• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二步電沉積法制備Au/氧化石墨烯復合薄膜作為SERS基底

    2016-12-20 02:21:46徐玲姚愛華胥巖王德平1
    無機化學學報 2016年12期
    關鍵詞:同濟大學愛華基底

    徐玲 姚愛華*,1, 胥巖 王德平1,

    (1同濟大學先進土木工程材料教育部重點實驗室,上海200092)

    (2同濟大學材料科學與工程學院,上海200092)

    二步電沉積法制備Au/氧化石墨烯復合薄膜作為SERS基底

    徐玲2姚愛華*,1,2胥巖2王德平1,2

    (1同濟大學先進土木工程材料教育部重點實驗室,上海200092)

    (2同濟大學材料科學與工程學院,上海200092)

    采用二步電沉積方法在Ti片表面制備了Au-氧化石墨烯(Au-GO)復合薄膜,通過XRD、SEM、XPS等對薄膜的組成、結構和形貌進行了表征,并以羅丹明6G(R6G)為探針分子,對Au-GO/Ti基底的SERS活性進行了表征。結果顯示,Au納米顆粒尺寸約為60 nm,均勻、致密分布于GO表面,該基底顯示出較高的SERS活性,對R6G分子的檢測極限可達~10-10mol·L-1,增強因子高達約106,且基底顯示出良好的穩(wěn)定性,在冰箱中存放90 d后,SERS活性僅降低30%左右。

    金;氧化石墨烯;表面增強拉曼散射;復合薄膜

    Surface-enhanced Raman scattering(SERS)is a non-destructive,ultrasensitive and powerful analytical technique,which has been widely used in the identification and detection of chemical and biological molecules,gas sensing,and food and environmental monitoring[1].To date,various SERS-active substrates with high Raman enhancementfactors(EFs)have been successfully developed.In particular,noble metal nanoparticles(Ag and Au)of various sizes and shapes have shown the most promise as SERS substrates dueto their considerable electromagnetic contribution to SERS enhancement[2].Graphene and its derivatives (such as graphene oxide,GO,and reduced graphene oxide,rGO)demonstrate several advantages as SERS-active substrates for ultrasensitive Raman detection, such as additional chemical enhancement,quenching molecule fluorescence,and a high adsorption capacity toward target molecules[3-4].Compared to graphene,GO can be produced at higher yields,and is therefore more suitable for practical applications.GO possesses abundant oxygen-containing functional groups that serve as active sites for metal nanoparticles immobilization.Additionally,it exhibits high affinity toward various compounds(especially aromatic species) throughπ-πstacking and electrostatic interaction, thus bringing analytes in close proximity to the substrate,and facilitating electromagnetic and chemical enhancement[4].A recent study has shown that GO allows for a higher degree of chemical enhancement than pristine graphene because its oxygen-containing groups(carboxyl,epoxy,carbonyl,and hydroxyl)have a larger polarizability and stronger local dipole moments[5].

    Recently,hybrid films consisting of graphene layers and metallic nanostructures have been developed as SERS substrates to achieve high sensitivity,good reproducibility and long-term stability.Two approaches were usually adopted for fabrication of the hybrid films including transferring graphene to a prepared metallic nanostructure and fabricating metallic nanoparticles on grapheme-coated substrates[6].For example, Zhao et al.[7]deposited a 4-nm-thick Au film on graphene grown on Cu foils by plasma sputtering,achieving an EF of~10-6for R6G and a low detection limit of 0.1 nmol·L-1for Sudan III.Zhu et al.[8]transferred graphene onto wet-chemical synthetic Au nanovoid arrays for detection of R6G with EFs of~104.In these cases,complex experimental conditions and multiple synthesis steps were usually required.By contrast, electrodeposition is a simple,scalable,and environmentally friendly process.Moreover,this approach eliminates chemical contamination during substrate fabrication and allows for control of the size and coverage of the metal NPs deposited conducting surfaces.

    Herein,a highly sensitive SERS-active Au/GO hybrid film was fabricated using a simple,scalable and environmentally friendly two-step electrodeposition process.In this technique,GO layers were first deposited onto a Tisheetby electrophoretic deposition from an aqueous GO suspension.Subsequently,Au NPs were simultaneously electrochemically reduced and deposited on the rGO layers.The sensitivity, reproducibility,and stability of the resultant Au NP-rGO hybrid film were characterized employing R6G as a probe molecule.

    1 Experimental

    1.1Chemicals

    HAuCl4·4H2O,KH2PO4,ethanoland acetone were purchased from Shanghai Aladdin Chemical Reagent Company.Graphene oxide(GO)was purchased from Nanjing XFNANO Materials Tech.Co.Ltd.Titanium sheets(99.5%purity)were purchased from Beijing Chemical Works.All reagents were analytical grade and used without further purification.All aqueous solutions were prepared with double-distilled water (18.2 MΩ·cm).

    1.2Two-step electrodeposition of GO and Au nanoparticles on Tisheet

    Prior to deposition,Ti sheets of 17×17×0.5 mm3were cleaned sequentially with ethanol,acetone and deionized water for 10 min in an ultrasonic bath.The sheets were then chemically polished by immersion in a mixture of HF and HNO3acids(VHF:VHNO3=1:1.2)for 30 s and rinsed in deionized water.Electrophoretic deposition of GO on the Ti sheet was performed in a two-electrode cell with a Ti sheet as the anode and a Pt sheet as the cathode.The distance between the two electrodes was 1 cm.The cleaned Ti sheets were immersed in a 10 mL suspension of GO(0.5 mg·mL-1), and a DC voltage of 3 V was applied for 400 s to depositGO onto the surface ofthe Tisheet.

    Electrodeposition of Au nanoparticles on the GO-deposited Ti sheets was performed on a CHI660D electrochemistry station(Shanghai CH Instruments,China)using a three-electrode system.The GO-deposited Ti sheet was used as working electrode,Pt wire as counter electrode and Ag/AgCl(3 mol·L-1KCl)as reference electrode.Electrodeposition process was performed by applying a potentialof-5 V for 400 s in an aqueous solution containing 75 mmol·L-1KH2PO4and 6 mmol·L-1HAuCl4.For comparison,Au NPs were directly deposited on bare Ti sheet under the same conditions.

    1.3Characterization

    The morphologies of GO,Au,and Au-GO hybrid films were observed using a field emission scanning electron microscope(FESEM,Hitachi S-2360).The crystal phase was characterized using X-ray powder diffraction(XRD,Rigaku Dmax2550)with Cu Kα radiation(λ=0.154 18 nm)operated at40 kV and 40 mA.The elemental composition of the films was analyzed by X-ray photoelectron spectroscopy(XPS, Escalab250Xi,ThermoScientfic,USA)using a 500 μm-diameter beam ofmonochromatic Al Kαradiation. SERS measurements were conducted using a Renishaw inVia micro-Raman spectrometer with He-Ne laser excitation at 532 nm.Prior to measurement,the asprepared SERS substrates were immersed for 12 h in freshly prepared aqueous solutions of R6G at various concentrations,then thoroughly rinsed with deionized water and dried under nitrogen flow.The SERS spectra were collected from at least 5 random locations with an accumulation time of 10 s,and then averaged.

    Fig.1(a)XRD pattern of Au-GO/Ti substrate;(b)UV-Vis absorption spectra of GO suspension, GO/Ti and Au-GO/Ti substrates

    2 Results and discussion

    2.1Preparation and characterization of Au-GO hybrid films

    The crystal structure and phase composition of the Au-GO/Ti were analyzed by XRD.As shown in Fig.1(a),in addition to the diffraction peaks of the Ti metal phase(JCPDS No.44-1294),the film exhibited four prominent peaks located at 38.3°,44.5°,64.7° and 77.7°,which can be assigned to(111),(200), (220),and(311)crystalline planes ofthe face-centered cubic(fcc)of Au(JCPDS No.04-0784),indicating the successfuldeposition ofmetallic Au NPs.No diffraction peaks corresponding to GO could be clearly identified. To valid the result,different samples fabricated from different deposition times of GO were measured independently,and the results were the same for all samples.This suggests that the absence of layerstacking regularity of GO or relatively low GO content in the hybrid film[9].Fig.1(b)displays the UV-Vis absorption properties of GO,GO-deposited Ti sheets (GO/Ti)and Au-GO/Ti.GO exhibited a maximum absorption peak at 228 nm and a shoulder peak at 304 nm,corresponding to theπ-π*transition of aromatic C-C bands and the n-π*transition of C=O bands,respectively[10].In addition to the characteristic absorption peaks of GO,the GO/Ti substrate exhibited a new absorption peak at 340 nm,likely originating from Ti oxides,as electrodeposition process is knownto promote the formation of oxide layers on the surface of Ti sheets[11].After electrodeposition of Au NPs,a strong absorption peak at~500 nm was observed, corresponding to the surface plasmon absorption of Au NPs.

    SEM images ofthe Tisheetand the GO-deposited Ti sheet confirmed the formation of GO layers on the Ti sheet(Fig.2(a),(b)).It can be clearly seen in Fig.2 (b)that some wrinkles or folded GO stacks were deposited on the smooth Ti surface.After the deposition of Au NPs,the GO-deposited Ti sheet exhibited a homogenous distribution of spherical Au NPs with average diameters of~60 nm on its surface(Fig.2(c)). Noteworthily,the present two-step electrodeposition method achieved uniform coverage of Au NPs over a large substrate area,as seen in a low magnification SEM image of the Au-GO hybrid film(Fig.2(e)).For comparison,Au nanoparticles were also deposited on a bare Ti sheet using the same deposition parameters. As shown in Fig.2(d),the Au NPs had an average size of~50 nm,which is slightly smallerthan those deposited on the GO-deposited Ti sheet.By comparing Fig.2(c) with(d),it can be concluded that the uniformity and coverage of the Au NPs were significantly improved by the presenceofGO layers.Thisismainly attributed to the functional groups and surface charges of GO, which provide active nucleation sites for Au3+ions to form Au NPs.The good uniformity and high coverage of Au NPs on the GO-deposited Ti sheet provide a structuralbasis for highly sensitive Raman detection.

    XPS analysis was employed to further confirm the elemental compositions and corresponding chemical states of the prepared Au-GO hybrid films. The Au-GO/Ti substrate consisted of C,O,Au,Ti elements,as shown in Fig.3(a).Fig.3(b)shows the high-resolution spectra of Au4f from Au-GO/Ti and Au/Tisubstrates.The double peaks at84.0 eV(Au4f7/2) and 87.7 eV(Au4f5/2)with a value difference(3.7 eV) indicate the presence of metallic Au.Clearly,the Au-GO/Ti substrate exhibited a slight shift in Au4f peaks to a higher binding energy(0.2 eV)compared to Au/ Ti substrate.This may be attributed to electron transfer from GO to Au NPs due to the higher work function of Au(5.1 eV[12])compared to GO(>4.5 eV, depending on the amountofoxygen functionalities[13])[14].

    Fig.2 SEM images of the surfaces of the(a)Ti sheet,(b)GO/Ti substrate,(c)Au-GO/Ti substrate(high magnification), (d)Au/Ti substrate,and(e)Au-GO/Ti substrate(low magnification)

    The Raman spectra of Au-GO/Ti substrate was compared to that of the GO/Ti substrate.As shown in Fig.4,the Raman spectrum of GO/Ti presented characteristic D and G bands at1 345 and 1 589 cm-1, which are attributed to the breathing mode ofκ-point and the stretching mode of E2gphonon of sp2carbon atom,respectively[15].Upon electrodeposition of Au nanoparticles,the Raman signal of GO was significantly amplified due to the strong electromagneticfield enhancement induced by the localized surface plasmon resonance(LSPR)effectof Au nanoparticles.

    Fig.3(a)Full XPS spectrum of Au-GO/Ti substrate;(b)high-resolution Au4f spectra from Au-GO/Ti and Au/Ti substrates

    Fig.4 SERS spectra of Au-GO/Ti and GO/Ti substrates

    Fig.5 SERS spectra of 2.5×10-5mol·L-1R6G adsorbed on different substrates

    2.2SERS performance of the Au-GO/Ti substrates

    R6G was employed as a probe molecule to evaluate and compare the SERS activity of asprepared GO/Ti,Au/Ti and Au-GO/Ti substrates.Fig. 5 shows the SERS spectra of 2.5×10-5mol·L-1R6G adsorbed on different substrates.While no Raman signals from R6G were recognized on a bare Ti sheet, substantial Raman enhancement was observed on Au/ Ti,GO/Tiand Au-GO/Tisubstrates.The Raman peaks exhibited by these substrates corresponded well with previous reports[6-7].The Au-GO/Ti substrate exhibited the highest SERS sensitivity,with approximately 3-and 6-fold enhancement of the Raman peak intensity of R6G,compared to the Au/Ti and GO/Ti substrates, respectively.The high SERS sensitivity of the Au-GO/ Ti substrate suggested a synergistic effect between the Au nanoparticles and GO rather than simple sum of the effects ofthe individualcomponents.

    Au-GO hybrid films were further evaluated to determine the concentration dependency of its SERS performance.The substrates were immersed in a series of aqueous solutions with R6G concentrations ranging from 2.5×10-5to 2.5×10-11mol·L-1and the SERS spectra were recorded at an excitation wavelength of 532 nm.The Raman signal intensity of R6G gradually decreased with decreasing R6G concentrations(Fig.6(a)).However,all characteristic peaks exhibited high signal quality and could be clearly identified even at a low concentration of 2.5× 10-10mol·L-1,implying that the Au-GO/Ti substrates possess high sensitivity for the detection of target analytes.The average enhancement factor(EF)for R6G was calculated according to the followingequation[16]:

    where ISERSand IRSrepresent peak intensities of the SERS spectra obtained from 2.5×10-5mol·L-1R6G on the Au-GO/Ti substrate and 2.5×10-2mol·L-1R6G on a quartz substrate,respectively.NSERSand NRSare the numbers of R6G molecules excited by the laser beam on the Au-GO/Ti and quartz substrates,respectively. Here two Raman peaks at 612 and 1 362 cm-1were selected for calculating the EFs.The average EF value ofthe Au-GO/Tisubstrate was found to be 2×106,which was approximately two orders ofmagnitude larger than that of the Au/Ti substrate.The EF and detection limit of the Au-GO hybrid film were comparable to or even higher than previous reported values for Au NPsgraphene hybrid films[7-8,16].

    Fig.6 SERS spectra of Au-GO/Ti substrates loaded with different R6G with concentrations

    Three main factors may explain the high SERS activity of the Au-GO hybrid films:the enrichment effect of the SERS substrate toward the probe molecules,electromagentic contribution and chemical contribution.In the presentstudy,GO contributed to a strong SERS effect by several mechanisms.First,the GO layers provided a perfect two-dimensional flat surface,with large surface area and negative surface charges.Thus GO was an ideal support for the uniform deposition of Au nanoparticles with relatively high coverage,effectively increasing the amountof hot spots on the substrate,and resulting in strong electromagnetic coupling between neighbouring Au nanoparticles and increased electromagnetic enhancement.Additionally,graphene and its derivatives are known to have a chemical enhancement effect on SERS signal due to theπ-π stacking and charge transfer between graphene and the probe molecules[3-4].Because of the short-range effect of chemical enhancement,a small substratemolecule distance is necessary for a considerable SERS enhancement.Good affinity between the GO and R6G allows for charge transfer between them,and thereby facilitates the chemical enhancement effect of GO.Furthermore,the strong interaction between the GO layers and Au nanoparticles is crucial for their synergistic effect.XPS analysis(Fig.3)showed that upon deposition of Au nanoparticles on the GO surface,electrons were transferred from the GO to the Au nanoparticles driven by their different work functions,and the transferred electrons may redistribute and gather on the upper surface of the Au NPs[17]. This process not only contributes to the surface plasmon excitation of Au nanoparticles,but also enhances the charge transfer from the electron-rich Au nanoparticles to R6G,thus magnifying the overall Raman signal.

    To evaluate the reproducibility ofthe as-prepared Au-GO/Ti substrate,the spot-to-spot and substrate-tosubstrate variation were quantified by determining the relative standard deviation(RSD)of the Raman peak intensity of adsorbed R6G(2.5×10-7mol·L-1).Fig.7(a) shows the intensity of the Raman peak at 1 362 cm-1collected from ten randomly selected positions on the substrate.The RSD was 16.4%,indicating that the Au-GO/Ti substrate was homogeneous and generated reproducible Raman signals due to the uniformly distributed hot spots.To test the substrate-to-substrate reproducibility,five Au-GO/Tisubstrateswere randomly selected and loaded with 2.5×10-7mol·L-1R6G,and a series of SERS spectra were measured at five different positions on each substrate to obtain the average intensity of the Raman peak at 1 362 cm-1.The RSD was 18.5%,thus confirming that there was low variability between the different prepared Au-GO/Ti substrates.

    Fig.7 Evaluation of the reproducibility of Au-GO/Ti substrates:(a)Spot-to-spot variation of the Raman peak intensity at 1 362 cm-1collected from ten randomly selected positions on a substrate;(b)Substrate-to-substrate variation of average Raman peak intensity from five randomly selected substrates

    The stability of the Au-GO/Ti substrates was assessed by determining the Raman peak intensity of adsorbed R6G(2.5×10-7mol·L-1)after storage in the refrigerator for 0,30,or 90 d.The spectra in Fig.8 showed that the Raman signal intensity of R6G decreased to approximately 8%and 30%of its initial value after 30 and 90 days of storage,respectively. These results indicate that the Au-GO/Ti substrate is highly stable and produces reliable SERS measurements.Based on the above results,the Au-GO/Ti is a promising substrate for highly sensitive molecule detection.

    Fig.8 SERS spectra of R6G absorbed on Au-GO/Ti substrate after storage in the refrigerator for 0, 30 and 90 d,respectively

    3 Conclusions

    A simple and environmentally friendly two-step electrodeposition process was developed to fabricate a large-area SERS-active Au-GO hybrid film.In this process,GO layers were first electrophoretically deposited onto a Ti sheet.Au NPs with an average size of~60 nm were then uniformly deposited on the surface of GO.This hybrid film exhibited higher SERS activity toward R6G probe molecules compared to the Au nanoparticles or GO alone,indicating the synergistic effect of GO and Au nanoparticles. Furthermore,the Au-GO/Ti substrate demonstrated high SERS sensitivity,with an EF of~10-6and a detection limit of~10-10mol·L-1for R6G,and good stability.Therefore,this study presents an alternative route for the fabrication of high-performance SERS-active substrates.

    References:

    [1]Chlücker S S.Angew.Chem.Int.Ed.,2014,53:4756-4795

    [2]Banholzer M J,Millstone J E,Qin L,et al.Chem.Soc.Rev., 2008,37:885-897

    [3]Ling X,Xie L M,Fang Y,etal.Nano Lett.,2010,10:553-561

    [4]Xu W G,Mao N N,Zhang J.Small,2013,9:1206-1224

    [5]Huh S,Park J,Kim Y S.ACS Nano,2011,5:9799-9806

    [6]Zhao Y,Zhu Y W.Nanoscale,2015,7:14561-14576

    [7]Zhao Y,Chen G X,Du Y X,et al.Nanoscale,2014,6:13754 -13760

    [8]Zhu X L,Shi L,Schmidt M S,etal.Nano Lett.,2013,13:4690-4696

    [9]Cao D R,Li H,Wang Z K,et al.Thin Solid Films,2015, 597:1-6

    [10]Zheng Y H,Wang A W,Lin H T,et al.RSC Adv.,2015,5: 15425-15430

    [11]Oliveira A G,Nascimento J P,Gorgulho H F,et al.J.Alloys Compd.,2016,645:514-522

    [12]Baik S Y,Cho Y J,Lim Y R,et al.ACS Nano,2012,6:2459 -2470

    [13]Gary R,Dutta N K,Choudhury N R.Nanomaterials,2014,4: 267-300

    [14]Wan Y C,Teoh H F,Tok E S,et al.J.Appl.Phys.,2015, 117:054304-1-9

    [15]Yang B W,Liu Z M,Guo Z Y,et al.Appl.Surf.Sci.,2014, 316:22-27

    [16]Xu S C,Jiang S Z,Wang J H,et al.Sens.Actuator B:Chem., 2016,222:1175-1183

    [17]Kong X K,Chen Q W,Sun Z Y.Chem.Phys.Lett.,2013, 564:54-59

    Two-Step Electrodeposition Process for Fabrication of Au-Graphene Oxide Hybrid Films as SERS Substrates

    XU Ling2YAO Ai-Hua*,1,2XU Yan1WANG De-Ping1,2
    (1Key Laboratory of Advanced Civil Engineering Materials,Ministry of Education,Tongji University,Shanghai 200092,China)
    (2School of Materials Science and Engineering,Tongji University,Shanghai 200092,China)

    Two-step electrodeposition process was developed to prepare Au nanoparticle-graphene oxide(Au-GO) hybrid film as large-area surface-enhanced Raman scattering(SERS)substrates.The composition,microstructure and morphology of the resultant hybrid film were characterized by XRD,SEM and XPS.Meanwhile,SERS activity ofthe Au-GO/Tisubstrates was also evaluated using rhodamine 6G(R6G)as probe molecules.The results showed that Au nanoparticles with an average size of~60 nm were uniformly deposited on the surface of GO.The substrates exhibited strong and uniform SERS response toward R6G with a detection limit of~10-10mol·L-1and an enhancement factor of~106.Furthermore,the Raman signal intensity of R6G only decreased to approximately 30%of its initial value after 90 days of storage,indicating the Au-GO/Ti substrate is highly stable and produces reliable SERS measurements

    Au;graphene oxide;surface-enhanced Raman scattering;hybrid film

    O614.123;TB333

    A

    1001-4861(2016)12-2183-08

    10.11862/CJIC.2016.280

    2016-06-19。收修改稿日期:2016-09-30。

    上海市自然科學基金(No.13ZR1444200)及中央高校基本科研業(yè)務費專項基金資助項目。

    *通信聯系人。E-mail:aihyao@126.com

    猜你喜歡
    同濟大學愛華基底
    《同濟大學學報(醫(yī)學版)》介紹
    《我要我們在一起》主打現實基底 務必更接地氣
    中國銀幕(2022年4期)2022-04-07 21:28:24
    《同濟大學學報(醫(yī)學版)》介紹
    《同濟大學學報(自然科學版)》征稿啟事
    同濟大學醫(yī)學院介紹
    第一次拔牙
    神奇的光
    可溶巖隧道基底巖溶水處理方案探討
    在廈金胞張愛華孝親牽起兩岸情
    海峽姐妹(2016年2期)2016-02-27 15:15:48
    磁共振顯像對老年椎基底動脈缺血的診斷價值
    69av精品久久久久久| 久久久久久九九精品二区国产| 久99久视频精品免费| 亚洲av成人精品一区久久| 亚洲国产欧美一区二区综合| 91字幕亚洲| 中文资源天堂在线| 黑人欧美特级aaaaaa片| 成年女人毛片免费观看观看9| 十八禁网站免费在线| www.精华液| 久久香蕉国产精品| 最新中文字幕久久久久 | 91在线观看av| 两个人视频免费观看高清| 91字幕亚洲| 国产午夜精品论理片| 特大巨黑吊av在线直播| 亚洲国产欧美一区二区综合| 久久中文看片网| 小说图片视频综合网站| 成人av在线播放网站| 国产精品女同一区二区软件 | 精品久久久久久久久久久久久| 色精品久久人妻99蜜桃| 国产蜜桃级精品一区二区三区| 免费av不卡在线播放| 一本精品99久久精品77| 久久九九热精品免费| 波多野结衣高清作品| 12—13女人毛片做爰片一| 日本一二三区视频观看| 亚洲va日本ⅴa欧美va伊人久久| 国产成人啪精品午夜网站| 国产成人精品久久二区二区91| 国产真人三级小视频在线观看| h日本视频在线播放| 久久久久免费精品人妻一区二区| 一本一本综合久久| 国产蜜桃级精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 中亚洲国语对白在线视频| 国产黄色小视频在线观看| 最好的美女福利视频网| 亚洲成人久久爱视频| 国产成人精品无人区| 极品教师在线免费播放| 琪琪午夜伦伦电影理论片6080| 级片在线观看| 91av网一区二区| 丁香六月欧美| 久久人妻av系列| 欧美中文综合在线视频| 99国产综合亚洲精品| 在线a可以看的网站| 少妇裸体淫交视频免费看高清| 国产主播在线观看一区二区| 亚洲午夜精品一区,二区,三区| 99久久综合精品五月天人人| 国产高清有码在线观看视频| 国产成人福利小说| 婷婷六月久久综合丁香| 久久欧美精品欧美久久欧美| 999久久久国产精品视频| 亚洲av成人一区二区三| 黄频高清免费视频| 国产精品久久久人人做人人爽| 久久精品国产亚洲av香蕉五月| 美女免费视频网站| 黑人操中国人逼视频| e午夜精品久久久久久久| 色精品久久人妻99蜜桃| 在线观看舔阴道视频| 国产精华一区二区三区| 亚洲精品国产精品久久久不卡| 久久久成人免费电影| 真人做人爱边吃奶动态| 色av中文字幕| 毛片女人毛片| 视频区欧美日本亚洲| 少妇人妻一区二区三区视频| 黑人巨大精品欧美一区二区mp4| 亚洲 欧美一区二区三区| www国产在线视频色| 久久久久国内视频| 淫秽高清视频在线观看| 亚洲专区中文字幕在线| 中文字幕久久专区| 午夜激情欧美在线| 日韩欧美免费精品| 一区二区三区高清视频在线| 国产精品久久电影中文字幕| 欧美日韩福利视频一区二区| 亚洲国产欧洲综合997久久,| 国产乱人伦免费视频| 性欧美人与动物交配| 麻豆成人午夜福利视频| 毛片女人毛片| 高清毛片免费观看视频网站| 亚洲18禁久久av| 一a级毛片在线观看| 人人妻人人澡欧美一区二区| 亚洲 国产 在线| 悠悠久久av| 99国产精品99久久久久| 别揉我奶头~嗯~啊~动态视频| 国产av不卡久久| 又粗又爽又猛毛片免费看| 此物有八面人人有两片| 91字幕亚洲| 久久人人精品亚洲av| 国产亚洲av高清不卡| 最近视频中文字幕2019在线8| 色哟哟哟哟哟哟| 中文字幕高清在线视频| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩高清专用| 亚洲精华国产精华精| 午夜福利视频1000在线观看| 丝袜人妻中文字幕| 久久九九热精品免费| 精品一区二区三区视频在线 | 在线播放国产精品三级| 亚洲国产色片| 97超级碰碰碰精品色视频在线观看| 免费在线观看成人毛片| 欧美成人性av电影在线观看| 国产一区二区在线av高清观看| 女人高潮潮喷娇喘18禁视频| 亚洲一区二区三区色噜噜| 老熟妇乱子伦视频在线观看| 大型黄色视频在线免费观看| 麻豆一二三区av精品| xxxwww97欧美| 午夜激情欧美在线| 欧美一区二区国产精品久久精品| 亚洲精品在线观看二区| 岛国在线观看网站| 亚洲国产欧美网| 国产精品一区二区免费欧美| 精品久久蜜臀av无| 亚洲成人久久爱视频| 国产成人影院久久av| 成人午夜高清在线视频| 久久久久久大精品| 国产高清视频在线观看网站| 国产一区二区在线观看日韩 | 美女扒开内裤让男人捅视频| 色精品久久人妻99蜜桃| 久久久久久国产a免费观看| 久久久水蜜桃国产精品网| 久久久水蜜桃国产精品网| 日韩欧美精品v在线| 色哟哟哟哟哟哟| 欧美日韩黄片免| 1000部很黄的大片| 在线视频色国产色| 99久久精品热视频| 美女黄网站色视频| 一区福利在线观看| 国产男靠女视频免费网站| 999久久久国产精品视频| 成人三级黄色视频| 国产精品,欧美在线| 亚洲国产欧洲综合997久久,| 他把我摸到了高潮在线观看| 亚洲中文字幕一区二区三区有码在线看 | 91av网站免费观看| 日本a在线网址| 嫁个100分男人电影在线观看| 可以在线观看的亚洲视频| 欧美成人一区二区免费高清观看 | 亚洲天堂国产精品一区在线| 国内精品久久久久精免费| 老司机福利观看| 中出人妻视频一区二区| 非洲黑人性xxxx精品又粗又长| 成年免费大片在线观看| 国产高清三级在线| 色综合婷婷激情| 亚洲专区字幕在线| 一区二区三区激情视频| 日韩欧美 国产精品| 小蜜桃在线观看免费完整版高清| 99久国产av精品| 亚洲人成电影免费在线| 中出人妻视频一区二区| 啦啦啦观看免费观看视频高清| 91老司机精品| 日韩大尺度精品在线看网址| 久久国产精品人妻蜜桃| 亚洲av成人精品一区久久| 天堂网av新在线| 久久久久精品国产欧美久久久| 国产aⅴ精品一区二区三区波| 两个人看的免费小视频| 亚洲在线自拍视频| 黑人欧美特级aaaaaa片| 最新美女视频免费是黄的| 国产成人精品久久二区二区免费| 99精品在免费线老司机午夜| 国产97色在线日韩免费| 精品欧美国产一区二区三| 18美女黄网站色大片免费观看| 亚洲精品粉嫩美女一区| 亚洲专区中文字幕在线| 天堂av国产一区二区熟女人妻| 久99久视频精品免费| 变态另类丝袜制服| 日本免费一区二区三区高清不卡| 免费观看精品视频网站| 亚洲人与动物交配视频| 岛国视频午夜一区免费看| 免费看光身美女| 中文在线观看免费www的网站| 桃色一区二区三区在线观看| 天天添夜夜摸| av中文乱码字幕在线| 白带黄色成豆腐渣| 真实男女啪啪啪动态图| 亚洲欧洲精品一区二区精品久久久| 黑人操中国人逼视频| 久久精品91蜜桃| 两个人的视频大全免费| 老汉色∧v一级毛片| 亚洲成人精品中文字幕电影| 99热只有精品国产| 国产高清视频在线观看网站| 中文字幕人妻丝袜一区二区| 搡老妇女老女人老熟妇| 久久九九热精品免费| 老司机午夜十八禁免费视频| 天天躁日日操中文字幕| 久久性视频一级片| tocl精华| 亚洲欧美精品综合久久99| 99久久精品一区二区三区| 国产精品亚洲一级av第二区| 午夜福利在线在线| 日韩精品青青久久久久久| 久久中文看片网| 久久精品91无色码中文字幕| 99久国产av精品| 久久伊人香网站| 精品午夜福利视频在线观看一区| 熟女少妇亚洲综合色aaa.| 亚洲第一电影网av| 人人妻人人看人人澡| 黑人巨大精品欧美一区二区mp4| 国产精品久久久av美女十八| 亚洲精品粉嫩美女一区| 免费观看的影片在线观看| 精品无人区乱码1区二区| 亚洲成人久久爱视频| 三级毛片av免费| 在线播放国产精品三级| 国产伦一二天堂av在线观看| 成人特级黄色片久久久久久久| 日韩中文字幕欧美一区二区| 免费无遮挡裸体视频| 国产亚洲av高清不卡| 久久精品人妻少妇| 一a级毛片在线观看| 天堂动漫精品| 综合色av麻豆| 日本 欧美在线| 非洲黑人性xxxx精品又粗又长| 午夜福利成人在线免费观看| 99热精品在线国产| 日韩中文字幕欧美一区二区| 欧美日韩黄片免| 午夜福利在线观看免费完整高清在 | 日日干狠狠操夜夜爽| 99riav亚洲国产免费| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产欧美人成| 亚洲精品中文字幕一二三四区| 午夜福利在线观看吧| 亚洲熟妇熟女久久| 亚洲国产欧美人成| 欧美午夜高清在线| 久久久久久大精品| 一个人观看的视频www高清免费观看 | 久久香蕉国产精品| av视频在线观看入口| 丝袜人妻中文字幕| 中文字幕精品亚洲无线码一区| 成人鲁丝片一二三区免费| 国产人伦9x9x在线观看| 麻豆一二三区av精品| 成人国产综合亚洲| 日本黄大片高清| 日韩人妻高清精品专区| 日本免费一区二区三区高清不卡| 亚洲精品国产精品久久久不卡| 嫁个100分男人电影在线观看| 法律面前人人平等表现在哪些方面| 亚洲av电影不卡..在线观看| 欧美中文综合在线视频| 男女下面进入的视频免费午夜| 国产欧美日韩一区二区三| 欧美成人一区二区免费高清观看 | 身体一侧抽搐| 欧美黑人欧美精品刺激| 成在线人永久免费视频| 午夜福利高清视频| 嫩草影视91久久| 国产精品九九99| 后天国语完整版免费观看| 法律面前人人平等表现在哪些方面| 夜夜夜夜夜久久久久| 亚洲精品乱码久久久v下载方式 | 国产亚洲精品久久久com| 国产久久久一区二区三区| 亚洲国产精品合色在线| 2021天堂中文幕一二区在线观| 国产一区在线观看成人免费| 午夜福利在线在线| 18禁国产床啪视频网站| 亚洲七黄色美女视频| 亚洲av第一区精品v没综合| 久久久久久久精品吃奶| 非洲黑人性xxxx精品又粗又长| www.熟女人妻精品国产| 看片在线看免费视频| 国产视频一区二区在线看| 巨乳人妻的诱惑在线观看| 精品免费久久久久久久清纯| 色播亚洲综合网| 一个人免费在线观看电影 | 亚洲国产中文字幕在线视频| 亚洲男人的天堂狠狠| 国产激情欧美一区二区| 欧美乱码精品一区二区三区| 人妻夜夜爽99麻豆av| 美女高潮喷水抽搐中文字幕| 久久九九热精品免费| bbb黄色大片| 欧美丝袜亚洲另类 | 99riav亚洲国产免费| 桃色一区二区三区在线观看| 怎么达到女性高潮| 久久国产精品影院| 五月伊人婷婷丁香| 国产精品免费一区二区三区在线| 俄罗斯特黄特色一大片| 亚洲人成电影免费在线| 丰满人妻熟妇乱又伦精品不卡| 久久午夜综合久久蜜桃| 欧美日韩瑟瑟在线播放| 老熟妇仑乱视频hdxx| 日韩欧美一区二区三区在线观看| 在线观看美女被高潮喷水网站 | 搡老妇女老女人老熟妇| 无人区码免费观看不卡| 国产激情偷乱视频一区二区| ponron亚洲| 国产精品久久久久久精品电影| 久久久水蜜桃国产精品网| 国产精品爽爽va在线观看网站| www.www免费av| 日本一本二区三区精品| 国产午夜福利久久久久久| 亚洲欧美日韩无卡精品| 国产精品一及| 久久精品综合一区二区三区| 香蕉国产在线看| 欧美高清成人免费视频www| 日本与韩国留学比较| 69av精品久久久久久| 精品久久久久久久久久免费视频| 99久久久亚洲精品蜜臀av| 欧美黄色片欧美黄色片| 国产精品自产拍在线观看55亚洲| 一边摸一边抽搐一进一小说| 又爽又黄无遮挡网站| 窝窝影院91人妻| 亚洲自拍偷在线| 色播亚洲综合网| 久久午夜综合久久蜜桃| 成人国产一区最新在线观看| 天天添夜夜摸| 99久久精品热视频| 哪里可以看免费的av片| 99精品久久久久人妻精品| 99热精品在线国产| 1000部很黄的大片| АⅤ资源中文在线天堂| 成人性生交大片免费视频hd| 黄色丝袜av网址大全| 亚洲色图av天堂| 深夜精品福利| 99在线视频只有这里精品首页| 色综合婷婷激情| 国产精品久久久av美女十八| 国产精品久久视频播放| 亚洲天堂国产精品一区在线| 国语自产精品视频在线第100页| 精品一区二区三区视频在线观看免费| 久久中文看片网| 这个男人来自地球电影免费观看| 两人在一起打扑克的视频| 国产伦一二天堂av在线观看| 国产男靠女视频免费网站| 国产亚洲欧美在线一区二区| 十八禁人妻一区二区| 国产 一区 欧美 日韩| 日本黄色视频三级网站网址| 黄片小视频在线播放| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品久久男人天堂| 欧美日韩综合久久久久久 | bbb黄色大片| 老司机深夜福利视频在线观看| 嫩草影视91久久| 国产精品日韩av在线免费观看| 久久性视频一级片| 国产成人av激情在线播放| 在线a可以看的网站| 亚洲激情在线av| 一本久久中文字幕| 亚洲av成人精品一区久久| 成年女人看的毛片在线观看| 一区福利在线观看| 午夜福利在线观看吧| 级片在线观看| 夜夜看夜夜爽夜夜摸| 久久久久久久久久黄片| 国产精华一区二区三区| 亚洲av成人精品一区久久| 麻豆久久精品国产亚洲av| 99在线人妻在线中文字幕| 欧美日韩一级在线毛片| 国产成人av激情在线播放| 无限看片的www在线观看| 午夜福利欧美成人| 亚洲精品久久国产高清桃花| 国产 一区 欧美 日韩| 国产精品99久久久久久久久| 少妇人妻一区二区三区视频| 欧美xxxx黑人xx丫x性爽| 狠狠狠狠99中文字幕| 国产私拍福利视频在线观看| 国产成人aa在线观看| 岛国在线观看网站| 中文字幕人妻丝袜一区二区| 午夜激情福利司机影院| 又黄又粗又硬又大视频| 日本 av在线| 男人和女人高潮做爰伦理| 99国产精品一区二区三区| 国产精品一区二区三区四区久久| 欧美中文日本在线观看视频| 国产一级毛片七仙女欲春2| 黄色视频,在线免费观看| 午夜成年电影在线免费观看| 午夜福利高清视频| 听说在线观看完整版免费高清| 欧美大码av| 97人妻精品一区二区三区麻豆| a在线观看视频网站| 欧美高清成人免费视频www| 美女午夜性视频免费| 亚洲欧美日韩高清专用| 免费看光身美女| 国产成年人精品一区二区| 亚洲人成伊人成综合网2020| 国产精品1区2区在线观看.| 九九热线精品视视频播放| 国产人伦9x9x在线观看| 亚洲欧美日韩无卡精品| 午夜精品久久久久久毛片777| 亚洲专区国产一区二区| 中文字幕熟女人妻在线| www.精华液| 日本免费一区二区三区高清不卡| 久久久水蜜桃国产精品网| 两性夫妻黄色片| av黄色大香蕉| 日本成人三级电影网站| avwww免费| 男女视频在线观看网站免费| 精品午夜福利视频在线观看一区| 亚洲欧美日韩高清在线视频| 夜夜看夜夜爽夜夜摸| 丰满的人妻完整版| 男女视频在线观看网站免费| 91麻豆av在线| 99国产精品一区二区三区| 欧美日本亚洲视频在线播放| 嫩草影院精品99| 老司机午夜十八禁免费视频| 99久久精品一区二区三区| 日韩欧美 国产精品| 日本精品一区二区三区蜜桃| 嫩草影院入口| 99久久综合精品五月天人人| 欧美日韩瑟瑟在线播放| 亚洲美女视频黄频| www.www免费av| 伦理电影免费视频| 99国产精品一区二区三区| 国产三级中文精品| 国产一区二区激情短视频| 久久午夜亚洲精品久久| 久久午夜综合久久蜜桃| 黄色日韩在线| 男人舔女人下体高潮全视频| 91在线精品国自产拍蜜月 | 熟女人妻精品中文字幕| 亚洲av五月六月丁香网| 床上黄色一级片| 亚洲精品乱码久久久v下载方式 | 小说图片视频综合网站| 成在线人永久免费视频| 久久国产精品人妻蜜桃| 日韩欧美精品v在线| 一本一本综合久久| 亚洲国产精品合色在线| 亚洲av日韩精品久久久久久密| 蜜桃久久精品国产亚洲av| 神马国产精品三级电影在线观看| 色精品久久人妻99蜜桃| 亚洲最大成人中文| 免费电影在线观看免费观看| 国产成人一区二区三区免费视频网站| 动漫黄色视频在线观看| 母亲3免费完整高清在线观看| 中文字幕av在线有码专区| 欧美午夜高清在线| 99久久精品国产亚洲精品| 国产精品亚洲一级av第二区| 最近最新中文字幕大全免费视频| 啦啦啦观看免费观看视频高清| 免费av毛片视频| 校园春色视频在线观看| 亚洲国产精品sss在线观看| 很黄的视频免费| 日本免费一区二区三区高清不卡| 国产亚洲精品久久久com| 亚洲国产精品合色在线| 亚洲av电影在线进入| 亚洲中文日韩欧美视频| 久久中文看片网| 色尼玛亚洲综合影院| 美女午夜性视频免费| 99久久精品国产亚洲精品| 亚洲专区中文字幕在线| 午夜精品久久久久久毛片777| 亚洲电影在线观看av| 母亲3免费完整高清在线观看| 91九色精品人成在线观看| 久久久水蜜桃国产精品网| 亚洲欧洲精品一区二区精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 18禁黄网站禁片午夜丰满| 在线观看66精品国产| 久久中文字幕人妻熟女| 亚洲国产欧美网| 成人特级av手机在线观看| 欧美最黄视频在线播放免费| 十八禁网站免费在线| 国产又黄又爽又无遮挡在线| 一进一出好大好爽视频| 午夜福利成人在线免费观看| 2021天堂中文幕一二区在线观| 熟女人妻精品中文字幕| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 国产黄片美女视频| 亚洲欧美日韩卡通动漫| 欧美日本视频| 国产亚洲欧美在线一区二区| 国产成人精品久久二区二区免费| 欧美一区二区国产精品久久精品| 精品国产乱子伦一区二区三区| 黄片小视频在线播放| www.精华液| 亚洲国产精品sss在线观看| 三级毛片av免费| 三级国产精品欧美在线观看 | 国产欧美日韩精品一区二区| 久久精品综合一区二区三区| 成人一区二区视频在线观看| 宅男免费午夜| 美女扒开内裤让男人捅视频| 中文字幕人成人乱码亚洲影| www国产在线视频色| 在线视频色国产色| 很黄的视频免费| 两个人的视频大全免费| 免费观看的影片在线观看| 一区二区三区激情视频| 免费观看的影片在线观看| 999久久久精品免费观看国产| 欧美成狂野欧美在线观看| 两个人的视频大全免费| 女警被强在线播放| 人人妻,人人澡人人爽秒播| 久9热在线精品视频| 999久久久精品免费观看国产| 18美女黄网站色大片免费观看| 国产精品99久久99久久久不卡| 国产伦人伦偷精品视频| 欧美一级a爱片免费观看看| 在线视频色国产色| 最近在线观看免费完整版| 免费在线观看视频国产中文字幕亚洲| 国产成年人精品一区二区| 人妻久久中文字幕网| 又粗又爽又猛毛片免费看| 18禁裸乳无遮挡免费网站照片| 欧美高清成人免费视频www| 草草在线视频免费看| 女警被强在线播放|