王冠,蔡英,郝萬平,楊棟婷,王濤麗
(1天津中醫(yī)藥大學第二附屬醫(yī)院,天津300151;2天津市環(huán)湖醫(yī)院神經(jīng)外科研究所;3天津中醫(yī)藥大學研究生院)
?
冷誘導RNA結合蛋白表達在顱腦損傷大鼠亞低溫治療中的作用及機制
王冠1,蔡英2,郝萬平3,楊棟婷3,王濤麗3
(1天津中醫(yī)藥大學第二附屬醫(yī)院,天津300151;2天津市環(huán)湖醫(yī)院神經(jīng)外科研究所;3天津中醫(yī)藥大學研究生院)
目的 探討冷誘導RNA結合蛋白(CIRP)表達在顱腦損傷(TBI)大鼠亞低溫(MH)治療過程中的作用,并分析其機制。方法 將大鼠隨機分為A、B、C組,分別一次性鞘內(nèi)注射0.1 mL生理鹽水、空白AD5-GFP、AD5-GFP-CIRP-siRNA;每組再分為4個亞組,即假手術組(Sham組)、TBI組、MH組、TBI+MH組。TBI、TBI+MH組采用液壓打擊裝置進行TBI造模,Sham組及MH組不予打擊;TBI造模成功后,MH組、TBI+MH組行MH治療48 h。于MH開始治療后30 min及6、12、24、48、72 h,采用Western blot法檢測下丘腦部位CIRP、Ras、Raf、ERK-1/2、p-ERK-1/2蛋白;MH開始治療后96 h取大鼠腦皮層、海馬、下丘腦部位腦組織,采用TUNEL法檢測凋亡腦細胞、RT-PCR法檢測CIRP mRNA。結果 A、B、C組中,TBI、TBI+MH組皮層、海馬、下丘腦部位神經(jīng)細胞凋亡指數(shù)均較Sham、MH組升高(P均<0.05);A、B組中,TBI+MH組各部位神經(jīng)細胞凋亡指數(shù)較TBI組降低(P均<0.05),且該組下丘腦部位較皮層、海馬區(qū)神經(jīng)細胞凋亡指數(shù)下降明顯(P均<0.05);在C組中,TBI+MH組各部位神經(jīng)細胞凋亡指數(shù)較TBI組無差異(P均﹥0.05)。在A、B組中,MH、TBI+MH組各部位CIRP mRNA較Sham組升高(P均<0.05),下丘腦部位較皮層、海馬區(qū)CIRP mRNA表達升高(P均<0.05);而在C組中,TBI、MH、TBI+MH組各部位CIRP mRNA較Sham組均無差異(P均﹥0.05),各部位CIRP mRNA表達無差異(P均﹥0.05)。在A、B組中,TBI組CIRP蛋白自創(chuàng)傷后12、24 h較創(chuàng)傷后30 min升高(P均<0.05),隨后開始下降,在48、72 h無差異(P均>0.05);MH、TBI+MH組CIRP蛋白表達自MH開始后6 h升高(P均<0.05),于48 h達高峰,72 h呈下降趨勢;在C組中,各組CIRP蛋白表達均無差異(P均>0.05)。TBI、MH、TBI+MH組Ras激活度(Ras/Raf值)均進行性升高,于24 h達到峰值,隨后進行性下降;MH、TBI+MH組可導致ERK-1/2激活度(p-ERK-1/2/ERK-1/2值)峰值前移,并迅速降低其激活度,而C組中MH、TBI+MH組此作用消失。結論 在MH治療TBI過程中,CIRP因低溫作用而在皮層、海馬、下丘腦部位過表達,其中下丘腦部位更加明顯;CIRP作用機制可能通過直接調(diào)控ERK-1/2激活,使其激活度隨時間推移迅速降低,減少對應部位腦組織細胞凋亡,從而發(fā)揮神經(jīng)保護作用。
顱腦損傷;冷誘導RNA結合蛋白;亞低溫;細胞凋亡;細胞外調(diào)節(jié)蛋白激酶
近年來,亞低溫(MH)療法在顱腦損傷(TBI)急性期救治中已被廣泛應用。然而,MH對TBI患者神經(jīng)保護作用的調(diào)控機制尚未明確。研究顯示,冷誘導RNA結合蛋白(CIRP)是機體組織在MH治療期發(fā)揮保護作用的溫度依賴性關鍵調(diào)控蛋白[1]。ERK通路是許多信號轉(zhuǎn)導過程的核心,Ras/MEK/ERK的激活途徑是細胞凋亡過程中的重要調(diào)控通路。2014年1月~2016年3月,我們通過構建TBI大鼠MH治療模型,觀察大鼠腦皮層、海馬、下丘腦部位神經(jīng)細胞凋亡與CIRP表達情況,分析CIRP表達在TBI大鼠MH治療過程中的作用機制。
1.1 材料 選用健康SD大鼠,體質(zhì)量300~400 g,雌雄各半,實驗動物為清潔級。主要儀器和試劑:CIRP、Ras、Raf、ERK-1/2、p-ERK-1/2抗體(Santa Cruz公司);抗β-actin單克隆抗體(Sigma公司);TUNEL試劑盒(Roche公司)。
1.2 實驗方法
1.2.1 動物分組與病毒質(zhì)粒轉(zhuǎn)染 將大鼠隨機分為A、B、C組,每組87只。再將各組分為假手術組(Sham組)、TBI組、MH組、TBI+MH組4個亞組,每亞組各21只,剩余的3只用來進行病毒轉(zhuǎn)染檢測。A組作為對照,B、C組分別轉(zhuǎn)染病毒質(zhì)粒。將大鼠麻醉后無菌條件下切開并分離至寰枕膜,穿刺回抽見腦脊液流出后,A、B、C組分別一次性鞘內(nèi)注射0.1 mL生理鹽水、空白AD5-GFP、AD5-GFP-CIRP-siRNA(1×1010pfu/mL),縫合切口后正常環(huán)境喂養(yǎng)3 d。3 d后A、B、C組隨機抽取3只,斷頭取腦,顯微鏡下熒光顯影檢測并證實腦組織內(nèi)成功轉(zhuǎn)染病毒質(zhì)粒。
1.2.2 TBI造模與MH治療 TBI、TBI+MH組采用液壓打擊裝置進行TBI造模[2],打擊力200 kPa,打擊后縫合頭皮。Sham組及MH組鉆顱手術后縫合頭皮,不予打擊。TBI造模成功后,MH、TBI+MH組行MH治療48 h。將大鼠置于恒定低溫實驗冰毯上,經(jīng)腹腔注射水合氯醛麻醉,3次/d;保持肛溫在(31±0.5)℃,過低時調(diào)節(jié)冰毯溫度;其間由胃管注入常規(guī)飼料勻漿及所需水量。
1.2.3 標本采集與處理 于MH開始治療后30 min及6、12、24、48、72 h,每亞組分別取3只大鼠脫頸處死,取腦組織置于液氮中保存,用于下丘腦部位CIRP、Ras、Raf、ERK-1/2、p-ERK-1/2蛋白檢測;最后3只于MH開始治療后96 h脫頸處死,留取并儲存大鼠腦皮層、海馬、下丘腦部位腦組織,用于腦細胞凋亡、CIRP mRNA檢測。
1.2.4 神經(jīng)細胞凋亡檢測 采用TUNEL法。嚴格按照SP法進行染色,一抗4 ℃下孵育24 h;TUNEL標記反應混合液,37 ℃孵育1 h;POD轉(zhuǎn)化液37 ℃孵育30 min,DAB 顯色劑避光顯色。鏡下觀察,神經(jīng)細胞核固縮,核呈棕藍色的為陽性細胞。凋亡細胞顯色后每份組織取5個切片,每個切片于顯微鏡下隨機選擇10個視野,進行凋亡細胞計數(shù),計算凋亡指數(shù)(AI)。AI=凋亡細胞數(shù)/細胞總數(shù)×100。
1.2.5 腦組織CIRP mRNA檢測 采用RT-PCR法。應用TRIzol法提取大鼠皮層、海馬、下丘腦部位腦組織樣品的總RNA后行總RNA定量,260 nm波長分光測定RNA濃度;OD260值為1相當于大約40 μg/mL的單鏈RNA,根據(jù)讀出的OD260值計算樣品稀釋前濃度;將處理好的RNA樣品離心、電泳,在凝膠成像儀上觀察結果。逆轉(zhuǎn)錄合成cDNA,引物設計采用Generunner軟件,經(jīng)Blast檢索無同源性。GAPDH基因擴增產(chǎn)物為110 bp,其上游引物為5′-AACTCCCATTCTTCCACC-3′,下游引物為5′-ACCACCCTGTTGCTGTAG-3′;CIRP基因擴增產(chǎn)物為167 bp,其上游引物為5′-TTAAGGCCAAGCAAGCATCT-3′,下游引物為5′-CTCCCTGTCCTTTACCACCA-3′。然后進行PCR反應,反應完畢后進行數(shù)據(jù)分析。通過各部位CIRP mRNA Ct值與內(nèi)參所得Ct值,得出ΔCt值,計算平均ΔCt值,以2-ΔΔCt值表示CIRP mRNA相對表達量。
1.2.6 CIRP、Ras、Raf、ERK-1/2、p-ERK-1/2蛋白檢測 采用Western blot法。在冰上取下丘腦腦組織,剪碎成泥;加入裂解液,冰浴中勻漿;4 ℃下以3 000 r/min離心5 min,取上清,考馬斯亮藍法蛋白質(zhì)定量;樣品制備,轉(zhuǎn)膜、加入抗體、封閉、ECL顯色。采用Bio-Rad系統(tǒng)測定吸光度,以目的條帶與內(nèi)參照β-actin平均吸光度比值表示對應蛋白的表達量。以Ras/Raf值表示Ras激活度,以p-ERK-1/2/ERK-1/2值表示ERK-1/2激活度。
2.1 各組神經(jīng)細胞凋亡情況比較 A、B、C組中,TBI組及TBI+MH組皮層、海馬、下丘腦部位神經(jīng)細胞AI均較Sham組及MH組升高(P均<0.05);A、B組中,TBI+MH組皮層、海馬、下丘腦部位神經(jīng)細胞AI較TBI組降低(P均<0.05),且該組下丘腦部位較皮層、海馬區(qū)神經(jīng)細胞AI下降明顯(P均<0.05);在C組中,TBI+MH組皮層、海馬、下丘腦部位神經(jīng)細胞AI較TBI組無差異(P均﹥0.05),且該組下丘腦部位較皮層、海馬區(qū)神經(jīng)細胞AI亦無差異(P均﹥0.05)。見圖1。
圖1 各組皮層、海馬、下丘腦部位細胞AI比較
2.2 各組皮層、海馬、下丘腦部位腦組織內(nèi)CIRP mRNA表達比較 在A、B組中皮層、海馬、下丘腦部位CIRP mRNA在TBI組較Sham組略升高,但無差異(P均>0.05),MH組及TBI+MH組皮層、海馬、下丘腦部位CIRP mRNA較Sham組升高(P均<0.05);而在C組中,TBI、MH組、TBI+MH組皮層、海馬、下丘腦部位CIRP mRNA較Sham組均無差異(P均﹥0.05)。A、B組中,下丘腦部位較皮層、海馬區(qū)CIRP mRNA表達升高(P均<0.05),MH、TBI+MH組對下丘腦部位CIRP mRNA表達較皮層、海馬區(qū)更加明顯;在C組中,各部位CIRP mRNA表達無差異(P均﹥0.05)。見圖2。
圖2 各組皮層、海馬、下丘腦部位腦組織CIRP mRNA表達
2.3 各組下丘腦組織CIRP蛋白表達比較 在A組中,TBI組CIRP蛋白自創(chuàng)傷后12、24 h較創(chuàng)傷后30 min升高(P均<0.05),隨后開始下降,在48、72 h無差異(P均>0.05);MH、TBI+MH組CIRP蛋白表達自MH開始后6 h升高(P均<0.05),于48 h達到高峰,72 h呈下降趨勢;在B組中,各組CIRP蛋白表達與A組趨勢大致相同,于相同時間點出現(xiàn)表達差異性。在C組中,各組CIRP蛋白表達差異均無統(tǒng)計學意義(P均>0.05)。見圖3 a~c。
2.4 各組下丘腦組織Ras激活度比較 在A、B、C組中,Sham組激活度無顯著變化(P均>0.05);在A組中,TBI、MH、TBI+MH組Ras激活度均進行性升高,于24 h達到峰值,隨后進行性下降。B、C組中,Ras激活趨勢與A組基本相同,Ras激活程度與CIRP靜默表達無相關性,說明CIRP蛋白表達對Ras激活無影響。見圖3 d~f。
2.5 下丘腦組織ERK-1/2激活度比較 在A、B、C組中,Sham組ERK-1/2激活度無顯著變化(P均>0.05);在A、B、C組中,TBI組ERK-1/2激活度自創(chuàng)傷后6 h升高(P均<0.05),于24 h達高峰,隨后下降;在A、B組中,MH、TBI+MH組ERK-1/2激活度于MH后6 h顯著升高(P均<0.05),于12 h開始逐漸下降;在C組中,MH組、TBI+MH組ERK-1/2激活度首先升高,峰值出現(xiàn)在24 h,隨后下降;MH治療可導致ERK-1/2激活度峰值前移,并迅速降低其激活度,當CIRP靜默表達時此作用消失。見圖3 g~i。
注:a~c為CIRP蛋白表達;d~f為Ras激活度;g~i為ERK-1/2激活度。
圖3 不同時間各組下丘腦部位CIRP蛋白表達、Ras激活度、ERK-1/2激活度比較
MH治療雖然仍存在許多不足之處,其治療效果也存在一定爭議;但其臨床及實驗研究顯示,MH對機體急性期損傷組織細胞具有積極的保護作用[2~6]。近年來,對于MH分子生物學機制研究多集中于溫度依賴性調(diào)控通路[7]。機體處于冷刺激環(huán)境下,會產(chǎn)生一組冷休克蛋白(CSP)來適應應激變化,其中最具代表性的就是CIRP。研究發(fā)現(xiàn),CIRP對冷誘導下細胞生長及凋亡具有調(diào)控作用;機體在低溫、紫外線、缺氧等刺激下,細胞發(fā)生應激反應,CIRP呈過表達狀態(tài)[8]。研究發(fā)現(xiàn),在低溫狀態(tài)下,CIRP伴隨著細胞冷應激而發(fā)生過量表達;小鼠在22~29 ℃低溫作用下CIRP mRNA表達水平顯著提高,而在39~42 ℃熱刺激作用下表達水平則顯著降低[9]。CIRP在低溫情況下抑制了腦神經(jīng)細胞生長分裂,提高了組織對不良反應的耐受性,從而產(chǎn)生低溫腦保護作用,而不是通過降低消耗能量來保護腦功能[10]。本次研究對TBI大鼠MH治療模型不同部位腦組織神經(jīng)細胞凋亡情況進行檢測,結果顯示,與TBI組比較,經(jīng)過MH治療海馬、下丘腦、皮層部位神經(jīng)細胞凋亡均顯著下降,MH治療可顯著減少神經(jīng)細胞凋亡;同時,下丘腦部位較海馬及皮層神經(jīng)細胞凋亡低,MH治療對于下丘腦效果較海馬及皮層部位更加明顯。RT-PCR結果顯示,CIRP mRNA表達亦呈現(xiàn)差異性,在下丘腦部位CIRP mRNA表達較海馬及皮層部位升高,進而推測MH對下丘腦部位腦細胞凋亡調(diào)控更加顯著,其原因是CIRP mRNA在此部位高表達所致。而經(jīng)過CIRP-siRNA靜默后,與TBI組相比較各部位腦細胞凋亡無顯著差異,下丘腦與海馬及皮層部位凋亡亦無顯著差異,說明CIRP靜默表達后MH對腦細胞凋亡無調(diào)控作用。
近年來在腦損傷中的研究表明,ERK調(diào)控通路是許多信號轉(zhuǎn)導過程的核心,胞外刺激可經(jīng)G蛋白受體、生長因子受體和酪氨酸蛋白激酶受體,經(jīng)Ras-Raf-MEK-ERK級聯(lián)信號激活,ERK-1/2磷酸化激活為p-ERK-1/2,后者傳遞關鍵的信號到核內(nèi),使一系列的轉(zhuǎn)錄因子發(fā)生磷酸化而啟動信號轉(zhuǎn)導過程,促進細胞增殖、分化或參與細胞凋亡[11]。ERK的激活途徑有多種,但目前己知這些激活途徑均會帶來其他效應,如Ras激活途徑可能對細胞產(chǎn)生有害的影響[12~14]。研究表明,ERK的持續(xù)激活對細胞是有害的,ERK在腦創(chuàng)傷時呈現(xiàn)過度激活狀態(tài),其表達時程明顯延長,這種過度激活狀態(tài)可能導致細胞凋亡的加重[15]。本次研究對MH治療下不同時間點ERK激活與CIRP蛋白表達檢測結果顯示,在TBI組CIRP蛋白表達隨時間呈現(xiàn)增長趨勢,創(chuàng)傷作為應激性因素可以促進CIRP蛋白早期一過性表達升高,這點與以往研究結果相仿;但與MH組比較,CIRP蛋白表達量很少,并且迅速下降;MH組及TBI+MH組CIRP蛋白表達隨時間呈現(xiàn)顯著增加,當MH治療結束后,即48 h后CIRP蛋白表達開始下降,說明MH對CIRP蛋白表達起主導作用。以往研究證實,ERK通路主要激活途徑為Ras-Raf-MEK-ERK 級聯(lián)信號激活。本次研究顯示,在TBI組中Ras激活度于創(chuàng)傷后呈現(xiàn)進行性增高,于24 h達到峰值,其后進行性下降,同時ERK-1/2激活度類似于Ras。說明創(chuàng)傷可通過Ras-ERK途徑激活ERK,導致急性期腦細胞損傷。在TBI+MH組,不同時間點Ras激活度與TBI組相似,其峰值仍出現(xiàn)在24 h,而ERK-1/2激活度峰值則出現(xiàn)在6 h且隨后快速下降,推測CIRP對Ras無顯著影響,但其可直接作用于ERK-1/2,降低ERK-1/2激活,從而減輕ERK途徑介導的急性期腦細胞損傷過程。當CIRP-siRNA靜默后,Ras與ERK-1/2激活峰值相似,進一步證明ERK-1/2的激活可能受到CIRP表達的反向調(diào)控。
本次研究顯示,MH治療對TBI大鼠下丘腦部位神經(jīng)保護作用較海馬、皮層區(qū)明顯,同時下丘腦部位CIRP表達也較海馬、皮層區(qū)顯著升高;當CIRP靜默表達后,3個部位細胞凋亡差異消失。推測MH對TBI的神經(jīng)保護作用可能是通過CIRP過表達實現(xiàn)的。通過不同時間點ERK信號通路關鍵因子及CIRP蛋白表達檢測發(fā)現(xiàn),CIRP抗神經(jīng)細胞凋亡的信號傳導途徑可能通過直接作用于ERK-1/2,降低ERK-1/2激活而實現(xiàn)的。MH是否還可能通過其他途徑而發(fā)揮神經(jīng)保護作用,CIRP抗細胞凋亡作用是否還存在其他調(diào)控途徑都有待后期深入研究。
[1] Kaneko T, Kibayashi K. Mild hypothermia facilitates the expression of cold-inducible RNA-binding protein and heat shock protein 70.1 in mouse brain[J]. Brain Res, 2012,1466:128-136.
[2] Li YH, Zhang CL, Zhang XY, et al. Effects of mild induced hypothermia on hippocampal connexin 43 and glutamate transporter 1 expression following traumatic brain injury in rats[J]. Mol Med Rep, 2015,11(3):1991-1996.
[3] Marion DW, Regasa LE. Revisiting therapeutic hypothermia for severe traumatic brain injury again[J]. Crit Care, 2014,18(3):160.
[4] Crossley S, Reid J, McLatchie R, et al. A systematic review of therapeutic hypothermia for adult patients following traumatic brain injury[J]. Crit Care, 2014,18(2):R75.
[5] Li P, Yang C. Moderate hypothermia treatment in adult patients with severe traumatic brain injury: a meta-analysis[J]. Brain Inj, 2014,28(8):1036-1041.
[6] Darwazeh R, Yan Y. Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects[J]. Neural Regen Res, 2013,8(28):2677-2686.
[7] Saito K, Fukuda N, Matsumoto T, et al. Moderate low temperature preserves the stemness of neural stem cells and suppresses apoptosis of the cells via activation of the cold-inducible RNA binding protein[J]. Brain Res, 2010,1358:20-29.
[8] Artero-Castro A, Callejas FB, Castellvi J, et al. Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation[J]. Mol Cell Biol, 2009,29(7):1855-1868.
[9] Liu A, Zhang Z, Li A, et al. Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain[J]. Brain Res, 2010,1347:104-110.
[10] Tong G, Endersfelder S, Rosenthal LM, et al. Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices[J]. Brain Res, 2013,1504:74-84.
[11] Kumar P, Rao GN, Pal BB, et al. Hyperglycemia-induced oxidative stress induces apoptosis by inhibiting PI3-kinase/Akt and ERK1/2 MAPK mediated signaling pathway causing down regulation of 8-oxoG-DNA glycosylase levels in glial cells[J]. Int J Biochem Cell Biol, 2014,53:302-319.
[12] Liu T, Cao FJ, Xu DD, et al. Upregulated Ras/Raf/ERK1/2 signaling pathway: a new hope in the repair of spinal cord injury[J]. Neural Regen Res, 2015,10(5):792-796.
[13] Zhang YH, Belegu V, Zou Y, et al. Endoplasmic reticulum protein 29 protects axotomized neurons from apoptosis and promotes neuronal regeneration associated with erk signal[J]. Mol Neurobiol, 2014,52(1):522-532.
[14] Semba K, Namekata K, Kimura A, et al. Dock3 overexpression and p38 MAPK inhibition synergistically stimulate neuroprotection and axon regeneration after optic nerve injury[J]. Neurosci Lett, 2014,581:89-93.
[15] Sticozzi C, Belmonte G, Meini A, et al. IL-1β induces GFAP expression in vitro and in vivo and protects neurons from traumaticinjury-associated apoptosis in rat brain striatum via NFκB/Ca2+-calmodulin/ERK mitogen-activated protein kinase signaling pathway[J]. Neuroscience, 2013,252:367-383.
Effects of CIRP expression in mild hypothermia therapeutic process for rats with traumatic brain injury
WANGGuan1,CAIYing,HAOWanping,YANGDongting,WANGTaoli
(1TheSecondAffiliatedHospitalofTianjinTCMUniversity,Tianjin300151,China)
Objective To investigate the effects of cold-inducible RNA-binding protein (CIRP) expression in the mild hypothermia (MH) therapeutic process for rats with traumatic brain injury (TBI) and to analyze its mechanism. Methods The rats were randomly divided into three groups: groups A, B and C, which were respectively injected with 0.1 mL normal saline, blank AD5-GFP and AD5-GFP-CIRP-SiRNA. Then, each group was subdivided into four groups: sham group , TBI group, MH group, and TBI + MH groups. TBI models were made in the TBI and TBI+MH groups. After successfully modeling, the rats in MH group and TBI+MH group received MH treatment for 48 h. After MH of 30 min, 6, 12, 24, 48 and 72 h, we detected CIRP, Ras, Raf, ERK-1/2 and p-ERK-1/2 protein in the hypothalamus. After 96 hours of MH treatment, we took the cerebral cortex, hippocampus, and hypothalamus brain tissues. The brain apoptosis was detected by TUNEL, and the expression of CIRP mRNA was detected by RT-PCR.Results In the groups A, B and C, the apoptotic indexes of nerve cells in the cortex, hippocampus and hypothalamus of TBI and TBI+MH group were higher than those of Sham and MH groups (allP<0.05). In the groups A and B, the apoptotic index of neurons in all parts was significantly lower than that of the TBI group (allP<0.05), the apoptotic index of neurons in hypothalamus was significantly decreased as compared with that in the hippocampus and hippocampus parts (allP<0.05). In the groups A and B, CIRP mRNA in the MH, TBI+MH groups was higher than that in Sham group (allP<0.05), CIRP mRNA expression in hypothalamus was higher than that in cortex and hippocampus (allP<0.05). There was no significant difference in CIRP mRNA expression between the TBI, MH, TBI+MH groups and the Sham group (allP>0.05) as well as CIRP mRNA expression in all parts (allP>0.05). In groups A and B, the CIRP protein in TBI group increased at 12 and 24 h after TBI as compared with that at 30 min (allP<0.05), and then decreased at 48 and 72 h (allP>0.05); the expression of CIRP in MH, TBI+MH group increased at 6 h after MH (P<0.05), and reached its peak at 48 h and decreased at 72 h. There was no significant difference in the expression of CIRP in group C (P>0.05). The Ras activation (Ras/Raf value) of TBI, MH, and TBI+MH group increased progressively, reached the peak at 24 h, then decreased progressively. The activation of ERK-1/2 (p-ERK-1/2/ERK-1/2 value) leaded the peak forward in the MH and TBI + MH groups and rapidly decreased the activity, while in group C, this effect disappeared in the MH and TBI + MH groups.Conclusions During the MH treatment of TBI, CIRP is overexpressed in the cortex, hippocampus and hypothalamus parts due to low temperature, in which the expression in the hypothalamus part is more obvious. CIRP may rapidly decrease the activation of ERK-1/2 as time goes by directly regulating its activation, so that it may reduce the brain apoptosis in corresponding parts and thus play a neuro-protective effect.
craniocerebral trauma; cold-inducible RNA-binding protein; mild hypothermia; apoptosis; extracellular signal-regulated kinase
國家自然科學基金資助項目(81303091)。
王冠(1978-),男,副主任醫(yī)師,碩士研究生導師,主要研究方向為顱腦損傷、腦血管病。E-mail: neurocrown@163.com
10.3969/j.issn.1002-266X.2016.42.003
R651.1
A
1002-266X(2016)42-0009-05
2016-05-03)