核錳(Ⅱ)和鈷(Ⅱ)配合物的合成、結(jié)構(gòu)、DNA/BSA鍵合及DNA切割活性

    張永坡楊佳佳呂佳苑高春艷*趙晉忠*

    (山西農(nóng)業(yè)大學(xué)文理學(xué)院,太谷030801)

    合成了2個(gè)結(jié)構(gòu)類似的喹啉類單核錳和鈷配合物[ML(H2O)3]·H2O,其中M為Mn(1)、Co(2),Na2L為8-(羧基鈉甲氧基)喹啉-2-甲酸鈉。運(yùn)用紅外光譜、元素分析和X射線單晶衍射表征了其結(jié)構(gòu)。利用電子吸收和發(fā)射光譜法研究了配合物與CT-DNA及BSA的鍵合作用及配合物對(duì)DNA的切割作用。晶體解析結(jié)果表明2個(gè)配合物為同構(gòu)結(jié)構(gòu),配合物中心均為七配位的畸變五角雙錐結(jié)構(gòu)。鈷配合物2與CT-DNA的鍵合能力強(qiáng)于錳配合物1,兩者與BSA的作用機(jī)理為靜態(tài)淬滅機(jī)理,而鍵合常數(shù)值大小為1>2。在以H2O2作為誘導(dǎo)劑時(shí),在同等條件下,2切割DNA的能力明顯增強(qiáng)。通過加入自由基捕獲劑證明了配合物對(duì)DNA的切割機(jī)理為氧化切割機(jī)理,其中活性氧為OH·。

    配合物;喹啉類配體;DNA/BSA鍵合;DNA切割

    0 Introduction

    Metal complexes are a significant class of compounds with biological activities that can be potentially used in gene regulation,probing of DNA specific structures and interactions,and design of therapeutic agents[1-3].Since the discovery of antitumor activity of cisplatin in the 1960s[4-5],the research field of metal-based therapeutics has received considerable attention and broad interest[6-7].Metal complexes have natural propensity to interact with DNA due to their cationic characteristic,and based on theirwide spectrum of ligands and broad range of structural geometries[8]as well as kinetic properties and mechanisms of drug action[9].

    It has been widely accepted that DNA is the primary biological targets of metal-based therapeutics in vivo[10].Interactions of metal complexes with DNA range from electrostatic interaction to strong covalent bonding,DNA intercalation,groove binding,hydrogen -bonding with ligands,and cleavage of DNA[11-14].Transition metal complexes as synthetic metallonucleases have been studied extensively due to their supporting a multitude of coordination numbers and geometries. Among them,application of cobalt and manganese are important because of their biologically relevant and lessertoxicity[15-16].Mn and Co are widely distributed in naturalnucleases.Severalmetalloenzymes in biosystem require Mn or Co as cofactor for their catalytic activities.This prompted us to study the DNA interaction as well as nuclease activity of Mn and Co complexes.

    Apart from the choice of metal ion centers, purposeful design of these metal-based pharmaceuticals mainly depends on the various ligand frameworks.Structures and functionalities of ligands can significantly alter the biological properties by modifying the physical and chemical properties of the ion (s),including limiting the adverse effects of metal ion overload,inhibiting selected metalloenzymes,and facilitating metal ion redistribution[8].Due to coplanar aromatic rings,quinoline is regarded as an efficient DNA intercalating group.8-Hydroxylquinoline is a monoprotic bidentate chelating agent able to form a bis-substituted metal complex that inhibited proteasome activity,resulting in proliferation suppression and apoptosis induction in cultured breast and prostate cancer cells,showing potential anticancer activity[17-18].

    Herein,we selected a typical 2-carboxyl and 8-oxo-ethyl acetate derived quinoline as ligand(Scheme 1).Similar hepta-coordinated Mn(Ⅱ)and Co(Ⅱ)compounds have been synthesized and characterized.In this paper an attempt has been made to investigate the effect of two different metal ions in the same ligand environment on the DNA/BSA binding ability ofthe complexes.

    Scheme 1 Synthesis of Na2L(sodium 8-(carboxylatomethoxy)quinoline-2-carboxylate)

    1 Experimental

    1.1Materials and methods

    All reagents and solvents were purchased from commercial sources and used without further purification.Plasmid pBR322 DNA,calf thymus(CTDNA),bovine serum albumin(BSA)and ethidium bromide(EB)were purchased from Sigma-Aldrich. Stock solutions of Mn(Ⅱ)(1.0 mmol·L-1in 32%DMF/ H2O)and Co(Ⅱ)(1.0 mmol·L-1in 6%DMF/H2O) complexes were stored at 4℃and prepared to series concentrations for all experiments.Phosphate buffer and Tris-HCl solution were prepared using tripledistilled deionized sonicated water.Elemental analyses for C,H and N were performed on a Perkin-Elmer analyzer.IR spectra were obtained on a Perkin-Elmer FTIR spectrometer in the range of 4 000~400 cm-1.Electronic spectra were measured on a JASCO V-570 spectrophotometer.Fluorescence spectral data were collected on a MPF-4 fluorescence spectrophotometer at room temperature.Gel Imaging and documentation DigiDoc-It System were assessed using Labworks Imaging and UVI(England)Analysis Software.

    1.2Preparation of compounds

    1.2.1Synthesis ofthe ligand Na2L

    Ligand Na2L was prepared using a similar method of the literature[19].A mixture of 8-hydroxy-2-methylquinoline(2.4 g,15 mmol),ethyl bromoacetate (2.5 g,15 mmol)and powdered K2CO3(8 g,58 mmol) in acetone(30 mL)was refluxed for 24h.After cooled to room temperature,the mixture was centrifuged and filtered.The filtrate was evaporated to generate crude oilresidue,which was redissolved in 25 mL ofdioxane. 1.8 g SeO2(16 mmol)was added and the mixture was refluxed under an open air for 10 h.After cooled,the solvent was removed under vacuum.50 mL 0.5 mol· L-1HCl was added and the mixture was extracted by ethyl acetate.The organic phase was combined and concentrated to generate crude oil residue.The residue was redissolved in 25 mL of ethanol,and a solution of NaOH(1.8 g,45 mmol)in water(10 mL) was slowly added.The mixture was refluxed for 2 h. 25 mL of ethanol was added and the mixture was cooled to temperature slowly and dark yellow solid precipitated.The product was isolated by filtration and washed with cold ethanol,with a yield of 47%. Elemental analysis calcd.for C12H7NNa2O5(%):C, 49.50;H,2.42;N,4.81.Found(%):C,49.41;H,2.67; N,4.79.FTIR(KBr,cm-1):3 348,1 615,1 507,1 480, 1 421,1 385,1 315,1 265,1 107,948,824.

    1.2.2Synthesis of[MnL(H2O)3]·H2O(1)

    To an aqueous solution(5 mL)of MnCl2·4H2O (0.2 mmol,39.6 mg)was added a methanol solution (15 mL)of Na2L(0.2 mmol,58.2 mg).The resulting mixture was stirred for 3 h at room temperature.After filtration,yellow prism crystals suitable for X-ray diffraction were obtained by slow evaporation of the filtrate after ten days,which were collected by filtration,washed with diethyl ether and dried in air (Yield:28%).Elemental analysis calcd.for C12H7MnNO9(%):C,39.58;H,1.94;N,3.85.Found (%):C,39.49;H,2.01;N,3.78.FTIR(KBr,cm-1): 3 333,1 634,1 506,1 480,1 420,1 380,1 318,1 262, 1 108,946,924,821,614.

    1.2.3Synthesis of[CoL(H2O)3]·H2O(2)

    Complex 2 was prepared using a similar procedure with the case of 1,using Co(NO3)2·6H2O instead of adding MnCl2·4H2O to the reaction mixture.Red prism crystals suitable for X-ray diffraction were precipitated by slow evaporation of the filtrate after seven days,which were collected by filtration,washed with cold diethyl ether and dried in vacuum(Yield: 37%).Elemental analysis calcd.for C12H7CoNO9(%): C,39.15;H,1.92;N,3.80.Found(%):C,39.08;H, 1.99;N,3.62.FTIR(KBr,cm-1):3 381,1 624,1 509, 1 480,1 423,1 383,1 316,1 266,1 110,948,884, 822,697.

    1.3X-ray crystallography

    Single crystals of the complexes with suitable size(0.20 mm×0.10 mm×0.05 mm for 1 and 0.25 mm×0.20 mm×0.10 mm for 2)were selected.X-ray diffraction data were collected on a Bruker Smart 1000 CCD diffractometer using Mo Kαradiation(λ= 0.071 073 nm)with theω-2θscan technique.Diffraction data were collected at 113(2)and 293(2)K for 1 and 2,respectively.All the crystal structures were solved using direct methods(SHELXS-97)[20]and refined with full-matrix least-squares technique on F2using the SHELXL-97[21].The hydrogen atoms were added theoretically,and riding on the concerned atoms and refined with fixed thermal factors. Crystallographic data details and structure refinement parameters are presented in Table 1.Selected bond lengths and angles are listed in Table S1.

    CCDC:1040326,1;1040325,2.

    1.4DNA-binding and cleavage experiments

    DNA-binding and cleavage experiments were conducted using the similar methods described previously[22-24].Electronic absorption spectroscopy was an effective method in examining the binding mode of DNA with the metal complex[25].Specifically,concentration of CT-DNA was measured from the UV absorption intensity at 260 nm with a molar extinction coefficient of 6 600 L·mol-1·cm-1[26].The DNA was demonstrated sufficiently free of protein as a ratio of 1.8~1.9 was obtained for the absorbance at 260 nm and 280 nm ofthe CT-DNA solution,which was carried out in 5 mmol·L-1Tris-HCl/50 mmol·L-1NaCl buffer (pH=7.2)[25].The absorption spectra of the complexes binding to DNA were performed by increasing addition of CT-DNA to the complexes in Tris-HCl buffer(pH=7.2).

    Table 1 Crystallographic data for complexes 1 and 2

    The fluorescence spectra were recorded at room temperature with excitation at 510 nm and emission at about 602 nm.The relative binding of complexes to CT-DNA were carried out with an EB-bound CT-DNA solution in 5 mmol·L-1Tris-HCl and 50 mmol·L-1NaClbuffer(pH=7.2).Absorption titration experiments were performed by titrating complexes into EB-DNA solution,which contains 2.4×10-6mol·L-1EB and 4.8×10-5mol·L-1CT-DNA.

    To explore the DNA cleavage abilities of complexes,the supercoiled(SC)pBR322 plasmid DNA as a substrate was incubated with complexes.The DNA cleavage experiments were performed by agarose gel electrophoresis,Details of the measurement was carried out as follows:A solution of pBR322 DNA (0.1μg·μL-1)in Tris-HCl(50 mmol·L-1)and NaCl (18 mmol·L-1)buffer(pH=7.2)was treated with 1 and 2.After incubation at 37℃for 3 h,the buffer of bromophenol blue(0.25%),glycerol(45%)and EDTA (2 mmol·L-1))was added.The samples were electrophoresed at 120 V on 0.9%agarose gel for 2 h,using Tris-boric acid-EDTA buffer.The extent of cleavage ofthe super coiled DNA(SC DNA)was determined by measuring the intensities of the bands,which were visualized by UV light and photographed using the Gel Documentation System[27].

    Cleavage mechanistic of pBR322 DNA was investigated in the presence of reaction inhibitors and standard radical scavengers.KI,NaN3,methyl green,SYBR green,EDTA and SOD were used as standard radical scavengers,which were added to pBR322 DNA prior to complex loading.After the addition of complex,cleavage experiment was initiated,and it was quenched with addition of 2μL buffer.Further analysis was carried out using the above standard method.

    1.5Protein binding studies

    The protein binding study was conducted with tryptophan fluorescence quenching experiments using BSA stock solution(1.5 mmol·L-1)in 10 mmol·L-1phosphate buffer(pH=7.0)[23].Briefly,a similar stock solution was prepared as the DNA binding experiments,except that phosphate buffer was used instead of Tris-HClbuffer.Fluorescence spectra were recorded at room temperature with excitation wavelength of BSA at 280 nm and emission at 342 nm.The concentration of BSA was kept constant(36.6μmol·L-1) while the complex concentration varying from 0 to 6.39μmol·L-1.Absorption titration experiments with BSA(15μmol·L-1)were carried out in the absence and presence of complex(2μmol·L-1)(pH=7.0).

    2 Results and discussion

    2.1Description of the crystal structures

    Mononuclear complexes 1 and 2 have been structurally characterized by X-ray crystallography. Since the two complexes are isostructural,the molecular structure of 1 was shown representatively in Fig.1(A similar structure of 2 was shown as Fig.S1). Parameters of refinement process and selected bond lengths and angles are listed in Table 1 and S1, respectively.

    Fig.1 ORTEP view of the molecular structure and atomlabeling scheme of complex 1 with 30% probability ellipsoid

    The complexes are isostructural and crystallize in a triclinic cell with P1 space group.Both metal centers are hepta-coordinated with O6Ndonor sets and the geometry around metal centers can be best described as distorted pentagonal bipyramidal.It is worth mentioning that weak M-O(1)coordinated interactions(Mn(1)-O(1)0.249 7(10)nm,Co(1)-O(1) 0.251 4(7)nm)exist in the[ML(H2O)3]units,which are supposed to be caused by the rigid structure of 8-hydroxy-2-methylquinoline[19].The nitrogen atom(N(1)), three oxygen atoms(O(1),O(2)and O(4))of the ligand and an oxygen atom(O(7))ofcoordinate water molecule form the basal plane.Another two oxygen atoms(O(6) and O(8))ofwater molecule occupy the axial positions with normal M-O bond distances,and the trans-axial angles(O6-M-O8)are 176.8(4)°for 1 and 174.9(3)°for 2,respectively.The angles(Table S1)around the metal ion within the pentagonal basal plane vary from 64.3(4)°to 81.4(4)°for complex 1(64.0(2)°~80.7(3)° for complex 2),and the sum of angles spanning these five bonds is 360°for complex 1(360.2°for complex 2),underscoring the flat nature of this equatorial plane.

    2.2DNA-binding and cleavage activities

    2.2.1DNA-binding studies

    The interaction of complexes with CT-DNA was monitored by absorption spectral titrations.The typical titration curve as wellas a plot of(εa-εf)/(εbεf)versus cDNAfor the titration of DNA to complex 2 is shown in Fig.2(similar spectrum of 1 is provided as Fig.S2).The observed intense absorption peaks at 217~221 nm for the two complexes are assigned to theπ-π*transition of intraligand.Addition of increasing amounts of CT-DNA results in an appreciable hypochromism of complexes and slight red shifts(3 nm)in band position,which indicates partial intercalation between complexes and DNA[28].Due to the strong stacking interaction between an aromatic chromophore and the base pairs of DNA,the intercalation between complexes and DNA would lead to hypochromism or bathochromism in UV absorptionspectra.In order to determine the binding strength of the complexes with CT-DNA,the intrinsic binding constants Kbfor complexes 1 and 2 were determined from the spectral titration according to the following equation[29]:cDNA/(εa-εf)=cDNA/(εb-εf)+1/[Kb(εb-εf)],where cDNAis the DNA concentration in nucleotides.The apparentabsorption coefficientεa,εbandεfcorrespond to the extinction coefficient observed for the charge transfer absorption band at a given DNA concentration,the complex free in solution,the complex when fully bound to DNA,respectively.The binding constant Kbvalues(Table 2)follow the order:2 (7.45×105L·mol-1)>1(4.09×105L·mol-1),which suggest that complex 2 has stronger binding affinity than 1.

    Fig.2 Absorption spectra of complex 2(2.5μmol·L-1, 0.015%DMF/H2O)in the absence(dashed line) and presence(solid line)of increasing amounts of CT-DNA in 5 mmol·L-1Tris-HCl/50 mmol·L-1NaCl buffer(pH=7.2)

    Table 2 DNA and BSA binding data for complexes 1 and 2

    Fig.3(a)Fluorescence emission spectra of the EB(2.4μmol·L-1)bound to CT-DNA(48μmol·L-1)system in the absence (dashed line)and presence(solid lines)of complex 2;(b)Plots of I0/I versus the concentrations of complexes 1 and 2

    As a means for better understanding of the interaction of the compound with DNA,fluorescence spectral measurements were performed on CT-DNA by varying the concentration of the complexes.Since no luminescence is observed for both complexes at room temperature,ethidium bromide(EB)was employed as fluorescence probe and the binding propensity of the complexes to CT-DNA is evaluated by fluorescence emission intensity of EB bound to DNA.Due to the strong intercalation to the adjacent DNA base pairs, EB could emit intense fluorescent light in the presence of DNA[30]and could be quenched by addition of another molecule.Fig.3(a)shows the relativebinding propensity of the complex 2 to EB bound CTDNA and similar spectrum of 1 is presented as Fig. S3.Plots of I0/I versus ccomplexfor the quenched intensity of 1~2 to EB-DNA is shown in Fig.3(b).The reduction extent of the emission intensity at 602 nm (510 nm excitation)provides an evaluation of the binding propensity of the complex to DNA.On the basis of the Stern-Volmer equation[31],I0/I=1+KcQ,in which I0and I represent the fluorescence intensities in the absence and presence of quencher,K is the Stern-Volmer quenching constant,and cQis the concentration of the quencher,the quenching plots showed that the quenching of EB bound to CT-DNA by complex 1 or 2 is in agreement with the linear Stern-Volmer equation,which also indicates that the complexes performed good bind ability to DNA. According to equation KEBcEB=Kappccomplex,where the ccomplexwas the concentration value at half reduction of the fluorescence intensity of EB,and KEBwas a constant of 1.0×107mol·L-1(cEB=2.4μmol·L-1).The calculated apparent binding constant values(Kapp) (Table 2)follow the order:2(6.76×105L·mol-1)>1 (4.16×105L·mol-1),which is consistent with the results of Kbvalues by UV spectroscopy.The two complexes show better binding propensity than the previous reported Co(Ⅱ)and Mn(Ⅱ)complexes[32-34].On the whole,the binding constants are less than that of the classical intercalators and metallointercalators(107L·mol-1)[35],indicating medium binding strength of the complexes with CT-DNA.

    2.2.2DNA cleavage studies

    The concentration-dependent DNA cleavage activity by complex 2 was observed without any external agents,as shown in Fig.4(a)(similar study of 1 is presented as Fig.S4(a)).2 could notinduce obvious DNA cleavage with the increase of concentration(50~650μmol·L-1),while the percentages of FormⅠ(SC DNA)and FormⅡ(NC DNA)of complex 1 both gradually reduce with the increase of concentration, which suggests thatthe complex partially degraded SC DNA into undetectable minor fragments[36].

    The concentration-dependent DNA cleavage activities by complex 1 and 2 were also performed in the presence of reductive reagent H2O2.The results showed that DNA cleavage efficiency of complex 2 exhibited remarkable increases at the same conditions (Fig.4(b)).It has been observed that complex 2 is an efficient cleaver of SC DNA and produces~93%of NC DNA at 20μmol·L-1concentration,which implies that H2O2plays a vital role as a revulsant or an activator.While 1 shows relatively weak chemical nuclease activity which implies little impact on the reductive reagent.As shown in the Fig.S4(b)and Fig. 4(b),at 50μmol·L-1concentration,the DNA cleavage efficiencies(FormⅠinto FormⅡand FormⅢ) follow the order of 2(90.3%FormⅡand 9.7%FormⅢ)>1(47.5%FormⅡ).

    Fig.4 Gel electrophoresis diagram showing the cleavage of p BR322 DNA(0.1μg·μL-1)at different complex concentrations in Tris-HCl/NaCl buffer(pH=7.2)and 37℃

    In order to get further information about the reactive oxygen species(ROS)which was responsible for the DNA damage,the potential DNA cleavage mechanism of the complexes in the presence of H2O2were investigated.Series of DNA cleavage experiments (Fig.5 and Fig.S5)were performed using additional reagents like KIas hydroxylradical(OH·)scavengers, NaN3as singlet oxygen(1O2)quencher,methyl green as DNA major groove-binder,SYBR green as DNA minor groove-binder,EDTA as the chelator of complexes and superoxide dismutase(SOD)as O2-·radical scavenger.As Fig.5 shows,the complexes showed complete or partial inhibition in the DNA-cleavageactivity in the presence of the hydroxyl radial scavenger KI,no obvious inhibitions were observed for other radical scavengers(Fig.6),which suggested the involvementofhydroxyl radicals(OH·)as reactive oxygen species.The EDTA,a metal chelating agent that strongly binds to Mmetal chelating agent that strongly binds toforming a stable complex, can efficiently inhibit DNA cleavage,indicating the metal ion play the key role in the cleavage.Moreover, the additions of DNA major groove-binder methyl green and minor groove-binder SYBR Green showed no inhibition DNA cleavage by complexes 1 and 2, which suggested that the complexes didn′t bind at the grooves of DNA[37].

    Fig.5 Cleavage of plasmid pBR322 DNA(0.1μg·μL-1)in presence of 35μmol·L-1complex 2 (0.1%DMF/H2O)and different inhibitors after 3 h incubation at 37℃

    Fig.6 Histogram of relative amounts according to Fig.S5 and Fig.5 shows the cleavage of plasmid pBR322 DNA(0.1μg·μL-1)in presence of complex and different inhibitors after 3 h incubation at 37℃

    2.3Protein binding studies

    The interactions between drugs with blood plasma proteins have attracted increasing research interest in recent years,particularly regarding serum albumin.Since serum albumin constitutes more than half of the total protein in blood plasma and it plays an important role in drug transport and drug metabolism[37-38],and may lead to enhancement of the biological properties of the original drug[39].Bovine serum albumin(BSA)is extensively studied for its structuralhomology with human serum albumin(HSA). The fluorescence property of BSA is due to the presence of tryptophan,tyrosine and phenylalanine residues,and tryptophan is the most primary contributor[38].Fig.7(a)shows the fluorescence emission spectrum of BSA with increasing concentration of complex 1(similar spectrum of2 is presented as Fig. S6).When complexes concentration was increased,the intensity of the characteristic broad emission band at 348 nm decreased regularly,which demonstrate that the interactions between complexes and BSA have indeed occurred.The fluorescence quenching can be described according to Stern-Volmer equation,F0/F= 1+Kqτ0cQ=1+KSVcQ.F0and F respectively represent the fluorescence intensities in the absence and presence ofquencher,Kqrepresents the quenching rate constant, τ0is the average life-time of biomolecule without quencher(about 10-8s)[31],KSVis the Stern-Volmer quenching constant and cQrepresents the quencher concentration.Fig.7(b)shows the Stern-Volmer plots of F0/F vs cQof the complexes,and KSVcan be obtained by the slope from the plot.Table 2 listed the values of KSVand Kqfor the interaction of the complexes with BSA and the KSVvalues follow the order:1(2.46×104mol·L-1)>2(1.58×104mol·L-1).

    In general,quenching mechanisms can be classified as dynamic and static quenching.Dynamic quenching takes a process of interaction between the fluorophore and the quencher during the transientexistence of the exited state while static quenching tends to the formation offluorophore-quenchercomplex. The Kqvalues(~1012L·mol-1·s-1)of 1 and 2 are higher than the maximum scatter collision-quenching constantof diverse kinds of quenchers for biopolymers fluorescence(2×1010L·mol-1·s-1,the maximum possible value for dynamic quenching),suggesting the presence ofstatic quenching mechanism[40].

    Fig.7(a)Fluorescence emission spectra of the BSA(36.6μmol·L-1)system in the absence(dashed line)and presence(solid lines)of complex 1;(b)Plot of F0/F versus the concentration of complexes 1 and 2

    Fig.8 Plot of lg[(F0-F)/F]vs lgcQfor BSA in the presence of complexes 1 and 2

    On the basis of the Scatchard equation[41]:lg[(F0-F)/F]=lg K+n lg cQ,for the static quenching interaction, the binding constant(K)and the number of binding sites(n)can be respectively calculated from the slope and the intercept of the double logarithm regression plots of lg[(F0-F)/F]versus lgcQ(Fig.8).Table 2 shows the K and n values following the order:1(3.67×103L·mol-1,0.84)>2(48.2 L·mol-1,0.52),indicating that 1 exhibits higher binding constants for BSA than 2, which is inconsistent with the results of DNA interaction.As expected,the values of n are associated with binding constants K,which verify the conclusion[42]that a direct relation between the binding constant and number ofbinding sites.

    UV-Vis absorption spectroscopy,which is a simple but effective method for detecting complex formation,was employed to detect changes of the intensity and wavelength of complex with BSA.The absorption band obtained in the spectra of 15μmol· L-1BSA at 279 nm in the absence of complex,and the intensity showed an increase without any shift after the addition of 2μmol·L-1Mn(Ⅱ)and Co(Ⅱ)complexes,respectively(Fig.9),which can be attributed to the formation of a ground state complex between metal complex and BSA[43].Mn(Ⅱ)complex showed a larger hyperchromism of 3.6%than that of Co(Ⅱ)complexes(0.9%),indicating that Mn(Ⅱ)behaved stronger ability of BSA binding,which was consistentwith the results offluorescence tests.

    Fig.9 Absorption spectra of BSA(15μmol·L-1)in the absence(dot line)and presence(solid line)of complexes 1(a)and 2(b)(2μmol·L-1)in phosphate buffer(pH=7.0)

    3 Conclusions

    Two new mononuclear Mn(Ⅱ)and Co(Ⅱ)complexes have been synthesized and characterized by using various physico-chemicaltechniques.Crystalstructures of the complexes are isostructural and both metal centers are hepta-coordinated and the geometry can be described as distorted pentagonal bipyramidal.The complexes display binding propensity to the CT-DNA giving a relative order:2(Co(Ⅱ)complex)>1(Mn(Ⅱ)complex).Compared with complex 1,the DNA cleavage efficiency of 2 exhibited more remarkable increases at the same condition in the presence of H2O2.Oxidative mechanism has been demonstrated by adding standard radical scavengers and the reactive oxygen species (ROS)responsible for the DNA cleavage is likely hydroxyl radicals(OH·).While binding abilities of the complexes to BSA are inconsistentwith the results of DNA interaction which follow the order:1>2,and the quenching mechanisms of BSA by the complexes are static procedures.

    Acknowledgements:This work was supported by the PhD Research Startup Foundation of Shanxi Agricultural University(Grants No.2013YJ40 and 2013YJ41),Science and Technology Innovation Fund of Shanxi Agricultural University (Grants No.2014005 and 2014013),College students Innovation and Entreprenecuship Training Project of Shanxi province (Grants No.2015085 and 2015/06)and the Key Scientific Research Projects of Coal Fund in Shanxi(Grant No.FT201402-01).

    Supporting information is available athttp://www.wjhxxb.cn

    References:

    [1]Barone G,Terenzi A,Lauria A,et al.Coord.Chem.Rev., 2013,257(19):2848-2862

    [2]Jiang Q,Xiao N,Shi P,et al.Coord.Chem.Rev.,2007,251 (15):1951-1972

    [3]Pages B J,Ang D L,Wright E P,et al.Dalton Trans.,2015, 44(8):3505-3526

    [4]Rosenberg B,Van Camp L,Krigas T.Nature,1965,205:698-699

    [5]Rosenberg B,Van camp L.Nature,1969,222:385-386

    [6]Mjos K D,Orvig C.Chem.Rev.,2014,114(8):4540-4563

    [7]Wilson J J,Lippard S J.Chem.Rev.,2013,114(8):4470-4495

    [8]Storr T,Thompson K H,Orvig C.Chem.Soc.Rev.,2006,35 (6):534-544

    [9]Reedijk J.Proc.Natl.Acad.Sci.U.S.A.,2003,100(7):3611-3616

    [10]Komor A C,Barton J K.Chem.Commun.,2013,49(35):3617 -3630

    [11]Leung C H,He H Z,Liu L J,et al.Coord.Chem.Rev., 2013,257(21):3139-3151

    [12]Liu H K,Sadler P J.Acc.Chem.Res.,2011,44(5):349-359

    [13]Aiba Y,Sumaoka J,Komiyama M.Chem.Soc.Rev.,2011, 40(12):5657-5668

    [14]Munteanu C R,Suntharalingam K.Dalton Trans.,2015,44 (31):13796-13808

    [15]Ghosh K,Tyagi N,Kumar P.Inorg.Chem.Commun.,2010, 13(3):380-383

    [16]Ghosh K,Mohan V,Kumar P,et al.Polyhedron,2013,49(1): 167-176

    [17]Daniel K G,Chen D,Orlu S,et al.Breast Cancer Res.,2005,7(6):R897-R908

    [18]Chen D,Peng F,Cui Q C,et al.Front.Biosci.,2005,10(2): 2932-2939

    [19]Zheng Q,Wang S,Liu W.Tetrahedron,2014,70(42):7686-7690

    [20]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structure,University of G?ttingen,Germany,1997.

    [21]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G?ttingen,Germany,1997.

    [22]Gao C Y,Ma Z Y,Zhang Y P,et al.RSC Adv.,2015,5(39): 30768-30779

    [23]Gao C Y,Qiao X,Ma Z Y,et al.Dalton Trans.,2012,41 (39):12220-12232

    [24]Zhang Y P,Ma Z Y,Gao C Y,et al.New J.Chem.,2016,40 (9):7513-7521

    [25]Marmur J.J.Mol.Biol.,1961,3(2):208-218

    [26]Gultneh Y,Khan A R,Blaise D,et al.J.Inorg.Biochem., 1999,75(1):7-18

    [27]Bernadou J,Pratviel G,Bennis F,et al.Biochemistry,1989, 28(18):7268-7275

    [28]Baldini M,Belicchi-Ferrari M,Bisceglie F,et al.Inorg. Chem.,2004,43(22):7170-7179

    [29]Wolfe A,Shimer Jr G H,Meehan T.Biochemistry,1987,26 (20):6392-6396

    [30]Meyer-Almes F J,Porschke D.Biochemistry,1993,32(16): 4246-4253

    [31]Lakowicz J R,Weber G.Biochemistry,1973,12(21):4171-4179

    [32]Ramachandran E,Thomas S P,Poornima P,et al.Eur.J. Med.Chem.,2012,50:405-415

    [33]Kellett A,O′Connor M,McCann M,et al.MedChemComm, 2011,2(7):579-584

    [34]Wu H,Shi F,Wang X,et al.Transition Met.Chem.,2014, 39(3):261-270

    [35]Cory M,McKee D D,Kagan J,et al.J.Am.Chem.Soc., 1985,107(8):2528-2536

    [36]Ramakrishnan S,Shakthipriya D,Suresh E,et al.Inorg. Chem.,2011,50(14):6458-6471

    [37]Gibellini D,Vitone F,Schiavone P,et al.J.Clin.Virol., 2004,29(4):282-289

    [38]Lakowicz J R.Principles of Fluorescence Spectroscopy.3rd Ed.New York:Springer,2006:530-573

    [39]Villarreal W,Colina-Vegas L,Rodrigues de Oliveira C,et al. Inorg.Chem.,2015,54(24):11709-11720

    [40]Ware W R.J.Phys.Chem.,1962,66(3):455-458

    [41]Scatchard G.Ann.N.Y.Acad.Sci.,1949,51(4):660-672

    [42]Sathyadevi P,Krishnamoorthy P,Butorac R R,et al.Dalton Trans.,2011,40(38):9690-9702

    [43]Hu Y J,Ou-Yang Y,Dai C M,et al.Biomacromolecules, 2009,11(1):106-112

    Syntheses,Structures,DNA/BSA Binding and DNA Cleavage of Mononuclear Manganese(Ⅱ)and Cobalt(Ⅱ)Complexes with N,O-Chelating Quinoline Derivative Ligand

    ZHANG Yong-Po YANG Jia-Jia LüJia-Yuan GAO Chun-Yan*ZHAO Jin-Zhong*
    (College of Arts and Sciences,Shanxi Agricultural University,Taigu,Shanxi 030801,China)

    Two new mononuclear complexes[ML(H2O)3]·H2O(M=Mn(1)and Co(2))ofquinoline derivative ligand (Na2L=sodium 8-(carboxylatomethoxy)quinoline-2-carboxylate)have been synthesized and characterized.The complexes are isostructural and both metal centers are heptacoordinated with O6N donor sets and the geometry around metal centers can be best described as distorted pentagonal bipyramidal.Interactions of the complexes with CT-DNA and BSA have been explored by absorption and emission spectralmethods.Binding abilities of the complexes to CT-DNA display a relative order:2>1,while the quenching mechanisms of BSA by both complexes are static procedures and the binding constant values follow the order:1>2.In the presence of H2O2as a revulsant or an activator,compared with complex 1,the DNA cleavage efficiency of 2 exhibited more remarkable increases at the same conditions.Oxidative mechanism has been demonstrated by adding standard radical scavengers and the reactive oxygen species(ROS)responsible for the DNA cleavage is likely hydroxyl radicals (OH·).CCDC:1040326,1;1040325,2.

    complexes;quinoline ligand;DNA/BSA binding;DNA cleavage

    O614.71+1;O614.81+2

    A

    1001-4861(2016)12-2172-11

    10.11862/CJIC.2016.265

    2016-06-15。收修改稿日期:2016-09-29。

    山西農(nóng)業(yè)大學(xué)引進(jìn)人才科研啟動(dòng)金(No.2013YJ40,2013YJ41)、山西農(nóng)業(yè)大學(xué)科技創(chuàng)新基金(No.2014013,2014005)、山西農(nóng)業(yè)大學(xué)大學(xué)生科技創(chuàng)新項(xiàng)目(No.13-017,2015085)、山西省高等學(xué)校大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項(xiàng)目(No.2015085,2015106)和山西省煤基重點(diǎn)項(xiàng)目(No.FT201402-01)資助。

    *通信聯(lián)系人。E-mail:gaocynk@163.com,zhaojinzhongnd@126.com;會(huì)員登記號(hào):S06N2534M1605。

    猜你喜歡
    單核喹啉農(nóng)業(yè)大學(xué)
    湖南農(nóng)業(yè)大學(xué)通知教育中心
    《云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué))》征稿簡則
    HPLC-Q-TOF/MS法鑒定血水草中的異喹啉類生物堿
    中成藥(2017年7期)2017-11-22 07:33:25
    ??? ???? ??? ???????? ?? ?? ??―??? ????? ????
    喹啉和喹諾酮:優(yōu)秀的抗結(jié)核藥物骨架
    新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
    一種簡單的分離、培養(yǎng)及鑒定小鼠外周血單核巨噬細(xì)胞方法的建立
    間歇精餾分離喹啉和異喹啉的模擬
    單核Ru(Ⅲ)-edta類配合物的合成﹑結(jié)構(gòu)及性質(zhì)研究
    苯并咪唑衍生的單核鈷(Ⅱ)和單核鎳(Ⅱ)配合物與DNA和蛋白質(zhì)的結(jié)合反應(yīng)性及細(xì)胞毒活性研究
    99国产精品免费福利视频| 在线观看人妻少妇| 51国产日韩欧美| 97精品久久久久久久久久精品| 亚洲第一av免费看| 热99久久久久精品小说推荐| 成人免费观看视频高清| 久久精品国产a三级三级三级| 久久久久久久久大av| 欧美日韩成人在线一区二区| 国产精品.久久久| 国产精品.久久久| 高清在线视频一区二区三区| 久久久精品区二区三区| 五月伊人婷婷丁香| 日本黄色日本黄色录像| 大香蕉久久网| 我的老师免费观看完整版| 制服诱惑二区| 91aial.com中文字幕在线观看| 最新的欧美精品一区二区| 日韩人妻高清精品专区| 亚洲精品视频女| 日韩精品有码人妻一区| 日韩中文字幕视频在线看片| 97在线视频观看| 亚洲内射少妇av| 国产高清有码在线观看视频| videossex国产| 久久久久网色| 婷婷色av中文字幕| 91成人精品电影| 久久这里有精品视频免费| 国产在线免费精品| 天堂中文最新版在线下载| 国产免费福利视频在线观看| 黄片播放在线免费| 国产亚洲最大av| 亚洲国产av影院在线观看| av免费在线看不卡| 2018国产大陆天天弄谢| 久久久a久久爽久久v久久| 国产欧美日韩一区二区三区在线 | 又黄又爽又刺激的免费视频.| 中文字幕久久专区| 亚洲欧美成人精品一区二区| 99视频精品全部免费 在线| 夫妻性生交免费视频一级片| 亚洲av日韩在线播放| 久久免费观看电影| 少妇人妻 视频| 国产男女内射视频| 校园人妻丝袜中文字幕| 我要看黄色一级片免费的| 国产精品99久久99久久久不卡 | av在线老鸭窝| 80岁老熟妇乱子伦牲交| 看免费成人av毛片| 中文天堂在线官网| 欧美亚洲 丝袜 人妻 在线| 中文天堂在线官网| 久久久久久伊人网av| 亚洲色图 男人天堂 中文字幕 | 我要看黄色一级片免费的| 日本av手机在线免费观看| 免费av不卡在线播放| 久久鲁丝午夜福利片| 精品国产一区二区三区久久久樱花| 成年人免费黄色播放视频| 国产精品一区二区三区四区免费观看| 亚洲精品aⅴ在线观看| 欧美日韩视频高清一区二区三区二| 午夜av观看不卡| 又大又黄又爽视频免费| 99热国产这里只有精品6| 亚洲熟女精品中文字幕| 哪个播放器可以免费观看大片| 婷婷色麻豆天堂久久| 午夜激情久久久久久久| 亚洲精品av麻豆狂野| 欧美 亚洲 国产 日韩一| 国产免费一区二区三区四区乱码| 99热6这里只有精品| 国产高清有码在线观看视频| av国产久精品久网站免费入址| 久久97久久精品| 国产精品久久久久久av不卡| 91精品伊人久久大香线蕉| 精品国产国语对白av| 少妇熟女欧美另类| 国产一区有黄有色的免费视频| 久久久久久久久久成人| 国产免费福利视频在线观看| 国产一区二区在线观看日韩| 免费大片18禁| a级毛片黄视频| 久久久久久久久久久丰满| 一边摸一边做爽爽视频免费| 欧美精品高潮呻吟av久久| 看十八女毛片水多多多| av在线观看视频网站免费| 大码成人一级视频| 美女福利国产在线| 日韩 亚洲 欧美在线| 丰满饥渴人妻一区二区三| 久久久久久久大尺度免费视频| 妹子高潮喷水视频| 亚洲av不卡在线观看| 久久久久久久国产电影| 亚洲欧美成人精品一区二区| 在线看a的网站| 日本wwww免费看| 人人澡人人妻人| 国产成人aa在线观看| 涩涩av久久男人的天堂| 人妻制服诱惑在线中文字幕| 国产熟女午夜一区二区三区 | 亚洲国产毛片av蜜桃av| 伦理电影大哥的女人| 大香蕉久久成人网| 18禁裸乳无遮挡动漫免费视频| 一本—道久久a久久精品蜜桃钙片| 极品人妻少妇av视频| 91在线精品国自产拍蜜月| 美女xxoo啪啪120秒动态图| 国产精品久久久久久精品电影小说| 亚洲国产成人一精品久久久| 国产精品国产av在线观看| 精品熟女少妇av免费看| 亚洲av.av天堂| 各种免费的搞黄视频| 亚洲国产精品专区欧美| 纯流量卡能插随身wifi吗| 久久久久久久大尺度免费视频| 国产精品久久久久久久久免| 久久久久久久大尺度免费视频| 男女无遮挡免费网站观看| 免费黄频网站在线观看国产| 少妇高潮的动态图| 18+在线观看网站| 女人久久www免费人成看片| 一区二区三区乱码不卡18| 黄片无遮挡物在线观看| 99热国产这里只有精品6| 国产黄片视频在线免费观看| 国产精品熟女久久久久浪| 中文字幕人妻熟人妻熟丝袜美| 不卡视频在线观看欧美| 男女免费视频国产| 久久久午夜欧美精品| 午夜福利视频在线观看免费| 精品亚洲成国产av| 久久久精品免费免费高清| 久久精品人人爽人人爽视色| 亚洲精品日韩在线中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇内射三级| 如何舔出高潮| 亚洲久久久国产精品| 最新的欧美精品一区二区| 男女国产视频网站| 午夜91福利影院| 国产精品久久久久久精品古装| 国产精品一区二区在线观看99| 国产成人精品婷婷| 自线自在国产av| 国产女主播在线喷水免费视频网站| 亚洲情色 制服丝袜| 九九爱精品视频在线观看| 三级国产精品欧美在线观看| 一级毛片 在线播放| 日韩 亚洲 欧美在线| 一个人看视频在线观看www免费| 国产一区二区在线观看av| 国产精品一区www在线观看| 十八禁网站网址无遮挡| 国产亚洲午夜精品一区二区久久| 久久精品国产a三级三级三级| 男的添女的下面高潮视频| 日本爱情动作片www.在线观看| 精品亚洲乱码少妇综合久久| 大香蕉久久成人网| 亚洲国产色片| 欧美最新免费一区二区三区| 亚洲情色 制服丝袜| av在线app专区| 男女啪啪激烈高潮av片| 午夜福利视频精品| 久久狼人影院| 最黄视频免费看| av不卡在线播放| 人妻一区二区av| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| 丁香六月天网| 婷婷色综合大香蕉| 在线免费观看不下载黄p国产| 国产成人精品福利久久| 久久影院123| 久久精品国产a三级三级三级| 91久久精品电影网| av国产久精品久网站免费入址| 国产午夜精品一二区理论片| 亚洲一级一片aⅴ在线观看| 少妇熟女欧美另类| 人体艺术视频欧美日本| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 啦啦啦视频在线资源免费观看| 久久国产亚洲av麻豆专区| 亚洲国产精品专区欧美| 男女边吃奶边做爰视频| 熟女av电影| 夫妻性生交免费视频一级片| 亚洲人成77777在线视频| 欧美亚洲日本最大视频资源| 热99久久久久精品小说推荐| 男女免费视频国产| 黑人高潮一二区| 一级片'在线观看视频| 国产 精品1| 精品视频人人做人人爽| 日韩在线高清观看一区二区三区| 精品酒店卫生间| 制服丝袜香蕉在线| 免费久久久久久久精品成人欧美视频 | 伦理电影免费视频| 免费观看性生交大片5| 亚洲国产精品999| 成年女人在线观看亚洲视频| 亚洲国产精品一区二区三区在线| 制服诱惑二区| 丝袜美足系列| 国产精品国产av在线观看| 亚洲美女黄色视频免费看| 九色成人免费人妻av| 能在线免费看毛片的网站| 成人无遮挡网站| 亚洲国产色片| 婷婷成人精品国产| 成人二区视频| 欧美97在线视频| 永久免费av网站大全| 91久久精品国产一区二区三区| 久久精品夜色国产| 国产伦理片在线播放av一区| 蜜臀久久99精品久久宅男| 日日爽夜夜爽网站| 丝袜在线中文字幕| 看免费成人av毛片| 国产一区二区在线观看av| 国模一区二区三区四区视频| 美女中出高潮动态图| 亚洲欧美精品自产自拍| 国产精品人妻久久久影院| 久久人人爽人人片av| 久久亚洲国产成人精品v| 永久网站在线| 七月丁香在线播放| 91久久精品国产一区二区成人| 新久久久久国产一级毛片| 久久久亚洲精品成人影院| 黄片播放在线免费| 老熟女久久久| 亚洲国产精品一区二区三区在线| 91久久精品国产一区二区三区| 999精品在线视频| 另类亚洲欧美激情| 大香蕉久久成人网| 久久97久久精品| 国产亚洲精品第一综合不卡 | 美女脱内裤让男人舔精品视频| 免费不卡的大黄色大毛片视频在线观看| 国产免费一区二区三区四区乱码| 男人添女人高潮全过程视频| 国产女主播在线喷水免费视频网站| 97在线视频观看| 日本欧美国产在线视频| 亚洲精品久久成人aⅴ小说 | 卡戴珊不雅视频在线播放| 99精国产麻豆久久婷婷| 中文天堂在线官网| 菩萨蛮人人尽说江南好唐韦庄| 菩萨蛮人人尽说江南好唐韦庄| 国产视频首页在线观看| 999精品在线视频| 欧美日韩综合久久久久久| 欧美精品国产亚洲| a级毛色黄片| 伦理电影大哥的女人| 一级毛片电影观看| 久久久久视频综合| 国产极品粉嫩免费观看在线 | 一级毛片电影观看| 99热6这里只有精品| 午夜视频国产福利| 丁香六月天网| 久久久久久久久久久免费av| 一级片'在线观看视频| 亚洲欧美一区二区三区国产| www.av在线官网国产| 五月玫瑰六月丁香| 一级黄片播放器| 九草在线视频观看| 各种免费的搞黄视频| 久久精品久久久久久久性| 最近中文字幕2019免费版| 国产黄色免费在线视频| 99久国产av精品国产电影| 色94色欧美一区二区| 亚洲精品久久午夜乱码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 性高湖久久久久久久久免费观看| 国产精品免费大片| 中文字幕久久专区| 久久久国产一区二区| 免费黄频网站在线观看国产| 极品人妻少妇av视频| 中文字幕免费在线视频6| 一区二区三区精品91| 久久久久国产精品人妻一区二区| 22中文网久久字幕| 狂野欧美激情性bbbbbb| 亚洲激情五月婷婷啪啪| 国产黄色视频一区二区在线观看| 91午夜精品亚洲一区二区三区| 国语对白做爰xxxⅹ性视频网站| 日本黄色日本黄色录像| 亚洲欧美日韩卡通动漫| 欧美激情极品国产一区二区三区 | 夜夜爽夜夜爽视频| 女人精品久久久久毛片| 丝袜喷水一区| 97超视频在线观看视频| 亚洲av成人精品一区久久| 久久久久久久久大av| 久久精品国产亚洲av天美| 国产午夜精品久久久久久一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲第一av免费看| 国产欧美另类精品又又久久亚洲欧美| 老司机亚洲免费影院| 精品一区二区三卡| 汤姆久久久久久久影院中文字幕| 99九九在线精品视频| av线在线观看网站| 国产免费一级a男人的天堂| 国产精品秋霞免费鲁丝片| 国产av国产精品国产| 日韩在线高清观看一区二区三区| 777米奇影视久久| 亚洲国产成人一精品久久久| 黄色一级大片看看| 少妇人妻久久综合中文| 国产日韩欧美视频二区| 看十八女毛片水多多多| 亚洲国产av影院在线观看| 亚洲国产av影院在线观看| 水蜜桃什么品种好| 国产av精品麻豆| 欧美bdsm另类| 国产在视频线精品| av有码第一页| 日韩精品有码人妻一区| 我要看黄色一级片免费的| 亚洲美女搞黄在线观看| a级毛片在线看网站| 免费不卡的大黄色大毛片视频在线观看| 成人无遮挡网站| 日日摸夜夜添夜夜添av毛片| 精品久久久久久电影网| 最近的中文字幕免费完整| 亚洲图色成人| 久久热精品热| 男男h啪啪无遮挡| 日韩一区二区视频免费看| 亚洲欧美成人综合另类久久久| 老司机影院成人| 色5月婷婷丁香| 在线观看三级黄色| 简卡轻食公司| 日韩电影二区| 亚洲怡红院男人天堂| 国产黄色视频一区二区在线观看| 色94色欧美一区二区| 青青草视频在线视频观看| av线在线观看网站| 一级毛片aaaaaa免费看小| 美女大奶头黄色视频| 亚洲色图 男人天堂 中文字幕 | 亚洲精品美女久久av网站| 99热国产这里只有精品6| a 毛片基地| 美女脱内裤让男人舔精品视频| 亚洲情色 制服丝袜| 狂野欧美激情性xxxx在线观看| 国产免费又黄又爽又色| 黑丝袜美女国产一区| 91久久精品国产一区二区三区| 亚洲精品乱码久久久v下载方式| 中文欧美无线码| 国产精品久久久久久精品电影小说| 午夜免费观看性视频| 亚洲美女视频黄频| 老司机影院成人| 色5月婷婷丁香| √禁漫天堂资源中文www| 99久国产av精品国产电影| 久久久久精品性色| 少妇高潮的动态图| 成人18禁高潮啪啪吃奶动态图 | 精品一品国产午夜福利视频| 夜夜看夜夜爽夜夜摸| 国产日韩一区二区三区精品不卡 | 精品酒店卫生间| av网站免费在线观看视频| 高清欧美精品videossex| 男女无遮挡免费网站观看| 国产一区二区三区综合在线观看 | 日韩av在线免费看完整版不卡| 国产成人a∨麻豆精品| 久久99热6这里只有精品| 丰满饥渴人妻一区二区三| 国产免费现黄频在线看| 十八禁网站网址无遮挡| 我的女老师完整版在线观看| 国产免费一区二区三区四区乱码| 久久亚洲国产成人精品v| 又粗又硬又长又爽又黄的视频| 中文字幕人妻熟人妻熟丝袜美| 全区人妻精品视频| 国产黄片视频在线免费观看| 人妻一区二区av| 亚洲精品国产色婷婷电影| 日本91视频免费播放| 又大又黄又爽视频免费| 欧美成人精品欧美一级黄| 免费人妻精品一区二区三区视频| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| 国产免费视频播放在线视频| 一个人看视频在线观看www免费| 欧美精品高潮呻吟av久久| 婷婷色综合www| 亚洲,欧美,日韩| 大片电影免费在线观看免费| 国产爽快片一区二区三区| 久久99蜜桃精品久久| 在现免费观看毛片| 亚洲精品一二三| 又粗又硬又长又爽又黄的视频| 亚洲av综合色区一区| 亚洲精品久久久久久婷婷小说| 日韩亚洲欧美综合| 夜夜看夜夜爽夜夜摸| videossex国产| 日韩熟女老妇一区二区性免费视频| av在线播放精品| 国产高清不卡午夜福利| 简卡轻食公司| 哪个播放器可以免费观看大片| 高清在线视频一区二区三区| 国国产精品蜜臀av免费| 免费大片黄手机在线观看| 一本久久精品| 18在线观看网站| 国产欧美日韩一区二区三区在线 | 蜜桃国产av成人99| 成人国产av品久久久| 蜜臀久久99精品久久宅男| 日本欧美国产在线视频| 大话2 男鬼变身卡| 免费看av在线观看网站| 亚洲av成人精品一二三区| 狠狠精品人妻久久久久久综合| 欧美日韩视频精品一区| 极品少妇高潮喷水抽搐| 激情五月婷婷亚洲| 性高湖久久久久久久久免费观看| 国产片特级美女逼逼视频| 国产黄频视频在线观看| 亚洲精品一区蜜桃| 大片电影免费在线观看免费| 一个人看视频在线观看www免费| 一级毛片我不卡| 男女啪啪激烈高潮av片| 99热这里只有精品一区| 国产精品免费大片| 国产欧美亚洲国产| 在线 av 中文字幕| 欧美人与性动交α欧美精品济南到 | 亚洲国产av影院在线观看| 日韩视频在线欧美| 亚洲精品久久午夜乱码| 午夜福利在线观看免费完整高清在| 国产日韩欧美视频二区| 日本vs欧美在线观看视频| 久热这里只有精品99| 天美传媒精品一区二区| 日本免费在线观看一区| 麻豆精品久久久久久蜜桃| 亚洲国产av新网站| 久久毛片免费看一区二区三区| 啦啦啦视频在线资源免费观看| 大话2 男鬼变身卡| 91精品国产九色| 日韩中文字幕视频在线看片| 国产成人一区二区在线| 精品久久久精品久久久| 欧美日韩成人在线一区二区| 新久久久久国产一级毛片| 国产片内射在线| 色94色欧美一区二区| 国产 精品1| 国产欧美日韩综合在线一区二区| 国产淫语在线视频| 久久 成人 亚洲| 亚洲精品aⅴ在线观看| 欧美 日韩 精品 国产| xxx大片免费视频| 91精品三级在线观看| 美女cb高潮喷水在线观看| 欧美日韩成人在线一区二区| 我要看黄色一级片免费的| 国产精品成人在线| 国产亚洲av片在线观看秒播厂| 久久久久人妻精品一区果冻| 欧美最新免费一区二区三区| 国产免费一区二区三区四区乱码| 国产高清不卡午夜福利| 国产欧美另类精品又又久久亚洲欧美| 最近手机中文字幕大全| 免费av不卡在线播放| 一级毛片我不卡| 天堂中文最新版在线下载| 成年人午夜在线观看视频| 中文字幕人妻丝袜制服| 最近2019中文字幕mv第一页| 日产精品乱码卡一卡2卡三| 美女视频免费永久观看网站| 日韩伦理黄色片| 国产深夜福利视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久婷婷青草| 青青草视频在线视频观看| 成年人免费黄色播放视频| 少妇猛男粗大的猛烈进出视频| 国产成人精品福利久久| 少妇猛男粗大的猛烈进出视频| .国产精品久久| 一本大道久久a久久精品| 两个人的视频大全免费| 亚洲欧美一区二区三区国产| 超色免费av| 如何舔出高潮| 亚洲美女视频黄频| 国产精品麻豆人妻色哟哟久久| 国产亚洲欧美精品永久| 国产精品人妻久久久久久| 9色porny在线观看| 91精品一卡2卡3卡4卡| 亚洲婷婷狠狠爱综合网| 汤姆久久久久久久影院中文字幕| 国产亚洲av片在线观看秒播厂| 在线观看美女被高潮喷水网站| 日本黄大片高清| 中文字幕免费在线视频6| 激情五月婷婷亚洲| 熟女电影av网| 香蕉精品网在线| 免费久久久久久久精品成人欧美视频 | 三上悠亚av全集在线观看| 欧美另类一区| 精品国产露脸久久av麻豆| 蜜桃国产av成人99| 精品久久国产蜜桃| 久久久久久久久久人人人人人人| 国产乱来视频区| 一本色道久久久久久精品综合| 久久精品国产亚洲av涩爱| 国产精品一区www在线观看| 精品一区二区免费观看| 亚洲,欧美,日韩| av女优亚洲男人天堂| 亚洲欧美成人综合另类久久久| 亚洲精品一二三| 热99国产精品久久久久久7| 又大又黄又爽视频免费| 熟女av电影| 国产老妇伦熟女老妇高清| 亚洲欧洲国产日韩| 国产伦理片在线播放av一区| 成年人午夜在线观看视频| 日韩制服骚丝袜av| 欧美激情国产日韩精品一区| 人妻少妇偷人精品九色| 久久久久久伊人网av| 一个人看视频在线观看www免费| 熟女人妻精品中文字幕| 久久久久久久久大av| 亚洲在久久综合| 简卡轻食公司| 一级毛片 在线播放| 亚洲国产日韩一区二区| 99热6这里只有精品| 国产精品人妻久久久影院| 日韩熟女老妇一区二区性免费视频| 青春草国产在线视频| 亚洲综合色网址| 久久久久久久久久人人人人人人| 蜜桃国产av成人99| 欧美少妇被猛烈插入视频| 午夜福利在线观看免费完整高清在| 国产爽快片一区二区三区| 美女xxoo啪啪120秒动态图|