肖曉飛郝衛(wèi)亞李旭鴻吳成亮
1國家體育總局體育科學(xué)研究所(北京 100061)2山東工商學(xué)院3浙江體育科學(xué)研究所4重慶三峽學(xué)院
下肢關(guān)節(jié)剛度對(duì)自由操落地沖擊負(fù)荷的影響
肖曉飛1,2郝衛(wèi)亞1李旭鴻3吳成亮4
1國家體育總局體育科學(xué)研究所(北京 100061)2山東工商學(xué)院3浙江體育科學(xué)研究所4重慶三峽學(xué)院
目的:探討下肢關(guān)節(jié)剛度對(duì)運(yùn)動(dòng)員下肢關(guān)節(jié)負(fù)荷的影響,為降低下肢損傷風(fēng)險(xiǎn)提供依據(jù)。方法:通過2臺(tái)高速攝像機(jī)(300 Hz)采集男子自由操團(tuán)身后空翻兩周轉(zhuǎn)體720°(后團(tuán)720旋)落地站穩(wěn)動(dòng)作,利用SIMI解析(8 Hz)獲取三維運(yùn)動(dòng)學(xué)數(shù)據(jù),使用BRG.LifeMODTM分別創(chuàng)建14環(huán)節(jié)人體剛體模型和自由操落地墊模型,模擬了人體不同下肢關(guān)節(jié)剛度條件下落地動(dòng)作。結(jié)果:后團(tuán)720旋落地,水平GRF分量約為2.5 BW,且膝、踝關(guān)節(jié)外展/外翻角速度較大,峰值負(fù)荷率約219.5 BW/s,峰值負(fù)荷率衰減為88.6 BW/s;膝、踝關(guān)節(jié)剛度增加40%,膝關(guān)節(jié)伸肌力矩峰值增加11.6%,屈肌力矩峰值降低5.2%;膝、踝關(guān)節(jié)剛度降低40%,膝關(guān)節(jié)伸肌力矩峰值降低21.9%。結(jié)論:后團(tuán)720旋落地施加于膝、踝關(guān)節(jié)較大的橫向作用力,冠狀面關(guān)節(jié)力矩較大。增加膝、踝關(guān)節(jié)剛度,會(huì)增加膝關(guān)節(jié)伸肌力矩峰值,降低外展力矩峰值。
下肢關(guān)節(jié)剛度;膝;踝;自由操落地;后團(tuán)720旋;沖擊負(fù)荷;計(jì)算機(jī)仿真
為進(jìn)一步研究體育運(yùn)動(dòng)中起跳或落地階段施加于人體下肢的復(fù)雜力學(xué)特性,下肢剛度(腿剛度、關(guān)節(jié)剛度、肌肉-肌腱剛度等)成為運(yùn)動(dòng)生物力學(xué)和臨床生物力學(xué)領(lǐng)域熱點(diǎn)問題之一。胡克定律(Hooke’s law)把下肢當(dāng)做有質(zhì)量的彈簧模型,將下肢剛度定義為施加于下肢的力和變形之間的關(guān)系。不同的研究主題,下肢剛度的評(píng)價(jià)方式不同。步態(tài)、縱跳等起跳和落地,常用腿剛度(垂直力對(duì)位移變化量的微分)進(jìn)行分析;跑步、向前或向后起跳或落地,常用關(guān)節(jié)剛度[1]。關(guān)節(jié)被假設(shè)為有一定的線性剛度,關(guān)節(jié)剛度(扭轉(zhuǎn)剛度)用關(guān)節(jié)力矩(功)變化量對(duì)關(guān)節(jié)角度變化量的微分表示[2]。較大的下肢剛度,有助于提高運(yùn)動(dòng)表現(xiàn)[3],同時(shí)也會(huì)降低下肢關(guān)節(jié)運(yùn)動(dòng)范圍,可能誘發(fā)骨損傷;較小的下肢剛度,則會(huì)產(chǎn)生過度的關(guān)節(jié)運(yùn)動(dòng),有可能導(dǎo)致軟組織損傷[4,5]。因而,下肢剛度,尤其是膝、踝關(guān)節(jié)剛度被認(rèn)為是運(yùn)動(dòng)中骨骼肌肉損傷的重要風(fēng)險(xiǎn)因素[6-9]。
體操運(yùn)動(dòng)員的日常訓(xùn)練中每周有約200次的落地或下法[10],下肢骨骼肌肉系統(tǒng)要承受高達(dá)8~14倍體重的GRF沖擊[11,12],重復(fù)、巨大的沖擊力誘發(fā)了極高的下肢損傷率。自由操作為體操中損傷率最高的項(xiàng)目[13],日常訓(xùn)練和比賽的落地階段,踝、膝關(guān)節(jié)是主要的損傷部位[14,15]。這不僅造成日常訓(xùn)練時(shí)間的大量缺失,影響后續(xù)的比賽成績[16],而且有可能引發(fā)踝關(guān)節(jié)附近部位的病變[17]。落地?fù)p傷成為教練員和運(yùn)動(dòng)員需共同面對(duì)的難題。落地過程中,運(yùn)動(dòng)員可以通過調(diào)節(jié)關(guān)節(jié)剛度來改變身體姿態(tài)、GRF峰值以及內(nèi)部關(guān)節(jié)力矩,關(guān)節(jié)剛度調(diào)節(jié)成為運(yùn)動(dòng)員運(yùn)動(dòng)能力或身體控制能力的重要組成部分,合理的關(guān)節(jié)剛度有助于提高運(yùn)動(dòng)表現(xiàn)和避免運(yùn)動(dòng)損傷[5]。遺憾的是,尚未見到有關(guān)體操落地中下肢關(guān)節(jié)剛度與膝、踝損傷風(fēng)險(xiǎn)評(píng)估的文獻(xiàn)報(bào)道。此外,由于人體個(gè)性化的關(guān)節(jié)剛度值存在差異,很難通過在體實(shí)驗(yàn)確定關(guān)節(jié)剛度調(diào)節(jié)對(duì)沖擊力、關(guān)節(jié)力矩等的影響[6],而計(jì)算機(jī)仿真方法,可有效解決在體實(shí)驗(yàn)中的下肢剛度定量改變的難題。
因此,本研究通過計(jì)算機(jī)仿真方法,模擬體操運(yùn)動(dòng)員不同膝、踝關(guān)節(jié)剛度的膝和踝關(guān)節(jié)生物力學(xué)特征,量化自由操落地階段關(guān)節(jié)剛度調(diào)整對(duì)膝、踝關(guān)節(jié)內(nèi)外負(fù)荷的影響,從而加深對(duì)關(guān)節(jié)剛度與膝、踝關(guān)節(jié)損傷機(jī)制關(guān)系的理解,為降低自由操落地誘發(fā)的膝、踝關(guān)節(jié)潛在損傷風(fēng)險(xiǎn)提供依據(jù)。
1.1受試者
中國男子體操隊(duì)現(xiàn)役運(yùn)動(dòng)員1名(國際健將級(jí),世錦賽冠軍),年齡22周歲,體重59 kg,身高163 cm,體操訓(xùn)練16年,完成動(dòng)作為自由操踺子小翻接團(tuán)身后空翻兩周轉(zhuǎn)體720度(簡稱“后團(tuán)720旋”),自愿參與本研究,下肢沒有任何肌肉和韌帶損傷史。
1.2三維運(yùn)動(dòng)學(xué)數(shù)據(jù)采集
儀器設(shè)備:2臺(tái)高速攝像機(jī)(CASIO EX-F1),拍攝頻率300Hz,快門速度1/320 s。攝像機(jī)安放在自由操場(chǎng)地的兩個(gè)相鄰對(duì)角線延長線上,兩機(jī)夾角90度,拍攝距離分別為27 m和35 m[18]。使用三維PEAK標(biāo)定框架(美國,PEAK公司,28個(gè)Marker點(diǎn))。
告知運(yùn)動(dòng)員基本程序、方法、可能存在的風(fēng)險(xiǎn),受試者簽署協(xié)議書。運(yùn)動(dòng)員的動(dòng)作來源于第45屆世界體操錦標(biāo)賽中國男子體操隊(duì)隊(duì)內(nèi)選拔賽,對(duì)后團(tuán)720旋落地站穩(wěn)動(dòng)作進(jìn)行三維運(yùn)動(dòng)學(xué)采集,動(dòng)作選取、運(yùn)動(dòng)學(xué)數(shù)字化解析同文獻(xiàn)[19,20]。
1.3計(jì)算機(jī)仿真
采用文獻(xiàn)[19,20]的方法對(duì)受試者進(jìn)行個(gè)性化人體參數(shù)測(cè)量、創(chuàng)建14環(huán)節(jié)人體多剛體模型和自由體操落地墊模型、進(jìn)行模型有效性和仿真精度驗(yàn)證,然后完成自由操后團(tuán)720旋落地的計(jì)算機(jī)仿真。利用關(guān)節(jié)力矩變化量對(duì)關(guān)節(jié)角度變化量的微分方法計(jì)算下肢關(guān)節(jié)剛度[2],獲得運(yùn)動(dòng)員完成該動(dòng)作膝、踝關(guān)節(jié)在矢狀面、冠狀面、水平面的基準(zhǔn)關(guān)節(jié)剛度(定義為100%k),然后分別模擬不同膝、踝關(guān)節(jié)剛度(60%k、100%k、140%k)條件下的落地動(dòng)作。
1.4膝、踝關(guān)節(jié)沖擊動(dòng)力學(xué)評(píng)估
后團(tuán)720旋動(dòng)作,帶有兩周轉(zhuǎn)體動(dòng)作致使落地后身體帶有一定的水平旋轉(zhuǎn)速度,會(huì)同時(shí)影響下肢關(guān)節(jié)矢狀面和冠狀面的負(fù)荷。本研究中左腳GRF略高于右腳,因此以左腳為例,選擇GRF峰值負(fù)荷率、GRF峰值負(fù)荷衰減率、膝關(guān)節(jié)矢狀面和冠狀面力矩、踝關(guān)節(jié)矢狀面和冠狀面力矩、膝和踝關(guān)節(jié)肌肉合力做功(正功、負(fù)功)[19,20]等指標(biāo),量化下肢關(guān)節(jié)剛度變化對(duì)膝、踝關(guān)節(jié)內(nèi)外負(fù)荷的影響。
后團(tuán)720旋雙腳落地,體操運(yùn)動(dòng)員一般采取前腳掌落地方式。足尖觸墊到GRF峰值(約11.8 BW)時(shí)間為54 ms,水平GRF峰值(GRFh)約為2.5 BW(表1)。峰值負(fù)荷率約219.5 BW/s,峰值負(fù)荷衰減率為88.6 BW/s,落地沖擊緩沖后基本站穩(wěn)(約0.9 BW),合計(jì)376 ms,仿真獲得的基準(zhǔn)關(guān)節(jié)剛度(100%)的GRF-時(shí)間曲
線如圖1所示。
表1 膝、踝關(guān)節(jié)剛度對(duì)膝、踝關(guān)節(jié)內(nèi)外負(fù)荷的影響
圖1 后團(tuán)720旋落地的GRF
不同關(guān)節(jié)剛度的仿真,到達(dá)GRF峰值后下降到第一次最小值時(shí)間不一致,進(jìn)行時(shí)間歸一化處理,截取基準(zhǔn)關(guān)節(jié)剛度(100%)足尖觸墊到第一次GRF最小值(180 ms),該階段膝、踝關(guān)節(jié)負(fù)荷相對(duì)較大,常用來分析落地沖擊動(dòng)力學(xué)特征。
圖2 后團(tuán)720旋落地的下肢關(guān)節(jié)角度-時(shí)間變化特征
下肢關(guān)節(jié)剛度對(duì)膝、踝關(guān)節(jié)運(yùn)動(dòng)學(xué)角度影響較小,僅說明實(shí)測(cè)運(yùn)動(dòng)學(xué)關(guān)節(jié)角度變化情況。膝關(guān)節(jié)屈曲角度(矢狀面)可有效減緩落地沖擊力,到達(dá)GRF峰值之
前具有較大的角速度;受落地墊彈性及體操規(guī)則影響,踝關(guān)節(jié)背伸運(yùn)動(dòng)范圍(矢狀面)較小;沖擊的前30 ms,膝、踝關(guān)節(jié)具有較大的外展/外翻角速度(圖2)。
下肢關(guān)節(jié)剛度變化對(duì)GRF峰值、踝關(guān)節(jié)力矩峰值影響不大;下肢關(guān)節(jié)剛度增加40%,膝關(guān)節(jié)伸肌力矩峰值增加11.6%,屈肌力矩峰值降低5.2%;關(guān)節(jié)剛度降低40%,膝關(guān)節(jié)伸肌力矩峰值降低21.9%,但會(huì)增加膝關(guān)節(jié)冠狀面力矩峰值;膝關(guān)節(jié)伸肌、屈肌力矩做功與關(guān)節(jié)剛度關(guān)系變化趨勢(shì)同關(guān)節(jié)力矩;踝關(guān)節(jié)背伸、趾屈力矩作功隨關(guān)節(jié)剛度增加而增加(圖3,表1)。
圖3 膝、踝關(guān)節(jié)剛度對(duì)膝關(guān)節(jié)力矩的影響
自由操高難度空翻帶有轉(zhuǎn)體的落地給下肢帶來極大的GRF沖擊,GRF成為落地沖擊動(dòng)力學(xué)中評(píng)價(jià)下肢負(fù)荷及損傷風(fēng)險(xiǎn)的重要指標(biāo)[21]。本研究通過逆動(dòng)力學(xué)方法仿真獲得的GRF峰值為11.8 BW,到達(dá)峰值時(shí)間為54 ms,與文獻(xiàn)報(bào)道[22]的體操落地到達(dá)GRF峰值時(shí)間基本一致。同時(shí),峰值負(fù)荷率約為峰值負(fù)荷衰減率的2.5倍,說明從足尖觸墊到GRF峰值階段下肢承受極大的沖擊負(fù)荷。此外,膝、踝關(guān)節(jié)剛度調(diào)整,并未引起GRF峰值的明顯變化,與步態(tài)、跑步的研究結(jié)果(GRF峰值隨下肢剛度的增加而增加[5])略有差別。這可能與落地墊的粘彈性有關(guān),落地墊的緩沖可從一定程度上緩解關(guān)節(jié)剛度增加施加于脛骨的沖擊力。
冠狀面較大的負(fù)荷是誘發(fā)膝、踝內(nèi)收、外展/內(nèi)翻、外翻的主要原因,經(jīng)常伴隨著膝關(guān)節(jié)外側(cè)副韌帶、前交叉韌帶(ACL)以及踝關(guān)節(jié)外側(cè)副韌帶損傷[23,24]。遺憾的是,以往的研究意識(shí)到旋轉(zhuǎn)動(dòng)作落地給下肢帶來較大沖擊負(fù)荷[25,26],卻未見體操落地水平GRF實(shí)驗(yàn)測(cè)試數(shù)據(jù)以及冠狀面負(fù)荷的文獻(xiàn)報(bào)道。冠狀面下肢環(huán)節(jié)的負(fù)荷受GRFh和GRF垂直分量共同影響。后團(tuán)720旋落地時(shí)垂直人體運(yùn)動(dòng)方向的水平速度較大,只能依靠足和落地墊的摩擦力(等值于GRFh,方向相反)制動(dòng),從而實(shí)現(xiàn)落地完全站穩(wěn)。本研究中,GRFh約為2.5 BW,數(shù)量級(jí)上接近跑步時(shí)的總沖擊力(2~3 BW)[27],會(huì)讓脛骨向前加速,并對(duì)膝關(guān)節(jié)產(chǎn)生橫向作用力;膝關(guān)節(jié)冠狀面外展力矩峰值接近于矢狀面伸肌力矩峰值,這與縱跳落地動(dòng)作的沖擊動(dòng)力學(xué)存在較大差異。施加于膝、踝關(guān)節(jié)較大的橫向作用力產(chǎn)生的內(nèi)收/外展、內(nèi)翻/外翻力矩,可能會(huì)導(dǎo)致膝、踝關(guān)節(jié)處于非正常位置,從而存在較高的損傷風(fēng)險(xiǎn)[28]。
據(jù)報(bào)道,關(guān)節(jié)力矩、關(guān)節(jié)角位移、關(guān)節(jié)剛度以及運(yùn)動(dòng)表現(xiàn)之間具有良好的一致性[5,9,29,30]。下肢關(guān)節(jié)剛度對(duì)于保持膝、踝關(guān)節(jié)穩(wěn)定性非常重要,膝、踝關(guān)節(jié)運(yùn)動(dòng)學(xué)角度的不對(duì)稱,使得冠狀面內(nèi)收/內(nèi)翻和外展/外翻兩個(gè)方向的負(fù)荷存在差異。在落地沖擊的較短時(shí)間內(nèi),下肢關(guān)節(jié)剛度代表著關(guān)節(jié)的壓縮能力,決定著下肢關(guān)節(jié)的動(dòng)力學(xué)穩(wěn)定性[31],從而影響下肢剛度[8]。下肢關(guān)節(jié)剛度增加,一方面,有助于抵抗落地沖擊過程中下肢向下坍塌,防止身體失去平衡而跌倒[32];另一方面,會(huì)產(chǎn)生更大的膝伸肌和踝背伸肌力矩,使得膝、踝關(guān)節(jié)肌肉需要耗散更多的沖擊能量[6]。本研究中,膝、踝關(guān)節(jié)剛度增加40%會(huì)增加膝伸肌力矩峰值12%,說明更大的膝關(guān)節(jié)剛度需要更大的肌肉活動(dòng)能力。反過來,較強(qiáng)的肌肉力量可以增加關(guān)節(jié)剛度。比如,股四頭肌、腘繩肌、腓腸肌肌肉活動(dòng)能力的增加會(huì)增加膝關(guān)節(jié)剛度48%~400%[30],有助于減少施加于膝關(guān)節(jié)韌帶(如ACL)的外部沖擊力。同時(shí),膝、踝關(guān)節(jié)剛度增加,膝關(guān)節(jié)冠狀面外展力矩峰值降低,這與文獻(xiàn)報(bào)道的結(jié)果[足前部位先觸地的落地方式,下肢關(guān)節(jié)剛度增加,會(huì)降低膝關(guān)節(jié)的角位移(excursion),但會(huì)增加踝關(guān)節(jié)的角位移[33]]是一致的。因此,增加膝關(guān)節(jié)剛度,可以保護(hù)膝關(guān)節(jié),降低膝關(guān)節(jié)半脫位(subluxation)的可能性[30]。此外,更大的膝關(guān)節(jié)屈曲角度,可以降低下肢剛度,有助于降低GRF沖擊引發(fā)的膝關(guān)節(jié)伸肌力矩峰值,從而降低膝關(guān)節(jié)韌帶的負(fù)
荷[34],但膝關(guān)節(jié)冠狀面外展力矩峰值增加,這一結(jié)果提示,關(guān)節(jié)剛度的下降可能是非接觸性ACL損傷的重要風(fēng)險(xiǎn)因素[24,35]。盡管有研究表明,搶籃板球的起跳動(dòng)作,更大的踝關(guān)節(jié)剛度會(huì)增加踝關(guān)節(jié)背伸力矩[1],導(dǎo)致較少的沖擊能量吸收[6]。然而,本研究發(fā)現(xiàn),后團(tuán)720旋的落地,膝、踝關(guān)節(jié)剛度增加,踝關(guān)節(jié)會(huì)增加5%的沖擊能量吸收。對(duì)比髖、膝關(guān)節(jié),踝關(guān)節(jié)背伸肌群具有相對(duì)短的肌肉纖維,較長的肌腱;作為遠(yuǎn)端關(guān)節(jié),踝關(guān)節(jié)具有更大的力臂,在水平位置上具有更大的質(zhì)心偏移量;作為下肢中剛度最小的關(guān)節(jié),落地沖擊中,踝關(guān)節(jié)的緩沖時(shí)間最短[9],是落地沖擊中肌肉峰值功率最高的下肢關(guān)節(jié)。因此,后團(tuán)720旋落地,下肢關(guān)節(jié)剛度增加,踝關(guān)節(jié)附近肌群,如腓腸肌、比目魚肌、脛骨前肌等需要耗散相對(duì)較大的沖擊能量。
本研究選擇了下肢關(guān)節(jié)剛度這一重要的運(yùn)動(dòng)員可調(diào)整(modifiable)的身體內(nèi)部因素、仿真自由操后團(tuán)720旋的落地沖擊,分析了不同膝、踝關(guān)節(jié)剛度對(duì)膝、踝關(guān)節(jié)負(fù)荷的影響。研究結(jié)果提示,下肢關(guān)節(jié)剛度在預(yù)防膝、踝關(guān)節(jié)軟組織損傷中起重要作用,可通過平時(shí)肌肉力量訓(xùn)練進(jìn)行調(diào)整。同時(shí)也存在一定的局限性:首先,本研究采用多剛體人體模型,沒有考慮關(guān)節(jié)剛度調(diào)整對(duì)膝、踝關(guān)節(jié)具體軟組織的沖擊負(fù)荷影響;其次,本研究對(duì)象為國際健將級(jí)運(yùn)動(dòng)員的高質(zhì)量完成動(dòng)作,缺乏落地錯(cuò)誤動(dòng)作數(shù)據(jù)的比較;再者,本研究沒有考慮髖關(guān)節(jié),一方面髖關(guān)節(jié)具有較大的肌肉力量,另一方面,有研究提示髖關(guān)節(jié)的剛度對(duì)下肢剛度沒有貢獻(xiàn)[8]。后續(xù)的研究應(yīng)該補(bǔ)充落地不同錯(cuò)誤的動(dòng)作,分析冠狀面不同內(nèi)收、外展/內(nèi)翻、外翻角度對(duì)關(guān)節(jié)內(nèi)收、外展/內(nèi)翻、外翻力矩的影響。
基于下肢關(guān)節(jié)剛度的生物力學(xué)評(píng)估,對(duì)于調(diào)查和理解下肢損傷機(jī)制,尤其是膝、踝關(guān)節(jié)韌帶和軟組織損傷風(fēng)險(xiǎn)具有重要意義。自由操后團(tuán)720旋落地,具有較大的水平GRF分量,給膝、踝關(guān)節(jié)帶來較大的橫向作用力,從而冠狀面具有較大的關(guān)節(jié)力矩。膝、踝關(guān)節(jié)剛度改變,對(duì)踝關(guān)節(jié)力矩峰值影響不大。增加膝、踝關(guān)節(jié)剛度,會(huì)增加膝關(guān)節(jié)伸肌力矩峰值,降低外展力矩峰值。建議體操運(yùn)動(dòng)員加強(qiáng)下肢尤其是膝、踝關(guān)節(jié)附近肌肉力量訓(xùn)練,能熟練控制和調(diào)整落地時(shí)膝、踝關(guān)節(jié)剛度,在完成高質(zhì)量完美落地的同時(shí)盡可能避免膝、踝關(guān)節(jié)潛在損傷風(fēng)險(xiǎn)。
[1]Farley CT and Morgenroth DC.Leg stiffness primarily depends on ankle stiffness during human hopping[J].J Biomech,1999,32(3):267-273.
[2]Wu JZ,Li ZM,Cutlip RG,et al.A simulating analysis of the effects of increased joint stiffness on muscle loading in a thumb[J].Biomed Eng Online,2009,8(1):41-49.
[3]Yoon S,Tauchi K,and Takamatsu K.Effect of ankle joint stiffness during eccentric phase in rebound jumps on ankle joint torque at midpoint[J].Int J Sports Med,2007,28(01):66-71.
[4]Ambegaonkar JP,Shultz SJ,Perrin DH,et al.Lower body stiffness and muscle activity differences between female dancers and basketball players during drop jumps[J].Sports Health:A Multidisciplinary Approach,2011,3(1):89-96.
[5]Butler RJ,Crowell HP III,and Davis IM.Lower extremity stiffness:implications for performance and injury[J].Clin Biomech,2003,18(6):511-517.
[6]Schmitz RJ and Shultz SJ.Contribution of knee flexor and extensor strength on sex-specific energy absorption and torsional joint stiffness during drop jumping[J].J Athl Train,2010,45(5):445-452.
[7]Kato E,Kanehisa H,F(xiàn)ukunaga T,et al.Changes in ankle joint stiffness due to stretching:The role of tendon elongation of the gastrocnemius muscle[J].Eur J Sport Sci,2010,10(2):111-119.
[8]Hobara H,Kimura K,Omuro K,et al.Differences in lower extremity stiffness between endurance-trained athletes and untrained subjects[J].J Sci Med Sport,2010,13(1):106-111.
[9]Hobara H,Inoue K,Muraoka T,et al.Leg stiffness adjustment for a range of hopping frequencies in humans.J Biomech,2010,43(3):506-511.
[10]Gittoes MJ,Irwin G.Biomechanical approaches to understanding the potentially injurious demands of gymnastic-style impact landings[J].BMC Sports Sci,Med Rehabil,2012,4(1):4-13.
[11]Norcross MF,Lewek MD,Padua DA,et al.,Lower extremity energy absorption and biomechanics during landing,part II:frontal-plane energy analyses and interplanar relationships [J].J Athl Train,2013,48(6):757-763.
[12]Perez-Soriano P,Llana-Belloch S,Morey-Klapsing G,et al.,Effects of mat characteristics on plantar pressure patterns and perceived mat properties during landing in gymnastics[J]. Sports Biomech,2010,9(4):245-257.
[13]AsghariZamani N and Salehian MH.Investigation on the prevalence rate and some probable causes of sport injuries in Iranian elite competitive gymnastic girls[J].Eur J Expe Biology,2012,2(3):743-747.
[14]Bradshaw EJ and Hume PA.Biomechanical approaches to identify and quantify injury mechanisms and risk factors in women's artistic gymnastics[J].Sports Biomech,2012,11(3):324-341.
[15]Marshall SW,Covassin T,Dick R,et al.Descriptive
epidemiology of collegiate women's gymnastics injuries:National Collegiate Athletic Association Injury Surveillance System,1988–1989 through 2003–2004[J].J Athl Train,2007,42(2):234-240.
[16]Faude O,Junge A,Kindermann W,et al.Injuries in Female Soccer Players A Prospective Study in the German National League[J].Am J Sports Med,2005,33(11):1694-1700.
[17]Vann II MA and Manoli A II.Medial ankle impingement syndrome in female gymnasts[J].Oper Tech Sports Med,2010,18(1):50-52.
[18]Yeadon MR and Kerwin DG.Contributions of twisting techniques used in backward somersaults with one twist[J].J Appl Biomech,1999,15(2):152-165.
[19]肖曉飛,郝衛(wèi)亞,榮起國,等.自由體操落地沖擊的下肢動(dòng)力學(xué)仿真研究[J].中國運(yùn)動(dòng)醫(yī)學(xué)雜志,2015,33(2):58-65.
[20]肖曉飛,郝衛(wèi)亞,李旭鴻,等.基于不同剛體模型的體操落地沖擊動(dòng)力學(xué)比較研究[J].北京體育大學(xué)學(xué)報(bào),2015,38(3):78-83.
[21]Allen SJ,King MA,and Yeadon MR.Models incorporating pin joints are suitable for simulating performance but unsuitable for simulating internal loading[J].J Biomech,2012,45(8):1430-1436.
[22]Mills C,Pain MT,and Yeadon MR.Reducing ground reaction forces in gymnastics’landings may increase internal loading [J].J Biomech,2009,42(6):671-678.
[23]Olsen OE,Myklebust G,Engebretsen L,et al.Injury mechanisms for anterior cruciate ligament injuries in team handball:a systematic video analysis[J].Am J Sports Med,2004,32(4):1002-12.
[24]Shimokochi Y and Shultz SJ.Mechanisms of noncontact anterior cruciate ligament injury[J].J Athl Train,2008,43(4):396-408.
[25]Farana R,Uchytil J,Zahradník D,et al.,Kinematic analysis of"Lou Yun"vaults performed by top level male gymnasts:Relationship between kinematic variables and judges'score [J].Acta Universitatis Palackianae Olomucensis.Gym,2013, 43(1):17-25.
[26]Mkaouer B,Jemni M,Amara S,et al.Kinematic and Kinetic Analysis of Two Gymnastics Acrobatic Series to Performing the Backward Stretched Somersault[J].J human kinetics,2013,37(1):17-26.
[27]Nigg B and Wakeling J.Impact forces and muscle tuning:a new paradigm[J].Exerc Sport Sci Rev,2001,29(1):37-41.
[28]Bell DR,Padua DA,and Clark MA.Muscle strength and flexibility characteristics of people displaying excessive medial knee displacement[J].Arch Phys Med Rehabil,2008,89(7):1323-1328.
[29]Kerdok AE,Biewener AA,McMahon TA,et al.Energetics and mechanics of human running on surfaces of different stiffnesses[J].J Appl Physiol,2002,92(2):469-478.
[30]Wojtys EM,Ashton-Miller JA,and Huston LJ.A genderrelated difference in the contribution of the knee musculature to sagittal-plane shear stiffness in subjects with similar knee laxity[J].J Bone Joint Surg,2002,84(1):10-16.
[31]Hughes G and Watkins J.Lower Limb Coordination and Stiffness During Landing from Volleyball Block Jumps[J]. Research Sports Med,2008,16(2):138-154.
[32]Arampatzis A,Brüggemann G,and Klapsing GM.Leg stiffness and mechanical energetic processes during jumping on a sprung surface[J].Med Sci Sports Exerc,2001,33(6):923-931.
[33]Laughton CA,Davis I,and Hamill J.Effect of strike pattern and orthotic intervention on tibial shock during running[J].J Appl Biomech,2003,19(2):153-168.
[34]Dixon SJ,Collop AC,and Batt ME.Surface effects on ground reaction forces and lower extremity kinematics in running[J]. Med Sci Sports Exerc,2000,32(11):1919-1926.
[35]Hewett TE,F(xiàn)ord KR,and Myer GD.Anterior cruciate ligament injuries in female athletes Part2,a meta-analysis of neuromuscular interventions aimed at injury prevention[J]. Am J Sports Med,2006,34(3):490-498.
Influence of Knee and Ankle Joint Stiffness on the Impact Load during Landing in Gymnastic Floor Exercise
Xiao Xiaofei1,2,Hao Weiya1,Li Xuhong3,Wu Chengliang4
1 China Institute of Sport Science,Beijing,China 100061 2 Shandong Technology and Business University,Yantai,China 264005 3 Zhejiang Provincial Research Institute of Sports Sciences,Hangzhou,China 310004 4 Chongqing Three Gorges University,Chongqing,China 404100 Corresponding Author:Hao Weiya,Email:haoweiya@ciss.cn
Purpose To analyze the influence of knee and ankle joint stiffness on the impact load during landing in floor exercise in order to provide some theoretical reference for reducing the injury risk.Methods Movement of Arab spring back handspring and double salto backward tucked with 2/1 twist was captured by two high-speed video cameras,and then the kinematic data were digitized using SIMI Motion 3D analysis software.A subject-specific model with 14 segments of rigid body and a model of landing mat were separately developed using simulation software(BRG.LifeMODTM).Computer simulation of landing motion with different knee and ankle stiffness was performed.Results During landing of double salto backward tucked with 2/1 twist,there were(1)about 2.5 BW of peak horizontal GRF,and huge valgus angle velocity of knee and ankle with 219.5 BW/s of loading rate and 88.6 BW/s of loading rate attenuation;(2)increase in peak moment of knee extensor by 11.6%,decrease in peak moment of knee flexor by 5.2%when increase in knee and ankle joint stiffness by 40%,whereas decrease in peak moment of knee extensor by 21.9%when decrease in knee and ankle stiffness by 40%.Conclusions Landing of somersault and twist exerted greater horizontal force due to greater horizontal GRF.Increase in stiffness of knee and ankle would increase the peak moment of knee extensor and decrease the peak moment of knee abduction.
joint stiffness,knee,ankle,landing,floor exercise,double salto backward tucked with 2/1 twist,impact load,computer simulation
2015.10.06
國家體育總局體育科學(xué)研究所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(基本15-02,15-19)
郝衛(wèi)亞,Email:haoweiya@ciss.cn
中國運(yùn)動(dòng)醫(yī)學(xué)雜志2016年7期