• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global optimization of manipulator base placementby means of rapidly-exploring random tree①

    2016-12-06 02:39:54ZhaoJingHuWeijianShangHongDuBin
    High Technology Letters 2016年1期

    Zhao Jing (趙 京), Hu Weijian②, Shang Hong, Du Bin

    (*College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, P.R.China)(**National Earthquake Response Support Server, Beijing 100049, P.R.China)

    ?

    Global optimization of manipulator base placement
    by means of rapidly-exploring random tree①

    Zhao Jing (趙 京)*, Hu Weijian②**, Shang Hong**, Du Bin*

    (*College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, P.R.China)(**National Earthquake Response Support Server, Beijing 100049, P.R.China)

    Due to the interrelationship between the base placement of the manipulator and its operation object, it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location. A new method is presented to optimize the base placement of manipulators through motion planning optimization and location optimization in the feasible area for manipulators. Firstly, research problems and contents are outlined. And then the feasible area for the manipulator base installation is discussed. Next, index depended on the joint movements and used to evaluate the kinematic performance of manipulators is defined. Although the mentioned indices in last section are regarded as the cost function of the latter,rapidly-exploring random tree (RRT) and rapidly-exploring random tree*(RRT*) algorithms are analyzed. And then, the proposed optimization method of manipulator base placement is studied by means of simulation research based on kinematic performance criteria. Finally, the conclusions could be proved effective from the simulation results.

    base placement, rapidly-exploring random tree (RRT), rapidly-exploring random Tree*(RRT*), optimization

    0 Introduction

    Because of the interrelationship between the base placement of the manipulator and its operation object, it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location. Kamrani, et al.[1]proposed a new approach for optimal base placement by using a response surface method on the concept of path translation and rotation. Aly, et al.[2]developed a method for base location optimization of manipulators in a specific workcell, where a genetic algorithm was applied for optimizing solutions in the finite point set generated in the discrete process of the workspace. Bu, et al.[3]presented an analysis of the feasible base area for manipulators based on operation sequence optimization, before that the area is calculated then divided into discrete grids to reduce computation time. Yang, et al.[4]described a numerical computation method of an open-loop manipulator end-effector reaching the base of a specified point. This method is characterized by translating the optimization of the base placement into the solution of the position and orientation of the base with the definition of a fixed reference frame.

    To estimate the implementation process of a specific task, performance measures are usually used to evaluate the base location of manipulators. Santos et al.[5]proposed a strategy to work out the optimal task location with power and manipulability being performance evaluation index, considering maximizing the manipulator accuracy and minimizing the mechanical power consumption. Hammond, et al.[6]addressed the use of a multi-objective weighted isotropy measure as a task agility index in optimizing base placement under the condition of a complex, multitask workcell. For heavy-duty manufacturing tasks, a torque-weighted isotropy measure[7]is proposed as the metric for the optimization of the manipulator base. The effectiveness lies in the decrease of energy consumption on the premise of adequate global isotropy. Nektarios, et al.[8]illustrated the approximation of the minimum manipulator velocity ratio(AMMVR) targeted at the optimization of velocity performance in the study on the base location of manipulator end-effector performing a position and orientation path following task of a given 3D curved path and orientation.

    At present, a number of algorithms could make motion planning in the joint space, such as A*[9,10]and genetic algorithm[11]. However, with the growth of dimensions, the computational complexity increases sharply and expectant results could not be obtained. And the rapidly-exploring random tree (RRT) algorithm[12]proposed by LaValle could find out the feasible solution quickly to solve the path planning problems in higher joint space, which is much better than the traditional methods. But, the optimal solution of joint movements have not carried out by this algorithm because there are redundant joint movements for a given end-effectors path. Even though many scholars have tried to induce the growth of the searching tree by generating nodes[13], optimizing paths[14]and defining index[15], as the algorithm itself fails to introduce the known information of the configuration nodes into the expansion of the next to calculate a certain target function between all candidate nodes and the impact point, the paths obtained is unlikely to be the optimum. Karaman et al.[16]proposed the rapidly-exploring random tree*(RRT*) algorithm on the basis of existing searching algorithm, which could make a redesign of the RRT expansion by adopting an incremental sampling-based technique to obtain an asymptotic optimal characteristic, which also could provide a guarantee of convergence to optimal solutions.

    1 Problem description

    In current study, mostly only the candidate base placement in the feasible area of base (FAB) is evaluated regardless of the quality of the implementing task. In fact, base placement optimization of manipulators should consider two factors: 1) the quality of manipulators performing a given task in a specific base placement; 2) global optimization of base placement in FAB.

    1.1 Optimal motion planning

    A manipulator is installed at arbitrary point Bjon the ground in the workcell as shown in Fig.1. The manipulator is placed vertically with its end-effector point being at PEin the initial state. End-effector point PSand point PTcorrespond to initial configure xinitand goal configure xgoalof the manipulator, respectively. The task which the manipulator must do is that the manipulator picks the bottle at point PS, and places it at point PT. During the process of completing the specific task, the RRT algorithm is employed to carry out the motion planning from point PEto point PS. Moreover, the RRT*algorithm could be applied in the motion planning for the manipulator moving from PSto PTwith index imposing constraints, thus to obtain the optimal path satisfying the limitations. Cost function c(·) is used to evaluate the path and the joint movements, the result of which will be the scores of manipulator base at Bj.

    Fig.1 Description of the pick-and-place operation

    1.2 Base placement optimization

    Fig.2 Flowchart of the base placement optimization process

    2 Analysis of FAB

    The feasible area of base is codetermined by three factors: workspace of the manipulator, position of the manipulation target and obstacles in the workcell. As for a spatial manipulator, It is supposed that without consideration of joint limits, its workspace is a solid sphere with a radius of R. The manipulator base locates in the center of the sphere, as showed in Fig.3. Move the sphere to reach a tangency with target point Pi. The horizontal plane with Piis tangent to the sphere and gets a circle of radius RT, where RTdenotes the maximum radius of FAB to specific point Pi, which is given by

    (1)

    whereRis the radius of the manipulator workspace, hPis the height of the point Pirelative to the ground, and hBis the height of the manipulator base relative to the ground.

    Fig.3 Determination of FAB of the given point

    Fig.4 FAB of the manipulator when the end-effector moves along a path

    In fact, there are other factors that can possibly influence base placement of manipulators. For example, installment of manipulators cannot interfere with operating platform. Joint movements of manipulators cannot collide with possible obstacles. The height of the target object relative to the ground directly determines the size of FAB of the specific point. At the same time, singular configurations during task implementation should be avoided.

    3 Mean manipulation capability

    In order to evaluate the kinematics dexterity quantitatively, Yoshikawa[17]defined the manipulability index as

    (2)

    Let wi(i=1,…,n) denote the manipulation capability corresponding to path points Pi(i=1,…,n) of manipulator end-effector, the total manipulation capability of the task implementation will be

    (3)

    In order to make path manipulability obtained from different base location comparable, the mean manipulation capability (MMC) index is defined as

    (4)

    4 An improved RRT*

    The RRT*algorithm makes a redesign of the RRT expansion by adopting an incremental sampling-based technique to obtain an asymptotic optimal characteristic, which provides guarantee of convergence to optimal solutions. The main feature is that the known information of the configuration nodes is introduced into the expansion of the next to calculate a certain objective function between all candidate nodes and the target point. It is seen as the index to decide if the candidate node belongs to optimal path nodes, thus to choose one with the optimal objective function to be the next path node. Index defined in the above section is used as cost function to limit the expansion of tree nodes in the RRT*algorithm to reach the optimal joint movements of manipulators under constraint conditions.

    Let the motion planning for manipulators obtain the minimum cost function an example. In the algorithm, a new node and near by nodes could be evaluated instead of being directly added to the node tree, which is divided into two steps:

    Step 1: Near configurations set is generated on the basis of a new configuration.

    For an arbitrary joint configuration xnewand a finite set V?X of near configurations, Near(x) procedure returns the set of all x∈V that are close to xnew. The relationship between xnewand x can be expressed as

    (5)

    where γ is a constant, N is the number of joint configurations in search tree, and d is the dimensions of joint space.

    Step 2: Father and child nodes of the new node are searched in near configurations.

    The essence of the search for father and child nodes in the set V is to go through the whole V to find a node xnearthat minimizes the cost function from the initial xinitto the goal xnew. The calculation criterion for searching father and child nodes are respectively represented as

    Cost(xnear)+c(xnear,xnew)

    (6)

    Cost(xnew)+c(xnear,xnew)

    (7)

    Where Cost(x′) is the total cost from initial node xinitto current node x′. c(xnear,xnew) represents the cost from xnearto xnew.

    To obtain the motion planning of manipulators by the algorithm above provides not only a guarantee of high efficiency in solving, but also optimization of manipulator joint movements. In the case of the same task implemented and the same initial state of manipulators, the shortest distance of manipulator end-effector as cost function for RRT*algorithm is taken. The solutions of motion planning for manipulators using RRT and RRT*are shown in Fig.5, which illustrates that compared with RRT, path length searched by RRT*has been shortened to a large extent and is approximate to the shortest one.

    Fig.5 Comparison of the motion planning for the same task by RRT and RRT*

    5 Case study

    5.1 Simulation object and environment

    Fig.6 Coordinate frames of the manipulator

    The maximum radius of FAB of a specific target point is figured out as RT=0.4305m by equation . According to analyses above, FAB of the pick-and-place operation is illustrated in the oblique line area in Fig.7. Choose the search area of the base, which is marked as the green rectangle area in Fig.7 within the coordinate rage of x=[0.46448, 0.65938]m, y=[0.53216, 0.69]m, in order to make it easier for the calculator program to work out the base placement, as well as to take the installment boundary of the manipulator into consideration. As the radius of the manipulator workspace mentioned in this paper is kind of smaller, the area of FAB is relatively smaller, too.

    Fig.7 Descriptions of FAB and the search area in GA

    5.2 Optimization simulation

    Let MMC during the implementation of a specific task be the optimization objective, in other words, to obtain the maximum MMC. The fitness function can be defined by

    (8)

    wherekis thekthchromosome in a generation.

    The size of the initial population generated randomly is 18 and the number of reproduction generation is 150. Each gene on the chromosome is encoded in 32-bit binary encoding with crossover probability being 0.75 and mutation being 0.10. The elite reserved strategy is adopted in the selection of chromosome. The positional accuracy of the RRT*algorithm reaching the target point is e=10-3m. The evolution process of the genetic algorithm is shown in Fig.8, where the thick line represents the converging conditions of the minimum joint total displacement and the thin denotes the average joint total displacement of population in each generation. It illustrates that the optimal solutions can be obtained as the algorithm implemented to the 94thgeneration, that is, there is no better solution in later iterative process and algorithmic convergence is to stabilize. The average of the joint total displacement shortens with the increase of search iterations and its convergence is tending to the value of the minimum joint total displacement. On the basis of the chromosome and its fitness function, the distribution of the joint total displacement in different locations in FAB is shown in Fig.9, which displays that the coordinate of the optimal base location is (0.5113, 0.5525)m and MMC will be 0.0104. The movement during the task implementation of the manipulator at this point is shown in Fig.10.

    Fig.8 Evolutions of the average and maximum solution for MMC

    Fig.9 Distribution of MMC in the search area

    Fig.10 Movements with the strongest MMC of the manipulator

    6 Conclusions

    A new optimization method of manipulator base placement are proposed in this paper. Compared to the traditional methods, the method in this study takes the influence of the motion planning on placement optimization into consideration. The planning process for the task by manipulators is accomplished to achieve optimal kinematic performance in every task, then to perform genetic algorithm in FAB of the manipulator to obtain the optimal base location. From the simulation results, optimization algorithm of manipulator base location based on kinematic performance criteria could be proved effective.

    According to the task of the manipulator end-effectors, to obtain the feasible area of the base location through analyzing the workspace of manipulators and obstacles in the workcell is a good way to facilitate the optimization solution. However, for the research complicated movement of the end-effector such as complex 3D curve of space, the analysis method of FAB should be improved.

    The simulation results show that the RRT*algorithm could obtain the optimal path by optimizing the path during the process of searching. Because the searching tree may be degenerated into RRT for limited optimization capability with an undersized γ and an oversized γ could cause this capability too high to search out enough path nodes for the use of practical controls has a great impact on the growth of RRT*.

    In future research, a dynamic index will be introduced into the RRT*algorithm. And this optimal method will also be applied to rescue robots.

    [ 1] Kamrani B, Berbyuk V, W?ppling D, et al. Optimal robot placement using response surface method.TheInternationalJournalofAdvancedManufacturingTechnology, 2009, 44(1-2): 201-210

    [ 2] Aly M F, Abbas A T, Megahed S M. Robot workspace estimation and base placement optimisation techniques for the conversion of conventional work cells into autonomous flexible manufacturing systems.InternationalJournalofComputerIntegratedManufacturing, 2010, 23(12): 1133-1148

    [ 3] Bu W H, Liu Z Y, Tan J R. Industrial robot layout based on operation sequence optimisation.InternationalJournalofProductionResearch, 2009, 47(15): 4125-4145

    [ 4] Yang J J, Yu W, Kim J, et al. On the placement of open-loop robotic manipulators for reachability.MechanismandMachineTheory, 2009, 44(4): 671-684

    [ 5] Santos R, Steffen V, Saramago S. Optimal task placement of a serial robot manipulator for manipulability and mechanical power optimization.IntelligentInformationManagement, 2010, 9(2): 512-525

    [ 6] Hammond Iii F L, Shimada K. Improvement of redundant manipulator task agility using multiobjective weighted isotropy-based placement optimization. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO 2009), Guilin, China, 2009. 645-652

    [ 7] Hammond Iii F L, Shimada K. Improvement of kinematically redundant manipulator design and placement using torque-weighted isotropy measures. In: 2009 International Conference on Advanced Robotics (ICAR 2009), Munich, Germany, 2009. 1-8

    [ 8] Nektarios A, Aspragathos N A. Optimal location of a general position and orientation end-effector’s path relative to manipulator's base, considering velocity performance.RoboticsandComputer-IntegratedManufacturing, 2010, 26(2): 162-173

    [ 9] Sun L W, Yeung C K. Port placement and pose selection of the Da Vinci surgical system for collision-free intervention based on performance optimization. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007), San Diego, USA, 2007. 1951-1956

    [10] Jia Q, Chen G, Sun H, et al. Path planning for space manipulator to avoid obstacle based on A* algorithm.JixieGongchengXuebao/JournalofMechanicalEngineering, 2010, 46(13): 109-115

    [11] He G Z, Gao H M, Zhang G, et al. Using adaptive genetic algorithm to the placement of serial robot manipulator. In: IEEE International Conference on Engineering of Intelligent Systems (ICEIS 2006), Islamabad, Pakistan, 2006. 1-6

    [12] Lavalle S M. Rapidly-exploring random trees: a new tool for path planning[R]. Computer science Department, Iowa State University, 1998

    [13] Bertram D, Kuffner J, Dillmann R, et al. An integrated approach to inverse kinematics and path planning for redundant manipulators. In: 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, USA, 2006. 1874-1879

    [14] Scheurer C, Zimmermann U E. Path planning method for palletizing tasks using workspace cell decomposition. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 2011. 1-4

    [15] Du B, Zhao J, Song C. Optimal base placement and motion planning for mobile manipulators. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2012), Chicago, USA, 2012. 1-8

    [16] Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning.InternationalJournalofRoboticsResearch, 2011, 30(7): 846-894

    [17] Yoshikawa T. Manipulability of robotic mechanisms. In: Robotics Research, The Second International Symposium, Kyoto, Japan, 1985. 439-446

    Zhao Jing, born in 1961. He received his PhD degree from Beijing University of Technology in 1998. He is currently a professor in College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, China. His research interests include mechanism as well as robotic kinematics and dynamics.

    10.3772/j.issn.1006-6748.2016.01.004

    ① Supported by the National Science and Technology Support Program of China (No. 2013BAK03B01).

    ② To whom correspondence should be addressed. E-mail: huweijian.2008@163.comReceived on Dec. 1, 2014

    日本wwww免费看| 中文字幕人妻丝袜一区二区| 亚洲精品成人av观看孕妇| 又紧又爽又黄一区二区| 午夜免费成人在线视频| 精品人妻在线不人妻| 啦啦啦 在线观看视频| 老司机影院毛片| 精品福利永久在线观看| 人人妻人人澡人人看| av又黄又爽大尺度在线免费看| 成人影院久久| 欧美性长视频在线观看| 在线亚洲精品国产二区图片欧美| av欧美777| 久久鲁丝午夜福利片| 黑丝袜美女国产一区| 亚洲一码二码三码区别大吗| 天天躁夜夜躁狠狠久久av| 国产欧美日韩综合在线一区二区| 成人18禁高潮啪啪吃奶动态图| 久久国产亚洲av麻豆专区| 久久精品亚洲熟妇少妇任你| 亚洲精品在线美女| 欧美av亚洲av综合av国产av| 一二三四社区在线视频社区8| 满18在线观看网站| 99香蕉大伊视频| 老鸭窝网址在线观看| 国产一区二区激情短视频 | 久久精品国产亚洲av高清一级| 日韩一本色道免费dvd| 操出白浆在线播放| 成人影院久久| 9热在线视频观看99| 欧美 日韩 精品 国产| 国产在线观看jvid| 国产亚洲欧美在线一区二区| 亚洲一区二区三区欧美精品| 成人手机av| 亚洲欧美成人综合另类久久久| 国产色视频综合| 午夜老司机福利片| 国产精品欧美亚洲77777| 校园人妻丝袜中文字幕| 狂野欧美激情性bbbbbb| 精品人妻1区二区| 国产精品国产av在线观看| 国产高清不卡午夜福利| 欧美日韩视频精品一区| 免费av中文字幕在线| 国产成人a∨麻豆精品| 丝袜脚勾引网站| 丝袜在线中文字幕| 精品亚洲成国产av| 欧美日本中文国产一区发布| 国产伦人伦偷精品视频| 成人黄色视频免费在线看| 久久精品久久久久久噜噜老黄| 91国产中文字幕| 午夜老司机福利片| 丰满迷人的少妇在线观看| 我要看黄色一级片免费的| 亚洲精品在线美女| 亚洲视频免费观看视频| 日本黄色日本黄色录像| 又大又爽又粗| 熟女少妇亚洲综合色aaa.| 欧美日韩视频精品一区| 男女下面插进去视频免费观看| 欧美成狂野欧美在线观看| 精品久久蜜臀av无| av国产久精品久网站免费入址| 老司机在亚洲福利影院| 午夜福利视频在线观看免费| av有码第一页| 中文欧美无线码| 狂野欧美激情性xxxx| 久久久久久久久免费视频了| 男人爽女人下面视频在线观看| 午夜精品国产一区二区电影| 另类亚洲欧美激情| 99精国产麻豆久久婷婷| 亚洲国产av影院在线观看| 国产人伦9x9x在线观看| av不卡在线播放| 好男人电影高清在线观看| 成人国产一区最新在线观看 | 精品一区二区三区四区五区乱码 | 激情视频va一区二区三区| 亚洲五月色婷婷综合| 亚洲欧美一区二区三区国产| 亚洲第一av免费看| 天堂中文最新版在线下载| 精品熟女少妇八av免费久了| 久久综合国产亚洲精品| 亚洲自偷自拍图片 自拍| 在线观看www视频免费| 在线观看人妻少妇| 国产熟女欧美一区二区| 亚洲av男天堂| 天天躁日日躁夜夜躁夜夜| 国产无遮挡羞羞视频在线观看| 国产免费又黄又爽又色| 大香蕉久久网| 一级片免费观看大全| 日韩大片免费观看网站| 久久精品国产综合久久久| 亚洲精品国产区一区二| 午夜福利,免费看| 欧美xxⅹ黑人| 操出白浆在线播放| 国产97色在线日韩免费| 99久久精品国产亚洲精品| 最近最新中文字幕大全免费视频 | 精品国产一区二区久久| 久久天躁狠狠躁夜夜2o2o | 97精品久久久久久久久久精品| 国产高清视频在线播放一区 | 日本91视频免费播放| 亚洲久久久国产精品| 亚洲国产精品一区二区三区在线| 一级毛片 在线播放| 在线观看国产h片| 9热在线视频观看99| 女人高潮潮喷娇喘18禁视频| 看免费成人av毛片| 19禁男女啪啪无遮挡网站| 91精品伊人久久大香线蕉| 久久久欧美国产精品| 国产亚洲av高清不卡| 老司机亚洲免费影院| 夜夜骑夜夜射夜夜干| 一区二区三区乱码不卡18| 一本久久精品| 欧美精品啪啪一区二区三区 | 婷婷色综合www| 欧美 亚洲 国产 日韩一| 手机成人av网站| 国产亚洲av高清不卡| 亚洲国产欧美日韩在线播放| 亚洲少妇的诱惑av| 久久精品aⅴ一区二区三区四区| 国产欧美日韩一区二区三 | 亚洲av美国av| 亚洲少妇的诱惑av| 丁香六月天网| 久久精品国产亚洲av涩爱| 国产真人三级小视频在线观看| 成人午夜精彩视频在线观看| 国产亚洲欧美在线一区二区| 成在线人永久免费视频| 国产亚洲av片在线观看秒播厂| 狠狠精品人妻久久久久久综合| 国产精品麻豆人妻色哟哟久久| 岛国毛片在线播放| 色精品久久人妻99蜜桃| av网站免费在线观看视频| 日韩av不卡免费在线播放| 久久天躁狠狠躁夜夜2o2o | 大话2 男鬼变身卡| 纵有疾风起免费观看全集完整版| 你懂的网址亚洲精品在线观看| 国产伦理片在线播放av一区| 精品少妇黑人巨大在线播放| 亚洲av美国av| 欧美av亚洲av综合av国产av| 亚洲av在线观看美女高潮| 晚上一个人看的免费电影| av在线app专区| 黑人巨大精品欧美一区二区蜜桃| 搡老岳熟女国产| 久久久国产欧美日韩av| 美女午夜性视频免费| 国产精品国产av在线观看| 国产av一区二区精品久久| 国产伦理片在线播放av一区| 大香蕉久久网| 成人免费观看视频高清| 亚洲黑人精品在线| 汤姆久久久久久久影院中文字幕| 成年人黄色毛片网站| 国产一区二区在线观看av| 亚洲国产欧美在线一区| 在线观看国产h片| 9191精品国产免费久久| 国产老妇伦熟女老妇高清| 五月天丁香电影| 又紧又爽又黄一区二区| 欧美成人午夜精品| 女性被躁到高潮视频| 悠悠久久av| 国产在线观看jvid| 高清视频免费观看一区二区| 叶爱在线成人免费视频播放| 亚洲黑人精品在线| 日本色播在线视频| 国产视频首页在线观看| 看免费av毛片| 美女国产高潮福利片在线看| 久久久久久免费高清国产稀缺| av线在线观看网站| 亚洲成人国产一区在线观看 | 久久鲁丝午夜福利片| 国产成人精品无人区| 日韩大码丰满熟妇| 男女免费视频国产| 国产精品 国内视频| 最近最新中文字幕大全免费视频 | 国产视频首页在线观看| 国产成人a∨麻豆精品| 国产精品99久久99久久久不卡| 精品福利观看| 婷婷色av中文字幕| 国产免费又黄又爽又色| 九草在线视频观看| 精品人妻熟女毛片av久久网站| 国产伦人伦偷精品视频| 精品国产一区二区三区久久久樱花| 永久免费av网站大全| 国产黄频视频在线观看| 免费观看av网站的网址| 永久免费av网站大全| 亚洲激情五月婷婷啪啪| 国产国语露脸激情在线看| 亚洲精品乱久久久久久| 精品一区在线观看国产| 我要看黄色一级片免费的| 亚洲av综合色区一区| 天天影视国产精品| 国产欧美日韩一区二区三 | 精品一区二区三区四区五区乱码 | 精品久久蜜臀av无| 人人妻人人添人人爽欧美一区卜| 99久久99久久久精品蜜桃| 亚洲五月色婷婷综合| 欧美精品高潮呻吟av久久| 亚洲av美国av| 狠狠婷婷综合久久久久久88av| 美女大奶头黄色视频| av又黄又爽大尺度在线免费看| 国产精品 欧美亚洲| 久久 成人 亚洲| 男人爽女人下面视频在线观看| 国产爽快片一区二区三区| 涩涩av久久男人的天堂| 亚洲精品久久成人aⅴ小说| 一区福利在线观看| 日本黄色日本黄色录像| 香蕉丝袜av| 欧美日韩福利视频一区二区| 久久久精品94久久精品| 91九色精品人成在线观看| 一级a爱视频在线免费观看| 久久国产精品影院| 久久精品国产a三级三级三级| 亚洲国产看品久久| 国产熟女欧美一区二区| 又大又爽又粗| 极品人妻少妇av视频| 制服人妻中文乱码| 日本av手机在线免费观看| 欧美乱码精品一区二区三区| 亚洲精品在线美女| 亚洲成人免费电影在线观看 | 亚洲成av片中文字幕在线观看| 亚洲精品自拍成人| 精品欧美一区二区三区在线| 国产精品 欧美亚洲| 亚洲国产欧美网| 亚洲三区欧美一区| 涩涩av久久男人的天堂| 男女床上黄色一级片免费看| 久久中文字幕一级| 国产成人影院久久av| 日韩av免费高清视频| 日日摸夜夜添夜夜爱| 亚洲三区欧美一区| 国产一卡二卡三卡精品| 亚洲黑人精品在线| 一级毛片电影观看| 9191精品国产免费久久| 黄色 视频免费看| 青春草视频在线免费观看| 女性生殖器流出的白浆| 如日韩欧美国产精品一区二区三区| 午夜福利视频精品| 日韩 欧美 亚洲 中文字幕| 中文欧美无线码| 午夜91福利影院| 人妻 亚洲 视频| 亚洲熟女精品中文字幕| 男女国产视频网站| 在线 av 中文字幕| 亚洲av成人不卡在线观看播放网 | 50天的宝宝边吃奶边哭怎么回事| 亚洲国产精品成人久久小说| 亚洲国产毛片av蜜桃av| 视频区欧美日本亚洲| 中文字幕人妻熟女乱码| 久久久久国产一级毛片高清牌| 中文字幕高清在线视频| 在线 av 中文字幕| 亚洲精品国产av蜜桃| 亚洲专区中文字幕在线| 高清视频免费观看一区二区| 婷婷色麻豆天堂久久| 亚洲综合色网址| 精品一区在线观看国产| 9热在线视频观看99| 久久国产精品男人的天堂亚洲| 尾随美女入室| 黄频高清免费视频| 久9热在线精品视频| 首页视频小说图片口味搜索 | 国产日韩欧美在线精品| 欧美老熟妇乱子伦牲交| 欧美激情极品国产一区二区三区| 亚洲人成电影观看| 亚洲美女黄色视频免费看| 免费久久久久久久精品成人欧美视频| av电影中文网址| 极品少妇高潮喷水抽搐| 免费看不卡的av| 男女下面插进去视频免费观看| 亚洲国产中文字幕在线视频| 国产精品久久久久久精品电影小说| 美女中出高潮动态图| 成人亚洲精品一区在线观看| 丝袜美腿诱惑在线| 免费不卡黄色视频| 久久午夜综合久久蜜桃| 亚洲欧美一区二区三区国产| 日韩精品免费视频一区二区三区| 人体艺术视频欧美日本| 99热国产这里只有精品6| 一级毛片电影观看| 曰老女人黄片| 一区二区日韩欧美中文字幕| 欧美精品人与动牲交sv欧美| 一本色道久久久久久精品综合| 一本综合久久免费| 国产亚洲av片在线观看秒播厂| videosex国产| 国产精品久久久久久人妻精品电影 | 青青草视频在线视频观看| 中文乱码字字幕精品一区二区三区| 日本91视频免费播放| 天天添夜夜摸| 性色av乱码一区二区三区2| av又黄又爽大尺度在线免费看| 曰老女人黄片| 久久狼人影院| 日韩,欧美,国产一区二区三区| 欧美亚洲 丝袜 人妻 在线| 又粗又硬又长又爽又黄的视频| 午夜免费鲁丝| 亚洲精品国产区一区二| 人人妻人人爽人人添夜夜欢视频| 国产成人影院久久av| 一级片'在线观看视频| 女性被躁到高潮视频| 美女中出高潮动态图| 黄频高清免费视频| 爱豆传媒免费全集在线观看| 手机成人av网站| 国产高清视频在线播放一区 | 欧美精品高潮呻吟av久久| 中文字幕人妻丝袜制服| 国产欧美日韩综合在线一区二区| 少妇猛男粗大的猛烈进出视频| 欧美亚洲日本最大视频资源| 久久亚洲国产成人精品v| 你懂的网址亚洲精品在线观看| 久久久久视频综合| 人妻人人澡人人爽人人| av在线老鸭窝| 国产精品av久久久久免费| 狂野欧美激情性xxxx| 免费在线观看视频国产中文字幕亚洲 | 国产欧美亚洲国产| 女警被强在线播放| 色播在线永久视频| kizo精华| 欧美在线一区亚洲| 男男h啪啪无遮挡| 国产在视频线精品| 日本五十路高清| 国产精品一区二区在线观看99| 日韩制服骚丝袜av| 一本久久精品| 亚洲国产毛片av蜜桃av| 亚洲国产精品一区二区三区在线| 一级片'在线观看视频| 亚洲精品国产av成人精品| 精品亚洲乱码少妇综合久久| 成人亚洲欧美一区二区av| 久久久精品国产亚洲av高清涩受| 丁香六月欧美| 国产深夜福利视频在线观看| 免费观看av网站的网址| 在线av久久热| 亚洲欧美精品综合一区二区三区| 国产真人三级小视频在线观看| 精品福利永久在线观看| 亚洲国产欧美在线一区| 高清不卡的av网站| 欧美+亚洲+日韩+国产| 免费在线观看完整版高清| 婷婷色麻豆天堂久久| 脱女人内裤的视频| 人人妻,人人澡人人爽秒播 | 91麻豆精品激情在线观看国产 | 黄色一级大片看看| 婷婷色综合大香蕉| 9191精品国产免费久久| videos熟女内射| 男女之事视频高清在线观看 | 成人国产av品久久久| 亚洲av电影在线进入| 两人在一起打扑克的视频| 日日夜夜操网爽| 精品一区二区三卡| 一本—道久久a久久精品蜜桃钙片| 女人被躁到高潮嗷嗷叫费观| 国产黄频视频在线观看| 97人妻天天添夜夜摸| 宅男免费午夜| 久久久久国产一级毛片高清牌| 欧美日韩av久久| 久久久久久久久久久久大奶| 亚洲av电影在线观看一区二区三区| 在线观看一区二区三区激情| 日本一区二区免费在线视频| 国产无遮挡羞羞视频在线观看| 亚洲国产欧美一区二区综合| 超碰成人久久| 国产av精品麻豆| 看免费av毛片| 老汉色av国产亚洲站长工具| 9色porny在线观看| 久久鲁丝午夜福利片| av国产久精品久网站免费入址| 精品国产超薄肉色丝袜足j| 国产一区二区三区综合在线观看| 精品高清国产在线一区| 在线看a的网站| 国产黄色视频一区二区在线观看| 日本色播在线视频| 亚洲欧美激情在线| 一级片免费观看大全| 激情视频va一区二区三区| 操出白浆在线播放| 免费少妇av软件| 国产精品 欧美亚洲| 亚洲成av片中文字幕在线观看| 在线观看免费高清a一片| 最近中文字幕2019免费版| 亚洲午夜精品一区,二区,三区| 亚洲精品自拍成人| 在线亚洲精品国产二区图片欧美| 一本色道久久久久久精品综合| 久久狼人影院| 黑人欧美特级aaaaaa片| 精品久久久久久久毛片微露脸 | 我要看黄色一级片免费的| 日韩一本色道免费dvd| 亚洲精品中文字幕在线视频| 七月丁香在线播放| 人妻 亚洲 视频| 亚洲精品久久午夜乱码| 肉色欧美久久久久久久蜜桃| 一级a爱视频在线免费观看| 午夜av观看不卡| av在线app专区| 国产亚洲午夜精品一区二区久久| 国产在线视频一区二区| 国产精品久久久久成人av| 母亲3免费完整高清在线观看| 免费看av在线观看网站| 国产97色在线日韩免费| 蜜桃在线观看..| 美女福利国产在线| 精品福利永久在线观看| 欧美 日韩 精品 国产| 首页视频小说图片口味搜索 | 91精品伊人久久大香线蕉| 亚洲七黄色美女视频| 建设人人有责人人尽责人人享有的| 黄色片一级片一级黄色片| 少妇精品久久久久久久| 久久ye,这里只有精品| 国产欧美亚洲国产| 在线 av 中文字幕| 日本色播在线视频| 天天影视国产精品| 色视频在线一区二区三区| 久久中文字幕一级| 亚洲中文字幕日韩| av片东京热男人的天堂| 久久天堂一区二区三区四区| 色播在线永久视频| a级毛片在线看网站| 国产高清视频在线播放一区 | 一边摸一边抽搐一进一出视频| 嫁个100分男人电影在线观看 | 国产精品欧美亚洲77777| 啦啦啦 在线观看视频| 久久精品亚洲熟妇少妇任你| 如日韩欧美国产精品一区二区三区| 精品人妻一区二区三区麻豆| 欧美另类一区| 亚洲av电影在线进入| 国产精品99久久99久久久不卡| av福利片在线| 日本欧美视频一区| 久久99热这里只频精品6学生| 免费女性裸体啪啪无遮挡网站| 亚洲中文字幕日韩| 99久久精品国产亚洲精品| 热99久久久久精品小说推荐| 9191精品国产免费久久| 又大又爽又粗| 极品少妇高潮喷水抽搐| 成人18禁高潮啪啪吃奶动态图| 久久国产精品大桥未久av| 九色亚洲精品在线播放| 啦啦啦中文免费视频观看日本| 51午夜福利影视在线观看| 超碰97精品在线观看| 少妇的丰满在线观看| 深夜精品福利| 最近手机中文字幕大全| 欧美日韩成人在线一区二区| 国产野战对白在线观看| av天堂久久9| 99国产综合亚洲精品| 黄网站色视频无遮挡免费观看| 桃花免费在线播放| 深夜精品福利| 老司机亚洲免费影院| 69精品国产乱码久久久| 国产xxxxx性猛交| 黄色a级毛片大全视频| 国产成人精品久久久久久| 免费在线观看影片大全网站 | 亚洲少妇的诱惑av| 青春草亚洲视频在线观看| 精品国产乱码久久久久久男人| 啦啦啦啦在线视频资源| 大码成人一级视频| 九草在线视频观看| 一二三四在线观看免费中文在| 菩萨蛮人人尽说江南好唐韦庄| 国产av一区二区精品久久| av国产久精品久网站免费入址| 国产精品国产三级专区第一集| 国产亚洲av片在线观看秒播厂| 人人澡人人妻人| 最近最新中文字幕大全免费视频 | 婷婷丁香在线五月| 国产一区二区激情短视频 | 久久久欧美国产精品| 人妻人人澡人人爽人人| 后天国语完整版免费观看| 国产精品麻豆人妻色哟哟久久| 日本av手机在线免费观看| 欧美在线一区亚洲| 99久久人妻综合| 国产日韩一区二区三区精品不卡| 久久人妻熟女aⅴ| 久久久久久久大尺度免费视频| 在线av久久热| 亚洲国产日韩一区二区| 亚洲欧美一区二区三区国产| 操美女的视频在线观看| 在线精品无人区一区二区三| 一边摸一边抽搐一进一出视频| 国产成人av教育| 1024香蕉在线观看| 不卡av一区二区三区| 在线观看免费午夜福利视频| 另类亚洲欧美激情| 欧美人与性动交α欧美软件| 99精品久久久久人妻精品| 成年动漫av网址| netflix在线观看网站| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美在线精品| 在线观看免费高清a一片| 国产成人影院久久av| 国产日韩欧美在线精品| 午夜福利视频精品| 在线观看免费日韩欧美大片| 青春草视频在线免费观看| 好男人视频免费观看在线| 久久性视频一级片| 久久精品熟女亚洲av麻豆精品| 久久国产亚洲av麻豆专区| 国产精品国产三级专区第一集| 天天影视国产精品| 中文字幕高清在线视频| 91国产中文字幕| 亚洲精品久久成人aⅴ小说| 天天躁日日躁夜夜躁夜夜| 免费观看a级毛片全部| 国产精品国产av在线观看| 免费在线观看视频国产中文字幕亚洲 | 少妇人妻 视频| 欧美黄色片欧美黄色片| 丝袜脚勾引网站| 欧美黄色淫秽网站| 五月开心婷婷网| 性色av一级| 男女边吃奶边做爰视频|