• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    由4-甲基-1,2,3-噻二唑-5-甲酸構(gòu)筑的銅配合物的合成、晶體結(jié)構(gòu)及與DNA作用

    2016-12-06 09:05:20胡未極武大令沈金杯趙國良浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院金華3004浙江師范大學(xué)行知學(xué)院金華3004
    關(guān)鍵詞:噻二唑浙江師范大學(xué)晶體結(jié)構(gòu)

    胡未極 武大令 沈金杯趙國良*,,(浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華3004)(浙江師范大學(xué)行知學(xué)院,金華3004)

    由4-甲基-1,2,3-噻二唑-5-甲酸構(gòu)筑的銅配合物的合成、晶體結(jié)構(gòu)及與DNA作用

    胡未極1武大令1沈金杯1趙國良*,1,2
    (1浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華321004)
    (2浙江師范大學(xué)行知學(xué)院,金華321004)

    由4-甲基-1,2,3-噻二唑-5-甲酸(HMTC,C4H4N2O2S)和菲咯啉(Phen)合成了2個(gè)銅配合物[Cu(MTC)2(H2O)2]n(1),[Cu2(MTC)2(Phen)2(H2O)4](MTC)2(2)。用元素分析、紅外光譜、熱重分析、粉末X射線衍射進(jìn)行表征,用單晶X射線衍射方法測(cè)定了配合物的晶體結(jié)構(gòu)。結(jié)果表明,配合物1是一維鏈狀結(jié)構(gòu),屬于單斜晶系,P21/c空間群,中心金屬銅(Ⅱ)離子的配位構(gòu)型是一個(gè)畸變的四方錐結(jié)構(gòu)。配合物2屬于三斜晶系,P1空間群,是一個(gè)雙核結(jié)構(gòu),由2個(gè)配位水分子上的氧橋連2個(gè)銅(Ⅱ)離子形成六配位的扭曲八面體結(jié)構(gòu)。用溴化乙錠熒光探針測(cè)定了配體和配合物與DNA的相互作用,結(jié)果顯示無論是配體還是配合物均能使EB-DNA復(fù)合體系的熒光發(fā)生不同程度的猝滅,且配合物的作用強(qiáng)度大于配體,具有剛性平面輔助配體的配合物2的作用強(qiáng)度又大于不加輔助配體的配合物1。

    銅配合物;4-甲基-1,2,3-噻二唑-5-甲酸;晶體結(jié)構(gòu);DNA作用

    In recent years,the rational design and synthesis of functional complexes construction based on organic ligands have attracted considerable attention because of the novel topological structures[1]and potential application in gas adsorption[2],separation[3],catalysis[4], magnetism[5],luminescence[6]and bioactivity[7].

    Copper is an indispensable micronutrients to human,which is closely related to human health and plays an important role in metabolism,synthesizing DNAandsoon[8-9].Inthe previous reports,the interaction between polypyridine transition metal complexes and DNA has drawn extensive attention[10-11].Numerous studies concluded that polypyridine copper complexes possessed plentiful potential bioactivity due to the intercalation of the complexes into DNA,such as the work done by Sigman[12],Thomas[13]and Reddy[14].

    Thiadiazol derivatives are widely used in the area ofpesticidesandpharmaceuticsowingtotheir extensivebiologicalactivityincludingantifungal, antibacterial,antitubercular,antimycobacterial,anticancer,diuretic,and hypoglycemic properties[15-17].So it is significant to carry out the research concerning mechanisms and bonding abilities between copper thiadiazol carboxylate polypyridine complexes and DNA,which can help us to design and synthesize DNA secondary structure probes,nucleic acid location reagents and anti-cancer drugs.

    Amongthiadiazolcompounds,biological activities of 1,3,4-thiadiazol compounds and 1,2,3-thiadiazol compounds have been reported for many times,while reports about boiogical activity based on 1,2,3-hiadiazol derivatives haven′t been seen before. Inthispaper,wereportthesynthesisand characterizations of two new copper(Ⅱ)complexes constructed by 4-methyl-1,2,3-thiadiazol-5-carboxylic acidandphenanthroline.Theinteractionsof complexes and ligand with DNA were also studied by EtBr fluorescence probe.

    1 Experimental

    1.1Materials and measurements

    Allreagentsandsolventsusedwereof commercially available quality and without purified before using.FTIR spectra were recorded on a Nicolet NEXUS 670 FTIR spectrophotometer using KBr discs in the range of 4 000~400 cm-1.Elemental analyses of C,H,N were performed on elemental analyzer,Elementar Vario ELⅢ.Crystallographic data were collected on a Bruker Smart ApexⅡCCD diffracto-meter.A Mettler Toledo thermal analyzer TGA/SDTA 851ewas used to carry out the thermoanalytical analysis with a heating rate of 10℃·min-1from 30 to 600℃in air atmosphere.Powder X-ray diffraction(PXRD)data were collected on a PW 3040/60 Focus X-Ray diffractometer using Cu Kα radiation(λ=0.154 06 nm, 10°·min-1,1°~30°).Fluorescence spectra were measured at room temperature with an Edinburgh FL-FS 920 TCSPC system.

    1.2Synthesis of[Cu(MTC)2(H2O)2]n(1)

    A mixture of HMTC(0.288 g,2.0 mmol),CuCl2·2H2O(0.170 g,1.0 mmol),NaOH(0.040 g,1.0 mmol) and H2O(15 mL)was put into a 50 mL vessel and stirred for 8h at room temperature.The resulted solution was allowed to evaporation at room temperature for two weeks.Green crystals suitable for singlecrystal analysisandphysicalmeasurementswere obtained,washed with distilled water,and dried in air.Yield:58%(based on HMTC).Anal.Calcd.for C8H10N4O6S2Cu(%):C,24.88;H,2.59;N,14.51.Found (%):C,24.79;H,2.42;N,14.42.IR(KBr,cm-1):3 300, 1 631,1 500,1 448,1 390,1 370,1 284,1 218,1 031, 784,733,597,534.

    1.3Synthesisof[Cu2(MTC)2(Phen)2(H2O)4](MTC)2(2)

    A mixture of HMTC(0.144 g,1 mmol),CuCl2·2H2O(0.085 g,0.5 mmol),NaOH(0.040 g,1.0 mmol), Phen(0.100 g,0.5 mmol)and EtOH(5 mL)/H2O(5 mL)was put into a 50 mL vessel and stirred for 8 h at room temperature.The resulted solution was allowed to evaporation at room temperature for two weeks. Green crystals suitable for single-crystal analysis and physical measurements were obtained,washed with distilled water,and dried in air.Yield:50%(based on HMTC).Anal.Calcd.for C40H36N12O12S4Cu2(%):C,42.40; H,3.18;N,14.84.Found(%):C,42.21;H,3.07;N, 14.72.IR(KBr,cm-1):3 521,3 061,1 589,1 512,1 440,1 212,1 149,1 110,1 024,874,785,738,590.

    1.4X-ray diffraction analysis

    The single crystals of the two complexes with approximate dimensions(0.360 mm×0.150 mm×0.100 mm,1;0.266 mm×0.238 mm×0.069 mm,2)were selected and mounted on a Bruker Smart ApexⅡCCD diffractometer.The diffraction data were collected using a graphite monochromated Mo Kα radiation(λ= 0.071 073 nm)at 296(2)K.The employed single crystals exhibit no detectable decay during the data collection.Absorption corrections were applied using SADABS[18].The structure was solved by direct methods with the SHELXS-97[19]program package and refined with the full-matrix least-squares technique based on F2using the SHELXTL-97[20]program package. Hydrogen atoms on water molecules were located in a difference Fourier map and included in the subsequent refinement using restrains(OH)0.085 nm,HH 0.13 nm)with Uiso(H)=1.5 Ueq(O).Other hydrogen atoms were added theoretically.Detail information about the crystal data is summarized in Table 1.Selected interatomic distances and bond angles are given in Table 2~3.All hydrogen bonds are given in Table 4.

    CCDC:825716,1;1435439,2.

    Table 1Crystallographic data for the complexes 1 and 2

    Table 2Selected bond distances(nm)and angles(°)of the complex 1

    Continued Table 1

    Table 3Selected bond distances(nm)and angles(°)of the complex 2

    Table 4Hydrogen bond distances(nm)and bond angles(°)of the complexes 1 and 2

    1.5EB-DNA binding study by fluorescence spectrum

    TheinteractionsoftheHMTCligandand complexes with calf thymus DNA(CT-DNA)were studied by ethidium bromide(EB)fluorescent probe. The experiment was carried out by adding different volumes of compound solution(10-4mol·L-1for HMTC ligand or complexes)to a 10 mL colorimetric cylinder prepared 2 h in advance,which contained 1.0 mL 200 μg·mL-1EB,1.0 mL 200 μg·mL-1CT-DNA,and 2.0 mL tris-HCl buffer solution(pH=7.4),then the mixed solution were diluted with double-distilled water.The final solutions were incubated for 12 h at 4℃.The fluorescence was recorded at an excitation wavelength of 251 nm and emission wavelength between 520 nm and 700 nm.

    2 Results and discussion

    2.1Crystal structure analysis of the complexes

    2.1.1Structure analysis of complex 1

    Single-crystalX-rayanalysisshowsthatthe complex 1 crystallizes in the monoclinic system with space group P21/c and Z=4.Each asymmetric unit consists of one Cu2+,two MTC ligands,two coordinated water.The Cu(Ⅱ)ion is five-coordinated with four O atoms from two coordinated water(O1W,O2W)and two ligands(O1,O3i)and one N atom from the ligand (N4)(Fig.1).The O2W,O1,O3iand N4 are locted in thebasalplane,whereastheO1Wfromthe coordinated water occupied the axial position,forming a distorted pentahedron coordinated geometry.The distance of Cu-O is 0.194 6 nm to 0.223 7 nm,andCu-N is 0.204 3 nm,according with the distance of Cu-O and Cu-N in the literature[21-22].

    Fig.1(a)Ellipsoidal structural view of 1 with probability level of 30%;(b)View of the coordination environment of Cu(Ⅱ)ion for 1

    This dual-nuclei is bridged by one ligand forming a 1D chain along the a axis.There are obviously face to face π-π stacking interactions in 1(Fig.2),with the center to center distance of 0.378 3 nm and 0.351 0 nm between the aromatic rings and the adjacent unit.

    Fig.2π-π packing interactions in complex 1

    Intermolecular hydrogen bonding interactions are observed in 1(Fig.3).Both of hydrogen bonding interactions and the π-π stacking interactions made the molecules further connect into a 3D supramolecular network(Fig.4).

    2.1.2Structure analysis of complex 2

    Fig.3Hydrogen bonding interactions of complex 1

    Fig.4Three-dimensional supramolecular network of complex 1

    Fig.5(a)Ellipsoidal structural view of 2 with probability level of 30%;(b)View of the environment of Cu(Ⅱ)ion for 2

    Single-crystalX-rayanalysisshowsthatthe complex 2 crystallizes in the triclinic system with space group P1 and Z=1.Complex 2 displays a binuclear structure(Fig.5),which is bridged by two oxygen atoms from two coordinated water.Each asymmetric unit consists of two Cu2+ions,two MTC ligands,two Phen ligands,four coordinated water and two free MTC anions.Each Cu2+ion adopts six-coordinated mode with a distorted octahedral geometry,by two N atoms(N5,N6)from one Phen and four oxygen atoms (one from the MTC ligand O1,the another three from three coordinated water O1W,O2W,O1Wi).The O1, O1Wi,O2W,N5 are locted in the equatorial plane, and the O1W and N6 occupy the axial positions.The distance of Cu-O is 0.196 9 nm to 0.277 5 nm and Cu-N is 0.200 7 nm to 0.202 1 nm,according with the distance of Cu-O and Cu-N in the literature[23-24].

    Fig.6Hydrogen bonding interactions of complex 2

    As shown in Fig.6,in the complex2,the coordinated water molecules(O1W and O2W)act as hydrogen donors,contributing hydrogen atoms(H1WA, H1WB and H2WA and H2WB)to O4i,O3ii,O2iiiand O2 forming the hydrogen bonds.The structure is extended into a 2D network through the intermolecular hydrogen bonding interactions(H1WA…O2 0.184 nm, H1WB…O4i0.170 nm,H2WA…O3ii0.187 nm, H2WB…O2iii0.202 nm).

    We have analyzed the PXRD pattern and the simulated powder patterns form the single crystal data of 1 and 2 to examine the phase purity of the complexes.As shown in Fig.7,it is indicated that the complexes 1 and 2 have highly crystalline purity.

    2.3IR spectrum

    In the IR spectrum of complex 1,there are two strong peaks near 3 300 cm-1(ν(O-H))and 597 cm-1(δ(O-H)),which corresponds to presence of coordinated water molecules.The peak at 1 500 cm-1may be assigned to the asymmetric COO-stretching vibration, the peak at about 1 390 cm-1are associated with the symmetric COO-stretching vibrations,in stead of the features at 1 733 cm-1associated with the COO-stretching vibrations of the ligand.It is indicated that the coordination of the carboxylate oxygen atoms with the Cu2+ions[25].For complex 2,the peaks at 3 521cm-1and 570 cm-1show the presence of coordinated water molecules,two absorption peaks at 1 512 cm-1(ν(OCO)asym)and 1 440 cm-1(ν(OCO)sym)indicate the coordination of the carboxylate oxygen atoms with the Cu2+ions.Two bands occurring at 1 592 cm-1(ν(C= N)),861 cm-1(δ(C-H))show the coordination of nitrogen atoms from Phen[26].These results are consistent with the X-ray diffraction structural analysis.

    Fig.7 Experimental and simulated PXRD patterns for complexes 1 and 2

    2.4Thermo-gravimetric analysis

    As depicted in Fig.8,for 1,the first weight loss of 10.02%up to 194℃can be assigned to the loss of the two water molecules(Calcd.9.33%).The second weight loss of 74.46%up to 550℃can be assigned to the loss of the two ligands(Calcd.74.22%),then, the residue weight of 15.52%corresponds to CuO (Calcd.16.45%).For 2,the first weight loss of 6.56% up to 103℃can be assigned to the loss of the four water molecules(Calcd.6.36%).The second weight loss of 82.38%up to 450℃can be assigned to the loss of the two Phen molecules and the four ligands (Calcd.82.66%),then,the residue weight of 11.26% corresponds to CuO(Calcd.10.98%).

    2.5EB-DNA binding study

    1.當(dāng)前在小學(xué)生英語的教學(xué)領(lǐng)域,有一大部分教師沿用傳統(tǒng)英語教學(xué)方法,不僅在方法上被時(shí)代所淘汰,在教學(xué)理念上也非常陳舊和落后,很多農(nóng)村的教師在新式的教學(xué)方法方面幾乎沒有涉及過信息化教學(xué)模式,在他們的教學(xué)過程中根本無法有效地在課堂上吸引學(xué)生的注意力。在這種情況下,學(xué)生學(xué)習(xí)積極性很難被充分調(diào)動(dòng)。

    Fig.9 shows the emission spectra of EB bounded to DNA with HMTC ligand,complexes.As concentrations of the compounds increasing,the emission intensity at 592 nm of EB-DNA system decreased in different degrees.According to the classical Stern-Volmer equation[27]:I0/I=1+Ksqr,where I0and I represented the fluorescence intensities in the absence or presence of the compounds,respectively.r is the concentration ratio of the compounds to DNA.Ksqis a linear Stern-Volmer quenching constant.The Ksqvalue is obtained as the slope of I0/I versus r linear plot.

    Fig.8TG curves of complexes 1 and 2

    Fig.9Emission spectra of EB-DNA system in the absence and presence of HMTC ligand,1 and 2

    From the inset in Fig.9,the Ksqvalue are 0.240, 0.525 and 1.855 for the HMTC ligand and complexes 1 and 2.It is indicated that the interaction of the ligand itself and complexes with DNA could release some free EB from EB-DNA,because of the present of thiadiazol rings.For complex 2,it has the strongest interaction with the DNA(related to HMTC ligand and complex 1)because of releasing more free EB form EB-DNA by the big Phen planar molecules.

    3 Conclusions

    Two copper(Ⅱ)complexes[Cu(MTC)2(H2O)2]n(1) and[Cu2(MTC)2(Phen)2(H2O)4](MTC)2(2)based on the thiadiazol derivative HMTC have been successfully synthesized.The complex 1 exhibits extended 3D frameworkbyintermolecularhydrogenbonding interactions and π-π packing interactions,and the complex 2 displays 2D frameworks by intermolecular hydrogen bonding interactions.The complex 2 has stronger interaction with the DNA than complex 1, might be resulted from releasing more free EB form EB-DNA by the big Phen planar molecules.

    References:

    [1]Yaghi O M,O′Keeffe M,Ockwig N W,et al.Nature,2003, 423(6941):705-714

    [2]Ocking N W,Friedrichs D,O′Keeffe M,et al.J.Am.Chem. Soc.,2007,129(7):1858-1859

    [3]Gurdal Y,Keskin S.Ind.Eng.Chem.Res.,2012,51(21): 7373-7382

    [4]Shultz A M,Farha O K,Hupp J T,et al.J.Am.Chem.Soc., 2009,131(12):4204-4205

    [5]Guo Y N,Xu G F,Gamez P,et al.J.Am.Chem.Soc.,2010, 132(25):8538-8539

    [6]Binnemans K.Chem.Rev.,2009,109(9):4283-4374

    [7]DanielKG,GuptaP,HarbachRH,etal.Biochem.Pharmacol., 2004,67(6):1139-1151

    [8]Zhou H,Zheng C,Zou G J,et al.Int.J.Biochem.Cell Biol., 2002,34:678-684

    [9]Cai X,Pan N,Zou G.Biometals,2007,20(1):1-11

    [10]Peng B,Chao H,Sun B,et al.J.Inorg.Biochem.,2007,101 (3):404-411

    [11]Jiang Q,Xiao N,Shi P F,et al.Coord.Chem.Rev.,2007, 251(15/16):1951-1972

    [12]Sigman D S.Acc.Chem.Res.,1986,19(6):180-186

    [13]Thomas A M,Nethaji M,Chakravarty A R.J.Inorg.Biochem., 2004,98(6):1087-1094

    [14]Reddy P A N,Santra B K,Nethaji M,et al.J.Inorg.Biochem., 2004,98(2):377-386

    [15]Mathew,Keshavayya J,Vaidya V P,et al.Eur.J.Med. Chem.,2007,42(6):823-840

    [16]Amir M,Kumar H,Javed S A.Bioorg.Med.Chem.Lett., 2007,17(16):4504-4508

    [17]Karegoudar P,Prasad D J,Ashok M,et al.Eur.J.Med. Chem.,2008,43(4):808-815

    [18]Sheldrick G M.SADABS,Program for Empirical Absorption Correction of Area Detector Data,University of G?ttingen, Germany,1997.

    [19]Sheldrick G M.SHELXS 97,Program for Crystal Structure Solution,University of G?ttingen,Germany,1997.

    [20]Sheldrick G M.SHELXL 97,Program for Crystal Structure Refinement,University of G?ttingen,Germany,1997.

    [21]WANG Ji-Xiao(王繼虓),WANG Che(王澈),GAO Xue(高雪),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015,31 (5):923-929

    [22]HU Chun-Yan(胡春燕),XIAO Wei(肖偉),TAO Bai-Long(陶白龍),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2014, 30(2):257-263

    [23]Xu T G,Xu D J.J.Coord.Chem.,2005,58(5):437-442

    [24]JIN Chao(金超),WANG Yin-Ge(王銀歌),QIAN Hui-Fen(錢惠芬),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015, 31(2):413-419

    [25]Gao H L,Yi L,Zhao B,et al.Inorg.Chem.,2006,45(15): 5980-5988

    [26]Singh U P,Tyagi S,Sharma C L,et al.Dalton Trans.,2002 (23):4464-4470

    [27]LakowiczJR.WeberG.Biochemisty,1973,12(21):4161-4170

    Syntheses,Crystal Structures and DNA-Binding of Two Copper(Ⅱ)Complexes Constructed by 4-Methyl-1,2,3-thiadiazol-5-carboxylic Acid

    HU Wei-Ji1WU Da-Ling1SHEN Jin-Bei1ZHAO Guo-Liang*,1,2
    (1College of Chemistry and Life Science,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)
    (2Xingzhi College,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    Two copper complexes[Cu(MTC)2(H2O)2]n(1)and[Cu2(MTC)2(Phen)2(H2O)4](MTC)2(2)were synthesized by 4-methyl-1,2,3-thiadiazol-5-carboxylic acid(HMTC,C4H4N2O2S)and 1,10-phenanthroline(Phen),and structurally characterized by elemental analysis,IR spectra,TG,PXRD and single crystal X-ray diffraction method.The single crystal X-ray diffraction reveals that the complex 1 formed a 1D chain coordination ploymer and crystallized in monoclinic with space group P21/c.Central Cu2+was five-coordinated forming a distorted pentahedron coordination geometry.The complex 2 was a binuclear structure,which was bridged by two oxygen atoms from two coordinated water,and crystallized in triclinic with space group P1.Central Cu2+was six-coordinated forming a distorted octahedron coordination geometry.In addition,the interaction of complexes and ligand with DNA were also studied by ethidium bromide fluorescence probe.The interaction of complex 2 with DNA was stronger than complex 1.CCDC:825716,1;1435439,2.

    copper complex;4-methyl-1,2,3-thiadiazol-5-carboxylic acid;crystal structure;DNA-binding

    O614.121

    A

    1001-4861(2016)08-1467-09

    10.11862/CJIC.2016.183

    2016-04-18。收修改稿日期:2016-06-29。

    浙江省公益性技術(shù)應(yīng)用研究計(jì)劃項(xiàng)目(No.2014C32014)。

    *通信聯(lián)系人。E-mail:sky53@zjnu.cn

    猜你喜歡
    噻二唑浙江師范大學(xué)晶體結(jié)構(gòu)
    浙江師范大學(xué)行知學(xué)院手繪作品選登
    1,3,4-噻二唑取代的氮唑類化合物的合成及體外抗真菌活性
    LiBa0.95-yBO3∶0.05Tb3+,yBi3+熒光粉的制備及熒光性質(zhì)
    化學(xué)軟件在晶體結(jié)構(gòu)中的應(yīng)用
    于昕卉作品
    Application of “Process Approach” in Middle School English Writing-Teaching
    1,3,4-噻二唑類衍生物在農(nóng)藥活性方面的研究進(jìn)展
    1,3,4-噻二唑衍生物的合成與應(yīng)用
    鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結(jié)構(gòu)及量子化學(xué)研究
    含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶體結(jié)構(gòu)及催化性能
    国产亚洲av片在线观看秒播厂| 午夜福利在线在线| 一级a做视频免费观看| 王馨瑶露胸无遮挡在线观看| 欧美成人午夜免费资源| www.av在线官网国产| 亚洲欧美精品专区久久| 青青草视频在线视频观看| 亚洲欧美中文字幕日韩二区| 97在线人人人人妻| 一个人看的www免费观看视频| 欧美日韩视频精品一区| 色哟哟·www| 一本一本综合久久| 丝袜喷水一区| 国产av码专区亚洲av| 免费播放大片免费观看视频在线观看| 欧美性感艳星| 香蕉精品网在线| 日韩一区二区视频免费看| 久久人妻熟女aⅴ| 五月伊人婷婷丁香| 嫩草影院新地址| 国产精品一二三区在线看| 国产午夜精品一二区理论片| 久久久亚洲精品成人影院| 精品午夜福利在线看| 丰满少妇做爰视频| 少妇精品久久久久久久| 高清黄色对白视频在线免费看 | 91精品伊人久久大香线蕉| 国产v大片淫在线免费观看| 国产精品不卡视频一区二区| 国产极品天堂在线| 黄色怎么调成土黄色| a级毛色黄片| 人人妻人人看人人澡| 国产高潮美女av| 亚州av有码| 国产在视频线精品| 观看免费一级毛片| 交换朋友夫妻互换小说| 国产精品爽爽va在线观看网站| 亚洲av免费高清在线观看| 老女人水多毛片| 夫妻性生交免费视频一级片| 精品久久久久久电影网| 亚洲婷婷狠狠爱综合网| 尤物成人国产欧美一区二区三区| 精品国产一区二区三区久久久樱花 | 亚洲欧美成人综合另类久久久| 国产黄片视频在线免费观看| 热re99久久精品国产66热6| 国产精品人妻久久久久久| 我要看黄色一级片免费的| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看| 久久99热这里只有精品18| 亚洲高清免费不卡视频| 一级爰片在线观看| 日韩人妻高清精品专区| 欧美国产精品一级二级三级 | 日韩视频在线欧美| 日韩av不卡免费在线播放| 国国产精品蜜臀av免费| 啦啦啦啦在线视频资源| 国产探花极品一区二区| 国产伦精品一区二区三区视频9| 视频中文字幕在线观看| 老熟女久久久| 亚洲av日韩在线播放| 又粗又硬又长又爽又黄的视频| 插阴视频在线观看视频| 国产淫语在线视频| 久久99蜜桃精品久久| 丰满迷人的少妇在线观看| 热re99久久精品国产66热6| 久久久久久久久久成人| 亚洲欧美成人综合另类久久久| 六月丁香七月| 精品一品国产午夜福利视频| 日韩一本色道免费dvd| 2018国产大陆天天弄谢| 青春草国产在线视频| 亚洲无线观看免费| 日韩制服骚丝袜av| 下体分泌物呈黄色| 欧美激情国产日韩精品一区| 亚洲怡红院男人天堂| 亚洲婷婷狠狠爱综合网| 久久这里有精品视频免费| 久久热精品热| 久久青草综合色| 午夜精品国产一区二区电影| 插逼视频在线观看| 欧美少妇被猛烈插入视频| 少妇人妻精品综合一区二区| 麻豆成人av视频| 日本色播在线视频| 亚洲综合精品二区| av视频免费观看在线观看| 免费高清在线观看视频在线观看| 天美传媒精品一区二区| av线在线观看网站| 日韩欧美 国产精品| 国国产精品蜜臀av免费| 国产精品蜜桃在线观看| 久久人妻熟女aⅴ| 亚洲内射少妇av| 少妇 在线观看| 久久亚洲国产成人精品v| 亚洲成人中文字幕在线播放| 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品50| 亚洲精品日韩在线中文字幕| 日本av手机在线免费观看| 欧美极品一区二区三区四区| 大陆偷拍与自拍| 久久久久视频综合| 美女高潮的动态| 人妻制服诱惑在线中文字幕| 亚洲怡红院男人天堂| 国产亚洲精品久久久com| 亚洲丝袜综合中文字幕| 日本色播在线视频| 春色校园在线视频观看| 国产欧美日韩精品一区二区| 精品人妻视频免费看| 免费观看无遮挡的男女| 大又大粗又爽又黄少妇毛片口| 亚洲激情五月婷婷啪啪| 男男h啪啪无遮挡| 在线观看人妻少妇| 久久99精品国语久久久| 欧美成人一区二区免费高清观看| h视频一区二区三区| 亚洲真实伦在线观看| 久久6这里有精品| 国产乱人偷精品视频| 日本黄大片高清| 亚洲伊人久久精品综合| 女性被躁到高潮视频| av视频免费观看在线观看| 少妇人妻一区二区三区视频| 最后的刺客免费高清国语| 精品一区二区三卡| 五月伊人婷婷丁香| 亚洲欧美清纯卡通| 国产伦理片在线播放av一区| 99热网站在线观看| 日本黄色片子视频| 国产有黄有色有爽视频| 久久影院123| 中文字幕制服av| 日本免费在线观看一区| 超碰av人人做人人爽久久| 亚洲人成网站在线播| 国产成人精品久久久久久| 亚洲精品国产成人久久av| 欧美 日韩 精品 国产| 免费av不卡在线播放| 亚洲av福利一区| 少妇熟女欧美另类| 在线天堂最新版资源| 亚洲欧洲日产国产| 亚洲国产精品国产精品| 蜜臀久久99精品久久宅男| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| 观看av在线不卡| 能在线免费看毛片的网站| 大又大粗又爽又黄少妇毛片口| 国产精品福利在线免费观看| 国语对白做爰xxxⅹ性视频网站| 国产免费又黄又爽又色| 自拍偷自拍亚洲精品老妇| 美女福利国产在线 | 草草在线视频免费看| 国内精品宾馆在线| 亚洲中文av在线| 亚洲精品色激情综合| 久久久久性生活片| 日本黄大片高清| 超碰av人人做人人爽久久| av在线app专区| 日韩一本色道免费dvd| 欧美zozozo另类| 在线观看一区二区三区激情| 亚洲天堂av无毛| 日韩免费高清中文字幕av| 在线播放无遮挡| 日韩伦理黄色片| 女性被躁到高潮视频| 内射极品少妇av片p| 亚州av有码| 妹子高潮喷水视频| 一级毛片黄色毛片免费观看视频| 视频中文字幕在线观看| 秋霞伦理黄片| 精品国产三级普通话版| 国产黄色视频一区二区在线观看| 黄色日韩在线| 亚洲欧美一区二区三区国产| 熟女电影av网| 卡戴珊不雅视频在线播放| 青春草视频在线免费观看| 国产 一区精品| 99久久精品国产国产毛片| 高清视频免费观看一区二区| 精品久久久久久久久av| 内地一区二区视频在线| 亚洲精品乱码久久久久久按摩| 91精品国产国语对白视频| 秋霞伦理黄片| 亚州av有码| 一级av片app| av专区在线播放| 美女主播在线视频| 免费黄色在线免费观看| 亚洲电影在线观看av| 亚洲国产精品一区三区| 久久婷婷青草| 99热国产这里只有精品6| 久久久久网色| 国产熟女欧美一区二区| 久久6这里有精品| 秋霞伦理黄片| 日韩中文字幕视频在线看片 | www.色视频.com| 麻豆精品久久久久久蜜桃| 人体艺术视频欧美日本| 国产高清有码在线观看视频| 国产精品人妻久久久久久| 亚洲综合色惰| 国产91av在线免费观看| 在线观看免费日韩欧美大片 | 亚洲高清免费不卡视频| 国产在线视频一区二区| 日韩av免费高清视频| 蜜桃久久精品国产亚洲av| 亚洲精品自拍成人| 国内精品宾馆在线| 九九在线视频观看精品| 久久青草综合色| 日韩一区二区视频免费看| 亚洲怡红院男人天堂| 国产视频内射| 久久热精品热| 国产片特级美女逼逼视频| 三级经典国产精品| 精品少妇久久久久久888优播| 国产成人a区在线观看| 亚洲天堂av无毛| 水蜜桃什么品种好| 高清黄色对白视频在线免费看 | 欧美高清性xxxxhd video| 国产极品天堂在线| 最近2019中文字幕mv第一页| 日本-黄色视频高清免费观看| 国精品久久久久久国模美| 在线观看免费视频网站a站| 国内揄拍国产精品人妻在线| 欧美3d第一页| 交换朋友夫妻互换小说| 日本欧美国产在线视频| 精品国产露脸久久av麻豆| 嫩草影院新地址| 久久久精品免费免费高清| 亚洲国产精品专区欧美| 亚洲精品国产av蜜桃| 日韩av在线免费看完整版不卡| 日韩欧美精品免费久久| 国产精品.久久久| 91久久精品国产一区二区三区| tube8黄色片| 欧美亚洲 丝袜 人妻 在线| 国内精品宾馆在线| 肉色欧美久久久久久久蜜桃| 毛片一级片免费看久久久久| 一个人看视频在线观看www免费| 久久人人爽人人爽人人片va| 国产大屁股一区二区在线视频| 欧美日韩在线观看h| 黄色视频在线播放观看不卡| 成人毛片60女人毛片免费| 天天躁日日操中文字幕| 日韩国内少妇激情av| 五月玫瑰六月丁香| 九九爱精品视频在线观看| 黄片无遮挡物在线观看| 久久精品国产亚洲网站| 中文字幕av成人在线电影| 插阴视频在线观看视频| 国产成人精品福利久久| 一区二区三区四区激情视频| 在线播放无遮挡| 日韩av免费高清视频| 99久久人妻综合| 日本色播在线视频| 欧美丝袜亚洲另类| 亚洲真实伦在线观看| 97热精品久久久久久| 中国美白少妇内射xxxbb| 中文精品一卡2卡3卡4更新| 欧美成人午夜免费资源| 精品人妻视频免费看| 少妇熟女欧美另类| 亚洲精品亚洲一区二区| 国产美女午夜福利| 两个人的视频大全免费| 亚洲国产色片| 高清黄色对白视频在线免费看 | 精品亚洲成国产av| 久久久成人免费电影| 嘟嘟电影网在线观看| 亚洲av中文av极速乱| 亚洲av免费高清在线观看| 99精国产麻豆久久婷婷| 97热精品久久久久久| 亚洲中文av在线| 国产黄片视频在线免费观看| 日本黄色日本黄色录像| 日本爱情动作片www.在线观看| 国产精品国产av在线观看| 五月玫瑰六月丁香| 成人综合一区亚洲| 精品久久久久久久久av| 亚洲av中文字字幕乱码综合| a级毛片免费高清观看在线播放| 欧美97在线视频| 99久久中文字幕三级久久日本| 狠狠精品人妻久久久久久综合| 一区二区三区精品91| 亚洲欧美一区二区三区国产| 男女边摸边吃奶| 久久久久精品性色| 亚洲av欧美aⅴ国产| 久久国内精品自在自线图片| 亚洲国产高清在线一区二区三| 女人十人毛片免费观看3o分钟| 亚洲在久久综合| 舔av片在线| 欧美变态另类bdsm刘玥| 搡老乐熟女国产| 久热这里只有精品99| 九色成人免费人妻av| 亚洲人成网站高清观看| 黑人高潮一二区| 国产大屁股一区二区在线视频| 精品久久久久久电影网| 精品亚洲成国产av| 亚洲av福利一区| 亚洲av成人精品一区久久| 久久久久久伊人网av| 久久久久久久久久久丰满| 又大又黄又爽视频免费| 亚洲国产精品国产精品| 一本色道久久久久久精品综合| 国产乱人偷精品视频| 久久99热这里只有精品18| 老熟女久久久| 丰满人妻一区二区三区视频av| 国产亚洲av片在线观看秒播厂| 亚洲av男天堂| 日日啪夜夜爽| 日本vs欧美在线观看视频 | 高清午夜精品一区二区三区| 国内精品宾馆在线| 欧美精品人与动牲交sv欧美| 在线免费观看不下载黄p国产| 91午夜精品亚洲一区二区三区| 国产精品一区www在线观看| 欧美精品一区二区大全| 国产黄色视频一区二区在线观看| 亚洲真实伦在线观看| 久久99热6这里只有精品| 国产亚洲5aaaaa淫片| 久久99热6这里只有精品| 国产黄频视频在线观看| 亚洲av综合色区一区| 亚洲美女黄色视频免费看| 天堂俺去俺来也www色官网| 免费人妻精品一区二区三区视频| 欧美3d第一页| 国内揄拍国产精品人妻在线| 涩涩av久久男人的天堂| 啦啦啦在线观看免费高清www| 亚洲第一av免费看| 国产成人精品婷婷| 国产又色又爽无遮挡免| 美女xxoo啪啪120秒动态图| 日日摸夜夜添夜夜添av毛片| 天美传媒精品一区二区| h日本视频在线播放| 精品久久久久久久末码| 精品熟女少妇av免费看| 国产成人aa在线观看| 国产黄色免费在线视频| 国产一级毛片在线| 成人国产麻豆网| 尤物成人国产欧美一区二区三区| 亚洲av福利一区| 日韩一区二区视频免费看| a级毛片免费高清观看在线播放| 97超碰精品成人国产| 男女边吃奶边做爰视频| 亚洲欧美成人精品一区二区| 观看美女的网站| 欧美激情极品国产一区二区三区 | 永久免费av网站大全| 亚洲国产色片| 免费人妻精品一区二区三区视频| 18禁动态无遮挡网站| 国产精品av视频在线免费观看| 极品少妇高潮喷水抽搐| 在线观看三级黄色| av视频免费观看在线观看| 久久久久人妻精品一区果冻| 99re6热这里在线精品视频| 久久6这里有精品| 老司机影院毛片| 一区二区三区乱码不卡18| 亚洲第一区二区三区不卡| 国产精品嫩草影院av在线观看| 亚洲精品aⅴ在线观看| 水蜜桃什么品种好| 在线观看av片永久免费下载| 久久99热6这里只有精品| 欧美日韩精品成人综合77777| 狠狠精品人妻久久久久久综合| 精品久久久久久电影网| 青春草视频在线免费观看| av又黄又爽大尺度在线免费看| 亚洲三级黄色毛片| 成人影院久久| 久久久久国产网址| 午夜老司机福利剧场| 身体一侧抽搐| 成年免费大片在线观看| 国产精品av视频在线免费观看| av在线老鸭窝| 男女国产视频网站| 黄色一级大片看看| 免费大片18禁| 成人免费观看视频高清| 日本一二三区视频观看| 男人舔奶头视频| 免费看av在线观看网站| 99久久精品热视频| 男人添女人高潮全过程视频| 一级二级三级毛片免费看| 看免费成人av毛片| 我要看黄色一级片免费的| 天天躁夜夜躁狠狠久久av| 建设人人有责人人尽责人人享有的 | 偷拍熟女少妇极品色| 大香蕉久久网| 男人和女人高潮做爰伦理| 婷婷色麻豆天堂久久| 欧美成人精品欧美一级黄| 99久久精品热视频| 99久久精品一区二区三区| 中国国产av一级| 少妇人妻精品综合一区二区| 天天躁夜夜躁狠狠久久av| 亚洲欧美清纯卡通| 天天躁夜夜躁狠狠久久av| 亚洲精品中文字幕在线视频 | 亚洲美女视频黄频| 成人美女网站在线观看视频| 舔av片在线| 久久久久久久久久久免费av| av女优亚洲男人天堂| 蜜臀久久99精品久久宅男| 亚洲人成网站在线播| av又黄又爽大尺度在线免费看| 国产精品人妻久久久久久| 黑丝袜美女国产一区| 女性被躁到高潮视频| 免费人妻精品一区二区三区视频| 久久精品国产亚洲av天美| 国产亚洲欧美精品永久| 欧美激情国产日韩精品一区| 亚洲综合精品二区| 国产极品天堂在线| 亚洲av在线观看美女高潮| 一级片'在线观看视频| 亚洲性久久影院| videossex国产| 午夜福利网站1000一区二区三区| 亚洲精品中文字幕在线视频 | 噜噜噜噜噜久久久久久91| 久久久久国产网址| 国产老妇伦熟女老妇高清| 精品人妻偷拍中文字幕| 极品教师在线视频| 亚洲怡红院男人天堂| 久久婷婷青草| 一级二级三级毛片免费看| 欧美最新免费一区二区三区| 狂野欧美激情性bbbbbb| 亚洲欧美成人综合另类久久久| 日韩视频在线欧美| 免费观看性生交大片5| 免费观看在线日韩| 欧美3d第一页| 18禁裸乳无遮挡动漫免费视频| 一级毛片aaaaaa免费看小| 国产综合精华液| 熟女电影av网| 日本黄色片子视频| 国产成人免费观看mmmm| 欧美日本视频| 亚洲国产最新在线播放| 日产精品乱码卡一卡2卡三| 久久精品国产鲁丝片午夜精品| 国产亚洲午夜精品一区二区久久| 少妇高潮的动态图| 国产淫片久久久久久久久| 亚洲精品日韩av片在线观看| 免费少妇av软件| 天美传媒精品一区二区| 午夜福利在线观看免费完整高清在| 三级国产精品片| 亚洲av男天堂| 亚洲国产精品999| 精品久久久精品久久久| 在线观看免费日韩欧美大片 | 免费黄网站久久成人精品| 2018国产大陆天天弄谢| 黄色一级大片看看| 国产精品99久久99久久久不卡 | 亚洲天堂av无毛| 国产日韩欧美在线精品| 黄色怎么调成土黄色| 寂寞人妻少妇视频99o| 免费看av在线观看网站| 大码成人一级视频| 久久鲁丝午夜福利片| 日本欧美国产在线视频| 观看av在线不卡| 黄色欧美视频在线观看| 欧美zozozo另类| 久久热精品热| 亚洲国产精品国产精品| 国产精品精品国产色婷婷| 全区人妻精品视频| 国产精品伦人一区二区| 在线观看三级黄色| 九草在线视频观看| 亚洲人与动物交配视频| 亚洲国产精品专区欧美| 91狼人影院| 99久国产av精品国产电影| 只有这里有精品99| 国产成人精品一,二区| 日本爱情动作片www.在线观看| 在线天堂最新版资源| 人妻系列 视频| 一本色道久久久久久精品综合| 久久久久久久久久成人| 在现免费观看毛片| 欧美日韩精品成人综合77777| 在线观看免费视频网站a站| 男男h啪啪无遮挡| freevideosex欧美| 免费黄频网站在线观看国产| 99九九线精品视频在线观看视频| 肉色欧美久久久久久久蜜桃| 国产v大片淫在线免费观看| 国产精品免费大片| 看免费成人av毛片| av不卡在线播放| 欧美日韩在线观看h| 青春草视频在线免费观看| 91精品伊人久久大香线蕉| 2022亚洲国产成人精品| 久久久久久久亚洲中文字幕| 嫩草影院新地址| 午夜福利高清视频| 新久久久久国产一级毛片| 在线观看美女被高潮喷水网站| 高清黄色对白视频在线免费看 | 久久国产精品大桥未久av | 看免费成人av毛片| 狂野欧美激情性bbbbbb| 色吧在线观看| 久久精品国产亚洲av涩爱| 国产 精品1| 日日撸夜夜添| 国产一区二区三区综合在线观看 | 精品国产三级普通话版| 亚洲精品一二三| av卡一久久| 日本与韩国留学比较| 中文字幕久久专区| 久久韩国三级中文字幕| 日产精品乱码卡一卡2卡三| 亚洲第一av免费看| 毛片一级片免费看久久久久| 一区二区三区精品91| 大又大粗又爽又黄少妇毛片口| 毛片一级片免费看久久久久| av播播在线观看一区| 久久婷婷青草| 午夜老司机福利剧场| 观看av在线不卡| 国产精品人妻久久久久久| 国产精品熟女久久久久浪| 亚洲av成人精品一二三区| 欧美日本视频| 下体分泌物呈黄色| 99久久中文字幕三级久久日本| 九草在线视频观看| a级毛色黄片|