• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以5-甲基-3-吡唑甲酸為配體的鈷(Ⅱ)、鎳(Ⅱ)配合物的合成、晶體結(jié)構(gòu)和性質(zhì)

    2016-12-06 09:05:19程美令王沈唐李志鵬劉琦常州大學(xué)石油化工學(xué)院江蘇省綠色催化材料和技術(shù)重點(diǎn)實(shí)驗(yàn)室常州364南京大學(xué)配位化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室南京003
    關(guān)鍵詞:吡唑配位甲酸

    程美令 王沈 唐李志鵬 劉琦,(常州大學(xué)石油化工學(xué)院,江蘇省綠色催化材料和技術(shù)重點(diǎn)實(shí)驗(yàn)室,常州364)(南京大學(xué)配位化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京003)

    以5-甲基-3-吡唑甲酸為配體的鈷(Ⅱ)、鎳(Ⅱ)配合物的合成、晶體結(jié)構(gòu)和性質(zhì)

    程美令*,1王沈1唐李志鵬1劉琦*,1,2
    (1常州大學(xué)石油化工學(xué)院,江蘇省綠色催化材料和技術(shù)重點(diǎn)實(shí)驗(yàn)室,常州213164)
    (2南京大學(xué)配位化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京210023)

    以5-甲基-3-吡唑甲酸(H2MPCA)為主配體,橋聯(lián)配體4,4′-聯(lián)吡啶(4,4′-bpy)和吡嗪(pyz)為輔助配體,合成了2個(gè)新的配合物{[Co(HMPCA)2(4,4′-bpy)]2·5H2O}n(1)和{[Ni(HMPCA)2(pyz)]·5H2O}n(2),并用元素分析、紅外光譜、X射線單晶衍射結(jié)構(gòu)分析、熱重分析等對(duì)其進(jìn)行了表征。配合物1屬于正交晶系,空間群為Pccn,配合物2屬于單斜晶系,空間群為P2/c。在1和2中,金屬離子都位于一個(gè)扭曲的八面體配位環(huán)境中,分別由4,4′-聯(lián)吡啶(1)和吡嗪(2)兩端的氮原子橋聯(lián)2個(gè)相鄰的金屬離子,形成一維鏈狀聚合物??疾炝伺浜衔?和2的熱穩(wěn)定性、熒光性能和磁性。

    鈷;鎳;5-甲基-3-吡唑甲酸;晶體結(jié)構(gòu);熒光;磁性

    0 Introduction

    In the past decades,the design and construction ofthesupramolecularcomplexesconstructedby coordination bonds and/or other weak cooperative interactions have become a very attractive research fieldincoordinationchemistryandmaterials chemistry[1-4].The interest comes from the outstanding topologicalstructuresanduniquepotential applications in many fields,such as gas storage[5-8], heterogeneouscatalysis[9-10],sensors[11],lithium-ion batteries[12-14].Synthesis of supramolecular complexes through self-assembly is a complicated process,highly influenced by a lot of factors,such as the nature of organic ligands,the coordination geometry of metal ions,metal-ligand ratio,pH value,solvent system, temperature,template agents and counteranions. There is no doubt that selection and reasonable use of characteristic ligands is the key point in the construction of complexes[15-20].Recently,N-heterocyclic carboxylic acids with good coordination capacities in multicoordination modes by the N and O donor atoms on the N-heterocyclic rings and the carboxyl groups,are increasingly used in construction of complexes.The nitrogen atoms and carboxylic oxygen atoms can not only coordinate to metals,but also act as a donor and/ oracceptorinhydrogenbondinteractionsfor assemblingthecomplexintohigh-dimensional supramolecular networks.For example,organic ligand 5-methyl-1H-pyrazole-3-carboxylic acid(H2MPCA)has been widely used to synthesize various supramolecular architectures containing transition and main group metal ions,in which,H2MPCA ligand hasboth bridging and chelating coordination modes to bind metal centers[21-25].On the other hand,the chelate N ancillary ligands,such as 2,2′-bipyridine(2,2′-bpy) and 1,10-phenanthroline(phen),were also utilized in thesynthesisprocesses,whichcanadjustthe coordination structures by occupying the terminal position[23].As we all known,bipyridine(4,4′-bpy)[26]and pyrazine(pyz)[25]are good candidates for molecular building blocks,due to their rod-like rigidity and length.But,the researches of using these bridging N ancillary ligands to construct H2MPCA containing complexes have been less explored,only two 1D coordination polymers,{[Cu2(4,4′-bpy)2(2,2′-bpy)(MPCA)2]· 6H2O}n[21]and{[Co(HMPCA)2(pyz)]·5H2O}nwere reported[25].As the continuation of our research in constructing functional metal complexes containing N-heterocyclic carboxylic acids[22-25,27-30],we carried out the reactions of H2MPCA with corresponding metal salts and bridging N ancillary 4,4′-bpy and pyz,and isolated two new complexes,{[Co(HMPCA)2(4,4′-bpy)]2·5H2O}n(1)and{[Ni(HMPCA)2(pyz)]·5H2O}n(2).In this paper,thesynthesis,crystalstructures, photoluminescentandmagneticpropertiesofthe coordination polymers 1 and 2 were described.

    1 Experimental

    1.1Materials and methods

    All solvents and starting materials for synthesis werepurchasedcommerciallyandwereusedas received.H2MPCAwaspreparedfollowingthe literature method[31].The elemental analysis(C,H and N)was performed on a Perkin-Elmer 2400 SeriesⅡelement analyzer.FTIR spectra were recorded on a Nicolet 460 spectrophotometer in the form of KBr pellets in the range of 4 000~400 cm-1.Single-crystal X-ray diffraction measurements of 1 and 2 were carried out with a Bruker Smart ApexⅡCCD diffractometer at 296(2)K.Thermogravimetric analysis (TGA)experiments were carried out on a Dupont thermal analyzer from room temperature to 800℃at a heating rate of 10℃·min-1under N2atmosphere. Powder X-ray diffraction(PXRD)determinations were performed on an X-ray diffractometer(D/max 2500 PC,Rigaku)with Cu Kα radiation(0.154 06 nm).The operating voltage and current were 60 kV and 300 mA,respectively.The luminescent spectra of the solid samples were recorded with a Cary Eclipse spectrometer.The magnetic susceptibility measurements for crystalline sample were measured over the temperature range of 1.8~300 K with a Quantum Design MPMS-XL7 SQUID magnetometer using an applied magnetic field of 2 000 Oe.Data were corrected for the diamagnetic contribution calculated from Pascalconstants.

    1.2Preparation of{[Co(HMPCA)2(4,4′-bpy)]2· 5H2O}n(1)

    To a solution containing H2MPCA(0.025 2 g,0.2 mmol)and 4,4′-bpy·2H2O(0.076 8 g,0.4 mmol)in DMF(2.0 mL)was added a solution of Co(OAc)2· 4H2O(0.024 9 g,0.1 mmol)in MeOH(4.0 mL).The resulting solution was stirred for 30 min,followed by being placed into 15 mL Teflon-lined autoclave under autogenous pressure and heated at 120℃for 24 h,then the solution was cooled to the ambient temperature at the rate of 5℃·h-1.After filtration,the product was washed with deionized water and then dried,and red crystals of 1(0.026 5 g,52%,based on H2MPCA) suitable for X-ray diffraction analysis were obtained. Anal.Calcd.for C40H44Co2N12O13(%):C,47.16;H,4.35; N,16.50;Found(%):C,46.01;H,4.82;N,16.07.IR spectrum(cm-1,KBr pellet):3 431(s),3 182(m),3 132 (m),3 084(m),2920(m),2 854(m),1 681(s),1 605 (vs),1 535(m),1 495(m),1 420(s),1 383(m),1 343 (s),1 293(s),1 217(w),1 191(w),1 089(w),1 067(w), 1 027(m),1 013(m),818(m),796(m),688(w),634 (m),576(w),528(w),455(w).

    1.3Preparationof{[Ni(HMPCA)2(pyz)]·5H2O}n(2)

    To a solution containing H2MPCA(0.025 2 g,0.2 mmol)and pyz(0.016 0 g,0.2 mmol)in deionized water (5.0 mL)was added a solution of Ni(OAc)2·4H2O (0.049 9 g,0.2 mmol)in deionized water(5.0 mL).The resulting solution was stirred for 30 min,followed by being placed into 25 mL Teflon-lined autoclave under autogenous pressure and heated at 180℃for 24 h,then is was cooled to the ambient temperature at the rate of 5℃·h-1.After filtration,the product was washed with deionized water and then dried,and blue crystals of 2 (0.028 7g,60%,based on H2MPCA)suitable for X-ray diffraction analysis were obtained.Anal.Calcd.for C14H24NiN6O9(%):C,35.10;H,5.05;N,17.54;Found (%):C,35.01;H,5.31;N,17.23.IR spectrum(cm-1, KBr pellet):3 379(m),3 200(m),3 140(m),3 110(m), 2 969(w),2 850(w),1 610(vs),1 493(w),1 418(s), 1 324(m),1 281(s),1 212(m),1 118(w),1 160(w), 1 050(m),1 025(m),843(w),794(m),688(w),563 (w),483(m),446(w).

    1.4X-ray crystallography

    Single-crystal X-ray diffraction measurements of 1 and 2 were carried out with a Bruker Smart ApexⅡCCD diffractometer at 296(2)K(1)and 293(2)K (2).Intensities of reflections were measured using graphite-monochromatizedMoKαradiation(λ= 0.071 073 nm)with the φ-ω scans mode in the range of 2.809°~28.071°(1)and 2.433°~27.631°(2).The structure was solved by direct methods using the SHELXS program of the SHELXTL package and refined with SHELXL[32].For 1,the lattice water molecule(O4)was fixed with constrained parameters and refined with an occupancy factor of 0.25.In the case of 2,two free water molecules bearing O3 and O4 atoms were found to be disordered over two positions with an occupancy ratio of 0.5/0.5 for O(3)/O (3A)and O(4)/O(4A).Another lattice water molecule (O5)wasfixedwithconstrainedparametersand refined with an occupancy factor of 0.5.Anisotropic thermal factors were assigned to all the non-hydrogen atoms.Hydrogen atoms on O4 atom in 1 were not located.All other hydrogen atoms attached to C were placedgeometricallyandallowedtorideduring subsequent refinement with an isotropic displacement parameter fixed at 1.2 times Ueqof the parent atoms. H atoms bonded to O or N atoms were first located in difference Fourier maps and then placed in the calculatedsitesandincludedintherefinement. Crystallographicdataparametersforstructural analyses are summarized in Table 1.

    CCDC:1445391,1;1445392,2.

    Table 1Crystal structure parameters of the compounds 1 and 2

    Continued Table 1

    2 Results and discussion

    2.1IR spectrum

    The IR spectra of complexes 1 and 2 reflect the binding patterns of H2MPCA,4,4′-bpy and pyz(Fig.S1 in supplementary materials).The strong and broad absorption band around 3 200~3 600 cm-1region is assigned as characteristic peak of OHvibration, indicating that water molecules exist in the complexes. The absorption peak between 1 690 cm-1and 1 730 cm-1is not observed,showing all carboxylic groups are deprotonated.The strong peaks at 1 605 cm-1(1),1 610cm-1(2),and 1 420 cm-1(1),1 418 cm-1(2)are the νas(COO-)andνs(COO-)stretching mode of the coordinated HMPCA-ligand,respectively[33-35].For complex 1,the weak absorption at 3 000 cm-1is the νas(C-H)bent vibration of 4,4′-bpy.For complex 2,the absorbances between 1 050 and 1 212 cm-1are assignable to pyz bands[36].

    Fig.1Coordination environment of Co(Ⅱ)ion in 1 with thermal ellipsoid at 30%probability level

    2.2Crystal structures of 1 and 2

    X-ray crystal structure analysis reveals that 1 crystallizes in the orthorhombic system space group Pccn.The asymmetric unit of 1 contains a half of Co(Ⅱ)ion,one HMPCA-anion,half of a 4,4′-bpy,one and a half lattice water molecules.The coordination sphere of Co(Ⅱ)is defined by two carboxylate oxygen atoms,two nitrogen atoms from two HMPCA-anions, and two nitrogen atoms from two 4,4′-bpy ligands, leading to a hexa-coordinated octahedral geometry. The equatorial position are occupied by O1,O1A,N1, and N1A atoms,proved by that the sum of the bond anglesof O1A-Co1-N1A(78.48(11)°),N1-Co1-O1 (78.48(11)°),N1-Co1-O1A(101.52(11)°)and O1-Co1-N1A(101.52(11)°)is equal to 360°,and N3 and N3A atoms are located in the axial positions(Fig.1 and Table 2).As a bidentate ligand,the HMPCA-anion chelates one Co(Ⅱ)atom with pyrazole N atom and carboxyl O atom to form a five membered ring.As shown in Fig.2,two crystallographically equivalent ions,Co1 and Co1A are linked by two N atoms(N3 and N3A)from 4,4′-bpy in a bridging fashion, generating an infinite 1D chain.The length of Co-O1 bond is 0.207 6(3)nm,and the Co-N bonds are in the range of 0.214 4(3)~0.216 5(3)nm,which are close to those Co-O(Co1-O1 0.211 6(5)nm),Co-N(Co1-N1 0.208 2(5)nm)in the reported Co(Ⅱ)complex[CoCl4(Athpp)2]·2H2O(Athpp=3-amino-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole)[37].The average bond length of Co-N is longer than that of Co-O,showing that the strength of cobalt ion coordinated with nitrogen atoms are weaker than that of oxygen atoms from HMPCA-ligands in 1.By the function of the hydrogen bond O3-H3X…O2C(Symmetry codes:C:x,1+y,-1+z) and O3-H3Y…O1D(Symmetry codes:D:1-x,1/2+y, 3/2-z),the solvent water molecules are embedded in the chain.Finally,these 1D chains are extended into 3D structure by the N2-H2…O2B(Symmetry codes: B:x,1/2-y,-1/2+z)hydrogen-bonding interactions (Fig.3).

    2 crystallizes in the monoclinic system space group P2/c.The asymmetric unit of 2 contains half of one Ni(Ⅱ)ion,one HMPCA-anion,half of one pyz,

    Table 2Selected bond lengths(nm)and angles(°)for the compounds 1 and 2

    Table 3Hydrogen bond parameters(°)for the compound 1

    Fig.2One-dimension chain of 1

    Fig.3Three-dimension structure of 1

    two and half free water molecules.As illustrated in Fig.4,Ni(Ⅱ)ion is located in a distorted octahedral geometry,coordinating with two N atoms(N1,N1A), two O atoms(O1,O1A)from two chelating HMPCA-anions,and two N atoms(N3,N4)from two pyz ligands.The equatorial position are occupied by O1, O1A,N1,and N1A atoms,proved by that the sum of the bond angles of O1A-Ni1-N1A(79.85(7)°),N1-Ni1-O1(79.85(7)°),N1-Ni1-O1A(100.15(7)°)and O1-Ni1-N1A(100.15(7)°)is equal to 360°,and N3 and N4 atoms are located in the axial positions(Table 2).The length of Ni-O bond are 0.207 04(18)nm,and the Ni-N bonds are in the range of 0.206 19(19)~0.216 6(3)nm, which are close to those Ni-O(Ni1-O1 0.209 80(13) nm),Ni-N(Ni1-N1 0.206 82(14)nm)in the reported Ni(Ⅱ)complex[Ni(HMPCA)2(ImH)2]·2H2O[24].Theaverage bond length of Ni-N is longer than that of Ni-O,showing that the strength of Ni(Ⅱ)ion coordinated with nitrogen atoms are weaker than that of oxygen atoms from HMPCA-ligands in 2.Adjacent Ni(Ⅱ)centers are linked by one pyz ligand in a bridging mode to form an infinite 1D chain(Fig.5),in which the Ni1…Ni1B separation is 0.709 2(2)nm.Five halves of solvent water molecules(O3,O3A,O4,O4A and O5)are not discussed about the hydrogen bond interactions.

    Fig.4Coordination environment of Ni(Ⅱ)ion in 2 with thermal ellipsoid at 30%probability level

    Fig.5One-dimension chain government of the coordination compound 2

    2.3Thermogravimetric analysis

    So as to examine the thermal stability of the compounds 1 and 2,the thermogravimetric analysis were carried out from ambient temperature up to 800℃(Fig.S2).For 1,the first weight loss of 8.89% between 50 and 206℃is attributed to the loss of lattice water molecules(Calcd.8.84%).The second degradation stage is in the range of 206~230℃with weight loss of 30.76%,corresponding to the loss of 4,4′-bpy molecules(Calcd.30.66%).The third degradation stage is in the range of 230~460℃, corresponding to the loss of HMPCA-ligands,and the remaining material finally degrades to CoO(Calcd. 14.71%,Found 14.96%).For 2,the first weight loss of 8.02%between 110 and 224℃is attributed to the loss of two lattice water molecules(Calcd.7.52%). The second degradation stage is in the range of 224~356℃with weight loss of 26.20%,corresponding to the loss of three lattice water molecules and one pyz molecule(Calcd.27.99%).Above 356℃,theremaining material decomposes gradually.

    2.4Powder X-ray diffraction

    ThePXRDpatternsoftitlecomplexesare measured at room temperature for checking the phase purity of the complexes(Fig.S3).The operating voltage and current were 60 kV and 300 mA,respectively. PeaksoftheexperimentalandsimulatedPXRD patterns are in accordance with each other,indicating the superior phase purity of the complexes.The dissimilarities in intensity may be on account of the preferredorientationofthecrystallinepowder samples.

    2.5Fluorescence properties

    The solid-state fluorescence of two complexes andfreeH2MPCAwereinvestigatedatroom temperature(Fig.S4).The strongest emission peaks for 1 and 2,and free ligand all appear at ca.425 nm (λex=376 nm).According to the position and band shape,the emission bands for 1 and 2 are very similar to that of the free ligand,indicating that the emission bands of complexes 1 and 2 may be attributable to the internal charge transfer(π→π*/n→π*transitions)of the ligand.

    2.6Magnetic properties

    Fig.6Temperature dependence of χMT((Ⅱ))and χM-1(○)for(1)

    Fig.7Temperature dependence of χMT((Ⅱ))and χM-1(○)for(2)

    With an applied magnetic field of 2 000 Oe,the variable-temperature(1.8~300K)magneticsusceptibility data were collected for a crystal sample of complexes 1 and 2(Fig.6,7).For complex 1,the experimental χMT value is 2.497 emu·K·mol-1,which is much larger than the spin-only value of 1.875 emu·K·mol-1for an uncoupled high-spin cobalt(Ⅱ)ion(with S=3/2), indicating that an important orbital contribution is involved.The χMT value is different from the value of 2.972 emu·K·mol-1for the complex{[Co(HMPCA)2(pyz)]·5H2O}n[25]and that of 2.985 emu·K·mol-1for the complex[Co(pyz)(H2O)4](NO3)2·2H2O[36],also different from the value of 2.1 emu·K·mol-1for[Co (acac)2(pyz)][38].AsshowninFig.6,whenthe temperatureislowered,theχMTvaluedecreases continuously to 1.443 emu·K·mol-1at 1.8 K.Such behavior suggests the existence of antiferromagnetic interaction behavior even if the single-ion effects, such as spin-orbit coupling,distortion from regular stereochemistry,electron delocalization,and crystal field mixing of excited states into the ground state, may also be present[39].The Curie-Weiss law(χM=C/ (T-θ))was used to fit the magnetic susceptibilities between 300 and 1.8 K.According to the fitting result,Curie constant of C=2.59 emu·K·mol-1and Weiss constant of θ=-8.67 K can be obtained, indicating further that a antiferromagnetic coupling between Co(Ⅱ)ions.For complex 2,the experimental χMT value at 300 K is 1.327 emu·K·mol-1,which is higher than that expected for spin-only value of Ni(Ⅱ)ion(1.0 emu·K·mol-1with g=2.0)(Fig.7).As the temperature lowers to 1.8 K,the χMT value increases slowly to a maximum of about 1.405 emu·K·mol-1at 30 K,then decreases rapidly to a value of 0.524 emu· K·mol-1at 1.8 K.This behavior suggests that ferromagnetic interactions are operating in 2 in the high-temperature region of 30~300 K,which origins frommagneticexchangeinteractionsNi(Ⅱ)ions between pyz ligand within the 1D chain.Similarferromagnetic interactions also exist in reported nickle complexes[Ni(SCN)2(pyrazine)2]nand[Ni(SCN)2(pyrazine)2][40].The sharp decrease of χMT value at lowertemperaturesmaybeaconsequenceof interchains antiferromagnetic interactions in the 3D lattice,which favor a long-range antiferromagnetic ordering.The magnetic susceptibilities above 30 K follow the Curie-Weiss law χM=C/(T-θ)with Curie constant of 1.32 emu·K·mol-1and Weiss constant of 1.935 K.The positive θ value also reveal the presence offerromagneticinteractionin2inthehightemperature region.The magnetic susceptibilities of 30~2 K follow the Curie-Weiss law with Curie constant of 1.548 emu·K·mol-1and Weiss constant of -3.482 K.The negative θ value also reveal the presence of antiferromagnetic interaction in 2 in the low-temperature region.

    3 Conclusions

    In summary,we have successfully synthesized two new complexes with infinite 1D chains,{[Co (HMPCA)2(4,4′-bpy)]2·5H2O}n(1)and{[Ni(HMPCA)2(pyz)]·5H2O}n(2)by the reaction of H2MPCA and N ancillary ligands with M(OAc)2·4H2O(M=Co,Ni) respectively.The emission bands of complexes 1 and 2 may be attributable to the intraligand π→π*/n→π* transitions.Magnetic properties of the complexes show that 1 exists the interaction of anti-ferromagnetism betweentwoadjacentmetalionsand2exists ferromagneticinteractioninthehigh-temperature region and antiferromagnetic interaction in the lowtemperature region.

    Supporting information is available at http://www.wjhxxb.cn

    References:

    [1]Cook T R,Zheng Y R,Stang P J.Chem.Rev.,2013,113(1): 734-777

    [2]Hu X Y,Xiao T X,Lin C,et al.Acc.Chem.Res.,2014,47 (7):2041-2051

    [3]Liu Q,Liu X X,Shi C D,et al.Dalton Trans.,2015,44: 19175-19184

    [4]Liu X X,Shi C D,Zhai C W,et al.ACS Appl.Mater. Interfaces,2016,8(7):4585-4591

    [5]Santra A,Senkovska I,Kaskel S,et al.Inorg.Chem.,2013, 52(13):7358-7366

    [6]Gipson T J,Beobide G,Castillo O,et al.Cryst.Growth Des., 2014,14(8):4019-4029

    [7]Hu S,He K H,Zeng M H,et al.Inorg.Chem.,2008,47(12): 5218-5224

    [8]Chatterjee B,Noveron C J,Resendiz E J M,et al.J.Am. Chem.Soc.,2004,126(34):10645-10656

    [9]Brown J C,Miller M G,Johnson W M,et al.J.Am.Chem. Soc.,2011,133(31):11964-11966

    [10]Hagen M C,Ludovic V P,Gábor L,et al.Organometallics, 2005,24(8):1819-1831

    [11]Gong Y N,Huang Y L,Jiang L,et al.Inorg.Chem., 2014,53(18):9457-9459

    [12]Ke F S,Wu Y S,Deng H.J.Solid State Chem.,2015,223: 109-121

    [13]Nagarathinam M,Saravanan K,Phua E J U,et al.Angew. Chem.,2012,124(24):5968-5972

    [14]Liu Q,Yu L L,Jiang L,et al.Inorg.Chem.,2013,52(6): 2817-2822

    [15]Hong M C,Zhao Y J,Su W P,et al.Angew.Chem.Int.Ed., 2000,39(14):2468-2470

    [16]Abrahams B F,Batten S R,Granna M J,et al.Angew. Chem.Int.Ed.,1999,38(10):1475-1477

    [17]Noro S,Kitaura R,Kondo M,et al.J.Am.Chem.Soc., 2002,124(11):2568

    [18]Dong Y B,Jiang Y Y,Li J,et al.J.Am.Chem.Soc., 2007,129(15):4520-4521

    [19]Wu S T,Long L S,Huang R B,et al.Cryst.Growth Des., 2007,7(9):1746-1752

    [20]BurrowsAD,CassarK,FriendRMW,etal. CrystEngComm,2005,7(89):548-550

    [21]Hu F L,Yin X H,Mi Y,et al.Inorg.Chem.Commun., 2009,12(7):628-631

    [22]Cheng M L,Han W,Liu Q,et al.J.Coord.Chem.,2014,67 (2):215-226

    [23]TANG Li-Zhi-Peng(唐李志鵬),YANG Ming-Wei(楊明煒), CHENG Mei-Ling(程美令),et al.Chinese J.Inorg.Chem. (無(wú)機(jī)化學(xué)學(xué)報(bào)),2015,31(3):603-610

    [24]HAN Wei(韓偉),CHENG Mei-Ling(程美令),LIU Qi(劉琦), et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2012,29(9): 1997-2004

    [25]REN Yan-Qiu(任艷秋),HAN Wei(韓偉),CHENG Mei-Ling (程美令),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2014,30(11):2635-2644

    [26]Du M,Zhang Z H,Guo W,et al.Cryst.Growth Des.,2009,9(4):1655-1657

    [27]Chen L T,Tao F,Wang L D,et al.Z.Anorg.Allg.Chem., 2013,639(3/4):552-557

    [28]Su S,Cheng M L,Ren Y Q,et al.Transition Met.Chem., 2014,39(5):559-566

    [29]Xia Q H,Ren Y Q,Cheng M L,et al.J.Coord.Chem., 2015,68(10):1688-1704

    [30]Wang L D,Tao F,Cheng M L,et al.J.Coord.Chem., 2012,65(6):923-933

    [31]Crane J D,Fox O D,Sinn E.J.Chem.Soc.,Dalton Trans., 1999(9):1461-1465

    [32]Sheldrick G M.SHELXS-97,Program for X-ray Crystal Structure Determination,University of G?ttingen,Germany, 1997.

    [33]Zhu E J,Liu Q,Chen Q,et al.J.Coord.Chem.,2009,62 (15):2449-2456

    [34]Liu Q,Li Y Z,Song Y,et al.J.Solid State Chem.,2004,177 (12):4701-4705

    [35]Nakamoto K.Infrared and Raman Spectra of Inorganic and Coordination Compounds.4th Ed.New York:Wiley,1986.

    [36]Holman K T,Hassan H H,Samih I,et al.Polyhedron, 2005,24(2):221-228

    [37]CHU Zhao-Jing(儲(chǔ)兆晶),BAI Xiao-Guang(白曉光),WANG Yu-Cheng(王玉成),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2014,30(4):945-951

    [38]Ma B Q,Gao S,Yi T,et al.Polyhedron,2001,20(11):1255-1261

    [39]Kahn O.Molecular Magnetism.Weinheim:VCH,1993.

    [40]Wriedt M,Je? I,N?ther C.Eur.J.Inorg.Chem.2009:1406-1413

    Syntheses,Crystal Structures and Properties of Cobalt(Ⅱ)and Nickel(Ⅱ)Complexes Based on 5-Methyl-1H-pyrazole-3-carboxylic Acid Ligand

    CHENG Mei-Ling*,1WANG Shen1TANG Li-Zhi-Peng1LIU Qi*,1,2
    (1School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University,Changzhou,Jiangsu 213164,China)
    (2State Key Laboratory of Coordination Chemistry,Nanjing University,Nanjing 210023,China)

    Two new 1D chain-typed coordination polymers,{[Co(HMPCA)2(4,4′-bpy)]2·5H2O}n(1)and {[Ni(HMPCA)2(pyz)]·5H2O}n(2)(H2MPCA=5-methyl-1H-pyrazole-3-carboxylic acid,4,4′-bpy=4,4′-bipyridine,pyz= pyrazine),have been synthesized and characterized by elemental analysis,IR spectra,single crystal X-ray diffraction and thermogravimetric analysis.Complex 1 crystallizes in the orthorhombic system,space group Pccn, and 2 crystallizes in the monoclinic system,space group P2/c.In 1 and 2,metal ions are both located in an octahedral geometry,coordinated by two nitrogen atoms and two oxygen atoms from two HMPCA-anions,and linked by two nitrogen atoms from 4,4′-bpy ligands(1)and pyz ligands(2),respectively,forming a 1D chaintyped coordination polymer.The thermal stability,luminescent properties and magnetic properties of them have also been investigated.CCDC:1445391,1;1445392,2.

    cobalt(Ⅱ);nickel(Ⅱ);5-methyl-1H-pyrazole-3-carboxylic acid;crystal structure;photoluminescence;magnetic properties

    圖分類號(hào):O614.81+2;O614.81+3A

    1001-4861(2016)08-1457-10

    10.11862/CJIC.2016.184

    2016-04-01。收修改稿日期:2016-06-02。

    國(guó)家自然科學(xué)基金(No.21101018,20971060)、江蘇省高校自然科學(xué)研究面上項(xiàng)目(No.13KJB150001)、南京大學(xué)配位化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開放課題和江蘇省先進(jìn)催化與綠色制造協(xié)同創(chuàng)新中心創(chuàng)新型人才支持項(xiàng)目資助。

    *通信聯(lián)系人。E-mail:chengmeiling01@163.com;liuqi62@163.com;Tel:0519-86330185;會(huì)員登記號(hào):S060018987P。

    猜你喜歡
    吡唑配位甲酸
    蕓苔素內(nèi)酯與吡唑醚菌酯在小麥上的應(yīng)用技術(shù)
    [Zn(Hcpic)·(H2O)]n配位聚合物的結(jié)構(gòu)與熒光性能
    蕓苔素內(nèi)酯與吡唑醚菌酯在玉米上的應(yīng)用技術(shù)
    德不配位 必有災(zāi)殃
    甲酸治螨好處多
    甲酸鹽鉆井液完井液及其應(yīng)用之研究
    新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
    兩個(gè)具stp三維拓?fù)錁?gòu)型的稀土配位聚合物{[Ln2(pda)3(H2O)2]·2H2O}n(Ln=Nd,La)
    基于環(huán)己烷甲酸根和2,2′-聯(lián)吡啶配體的雙核錳(Ⅱ)配合物的合成與表征
    光氣法合成二乙二醇雙氯甲酸酯
    河南科技(2014年12期)2014-02-27 14:10:32
    欧美xxxx黑人xx丫x性爽| 中文字幕av在线有码专区| 1024手机看黄色片| 精品久久久久久久末码| 国产欧美日韩一区二区三| 制服丝袜大香蕉在线| 国内久久婷婷六月综合欲色啪| 日本a在线网址| 18禁国产床啪视频网站| 天美传媒精品一区二区| 精品久久久久久,| 女同久久另类99精品国产91| 十八禁网站免费在线| 欧美日本视频| 看片在线看免费视频| 欧美一区二区国产精品久久精品| 亚洲av五月六月丁香网| 亚洲无线观看免费| 韩国av一区二区三区四区| 最近最新免费中文字幕在线| 精品国产三级普通话版| 三级男女做爰猛烈吃奶摸视频| 日韩欧美国产在线观看| 日本三级黄在线观看| 亚洲av一区综合| 美女大奶头视频| 在线十欧美十亚洲十日本专区| 亚洲精品乱码久久久v下载方式 | 丰满人妻熟妇乱又伦精品不卡| 91麻豆av在线| xxxwww97欧美| 精品久久久久久久毛片微露脸| 91av网一区二区| 日本熟妇午夜| 蜜桃久久精品国产亚洲av| 亚洲精品影视一区二区三区av| 国产主播在线观看一区二区| 成人18禁在线播放| 91久久精品国产一区二区成人 | www日本在线高清视频| 国产亚洲精品久久久com| 久久久久久人人人人人| 久久久久久久精品吃奶| 国产精品98久久久久久宅男小说| 成人一区二区视频在线观看| 99久国产av精品| 校园春色视频在线观看| 午夜福利免费观看在线| 99热只有精品国产| 19禁男女啪啪无遮挡网站| 久久久久久久午夜电影| 天天躁日日操中文字幕| x7x7x7水蜜桃| 欧美一级毛片孕妇| 久久久国产成人精品二区| 脱女人内裤的视频| 小说图片视频综合网站| 欧美精品啪啪一区二区三区| 欧美成人免费av一区二区三区| 国产精品亚洲一级av第二区| 在线免费观看的www视频| 欧美日韩国产亚洲二区| 99久久无色码亚洲精品果冻| 人人妻,人人澡人人爽秒播| 高潮久久久久久久久久久不卡| 欧美成人a在线观看| 亚洲成人精品中文字幕电影| 中文资源天堂在线| 夜夜夜夜夜久久久久| 免费看日本二区| 亚洲精品久久国产高清桃花| 麻豆久久精品国产亚洲av| 亚洲精品亚洲一区二区| 男人的好看免费观看在线视频| 操出白浆在线播放| 日本三级黄在线观看| 99在线人妻在线中文字幕| 我的老师免费观看完整版| 中文字幕人妻熟人妻熟丝袜美 | 中文字幕高清在线视频| 三级毛片av免费| 国产一区二区在线av高清观看| 欧美在线黄色| 中文字幕熟女人妻在线| 亚洲成人久久爱视频| 51国产日韩欧美| 欧美日韩国产亚洲二区| 一本综合久久免费| 人人妻,人人澡人人爽秒播| 99精品欧美一区二区三区四区| 狠狠狠狠99中文字幕| 国产成人影院久久av| 免费看十八禁软件| 亚洲一区高清亚洲精品| 人人妻人人看人人澡| 白带黄色成豆腐渣| 亚洲美女黄片视频| 观看美女的网站| 亚洲欧美日韩高清专用| 成年女人毛片免费观看观看9| 一级毛片高清免费大全| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 国产三级黄色录像| 麻豆国产av国片精品| 精品久久久久久久久久久久久| 9191精品国产免费久久| 国产乱人视频| 天堂动漫精品| 在线免费观看不下载黄p国产 | 欧美三级亚洲精品| 亚洲欧美激情综合另类| 91字幕亚洲| 精品一区二区三区av网在线观看| 一区二区三区免费毛片| 亚洲av美国av| 国产野战对白在线观看| 老司机在亚洲福利影院| 国产精品一区二区免费欧美| 夜夜夜夜夜久久久久| 久久天躁狠狠躁夜夜2o2o| 少妇的逼好多水| 免费av毛片视频| 国产精品影院久久| 午夜精品一区二区三区免费看| 国产精品电影一区二区三区| 女人被狂操c到高潮| 欧美一区二区亚洲| 亚洲人成网站在线播放欧美日韩| 日日摸夜夜添夜夜添小说| 欧美3d第一页| 美女高潮喷水抽搐中文字幕| 欧美日本视频| 美女cb高潮喷水在线观看| 国产三级在线视频| 69av精品久久久久久| av在线蜜桃| 国产成人av激情在线播放| 黑人欧美特级aaaaaa片| 淫妇啪啪啪对白视频| 国产综合懂色| netflix在线观看网站| 成人高潮视频无遮挡免费网站| 欧美激情久久久久久爽电影| 特级一级黄色大片| 国产高清视频在线播放一区| 999久久久精品免费观看国产| 久久久久亚洲av毛片大全| 亚洲男人的天堂狠狠| 日韩欧美国产在线观看| 精品日产1卡2卡| 午夜久久久久精精品| 18禁黄网站禁片免费观看直播| 国内揄拍国产精品人妻在线| 在线观看一区二区三区| 成人国产一区最新在线观看| 精品一区二区三区视频在线观看免费| 精品久久久久久成人av| 亚洲av电影不卡..在线观看| 国产中年淑女户外野战色| 欧美3d第一页| 国产 一区 欧美 日韩| 国产激情欧美一区二区| 欧美高清成人免费视频www| 日韩精品中文字幕看吧| 国产亚洲精品久久久久久毛片| 精品电影一区二区在线| 日韩中文字幕欧美一区二区| 日韩欧美精品v在线| 亚洲成人中文字幕在线播放| 床上黄色一级片| 免费人成视频x8x8入口观看| 老司机午夜福利在线观看视频| 天堂影院成人在线观看| 免费看光身美女| 亚洲精品一区av在线观看| 亚洲欧美一区二区三区黑人| 亚洲第一电影网av| 精品久久久久久久久久免费视频| 国产精品一及| 一区二区三区高清视频在线| 少妇人妻一区二区三区视频| 久久久久久大精品| 久久久久久久精品吃奶| 成年女人毛片免费观看观看9| 免费在线观看日本一区| 日韩精品中文字幕看吧| 精品人妻一区二区三区麻豆 | 国产一区二区在线观看日韩 | 日韩av在线大香蕉| 毛片女人毛片| 桃色一区二区三区在线观看| 高清在线国产一区| 国产成人av激情在线播放| 欧美日韩国产亚洲二区| 成年版毛片免费区| 1000部很黄的大片| 亚洲自拍偷在线| 亚洲国产欧洲综合997久久,| 亚洲五月天丁香| 亚洲一区高清亚洲精品| 在线播放无遮挡| 国产精品影院久久| 亚洲av免费在线观看| 51午夜福利影视在线观看| 久久精品国产99精品国产亚洲性色| 全区人妻精品视频| 丰满人妻一区二区三区视频av | 一区二区三区国产精品乱码| 亚洲av成人不卡在线观看播放网| 久久天躁狠狠躁夜夜2o2o| 51国产日韩欧美| 国产美女午夜福利| 黄色丝袜av网址大全| 色哟哟哟哟哟哟| 大型黄色视频在线免费观看| 日韩中文字幕欧美一区二区| 特级一级黄色大片| 亚洲一区二区三区色噜噜| 亚洲乱码一区二区免费版| 高清日韩中文字幕在线| 色综合站精品国产| av视频在线观看入口| 成年女人毛片免费观看观看9| 最新美女视频免费是黄的| 国产精品乱码一区二三区的特点| 中文字幕av成人在线电影| 欧美午夜高清在线| 国产精品三级大全| 欧美在线一区亚洲| 欧美丝袜亚洲另类 | 波多野结衣巨乳人妻| 久久久久久久久中文| 人人妻人人澡欧美一区二区| 欧美zozozo另类| 天堂影院成人在线观看| 好男人电影高清在线观看| 欧美黑人巨大hd| 最近最新中文字幕大全电影3| av天堂在线播放| 99国产精品一区二区蜜桃av| 啦啦啦观看免费观看视频高清| 久久精品人妻少妇| 亚洲精华国产精华精| 在线观看舔阴道视频| 欧美午夜高清在线| 99riav亚洲国产免费| 真实男女啪啪啪动态图| 麻豆久久精品国产亚洲av| 午夜福利免费观看在线| 国产精品 欧美亚洲| 伊人久久大香线蕉亚洲五| а√天堂www在线а√下载| 中文字幕久久专区| 最好的美女福利视频网| 午夜福利在线观看吧| 啦啦啦观看免费观看视频高清| 免费看a级黄色片| 午夜精品在线福利| 少妇熟女aⅴ在线视频| 床上黄色一级片| 国产精品亚洲av一区麻豆| 中文亚洲av片在线观看爽| 国产黄a三级三级三级人| 女人被狂操c到高潮| 国产高清视频在线播放一区| 99久久无色码亚洲精品果冻| www日本在线高清视频| 美女黄网站色视频| 精品欧美国产一区二区三| 国产亚洲精品一区二区www| 国产免费av片在线观看野外av| e午夜精品久久久久久久| 成人高潮视频无遮挡免费网站| 男女床上黄色一级片免费看| 亚洲avbb在线观看| 国产乱人视频| 久久久久久久精品吃奶| 色综合婷婷激情| 久久中文看片网| 亚洲成a人片在线一区二区| 一个人看视频在线观看www免费 | 一级毛片高清免费大全| 99在线人妻在线中文字幕| 亚洲第一欧美日韩一区二区三区| 嫩草影视91久久| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区国产精品乱码| 国产精品av视频在线免费观看| 免费看十八禁软件| 可以在线观看毛片的网站| 少妇人妻一区二区三区视频| 在线观看日韩欧美| 人妻夜夜爽99麻豆av| 日本免费a在线| 可以在线观看毛片的网站| 日韩成人在线观看一区二区三区| 国产97色在线日韩免费| 国产精品一区二区三区四区免费观看 | 免费看光身美女| 成人高潮视频无遮挡免费网站| 人人妻,人人澡人人爽秒播| 老汉色av国产亚洲站长工具| 免费观看的影片在线观看| 丰满人妻熟妇乱又伦精品不卡| 全区人妻精品视频| 国产91精品成人一区二区三区| 久久久久九九精品影院| 欧美国产日韩亚洲一区| 亚洲电影在线观看av| 一区福利在线观看| 女人十人毛片免费观看3o分钟| 精品久久久久久久久久久久久| 国产精品98久久久久久宅男小说| 欧美av亚洲av综合av国产av| а√天堂www在线а√下载| 欧美中文综合在线视频| 国产精品一区二区三区四区免费观看 | 亚洲国产中文字幕在线视频| 亚洲一区高清亚洲精品| 日韩欧美国产在线观看| 国产成+人综合+亚洲专区| 成人av一区二区三区在线看| 99精品欧美一区二区三区四区| 香蕉丝袜av| 国产亚洲欧美98| 又黄又粗又硬又大视频| 成人三级黄色视频| 国产精品 国内视频| 国产69精品久久久久777片| 18+在线观看网站| 每晚都被弄得嗷嗷叫到高潮| av在线天堂中文字幕| 日本黄色片子视频| 免费看光身美女| 亚洲av免费在线观看| 好男人在线观看高清免费视频| 高潮久久久久久久久久久不卡| 变态另类成人亚洲欧美熟女| 宅男免费午夜| 最近在线观看免费完整版| 高潮久久久久久久久久久不卡| 黄色日韩在线| 长腿黑丝高跟| 少妇人妻精品综合一区二区 | 亚洲欧美日韩卡通动漫| 国产精品久久视频播放| 淫妇啪啪啪对白视频| 一进一出抽搐gif免费好疼| 亚洲av免费在线观看| 禁无遮挡网站| 波多野结衣巨乳人妻| 婷婷精品国产亚洲av在线| 欧美最黄视频在线播放免费| 久久伊人香网站| 国产黄片美女视频| 亚洲真实伦在线观看| 国产欧美日韩精品亚洲av| xxxwww97欧美| 日本黄色视频三级网站网址| 母亲3免费完整高清在线观看| 国产又黄又爽又无遮挡在线| 精品国产亚洲在线| 青草久久国产| 亚洲欧美日韩东京热| 乱人视频在线观看| 啦啦啦观看免费观看视频高清| 中文字幕人妻丝袜一区二区| 国产精品亚洲av一区麻豆| 2021天堂中文幕一二区在线观| av视频在线观看入口| 美女高潮的动态| 亚洲av五月六月丁香网| 亚洲美女黄片视频| 狠狠狠狠99中文字幕| 99精品在免费线老司机午夜| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 久久久久性生活片| 中文亚洲av片在线观看爽| 美女黄网站色视频| 毛片女人毛片| 国产激情欧美一区二区| 精品久久久久久,| 99国产精品一区二区蜜桃av| 级片在线观看| 欧美日本亚洲视频在线播放| 久久久久久久精品吃奶| 日本在线视频免费播放| av中文乱码字幕在线| 国产三级黄色录像| 熟女人妻精品中文字幕| 午夜日韩欧美国产| 国产成人系列免费观看| 18美女黄网站色大片免费观看| 免费在线观看日本一区| 午夜福利在线在线| 午夜福利视频1000在线观看| 高潮久久久久久久久久久不卡| 久久精品人妻少妇| 十八禁人妻一区二区| 午夜视频国产福利| av国产免费在线观看| 精品熟女少妇八av免费久了| 国产亚洲精品av在线| 亚洲 国产 在线| 一进一出抽搐gif免费好疼| 麻豆久久精品国产亚洲av| 久久久久久久午夜电影| 欧美日韩亚洲国产一区二区在线观看| 老汉色∧v一级毛片| 亚洲18禁久久av| 三级毛片av免费| 日韩欧美在线乱码| 国产三级在线视频| 欧美色视频一区免费| 国产亚洲精品av在线| 黄色女人牲交| 亚洲一区高清亚洲精品| 亚洲专区国产一区二区| www.www免费av| 变态另类成人亚洲欧美熟女| 欧美在线一区亚洲| 国产伦在线观看视频一区| 亚洲真实伦在线观看| 国产男靠女视频免费网站| 亚洲av熟女| 99热这里只有是精品50| 午夜两性在线视频| 国产黄色小视频在线观看| 欧美国产日韩亚洲一区| 麻豆久久精品国产亚洲av| www.999成人在线观看| 三级毛片av免费| av专区在线播放| 久久精品人妻少妇| 欧美性感艳星| 法律面前人人平等表现在哪些方面| 日本成人三级电影网站| 久久精品综合一区二区三区| 真实男女啪啪啪动态图| 亚洲自拍偷在线| 午夜福利视频1000在线观看| 老司机午夜福利在线观看视频| 欧美乱码精品一区二区三区| 少妇丰满av| www国产在线视频色| 麻豆久久精品国产亚洲av| 亚洲五月天丁香| 免费av不卡在线播放| 噜噜噜噜噜久久久久久91| 精品人妻一区二区三区麻豆 | 一个人看的www免费观看视频| avwww免费| 麻豆国产av国片精品| 黄色成人免费大全| 乱人视频在线观看| 午夜久久久久精精品| 日韩欧美精品v在线| 十八禁人妻一区二区| 国产精品一区二区免费欧美| 亚洲在线观看片| 亚洲精品在线观看二区| 国内毛片毛片毛片毛片毛片| 国产精品一区二区免费欧美| 3wmmmm亚洲av在线观看| 少妇的丰满在线观看| 亚洲人成网站在线播放欧美日韩| 久久久久久大精品| 人妻丰满熟妇av一区二区三区| 人人妻人人澡欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 在线观看舔阴道视频| 草草在线视频免费看| 欧美色视频一区免费| 免费看光身美女| 国产精品精品国产色婷婷| 黑人欧美特级aaaaaa片| 少妇人妻一区二区三区视频| 亚洲欧美激情综合另类| 久久香蕉精品热| 最近最新免费中文字幕在线| 我的老师免费观看完整版| 精品欧美国产一区二区三| 欧美日本亚洲视频在线播放| 久久草成人影院| 久久中文看片网| 最近最新中文字幕大全电影3| 久久久国产精品麻豆| 色综合婷婷激情| 国产精品久久久久久人妻精品电影| 欧美精品啪啪一区二区三区| 国产精华一区二区三区| 999久久久精品免费观看国产| 很黄的视频免费| 午夜影院日韩av| 成人亚洲精品av一区二区| 男女下面进入的视频免费午夜| 国产成人欧美在线观看| 一进一出好大好爽视频| 99热这里只有是精品50| 久久久国产精品麻豆| 一本精品99久久精品77| 精品国产三级普通话版| 亚洲久久久久久中文字幕| 天堂√8在线中文| 国产又黄又爽又无遮挡在线| 舔av片在线| 真实男女啪啪啪动态图| 中文字幕人妻丝袜一区二区| 在线播放国产精品三级| 国产精品免费一区二区三区在线| 两个人看的免费小视频| 国产不卡一卡二| 国产 一区 欧美 日韩| 一二三四社区在线视频社区8| 亚洲一区二区三区不卡视频| 最近最新中文字幕大全免费视频| 亚洲av二区三区四区| 日本a在线网址| 亚洲色图av天堂| 亚洲黑人精品在线| 一区二区三区高清视频在线| 亚洲人与动物交配视频| 国产伦精品一区二区三区视频9 | 国产欧美日韩精品一区二区| 久久久久久国产a免费观看| 成人国产综合亚洲| 欧美日韩一级在线毛片| 亚洲精品在线观看二区| av黄色大香蕉| 99精品欧美一区二区三区四区| 欧美乱色亚洲激情| 亚洲av熟女| 一区二区三区高清视频在线| 在线看三级毛片| 91麻豆精品激情在线观看国产| 高潮久久久久久久久久久不卡| 性色av乱码一区二区三区2| 两性午夜刺激爽爽歪歪视频在线观看| tocl精华| 伊人久久大香线蕉亚洲五| 日本在线视频免费播放| 欧美午夜高清在线| 香蕉久久夜色| 丝袜美腿在线中文| 亚洲专区中文字幕在线| 国产中年淑女户外野战色| 久久婷婷人人爽人人干人人爱| 亚洲在线观看片| 亚洲av免费在线观看| 日日摸夜夜添夜夜添小说| 日韩欧美免费精品| 一个人看的www免费观看视频| 免费观看的影片在线观看| 久久久久久九九精品二区国产| av片东京热男人的天堂| 少妇丰满av| 久久国产精品人妻蜜桃| 俄罗斯特黄特色一大片| av福利片在线观看| 一级作爱视频免费观看| 久久精品国产亚洲av香蕉五月| 久久精品国产99精品国产亚洲性色| 88av欧美| 亚洲午夜理论影院| 禁无遮挡网站| 亚洲 国产 在线| 久久精品国产99精品国产亚洲性色| 九九久久精品国产亚洲av麻豆| 最近最新中文字幕大全电影3| 久久精品综合一区二区三区| 一本综合久久免费| 最近在线观看免费完整版| 亚洲精品日韩av片在线观看 | 麻豆久久精品国产亚洲av| 老司机福利观看| 色综合亚洲欧美另类图片| 亚洲在线自拍视频| 性色av乱码一区二区三区2| 精品不卡国产一区二区三区| 国产成人欧美在线观看| 一进一出好大好爽视频| 又黄又粗又硬又大视频| 免费看十八禁软件| 最好的美女福利视频网| 亚洲欧美精品综合久久99| 久久精品综合一区二区三区| 少妇熟女aⅴ在线视频| 男人和女人高潮做爰伦理| 久久久久亚洲av毛片大全| 亚洲人成网站高清观看| 波多野结衣高清无吗| 国产97色在线日韩免费| 国产国拍精品亚洲av在线观看 | 免费电影在线观看免费观看| 无限看片的www在线观看| 色精品久久人妻99蜜桃| 日韩精品青青久久久久久| 欧美3d第一页| 亚洲精品国产精品久久久不卡| 可以在线观看毛片的网站| 久久天躁狠狠躁夜夜2o2o| 99久久精品一区二区三区| 国产高清有码在线观看视频| 午夜福利在线观看免费完整高清在 | 国产毛片a区久久久久| 国产精品精品国产色婷婷| 久久伊人香网站| 亚洲欧美日韩东京热| 叶爱在线成人免费视频播放| 真人做人爱边吃奶动态| 我要搜黄色片| 欧美精品啪啪一区二区三区| 母亲3免费完整高清在线观看|