• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚多巴胺功能化的四氧化三鈷納米復(fù)合材料的制備及電催化性能

    2016-12-06 09:05:16王海寧潘伯廣孫昭馮濤濤齊譽(yù)洪成林石河子大學(xué)化學(xué)化工學(xué)院新疆兵團(tuán)化工綠色過程重點(diǎn)實(shí)驗(yàn)室省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地石河子832003
    關(guān)鍵詞:辣根電催化過氧化物

    王海寧 潘伯廣 孫昭 馮濤濤 齊譽(yù)洪成林(石河子大學(xué)化學(xué)化工學(xué)院,新疆兵團(tuán)化工綠色過程重點(diǎn)實(shí)驗(yàn)室-省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,石河子832003)

    聚多巴胺功能化的四氧化三鈷納米復(fù)合材料的制備及電催化性能

    王海寧潘伯廣孫昭馮濤濤齊譽(yù)*洪成林*
    (石河子大學(xué)化學(xué)化工學(xué)院,新疆兵團(tuán)化工綠色過程重點(diǎn)實(shí)驗(yàn)室-省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,石河子832003)

    通過簡單的自聚合反應(yīng)在四氧化三鈷表面包覆聚多巴胺膜,聯(lián)合使用納米鉑和辣根過氧化物酶用于電催化還原過氧化氫。結(jié)果表明,聚多巴胺的使用增強(qiáng)后續(xù)納米鉑的負(fù)載量和辣根過氧化物酶的生物活性;四氧化三鈷、納米鉑和辣根過氧化物酶的多重信號放大作用,大大增強(qiáng)了該復(fù)合材料的催化活性,提高了過氧化氫傳感器的靈敏度。優(yōu)化實(shí)驗(yàn)條件下,傳感器對過氧化氫的檢測范圍為0.1~700 μmol·L-1,檢測限為0.08 μmol·L-1。

    Co3O4;聚多巴胺;多重信號放大;電催化;H2O2

    0 Introduction

    Hydrogen peroxide(H2O2),as a kind of commonly used oxidizer and reductant,has been widely used in food industry,clinical diagnostics,pharmacy,environmental monitoring,etc[1-3].H2O2plays an important role in the living cells depending on the extent,timing, and location of its production.The disorder of H2O2concentration iscloselyconnectedwithoxidative stress reaction in injury,aging and disease[4].Therefore,accuratelydetectionforH2O2atlowlevel becomesincreasinglyimportant.Electrochemicalsensors are sensitive and efficient since they can analyze biological sample by direct conversion into an electricalsignal[5].Nanomaterials have stimulated intense research over past decades due to their high biocompatibility and large surface area[6-8].

    Metal nanoparticles(NPs)and metallic oxides NPs are increasingly applied in the studies of catalysis, semiconductor,energy storage,and semiconductor as a result of their high surface reaction activity and catalytic activity[9-13].As a significant transition metal oxide,Co3O4NPs have been reported and applied incatalysis,electrochemicalsensorsandenergy storage[14-17].Compared with CoO and Co2O3,Co3O4exhibit more broad application prospects in electrochemistry because of its extremely high electrocatalytic activity and theoretical specific capacitance[18-19]. Cheng et al.reported that Co3O4directly grown on Ni foam has superior mass transport property,as well as this strategy is low in cost and facile in preparation[20]. Mu et al.reported that Co3O4NPs exhibited peroxidase -like activity and catalase-like activity[21].However, small molecules like Co3O4nanoparticles usually show poor stability and are easy to aggregate,as a result of the active sites decreased[22-24].

    To solve this problem,some research groups wrapped some filming materials around the small molecules,and achieved initial success[24-25].Liu et al. reported porphyrinfunctionalized chain-like Co3O4NPs exhibited higher stability and catalytic activity than those of pure Co3O4NPs[23].Dong et al.reported a novel organic-inorganic hybrid material polypyrrole-Co3O4with good stability was successfully synthesized[26]. Lee et al.reported a very good film-forming biomaterial dopamine[27].Dopamine,as an important catecholamine neurotransmitter with excellent self-polymerizing ability and biocompatibility,has received great attention on filming material in the past few years[28-29]. The stable polydopamine(PDA)film formed by covalentpolymerizationandnon-covalentselfassemblydopamineiseasilylinkedwithmany materials such as metallic nanoparticles and biological molecules through the residual catechol groups on the film surface[30-32].

    In this paper,we reported the synthesis of PDA bio-functionalized Co3O4NPs and its application in the electrocatalysis on H2O2.The Co3O4NPs were coveredinPDAfilmbyself-polymerizationof dopamine.With the residual catechol groups on the PDAfilmsurface,uniformlydispersedplatinum nanoparticles(Pt NPs)could be simply and steadily deposited on PDA-Co3O4.Then,the introduction of horseradish peroxidase(HRP)further enhanced the electrocatalytic activity of the nanocomposites.By taking advantages of the excellent biocompatibility, film forming ability of PDA,and high electrocatalytic activity of Co3O4NPs,as well as the combined effect of Co3O4,Pt NPs and HRP,the fabricated Co3O4-PDAPt nanocomposite exhibited excellent electrocatalysis on H2O2.

    1 Experimental

    1.1Chemicals and materials

    Cobaltous nitrate(Co(NO3)2·6H2O),polyethylene glycol(PEG),butyl alcohol,chloroplatinic acid(H2PtCl6·6H2O),sodium borohydride(NaBH4),and dopamine were purchased from Alfa Aesar,while horseradish peroxidase(HRP)was from Jianglaibio Co.Ltd. (Shanghai,China).Allotherchemicalswereof analytical grade and used as received without further purification.Phosphatebuffersolution(PBS)of various pH values were prepared by mixing the 0.067 mol·L-1stock solutions of KH2PO4and Na2HPO4at specific ratios.All solutions were established with ultrapure water.

    1.2Apparatus

    Cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and I-t curves were performed using a Potentiostat/Galvanostat Model 283 electrochemical workstation(Ametek,USA).The threeelectrode system consisted of a bare or modified gold electrode(GE)which was used as a working electrode, a saturated calomel electrode(SCE)as a reference electrodeandaPtwirecounterelectrode.The transmission electron microscope(TEM)images were obtained with a H600 transmission electron microscope (Hitachi Instruments,Japan).X-ray powder diffraction(XRD)measurements were performed on a Bruker D8 advanced X-ray diffractometer with Cu Kα irradiation (λ=0.154 06 nm)at 40 kV and 40 mA in the scanning 2θ range of 10°and 90°.Fourier-transform infrared(FT-IR)spectroscopic were determined using a Nicolet Avatar 360 FTIR spectrometer.

    1.3Synthesis of PDA functionalized Co3O4NPs

    Co3O4NPsweresimplysynthesizedby hydrothermal method.In brief,5.0 mL of 1.5 mol·L-1Co(NO3)2solution was added into a sample vial.Then, 7.5 mL of 5%(w/w)PEG and 7.5 mL butyl alcohol were added into the vial with vigorous magnetic stirring.Next,a certain amount of NaOH solution was added into the vial drop by drop and the color of the suspension changed into blue.Then a certain amount of H2O2was dropped slowly and the color further changed into brown-black.The obtained suspension was transferred into a 50 mL Teflon-lined stainless steel autoclave.The autoclave was maintained at 160℃for 10 h after it was tightly sealed.Then,the autoclave was cooled down to room temperature and the black precipitation was washed three times with water and anhydrous ethanol respectively,and then the Co3O4NPs colloid was obtained.The Co3O4NPs colloid was first to be ultrasonically treated for 10 min toensureCo3O4NPsdispersedinthesolution. Subsequently,40 mL pH 7.0 PBS containing 1.5 mg· mL-1fresh dopamine was added.After that,the solution was violently stirred in ice-water bath for 6 h. Finally,the precipitate was washed with water and then the functionalized Co3O4NPs(Co3O4-PDA)were obtained.

    The loading of Pt NPs on Co3O4-PDA(Co3O4-PDA-Pt)was synthesized by in situ deposition.Firstly, the obtained Co3O4-PDA solution was dispersed in 4.0 mL of 0.1%(w/w)H2PtCl6with vigorous magnetic stirring and then 0.1 mL of 0.1 mol·L-1fresh NaBH4solution was dripped slowly and vigorous stirred for 0.5 h.After centrifugation,the solution was washed with water and then Co3O4-PDA-Pt nanocomposite was obtained.Forinvestigatingtheelectrocatalytic properties,Co3O4-Pt,PDA-Pt and Co3O4-PDA were also prepared by the same method.

    1.4Fabrication of the modified electrodes

    10 μL of the Co3O4-PDA-Pt suspension was dipped onto the cleaned bare GE surface to dry at 4℃for 4 h.After the Co3O4-PDA-Pt modified electrode was dried,15 μL of 1 mg·mL-1HRP solution was dipped onto the resulting electrode and then it was maintained upon water for 6 h at 4℃.Finally,the modified electrode was carefully rinsed with water to remove the physically absorbed HRP,then GE/Co3O4-PDA-Pt/HRP was obtained.The schematic representation of the preparation process of GE/Co3O4-PDA-Pt/ HRP modified electrode is shown in Scheme 1.GE/ Co3O4,GE/Co3O4-Pt,GE/Co3O4-PDA/HRP,and GE/ PDA-Pt/HRP were also prepared by the same process.

    Scheme 1Schematic representation of the preparation of GE/Co3O4-PDA-Pt/HRP

    2 Results and discussion

    2.1Characterization of Co3O4-PDA-Pt

    The morphology and size of Co3O4-PDA-Pt nanocomposites were characterized by TEM.Fig.1(a)gives the image of Co3O4NPs.It can be seen that the diameter of them was about 30 nm.Compared with the Co3O4NPs,the diameter of Co3O4-PDA increased and obvious layer structure can be seen in Fig.1(b). This indicated that the PDA film was successfully coated on the surface ofCo3O4NPs.Withthe abundant amine groups and residual catechol groups of the PDA film,Pt NPs could be linked simply and steadily on the nanocomposite by in situ reduction.As shown in Fig.1(c),a large amount of Pt NPs were uniformly distributed on the Co3O4-PDA surface.

    Theas-synthesisednanocompositesarealso determined by XRD and FT-IR.The pattern for the as-prepared Co3O4NPs(Fig.2A(a))exhibited the diffraction peaks at 2θ=19.01°,31.34°,36.91°, 38.73°,44.90°,59.55°,65.36°and 77.22°,which corresponded to(111),(220),(311),(222),(440), (422),(511),(440)and(531)crystal planes and all of which coincided with those for Co3O4cubic(PDF#42-1467,Fig.2A(b)).No impurity peaks were observed, which indicates the high purity of the final products. Fig.2B shows the FT-IR spectra of the as-prepared nanocomposites.As shown in Fig.2B(a),two strong bands at 667 and 565 cm-1appeared,which are assigned to the stretching vibrations of the metaloxygen bond[33].The peak at 667 cm-1is attributed to Co-O vibration in tetrahedral hole in which Co is Co2+, and the another peak at 565 cm-1can be attributed to Co-O vibration in octahedral hole in which Co is Co3+[34-35].This indicated that Co3O4NPs were successfully prepared.Compared with the Co3O4NPs,PDA coated Co3O4NPs showed additional three absorption peaks around 1 296,1 602 and 3 421 cm-1(Fig.2B (b)).The absorption peaks at 1 296 and 1 602 cm-1are attributed to the C-N stretching vibration and phenylicC=C stretching vibrations[36-37].The absorption peaks at 3 421 cm-1is from catechol-OH groups[36].

    Fig.1TEM images of Co3O4NPs(a),Co3O4-PDA(b)and Co3O4-PDA-Pt(c)

    Fig.2(A)XRD pattern of Co3O4NPs:(a)experimental,(b)PDF#42-1467;(B)FT-IR spectra:(a)Co3O4NPs,(b)Co3O4-PDA

    2.2Electrochemical characteristics of different modified electrodes

    The electrochemical characteristics of different modifiedelectrodeswereinvestigatedbycyclic voltammetry(CVs)which was carried out at 50 mV· s-1in 0.067 mol·L-1PBS(pH 7.0)containing 0.1 mol· L-1KCl and 5.0 mmol·L-1K3[Fe(CN)6].The CVs of different modified electrodes are shown in Fig.3.As shown in Fig.3a,a pair of well-defined redox peaks corresponding to K3[Fe(CN)6]were observed at the bare GE.After the electrode was modified with the Co3O4-PDAnanocomposite,thepeakscurrent decreased slightly(Fig.3b),which should be caused by the weak conductivity of PDA.After the Co3O4-PDA was loaded with Pt NPs,the Co3O4-PDA-Pt modified electrode exhibited a strongly enhancement to redox peaks current,which was mainly from the large surface area and excellent conductivity of Pt NPs(Fig.3c).ComparedwithFig.3c,afterthe adsorption of HRP,the peaks current decreased obviously(Fig.3d),which was mainly from the weak conductivity of macromolecular zymoprotein.

    Fig.3CVs of different electrodes at 50 mV·s-1in 0.067 mol·L-1PBS(pH 7.0)containing 0.1 mol·L-1KCl and 5.0 mmol·L-1K3[Fe(CN)6]

    Electrochemical impedance spectroscopy(EIS) can also provide useful information on the impedance changes on the electrode surface during the process of electrodes modification.Fig.4 exhibited the impedance of different modified electrodes in 0.1 mol·L-1KCl solution containing 5.0 mmol·L-1K3[Fe(CN)6].As is shown in Fig.4,the Nyquist plot of impedance spectra includes a semicircle portion and a linear portion.The semicircle at high frequency region relates to the electron transfer limited process,and the Warburg linear at low frequencies region relates to the diffusion process[38-39].The semicircle diameter of EIS spectrum equals to the electron-transfer resistance(Ret).It can be seen that the resistance for GE/Co3O4-PDA(Fig.4b) was larger than that at bare GE(Fig.4a),which should also be due to the inhibition effect of PDA biopolymer film for electron transfer.Compared with the Co3O4-PDA modified electrode,the Co3O4-PDA-Pt modified electrode exhibited smaller Ret(Fig.4c).The reason might be the enhancer for electron transfer of Pt NPs. When HRP was immobilized onto the GE/Co3O4-PDAPt surface the resistance of the modified electrode decreased(Fig.4d),which was attributed to the inhibition effect of the enzyme biomacromolecules for electron transfer.The results are also consistent with the previous CVs′(Fig.3).

    Fig.4EIS of different modified electrodes in 5.0 mmol· L-1K3[Fe(CN)6]solution

    2.3Optimization of working potential

    Fig.5Influence of different working potential on current response of GE/Co3O4-PDA-Pt/HRP: (A)current-time curves;(B)corresponding calibration curves

    The performance of the electrochemical biosensor usually relates to the working potential.Fig.5 showed the current response to successive addition of 10 μmol· L-1H2O2of GE/Co3O4-PDA-Pt/HRP at the working potential in the range from 0 to-0.40 V.Curves in Fig.5A display typical current-time curves at different working potential for successive addition of 10 μmol· L-1H2O2,and the corresponding calibration curves were shown in Fig.5B.Moreover,in order to compare the influence of working potential more clearly,the slope vs working potential curve was presented in the inset of Fig.5B.It was found that the slope continuouslyincreasedwiththeincreasingofworking potential,and the highest current response appeared at-0.4 V.However,too high working potential results in interference from the matrix species.Therefore, considering the sensitivity of sensor,-0.30 V was chosen for the working potential in the further work.

    2.4Electrocatalytic property towards H2O2

    To investigate the catalytic activities of different nanocomposites to H2O2,different modified electrodes were tested by CV in 0.1 mol·L-1KCl solution containing 5.0 mmol·L-1K3[Fe(CN)6]and 10 μmol·L-1H2O2at 50 mV·s-1(Fig.6).Compared with Co3O4NPs modified electrode(Fig.6(a)),Co3O4NPs loaded with Pt NPs modified electrode exhibited larger reduction peak current due to the strong catalytic activity of Pt NPs to H2O2(Fig.6(b)).Fig.6(c)shows that GE/Co3O4-PDA-Pt exhibited larger reduction peak current than GE/Co3O4-Pt,which might be because the introduction of PDA enhances the load of Pt NPs.Due to the efficient catalytic performance of bio-enzyme,the reduction peak current was further increased after HRP was immobilized onto the GE/Co3O4-PDA-Pt surface(Fig.6(d)).

    Fig.6CVs of different modified electrodes at 50 mV·s-1in 0.067 mol·L-1PBS(pH 7.0)with 10 μmol·L-1H2O2

    Comparative experiments were carried out using different modified electrodes by successively adding H2O2to a continuously stirred PBS(pH 7.0)solution at working potential of-0.30 V to further investigate theelectrocatalyticpropertiesofCo3O4-PDA-Pt nanocomposite(Fig.7).As can be seen,GE/Co3O4-PDA-Pt/HRP had the highest current response(Fig.7B (d)).Compared with GE/Co3O4-PDA/HRP(Fig.7B(a)) and GE/PDA-Pt/HRP(Fig.7B(b)),the current response ofGE/Co3O4-PDA-Pt/HRPtoH2O2isgreatly enhanced,which might be ascribed to the excellent conductivity of Pt NPs.Through this conductivity, Co3O4can play its catalytic role better.Due to the efficient catalytic performance of HRP,the currentresponse of GE/Co3O4-PDA-Pt/HRP(Fig.7B(d))was larger than that of GE/Co3O4-PDA-Pt(Fig.7B(c)). Based on these results,we confirmed that the combined effect of Co3O4,Pt and HRP made the nanocomposite exhibit excellent electrocatalytic properties.

    Fig.7Current response to successive addition of 10 μmol·L-1H2O2of different modified electrodes: (A)current-time curves;(B)corresponding calibration curves

    Fig.8Current response to H2O2additions on GE/Co3O4-PDA-Pt/HRP

    Fig.8 showed the typical current-time curves at GE/Co3O4-PDA-Pt/HRP with successive additions of H2O2at-0.30 V.A linear detection range from 0.1 to 700 μmol·L-1with a detection limit(LOD)of 0.08 μmol·L-1was observed.The regression equation is I/ μA=2.867×105cH2O2/(mol·L-1)+19.47(R2=0.998 2).The GE/Co3O4-PDA-Pt/HRPbiosensorexhibitedhigher sensitivity of 1 014.6 μA·L·mmol-1·cm-2than those of polyaniline-graphene composited thin film electrode (325.4 μA·L·mmol-1·cm-2)[40],hierarchical porous Co3O4electrode(389.7 μA·L·mmol-1·cm-2)[15]and Pd-TiO2electrode(554 μA·L·mmol-1·cm-2)[41],and nanoporous Ag@BSA/Au electrode(101.3 μA·L·mmol-1· cm-2)[42].Theresults indicatedthatthe fabricated Co3O4-PDA-Pt nanocomposite modified electrode H2O2sensor exhibited high sensitivity and wide dynamic measurement range,which mainly due to the high electrocatalyticactivityofCo3O4NPs,excellent biocompatibility,film forming ability of PDA and the synergies in Co3O4,Pt NPs and HRP.

    3 Conclusions

    This work reported that PDA bio-functionalized Co3O4NPs were successfully synthesized through a simple and cost-effective strategy and first applied to the research of electrocatalysis on H2O2.Co3O4NPs,as a new peroxidase-like,were wrapped with PDA by a simple self-polymerization in mild basic solution.It was found that the introduction of PDA film enhanced the stabilities of Co3O4NPs and Pt NPs and the combined effect of Co3O4and Pt NPs greatly improved the electrocatalytic properties of Co3O4-PDA-Pt nanocomposite.Thehighelectrocatalyticactivityand stabilityoftheproposednanocompositeprovide potentialapplicationsforelectrochemicalsensors, catalysis,and fuel cells.

    Acknowledgements:ThisworkwassupportedbyScientific Research Foundation for Changjiang Scholars of Shihezi University,the National Natural Science Foundation of China(Grant No.21065009),Bingtuan Innovation Team in Key Areas(Grant No.2015BD003),and the Key Project of Chinese Ministry of Education(Grant No.210251).

    References:

    [1]Guo H,Aleyasin H,Dickinson B C,et al.Cell Biosci.,2014,4: 1

    [2]Kuo C C,Lan W J,Chen C H.Nanoscale,2014,6:334-341

    [3]Perathoner S,Centi G.Top Catal.,2005,33:207-224

    [4]Van de Bittner G C,Dubikovskaya E A,Bertozzi C R,et al. Proc.Nat.Acad.Sci.U.S.A.,2010,107:21316-21321

    [5]Yagati A K,Choi J W.Electroanalysis,2014,26:1259-1276

    [6]Liang W,Yi W,Li S,et al.Clin.Biochem.,2009,42:1524-1530

    [7]Luo X,Morrin A,Killard A J,et al.Electroanalysis,2006,18: 319-326

    [8]Chen H,Jiang C,Yu C,et al.Biosens.Bioelectron.,2009,24: 3399-3411

    [9]Kleijn S E F,Lai S,Koper M,et al.Angew.Chem.Int.Ed., 2014,53:3558-3586

    [10]Daniel M C,Astruc D.Chem.Rev.,2004,104:293-346

    [11]Guo S,Wang E.Anal.Chim.Acta,2007,598:181-192

    [12]Meyer J,Hamwi S,Krger M,et al.Adv.Mater.,2012,24: 5408-5427

    [13]Kumar D R,Manoj D,Santhanalakshmi J.Sens.Actuators B,2013,188:603-612

    [14]Kim H,Park D W,Woo H C,et al.Appl.Catal.,B,1998,19: 233-243

    [15]Han L,Yang D P,Liu A.Biosens.Bioelectron.,2015,63: 145-152

    [16]Pan L,Zhao H,Shen W,et al.J.Mater.Chem.,A,2013,1: 7159-7166

    [17]Srinivasan V,Weidner J W.J.Power Sources,2002,108:15-20

    [18]Cao D,Chao J,Sun L,et al.J.Power Sources,2008,179:87-91

    [19]Gao Y,Chen S,Cao D,et al.J.Power Sources,2010,195: 1757-1760

    [20]Cheng K,Cao D,Yang F,et al.J.Power Sources,2014,253: 214-223

    [21]Mu J,Wang Y,Zhao M,et al.Chem.Commun.,2012,48: 2540-2542

    [22]Yang H,Zhang X,Tang A,et al.Chem.Lett.,2004,33:826-827

    [23]Liu Q,Zhu R,Du H,et al.Mater.Sci.Eng.C,2014,43:321 -329

    [24]Hong C,Yuan R,Chai Y,et al.Electroanalysis,2008,20: 2185-2191

    [25]Sun Z,Luo Z,Gan C,et al.Biosens.Bioelectron.,2014,59: 99-105

    [26]Dong S,Peng L,Liu D,et al.Bioelectrochemistry,2014,98: 87-93

    [27]Lee H,Rho J,Messersmith P B.Adv.Mater.,2009,21:431-434

    [28]Hong S,Kim K Y,Wook H J,et al.Nanomedicine,2011,6: 793-801

    [29]Lee H,Dellatore S M,Miller W M,et al.Science,2007,318: 426-430

    [30]Hong S,Na Y S,Choi S,et al.Adv.Funct.Mater.,2012,22: 4711-4717

    [31]Wang G,Huang H,Zhang G,et al.Langmuir,2010,27:1224 -1231

    [32]Wang Y,Liu L,Li M,et al.Biosens.Bioelectron.,2011,30: 107-111

    [33]Yin J,Cao H,Lu Y.J.Mater.Chem.,2012,22:527-534

    [34]Khalaji A D,Fejfarova K,Dusek M,et al.J.Mol.Struct., 2014,1071:6-10

    [35]Mu J,Zhang L,Zhao M,et al.J.Mater.Chem.A,2013,378: 30-37

    [36]Martín M,Salazar P,Villalonga R,et al.J.Mater.Chem.B, 2014,2:739-746

    [37]Yan L,Bo X,Zhu D,et al.Talanta,2014,120:304-311

    [38]Kaar C,Dalkiran B,Erden P E,et al.Appl.Surf.Sci.,2014, 311:139-146

    [39]Hong C,Yuan R,Chai Y,et al.Electroanalysis,2008,20: 989-995

    [40]Ameen S,Akhtar M S,Shin H S.Sens.Actuators B,2012, 173:177-183

    [41]Yi Q,Niu F,Yu W.Thin Solid Films,2011,519:3155-3161 [42]Liu Q,Zhang T,Yu L,et al.Analyst,2013,138:5559-5562

    Preparation and Electrocatalytic Properties of Polydopamine Functionalized Co3O4Nanocomposite

    WANG Hai-NingPAN Bo-GuangSUN ZhaoFENG Tao-TaoQI Yu*HONG Cheng-Lin*
    (School of Chemistry and Chemical Engineering,Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region,Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan,Shihezi University,Shihezi,Xinjiang 832003,China)

    Polydopamine(PDA)bio-functionalized Co3O4nanoparticles(NPs)were successfully synthesised and first applied to the research of electrocatalysis on H2O2.Co3O4NPs,as a peroxidase-like,were wrapped with PDA by a simple self-polymerization in mild basic solution.Then,uniformly dispersed platinum nanoparticles(Pt NPs) were deposited on PDA-Co3O4.It is found that the introduction of PDA film enhanced the load of Pt NPs,and the combined effect of Co3O4,Pt NPs and horseradish peroxidase(HRP)amplified the electrical signal of H2O2sensor. Under optimal conditions,a wide linear detection range from 0.1 to 700 μmol·L-1with a detection limit of 0.08 μmol·L-1was observed.

    Co3O4;polydopamine;multiple signal amplification;electrocatalysis;H2O2

    TB333

    A

    1001-4861(2016)08-1441-08

    10.11862/CJIC.2016.190

    2016-03-26。收修改稿日期:2016-06-24。

    國家自然科學(xué)基金(No.21065009)、教育部重點(diǎn)資助項(xiàng)目(No.210251)和兵團(tuán)重點(diǎn)領(lǐng)域創(chuàng)新團(tuán)隊(duì)計(jì)劃(No.2015BD003)資助。

    *通信聯(lián)系人。E-mail:hcl_tea@shzu.edu.cn,qy01_tea@shzu.edu.cn

    猜你喜歡
    辣根電催化過氧化物
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    銀納米團(tuán)簇的過氧化物模擬酶性質(zhì)及應(yīng)用
    Co3O4納米酶的制備及其類過氧化物酶活性
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    我愛我的狗!
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    過氧化物交聯(lián)改性PE—HD/EVA防水材料的研究
    中國塑料(2016年3期)2016-06-15 20:30:00
    提高有機(jī)過氧化物熱穩(wěn)定性的方法
    金葵:走向世界的小小辣根
    辣根的栽培技術(shù)
    日韩欧美国产在线观看| 久久天躁狠狠躁夜夜2o2o| 女生性感内裤真人,穿戴方法视频| 精品乱码久久久久久99久播| 国产欧美日韩精品亚洲av| 变态另类丝袜制服| 亚洲精品粉嫩美女一区| 国国产精品蜜臀av免费| 国产精品日韩av在线免费观看| 免费看美女性在线毛片视频| 69av精品久久久久久| 99国产精品一区二区蜜桃av| 国产精华一区二区三区| a级毛色黄片| 欧美另类亚洲清纯唯美| 欧美国产日韩亚洲一区| 午夜精品国产一区二区电影 | 久久鲁丝午夜福利片| 国产毛片a区久久久久| 99视频精品全部免费 在线| 一进一出抽搐gif免费好疼| 人妻夜夜爽99麻豆av| 国产三级中文精品| 99国产极品粉嫩在线观看| 午夜a级毛片| 九九久久精品国产亚洲av麻豆| 一进一出好大好爽视频| 精品午夜福利在线看| 乱人视频在线观看| 精品一区二区三区视频在线| 啦啦啦观看免费观看视频高清| 亚洲人成网站在线播放欧美日韩| 精品乱码久久久久久99久播| 国产人妻一区二区三区在| 直男gayav资源| 美女内射精品一级片tv| 欧美成人免费av一区二区三区| 亚洲人成网站高清观看| 日本 av在线| 亚洲成人精品中文字幕电影| 看非洲黑人一级黄片| 成人高潮视频无遮挡免费网站| 大又大粗又爽又黄少妇毛片口| 丝袜喷水一区| 中文字幕人妻熟人妻熟丝袜美| aaaaa片日本免费| 欧美3d第一页| 亚洲国产色片| 春色校园在线视频观看| 亚洲成人久久爱视频| 三级毛片av免费| 成人二区视频| 观看免费一级毛片| 天堂av国产一区二区熟女人妻| 精品人妻一区二区三区麻豆 | 好男人在线观看高清免费视频| 最近在线观看免费完整版| 亚洲四区av| 国国产精品蜜臀av免费| 淫秽高清视频在线观看| 日本a在线网址| 天天躁日日操中文字幕| 99在线视频只有这里精品首页| 精品人妻一区二区三区麻豆 | 我要搜黄色片| 校园春色视频在线观看| 婷婷精品国产亚洲av| 欧美日韩精品成人综合77777| 亚州av有码| 最后的刺客免费高清国语| 午夜久久久久精精品| 成人高潮视频无遮挡免费网站| 最好的美女福利视频网| 午夜亚洲福利在线播放| 晚上一个人看的免费电影| 欧美日本视频| 最好的美女福利视频网| 成人午夜高清在线视频| 国产91av在线免费观看| 网址你懂的国产日韩在线| 美女大奶头视频| 我要看日韩黄色一级片| 最新在线观看一区二区三区| 国产精品亚洲美女久久久| 国产乱人视频| 我要看日韩黄色一级片| 成年女人毛片免费观看观看9| 在线播放无遮挡| 22中文网久久字幕| 91久久精品国产一区二区三区| 国产片特级美女逼逼视频| av在线老鸭窝| 国产精品一区二区性色av| 美女黄网站色视频| 国产真实乱freesex| 国产精品一区二区免费欧美| 美女黄网站色视频| 亚洲国产色片| 午夜日韩欧美国产| 国产午夜精品久久久久久一区二区三区 | 国产高清视频在线播放一区| 97在线视频观看| 亚洲欧美中文字幕日韩二区| 成人一区二区视频在线观看| 亚洲精品亚洲一区二区| 欧美性猛交╳xxx乱大交人| 一边摸一边抽搐一进一小说| av在线老鸭窝| 91午夜精品亚洲一区二区三区| 变态另类丝袜制服| 成年免费大片在线观看| 精品少妇黑人巨大在线播放 | 我的老师免费观看完整版| 亚州av有码| 久久午夜亚洲精品久久| 青春草视频在线免费观看| av在线蜜桃| 亚洲av免费在线观看| 久久久久国内视频| 又黄又爽又刺激的免费视频.| 熟女电影av网| 亚洲无线在线观看| 亚洲人与动物交配视频| 在线国产一区二区在线| 欧美日韩在线观看h| 久久人人爽人人爽人人片va| 美女cb高潮喷水在线观看| 国产综合懂色| 日本成人三级电影网站| 成人国产麻豆网| 一个人观看的视频www高清免费观看| 99热这里只有是精品在线观看| 18+在线观看网站| 日日啪夜夜撸| 国产高清有码在线观看视频| 别揉我奶头 嗯啊视频| 黄色日韩在线| 亚洲熟妇中文字幕五十中出| 夜夜夜夜夜久久久久| 国产av麻豆久久久久久久| 久久久久久九九精品二区国产| 国产av不卡久久| 简卡轻食公司| 欧美激情国产日韩精品一区| 亚洲av.av天堂| 亚洲精品国产av成人精品 | 最近视频中文字幕2019在线8| 麻豆乱淫一区二区| 人妻制服诱惑在线中文字幕| 亚洲综合色惰| 精品人妻熟女av久视频| 内射极品少妇av片p| 91av网一区二区| 舔av片在线| 亚洲婷婷狠狠爱综合网| 久久精品国产鲁丝片午夜精品| 在线天堂最新版资源| 亚洲av.av天堂| 免费无遮挡裸体视频| 国产亚洲精品久久久com| 3wmmmm亚洲av在线观看| 亚洲最大成人中文| 中文资源天堂在线| 日日摸夜夜添夜夜添av毛片| 欧美最黄视频在线播放免费| 国产aⅴ精品一区二区三区波| 中文字幕免费在线视频6| 成年av动漫网址| 直男gayav资源| 国产91av在线免费观看| 亚洲国产精品久久男人天堂| 亚洲国产高清在线一区二区三| 免费电影在线观看免费观看| 热99re8久久精品国产| 亚洲欧美成人精品一区二区| 男女下面进入的视频免费午夜| 国产精品久久视频播放| 99精品在免费线老司机午夜| 国产不卡一卡二| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线观看播放| 欧美bdsm另类| 亚洲欧美中文字幕日韩二区| 婷婷亚洲欧美| av黄色大香蕉| 久久久久国产精品人妻aⅴ院| 日韩制服骚丝袜av| 一进一出抽搐动态| 色综合色国产| 精品久久国产蜜桃| 欧美极品一区二区三区四区| 欧美一区二区精品小视频在线| 国产精品一区二区性色av| 亚洲精品国产成人久久av| 成人鲁丝片一二三区免费| 色综合色国产| 久久久久久久午夜电影| 欧美高清性xxxxhd video| 亚洲美女搞黄在线观看 | 国产片特级美女逼逼视频| 在线播放无遮挡| 热99在线观看视频| 久久人人爽人人片av| 黄色日韩在线| 校园人妻丝袜中文字幕| 大又大粗又爽又黄少妇毛片口| 91av网一区二区| 在现免费观看毛片| 国产白丝娇喘喷水9色精品| 国产黄a三级三级三级人| 亚洲一区高清亚洲精品| 中文亚洲av片在线观看爽| 激情 狠狠 欧美| 国产久久久一区二区三区| 一区二区三区高清视频在线| 精品久久久久久久末码| 成人永久免费在线观看视频| 亚洲熟妇中文字幕五十中出| 久久久久精品国产欧美久久久| 你懂的网址亚洲精品在线观看 | 日本在线视频免费播放| 啦啦啦韩国在线观看视频| 免费av不卡在线播放| 男女下面进入的视频免费午夜| 免费大片18禁| 免费看日本二区| 国产精品亚洲美女久久久| 老熟妇乱子伦视频在线观看| 最新中文字幕久久久久| 久久久久九九精品影院| 国产精品一区二区免费欧美| 成年女人看的毛片在线观看| 日韩三级伦理在线观看| 成人漫画全彩无遮挡| 国产69精品久久久久777片| 色综合色国产| 国产男人的电影天堂91| 国产亚洲欧美98| 97超碰精品成人国产| 日本色播在线视频| 卡戴珊不雅视频在线播放| 精品久久久久久久久久久久久| av天堂中文字幕网| 美女黄网站色视频| 熟女人妻精品中文字幕| av在线老鸭窝| 91午夜精品亚洲一区二区三区| 十八禁网站免费在线| 99九九线精品视频在线观看视频| 国产精品一二三区在线看| 亚洲,欧美,日韩| 国产精品无大码| 亚洲高清免费不卡视频| 欧美一级a爱片免费观看看| 三级男女做爰猛烈吃奶摸视频| 久久精品国产清高在天天线| 国模一区二区三区四区视频| 国产色爽女视频免费观看| 国内精品美女久久久久久| 日韩三级伦理在线观看| 久久久色成人| 亚洲中文日韩欧美视频| 不卡一级毛片| 亚洲av成人av| 国产精品一二三区在线看| 亚洲精品一卡2卡三卡4卡5卡| 精品久久国产蜜桃| 成人鲁丝片一二三区免费| 亚洲经典国产精华液单| www.色视频.com| 亚洲国产色片| 一级毛片aaaaaa免费看小| 亚洲激情五月婷婷啪啪| 欧美精品国产亚洲| 欧美zozozo另类| 俺也久久电影网| 日韩欧美国产在线观看| 亚洲欧美精品自产自拍| 俄罗斯特黄特色一大片| 别揉我奶头 嗯啊视频| 成人高潮视频无遮挡免费网站| eeuss影院久久| 给我免费播放毛片高清在线观看| 欧美xxxx性猛交bbbb| 特级一级黄色大片| 久久亚洲精品不卡| 观看美女的网站| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品中文字幕看吧| 美女黄网站色视频| 亚洲av熟女| 干丝袜人妻中文字幕| 亚洲久久久久久中文字幕| 久久久欧美国产精品| 国产免费一级a男人的天堂| 成年女人永久免费观看视频| 最新在线观看一区二区三区| 婷婷亚洲欧美| 国产精品免费一区二区三区在线| 简卡轻食公司| 欧美人与善性xxx| 久久国产乱子免费精品| 亚洲五月天丁香| 亚洲人成网站高清观看| 蜜臀久久99精品久久宅男| 69av精品久久久久久| 亚洲天堂国产精品一区在线| 我的老师免费观看完整版| 一级毛片久久久久久久久女| 国产精品永久免费网站| avwww免费| 夜夜夜夜夜久久久久| 日韩一本色道免费dvd| 男人和女人高潮做爰伦理| 亚洲成人av在线免费| 女人十人毛片免费观看3o分钟| 午夜免费男女啪啪视频观看 | 高清毛片免费看| 成人三级黄色视频| 亚洲一区高清亚洲精品| 亚洲成人精品中文字幕电影| 热99re8久久精品国产| 成人av一区二区三区在线看| 在现免费观看毛片| 国产免费一级a男人的天堂| 春色校园在线视频观看| 欧美三级亚洲精品| 最近手机中文字幕大全| 欧美区成人在线视频| 天天躁日日操中文字幕| av天堂中文字幕网| 最后的刺客免费高清国语| 成年版毛片免费区| 嫩草影院入口| 黄色日韩在线| 午夜老司机福利剧场| 婷婷精品国产亚洲av| 女人十人毛片免费观看3o分钟| 久久久久久久久久成人| 观看美女的网站| 色5月婷婷丁香| a级毛片a级免费在线| 真人做人爱边吃奶动态| 成年女人永久免费观看视频| 国产在线男女| 听说在线观看完整版免费高清| 赤兔流量卡办理| 天堂√8在线中文| 真实男女啪啪啪动态图| 国产精品一区二区三区四区久久| 精品一区二区三区av网在线观看| 日韩三级伦理在线观看| 国产探花在线观看一区二区| 亚洲国产欧美人成| 国产在线男女| 欧美性猛交╳xxx乱大交人| 中文字幕av在线有码专区| 哪里可以看免费的av片| 啦啦啦观看免费观看视频高清| 国产精品人妻久久久影院| 国产色爽女视频免费观看| 免费电影在线观看免费观看| 精品久久久噜噜| 精品乱码久久久久久99久播| 国产色婷婷99| 一级毛片电影观看 | 国产麻豆成人av免费视频| 22中文网久久字幕| 久久精品国产亚洲网站| 人人妻人人澡欧美一区二区| 亚洲一区高清亚洲精品| 黄片wwwwww| 欧美另类亚洲清纯唯美| 麻豆乱淫一区二区| 国产乱人视频| 国产精品一二三区在线看| 国产三级在线视频| 蜜桃亚洲精品一区二区三区| 日本 av在线| 一卡2卡三卡四卡精品乱码亚洲| 少妇被粗大猛烈的视频| 久久精品国产鲁丝片午夜精品| 菩萨蛮人人尽说江南好唐韦庄 | 国模一区二区三区四区视频| 久久精品91蜜桃| 成人无遮挡网站| av福利片在线观看| 一级毛片我不卡| av福利片在线观看| 久久九九热精品免费| 国内精品美女久久久久久| 欧美色视频一区免费| 身体一侧抽搐| 在线免费观看不下载黄p国产| 日本免费一区二区三区高清不卡| 在线免费观看不下载黄p国产| 婷婷精品国产亚洲av在线| 三级毛片av免费| 蜜臀久久99精品久久宅男| 最新在线观看一区二区三区| 3wmmmm亚洲av在线观看| 级片在线观看| 日韩欧美一区二区三区在线观看| 亚洲在线观看片| 亚洲av成人av| 免费一级毛片在线播放高清视频| 久久久久久大精品| 色5月婷婷丁香| а√天堂www在线а√下载| 国产成人freesex在线 | 大型黄色视频在线免费观看| 最新在线观看一区二区三区| 久久精品久久久久久噜噜老黄 | 麻豆av噜噜一区二区三区| 免费看a级黄色片| 亚洲精品456在线播放app| 少妇丰满av| 国产久久久一区二区三区| 我的女老师完整版在线观看| 欧美潮喷喷水| 舔av片在线| 不卡视频在线观看欧美| 男女视频在线观看网站免费| 国产老妇女一区| 老司机影院成人| 国产精品综合久久久久久久免费| 99热6这里只有精品| 欧美+亚洲+日韩+国产| 色视频www国产| 欧美日韩精品成人综合77777| 午夜精品国产一区二区电影 | 久久久久久久午夜电影| 搞女人的毛片| 亚洲av熟女| 在线a可以看的网站| 最近手机中文字幕大全| 天天躁夜夜躁狠狠久久av| 国产亚洲欧美98| 久久精品久久久久久噜噜老黄 | 如何舔出高潮| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久国内视频| 看十八女毛片水多多多| 我要搜黄色片| 国产精品人妻久久久久久| 精品国产三级普通话版| 免费在线观看成人毛片| 老熟妇仑乱视频hdxx| 午夜精品在线福利| 久久久久国产精品人妻aⅴ院| 欧美性感艳星| 欧美高清成人免费视频www| 亚洲精品色激情综合| 又爽又黄a免费视频| 日韩制服骚丝袜av| 亚洲av电影不卡..在线观看| 国产一区二区三区av在线 | 极品教师在线视频| 日本与韩国留学比较| 一级黄片播放器| 久久精品人妻少妇| 久久午夜亚洲精品久久| 看十八女毛片水多多多| 一级毛片久久久久久久久女| 麻豆一二三区av精品| 秋霞在线观看毛片| 亚洲人成网站在线观看播放| 成人午夜高清在线视频| 亚洲国产高清在线一区二区三| 精品人妻熟女av久视频| 五月伊人婷婷丁香| 亚洲天堂国产精品一区在线| 欧美性猛交黑人性爽| 一个人看视频在线观看www免费| 亚洲五月天丁香| 悠悠久久av| 少妇熟女欧美另类| 亚洲美女视频黄频| 可以在线观看毛片的网站| 亚洲最大成人av| 少妇高潮的动态图| 亚洲四区av| 国产av在哪里看| 色av中文字幕| 久久精品影院6| 欧美日韩国产亚洲二区| 亚洲婷婷狠狠爱综合网| 在线观看av片永久免费下载| 成人亚洲精品av一区二区| 亚洲av美国av| 亚洲精华国产精华液的使用体验 | 亚洲国产色片| 不卡一级毛片| 亚洲成人久久爱视频| 国产精品无大码| 精品午夜福利视频在线观看一区| 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 国产欧美日韩精品亚洲av| 伦精品一区二区三区| 久久久久国内视频| 日日啪夜夜撸| 在线播放国产精品三级| 九九热线精品视视频播放| 亚洲最大成人中文| 精品欧美国产一区二区三| 亚洲美女黄片视频| 久久久a久久爽久久v久久| 狂野欧美激情性xxxx在线观看| 亚洲av五月六月丁香网| 人妻少妇偷人精品九色| 少妇丰满av| 国产探花在线观看一区二区| 69人妻影院| 欧美三级亚洲精品| 又爽又黄无遮挡网站| 97超视频在线观看视频| 成人永久免费在线观看视频| 亚洲欧美清纯卡通| 蜜臀久久99精品久久宅男| 亚洲国产精品国产精品| 九九热线精品视视频播放| 国产白丝娇喘喷水9色精品| 亚洲国产精品成人久久小说 | 亚洲欧美日韩卡通动漫| 成人av一区二区三区在线看| 色av中文字幕| 女生性感内裤真人,穿戴方法视频| 黄色配什么色好看| 成人av在线播放网站| 3wmmmm亚洲av在线观看| 99精品在免费线老司机午夜| 久久6这里有精品| 成人av一区二区三区在线看| 午夜福利成人在线免费观看| 麻豆国产97在线/欧美| 少妇熟女aⅴ在线视频| 最近在线观看免费完整版| 精华霜和精华液先用哪个| 又黄又爽又刺激的免费视频.| 免费大片18禁| 寂寞人妻少妇视频99o| 91久久精品国产一区二区成人| 91久久精品电影网| 成人亚洲精品av一区二区| 精品久久久久久久久av| 网址你懂的国产日韩在线| 能在线免费观看的黄片| 草草在线视频免费看| 午夜免费男女啪啪视频观看 | 亚洲激情五月婷婷啪啪| 国产乱人偷精品视频| 一级毛片电影观看 | 国产在视频线在精品| 国产一区二区亚洲精品在线观看| 国产黄片美女视频| 麻豆乱淫一区二区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品日韩在线中文字幕 | 波野结衣二区三区在线| 国产黄色视频一区二区在线观看 | av中文乱码字幕在线| 国产乱人偷精品视频| 99九九线精品视频在线观看视频| 精品熟女少妇av免费看| 欧美中文日本在线观看视频| 精品午夜福利在线看| 又黄又爽又免费观看的视频| 国产麻豆成人av免费视频| www.色视频.com| 国产伦在线观看视频一区| 日韩亚洲欧美综合| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人成网站在线观看播放| 插阴视频在线观看视频| 日本与韩国留学比较| 亚洲欧美日韩高清在线视频| 最近中文字幕高清免费大全6| 国产高潮美女av| 别揉我奶头 嗯啊视频| 国产精品精品国产色婷婷| 午夜福利在线观看免费完整高清在 | 成年免费大片在线观看| 日韩欧美三级三区| 国产精品乱码一区二三区的特点| 乱系列少妇在线播放| 亚洲欧美成人综合另类久久久 | 精品国内亚洲2022精品成人| 天天躁日日操中文字幕| 欧美日本亚洲视频在线播放| 日本一本二区三区精品| 亚洲av第一区精品v没综合| 久久热精品热| 国产aⅴ精品一区二区三区波| 搡老妇女老女人老熟妇| 国产乱人视频| 久久人妻av系列| 女人十人毛片免费观看3o分钟| 国产三级中文精品| 国产综合懂色| av视频在线观看入口| 国产精品久久久久久亚洲av鲁大| 国产高清三级在线| 免费人成视频x8x8入口观看| 日韩精品青青久久久久久| 亚洲天堂国产精品一区在线| а√天堂www在线а√下载| 亚洲激情五月婷婷啪啪| 国产精品一区二区免费欧美| 欧美在线一区亚洲| 亚洲真实伦在线观看| 联通29元200g的流量卡| 97热精品久久久久久| 午夜福利18| 看片在线看免费视频|