解娜,黃幼生,羅志飛,薛逢貴
(1 海南醫(yī)學(xué)院附屬醫(yī)院,海口571101;2 海南醫(yī)學(xué)院)
?
·論著·
RNAi沉默Rac1基因?qū)Y(jié)腸癌細(xì)胞增殖及裸鼠成瘤的影響
解娜1,2,黃幼生1,2,羅志飛1,2,薛逢貴1
(1 海南醫(yī)學(xué)院附屬醫(yī)院,???71101;2 海南醫(yī)學(xué)院)
目的 探討RNAi沉默Rac1基因?qū)Y(jié)腸癌細(xì)胞增殖及裸鼠成瘤的影響。方法 ①細(xì)胞實(shí)驗(yàn):體外培養(yǎng)結(jié)腸癌細(xì)胞SW480,隨機(jī)分為空白對照組、陰性對照組、shRNA-Rac1組,陰性對照組、shRNA-Rac1組分別轉(zhuǎn)染空載質(zhì)粒慢病毒、shRNA-Rac1慢病毒。采用RT-PCR技術(shù)、Western blotting法檢測各組Rac1 mRNA及其蛋白表達(dá);采用MTT法檢測各組轉(zhuǎn)染24、48、72、96 h的細(xì)胞增殖情況。②動物實(shí)驗(yàn):取shRNA-Rac1組、陰性對照組轉(zhuǎn)染后細(xì)胞分別接種于裸鼠皮下,建立結(jié)腸癌裸鼠移植瘤模型(分別記為觀察組、對照組),觀察裸鼠成瘤及移植瘤生長情況,喂養(yǎng)35天脫臼處死,完整剝離腫瘤組織,稱取瘤體質(zhì)量并測量腫瘤體積。同時檢測瘤體Rac1蛋白表達(dá)情況。結(jié)果 ①細(xì)胞實(shí)驗(yàn):與陰性對照組比較,shRNA-Rac1組Rac1 mRNA及其蛋白表達(dá)明顯降低(P均<0.05);與陰性對照組比較,shRNA-Rac1組各時間點(diǎn)細(xì)胞增殖速度明顯降低(P均<0.05)。②動物實(shí)驗(yàn):對照組癌細(xì)胞接種4~8天均可見瘤體形成,觀察組接種35天僅2只成瘤,且瘤體形成時間較對照組晚10天。接種35天,觀察組、對照組瘤體體積分別為(32.54±43.13)、(948.13±523.50)mm3,瘤體質(zhì)量分別為(0.023±0.031)、(0.873±0.372)g,兩組比較P均<0.01。與對照組比較,觀察組瘤體組織Rac1蛋白陽性表達(dá)率明顯降低(P<0.05)。結(jié)論 抑制Rac1表達(dá)能降低結(jié)腸癌細(xì)胞增殖速度,抑制裸鼠移植瘤生長。
結(jié)腸癌;Rac1;RNA干擾;裸鼠成瘤;細(xì)胞增殖
結(jié)腸癌是臨床常見的惡性腫瘤之一,在我國其病死率居所有惡性腫瘤的第五位,復(fù)發(fā)和轉(zhuǎn)移是患者死亡的主要原因[1,2]。Rac1是Rac亞家族的一個重要成員,是細(xì)胞內(nèi)重要的信號轉(zhuǎn)導(dǎo)分子。近年研究發(fā)現(xiàn),Rac1在人類大部分侵襲性腫瘤中高表達(dá),如胃癌、乳腺癌、肺癌等[3~8],并與腫瘤的侵襲和轉(zhuǎn)移可能有關(guān)[4,9]。本課題組前期研究發(fā)現(xiàn),抑癌劑二烯丙基二硫(DADS)處理結(jié)腸癌細(xì)胞HT-29后,Rac1 mRNA轉(zhuǎn)錄水平下調(diào)[10,11],但在動物實(shí)驗(yàn)中未發(fā)現(xiàn)Rac1表達(dá)與結(jié)腸癌細(xì)胞增殖有關(guān)。2014年6月~2015年2月,本研究應(yīng)用RNAi技術(shù)沉默Rac1基因,觀察Rac1基因沉默對人結(jié)腸癌細(xì)胞增殖及裸鼠成瘤的影響,旨在探究結(jié)腸癌發(fā)生、發(fā)展的分子機(jī)制。
1.1 材料 人結(jié)腸癌細(xì)胞株SW480購自中國科學(xué)院上海細(xì)胞研究所;GV148-Rac1-shRNA慢病毒質(zhì)粒連接及慢病毒包裝由上海吉凱基因化學(xué)技術(shù)有限公司完成,shRNA-Rac1干擾序列為5′-CCTTCTTAACATCACTGTCTT-3′。雌性BALB/c裸鼠20只,5周齡,體質(zhì)量(20±2)g,購自上海斯萊克實(shí)驗(yàn)動物有限責(zé)任公司。DMEM、FBS購自美國Gibco公司。TRIzol購自美國Invitrogen公司。逆轉(zhuǎn)錄試劑盒FastQuant RT Kit (With gDNase)、熒光定量PCR試劑盒Quant qRT-PCR kit(SYBR Green)購自北京天根生化科技有限公司。Rac1、GAPDH引物由上海生工生物工程股份有限公司合成;RIPA蛋白裂解液、ECL Plus、PMSF及BCA蛋白定量試劑盒購自上海碧云天生物技術(shù)有限公司。兔抗人Rac1、GAPDH單克隆抗體、羊抗兔二抗購自美國Abcam公司;SPV-9000通用型二步法免疫組化檢測試劑盒購自福州邁新生物技術(shù)開發(fā)有限公司。
1.2 細(xì)胞實(shí)驗(yàn)
1.2.1 慢病毒轉(zhuǎn)染 37 ℃、50 mL/L CO2飽和濕度培養(yǎng)箱中培養(yǎng)結(jié)腸癌細(xì)胞SW480,培養(yǎng)基為含雙抗及10%小牛血清的DMEM,待細(xì)胞融合度達(dá)80%且處于對數(shù)生長期時胰酶消化、吹打,制成2.5×104個/mL的細(xì)胞懸液并接種于6孔板,每孔2 mL。隨機(jī)將細(xì)胞分為shRNA-Rac1組、陰性對照組及空白對照組。待細(xì)胞處于對數(shù)生長期、融合度達(dá)30%時,shRNA-Rac1組、陰性對照組分別轉(zhuǎn)染shRNA-Rac1慢病毒、空載質(zhì)粒慢病毒。在1 mL無血清及抗菌藥物的培養(yǎng)基中加入2×106TU目標(biāo)或陰性控制病毒、5 ng Polybrene,混勻后分別轉(zhuǎn)染shRNA-Rac1組及陰性對照組,2~3天于倒置熒光顯微鏡下觀察細(xì)胞轉(zhuǎn)染情況。轉(zhuǎn)染48 h,每孔加入1 μg/mL的嘌呤霉素篩選穩(wěn)定轉(zhuǎn)染細(xì)胞,繼續(xù)培養(yǎng)48 h,更換常規(guī)培養(yǎng)基培養(yǎng)。當(dāng)細(xì)胞處于對數(shù)生長期且融合度達(dá)80%時收集細(xì)胞,進(jìn)行下一步干擾抑制效率檢測及裸鼠成瘤實(shí)驗(yàn)。
1.2.2 Rac1 mRNA干擾效率檢測 采用RT-PCR技術(shù)。按TRIzol試劑盒說明提取各組細(xì)胞總RNA[12],瓊脂糖凝膠電泳及分光光度計(jì)分別檢測RNA純度及濃度。取各組細(xì)胞總RNA 0.5 μg,按FastQuant RT Kit說明書進(jìn)行逆轉(zhuǎn)錄。Rac1及內(nèi)參GAPDH引物由Primerprimer6.0軟件進(jìn)行設(shè)計(jì)。Rac1上游引物5′-ATGTCCGTGCAAAGTGGTATC-3′,下游引物5′-CTCGGATCGCTTCGTCAAACA-3′;GAPDH上游引物5′-GCCAAAAGGGTCATCATCTC-3′,下游引物5′-GTAGAGGCAGGGATGATGTTC-3′。根據(jù)Quant qRT-PCR kit (SYBR Green)說明書設(shè)置反應(yīng)體系及反應(yīng)條件,反應(yīng)體系共20 μL:SYBR 10 μL,上下游引物各0.4 U、cDNA 2 μL、ddH2O 7.2 μL。反應(yīng)條件:95 ℃預(yù)變性2 min,95 ℃變性20 s,60 ℃退火30 s,共40個循環(huán)。每組設(shè)計(jì)3個重復(fù)孔,采用2-ΔΔCt法計(jì)算Rac1 mRNA相對表達(dá)量。ΔCt=目的基因Ct平均值-內(nèi)參照Ct平均值,ΔΔCt=ΔCtshRNA-Rac1組-ΔCt陰性對照組。所有反應(yīng)程序、參數(shù)及Ct值均由ABI AVIIL熒光定量PCR儀完成。
1.2.3 Rac1蛋白抑制效率檢測 采用Western blotting法。RIPA(含1 mmol/L)提取各組細(xì)胞總蛋白,BCA法定量后,加上樣緩沖液100 ℃變性,-20 ℃保存。蛋白變性后每孔上樣30 μg,經(jīng)12% SDS-PAGE膠電泳,100 mA電流條件下60 min轉(zhuǎn)至PVDF膜,5%脫脂牛奶常溫封閉2 h,Rac1(1∶200)和GAPDH(1∶1 000)一抗4 ℃孵育過夜;次日TBST洗膜3遍,加入羊抗兔二抗(1∶5 000)常溫孵育1.5 h,TBST洗滌3遍,ECL底物顯色,獲取圖像,并對條帶灰度值進(jìn)行分析。
1.2.4 細(xì)胞增殖情況觀察 采用MTT法。具體操作按文獻(xiàn)[11]進(jìn)行。將各組結(jié)腸癌細(xì)胞接種于96孔板,每組設(shè)3個復(fù)孔,每孔初始接種細(xì)胞2×103個,置37 ℃、50 mL/L CO2恒溫箱中孵育。分別于貼壁后24、48、72、96 h加入200 μL MTT溶液(5 mg/mL),繼續(xù)培養(yǎng)4 h,去上清液,每孔加入100 μL二甲基亞砜,置搖床上低速振蕩15 min,使結(jié)晶物充分溶解。用Tecan Infinite M1000 PRO多功能酶標(biāo)儀于480 nm處檢測各孔的光密度(OD)值。以時間為橫坐標(biāo),OD值為縱坐標(biāo),繪制細(xì)胞增殖曲線。
1.3 動物實(shí)驗(yàn)
1.3.1 裸鼠移植瘤模型構(gòu)建 將20只裸鼠隨機(jī)分為觀察組、對照組,每組10只。待shRNA-Rac1組及陰性對照組細(xì)胞融合達(dá)80%且處于對數(shù)生長期時,胰酶消化、吹打,1 500 r/min離心3 min,移除上清液,PBS清洗2遍,生理鹽水重懸細(xì)胞,臺盼藍(lán)計(jì)數(shù)后稀釋成2×107個/mL的細(xì)胞懸液,分別接種于兩組裸鼠右腋下0.5 cm處,每只裸鼠接種0.2 mL。接種后的裸鼠在SPF級動物房中飼養(yǎng),每隔1天觀察并記錄瘤體大小,包括瘤體長短徑,稱量裸鼠體質(zhì)量,建立生長曲線。喂養(yǎng)35天脫臼處死,完整剝離腫瘤組織,稱取瘤體質(zhì)量并測量腫瘤體積。
1.3.2 裸鼠瘤體Rac1表達(dá)檢測 各組瘤體于10%中性甲醛固定,常規(guī)石蠟包埋,4 μm厚連續(xù)切片。切片經(jīng)二甲苯脫蠟、逐步水化、30% H2O2封閉,枸櫞酸(pH 6.0)高壓修復(fù)10 min,一抗37 ℃ 1 h,PBS洗滌3遍,二抗37 ℃孵育20 min,DAB顯色至陽性對照片清晰著色,蘇木素襯染1 min。結(jié)果判定參照文獻(xiàn)[13]:陽性染色定位于細(xì)胞質(zhì),呈棕褐色顆粒狀;以細(xì)胞質(zhì)無著色為-,微弱著色為+,中等強(qiáng)度著色為++,棕黃色為+++;以-、+為低表達(dá),++、+++為高表達(dá)。連續(xù)計(jì)數(shù)3個高倍鏡視野(×400),每個視野連續(xù)計(jì)數(shù)200個癌細(xì)胞,觀察Rac1蛋白陽性表達(dá)情況。
2.1 細(xì)胞實(shí)驗(yàn)結(jié)果
2.1.1 RNAi沉默Rac1基因表達(dá)效率 轉(zhuǎn)染48 h,倒置熒光顯微鏡下可見,shRNA-Rac1組及陰性對照組90%以上細(xì)胞表面出現(xiàn)綠色熒光??瞻讓φ战MRac1 mRNA及其蛋白的相對表達(dá)量分別為1.13±0.13、0.92±0.05,陰性對照組分別為1.01±0.12、0.84±0.04,shRNA-Rac1組分別為0.33±0.01、0.29±0.06。與陰性對照組比較,shRNA-Rac1組Rac1 mRNA及其蛋白表達(dá)明顯受到抑制(P均<0.05),其mRNA抑制率達(dá)67.3%,蛋白抑制率為65.5%,可進(jìn)行下一步實(shí)驗(yàn)。
2.1.2 Rac1基因表達(dá)沉默對SW480細(xì)胞增殖的影響 驗(yàn)證LV-shRNA-Rac1具有顯著抑制Rac1表達(dá)效率后,應(yīng)用MTT法檢測轉(zhuǎn)染不同時間SW480細(xì)胞增殖情況。結(jié)果見表1。
表1 各組轉(zhuǎn)染不同時間SW480細(xì)胞增殖比較±s)
注:與空白對照組、陰性對照組比較,*P<0.05。
2.2 動物實(shí)驗(yàn)結(jié)果
2.2.1 裸鼠移植瘤生長情況 對照組接種第4~8天肉眼均可見瘤體形成,而觀察組接種35天內(nèi)僅2只裸鼠成瘤,且瘤體形成時間較對照組晚10天。瘤體表現(xiàn)為接種部位出現(xiàn)皮下小結(jié)節(jié),初始為橢圓形,逐漸長大,最終呈現(xiàn)不規(guī)則、凹凸分葉狀。接種5周后,觀察組、對照組瘤體體積分別為(32.54±43.13)、(948.13±523.50)mm3,瘤體質(zhì)量分別為(0.023±0.031)、(0.873±0.372)g,兩組比較P均<0.01。
2.2.2 兩組瘤體組織Rac1蛋白陽性表達(dá)比較 見插頁Ⅰ圖1。觀察組瘤體組織Rac1蛋白陽性表達(dá)率為12.1%,對照組為90.2%,兩組比較P<0.05。
腫瘤血管生成是惡性腫瘤發(fā)生轉(zhuǎn)移的重要機(jī)制之一,血管生成的基礎(chǔ)過程涉及細(xì)胞移動、基因表達(dá)活性改變及復(fù)雜的信號網(wǎng)絡(luò)調(diào)節(jié)。Rac1是GTPases Rho家族的重要成員之一,基因全長29 kb,包含7個外顯子,位于人染色體7p22。Rac1基因的轉(zhuǎn)錄產(chǎn)物有1.2、2.5 kb兩種,是細(xì)胞內(nèi)重要的信號轉(zhuǎn)導(dǎo)分子。Rac1過表達(dá)能促進(jìn)腫瘤細(xì)胞血管生成及遷移能力,從而促進(jìn)腫瘤細(xì)胞的侵襲、轉(zhuǎn)移[3,4]。目前對Rac1調(diào)節(jié)腫瘤轉(zhuǎn)移的機(jī)制尚不完全清楚,可能與以下機(jī)制有關(guān):①刺激新的肌動蛋白聚合,通過活化靶蛋白Scar/Wave激活A(yù)rp2/3復(fù)合體,該復(fù)合體是一種肌動蛋白相關(guān)蛋白,能刺激肌動蛋白單體的成核作用,從而導(dǎo)致新的肌動蛋白絲形成,加快細(xì)胞移動[3,13]。②通過調(diào)節(jié)CDC42、干擾素、VEGF等因子的表達(dá)促進(jìn)腫瘤血管的形成,繼而導(dǎo)致腫瘤細(xì)胞轉(zhuǎn)移[3];③通過下游分子Pak1激活Limk1,調(diào)節(jié)Cofilin活動。Rac1和Cdc42可間接活化Limk1,上調(diào)尿激酶型纖維蛋白酶原激活劑(uPA),增強(qiáng)uPA啟動子活性,誘導(dǎo)uPA和uPA受體表達(dá)及uPA的分泌,降解細(xì)胞外基質(zhì),促進(jìn)癌細(xì)胞的侵襲和轉(zhuǎn)移[14,15]。④Rac1能抑制TGF-β誘導(dǎo)的p38 MAPK磷酸化,通過NOXs-ROS通路激活NF-κB,調(diào)節(jié)uPA和基質(zhì)金屬蛋白酶9,活化核轉(zhuǎn)錄因子Snail誘導(dǎo)上皮間質(zhì)轉(zhuǎn)化,促腫瘤侵襲的轉(zhuǎn)移[3,16]。
有研究報道,結(jié)腸癌細(xì)胞中Rac1陽性表達(dá)明顯升高,并與結(jié)腸癌的浸潤和轉(zhuǎn)移有一定相關(guān)性。其促進(jìn)結(jié)腸癌浸潤和轉(zhuǎn)移的機(jī)制可能與CDC42、smad4、ERK/JNK等信號的激活,繼而促進(jìn)上皮間質(zhì)轉(zhuǎn)化有關(guān)[17,18]。本課題組前期研究發(fā)現(xiàn),抗癌劑DADS能抑制結(jié)腸癌細(xì)胞Rac1的表達(dá),可能涉及細(xì)胞周期及凋亡調(diào)控[11,12]。但沉默Rac1表達(dá)對結(jié)腸癌細(xì)胞增殖及腫瘤形成能力的影響目前尚不清楚。
有研究顯示,Rac1抑制劑NSC23766、EHT 1864等處理腫瘤細(xì)胞后,腫瘤細(xì)胞增殖速度降低[3,4]。本研究結(jié)果顯示,慢病毒介導(dǎo)shRNA-Rac1轉(zhuǎn)染結(jié)腸癌細(xì)胞后,能抑制Rac1基因mRNA及其蛋白表達(dá),且其細(xì)胞增殖速度明顯降低,與以往研究[3,4,11,18]結(jié)果基本一致。表明Rac1過表達(dá)可能參與結(jié)腸癌細(xì)胞惡性演進(jìn)的生物學(xué)過程。本研究還發(fā)現(xiàn),對照組均于接種第4~8天出現(xiàn)肉眼可見的瘤體,而觀察組僅2只于接種2周后有瘤體形成;觀察組移植瘤生長速度、腫瘤體積和質(zhì)量均明顯低于對照組,移植瘤組織中Rac1 mRNA及其蛋白表達(dá)均低于對照組,與其在細(xì)胞水平上的表達(dá)一致。證實(shí)在裸鼠瘤體內(nèi)shRNA-Rac1對Rac1 mRNA及其蛋白表達(dá)均有抑制作用。提示沉默Rac1基因表達(dá)能抑制結(jié)腸癌細(xì)胞增殖,遏制結(jié)腸癌細(xì)胞裸鼠移植瘤形成。
綜上所述,以慢病毒介導(dǎo)的Rac1基因沉默能抑制結(jié)腸癌細(xì)胞增殖及裸鼠移植瘤的生長;Rac1表達(dá)變化可能與結(jié)腸癌的發(fā)生、發(fā)展有關(guān),有可能作為結(jié)腸癌潛在的治療靶點(diǎn)。
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016,66(2):115-132.
[2] 李德銯,吳春曉,鄭瑩,等.上海市2003~2007年大腸癌發(fā)病率和死亡率分析[J].中國腫瘤, 2011,20(6):413-418.
[3] Bid HK, Roberts RD, Manchanda PK, et al. RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis[J]. Mol Cancer Ther, 2013,12(10):1925-1934.
[4] Kagawa Y, Matsumoto S, Kamioka Y, et al. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo[J]. PLoS One, 2013,8(12):e83629.
[5] Ji J, Feng X, Shi M, et al. Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer[J]. Int J Oncol, 2015,46(3):1343-1353.
[6] Rozenchan PB, Pasini FS, Roela RA, et al. Specific upregulation of RHOA and RAC1 in cancer-associated fibroblasts found at primary tumor and lymph node metastatic sites in breast cancer[J]. Tumour Biol, 2015,36(12):9589-9597.
[7] Gastonguay A, Berg T, Hauser AD, et al. The role of Rac1 in the regulation of NF-κB activity, cell proliferation, and cell migration in non-small cell lung carcinoma[J]. Cancer Biol Ther, 2012,13(8):647-656.
[8] Silva AL, Carmo F, Bugalho MJ. RAC1b overexpression in papillary thyroid carcinoma: a role to unravel[J]. Eur J Endocrinol, 2013,168(6):795-804.
[9] Lawson CD, Burridge K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration[J]. Small GTPases, 2014(5):e27958.
[10] Huang YS, Xie N, Su Q, et al. Diallyl disulfide inhibits the proliferation of HT-29 human colon cancer cells by inducing differentially expressed genes[J]. Mol Med Rep, 2011,4(3):553-559.
[11] Zhou Y, Su J, Shi L, et al. DADS downregulates the Rac1-ROCK1/PAK1-LIMK1-ADF/cofilin signaling pathway, inhibiting cell migration and invasion[J]. Oncol Rep, 2013,29(2):605-612.
[12] Abou-Kheir W, Isaac B, Yamaguchi H, et al. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2[J]. J Cell Sci, 2008,121(Pt 3):379-390.
[13] 解娜,黃幼生,羅志飛,等.YWHAE對結(jié)腸癌細(xì)胞增殖的影響及表達(dá)意義[J].世界華人消化雜志,2015,23(29):4643-4651.
[14] Oleinik NV, Helke KL, Kistner-Griffin E, et al. Rho GTPases RhoA and Rac1 mediate effects of dietary folate on metastatic potential of A549 cancer cells through the control of cofilin phosphorylation[J]. J Biol Chem, 2014,289(38):26383-26394.
[15] Pratt SJ, Epple H, Ward M, et al. The LIM protein Ajuba influences p130Cas localization and Rac1 activity during cell migration[J]. J Cell Biol, 2005,168(5):813-824.
[16] Santibanez JF, Kocic J, Fabra A, et al. Rac1 modulates TGF β1-mediated epithelial cell plasticity and MMP9 production in transformed keratinocytes[J]. FEBS Lett, 2010,584(11):2305-2310.
[17] Andre S, Singh T, Lacal JC, et al. Rho GTPase Rac1: molecular switch within the galectin network and for N-glycan alpha2, 6-sialylation/O-glycan core 1 sialylation in colon cancer in vitro[J]. Folia Biol (Praha), 2014,60(3):95-107.
[18] Chahdi A, Raufman JP. The Cdc42/Rac nucleotide exchange factor protein β1Pix (Pak-interacting exchange factor) modulates β-catenin transcriptional activity in colon cancer cells: evidence for direct interaction of β1PIX with β-catenin[J]. J Biol Chem, 2013,288(47):34019-34029.
Effects of RNAi-mediated knockdown of Rac1 gene on growth and transplanted tumors of colon cancer SW480 cells in nude mice
XIENa1,HUANGYousheng,LUOZhifei,XUEFenggui
(1TheAffiliatedHospitalofHainanMedicalUniversity,Haikou571101,China)
Objective To investigate the effects of Rac1 gene silenced by RNA interference (RNAi) on cell proliferation and growth of subcutaneous tumor of colon cancer SW480 cells in nude mice. Methods ① Cell experiment: colon cancer SW480 cells cultured in vitro were randomly divided into the blank control group, negative control group, and shRNA-Rac1 group. Recombinant lentivirus virus vector (NC-shRNA and Rac1-shRNA) were constructed and were respectively transfected into negative control group and shRNA-Rac1 group. The expression levels of Rac1 mRNA and protein were measured by quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting, respectively. Cell proliferation at 24, 48, 72, and 96 h after transfection was determined by MTT. ② Animal experiment: cells from shRNA-Rac1 group and negative control group were planted into nude mice to establish mice models of colon cancer (observation group and control group). Formulation and growth of the tumor was observed. After the mice were sacrificed by cervical dislocation, tumor tissues were removed completely and we measured its weight and size. Meanwhile, Rac1expression was also detected by immunohistocytochemistry. Results ① cell experiment: Compared with the blank control group and negative control group, the expression of Rac1 mRNA and protein in the shRNA-Rac1 group decreased significantly (allP<0.05). The proliferation ability of colon cancer cells was significantly inhibited in the shRNA-Rac1 group at all detecting time points as compared with that of the control group (allP<0.05). ② Animal experiment: tumor was observed in all cases of the control group 4-8 days after the transplantation. While in the observation group, tumor was only observed in 2 cases 35 days after the transplantation, and it took 10 days longer to form a tumor than that in the control group. On the 35th day of transplantation, average volume of the tumor in the observation group and control group was (948.13±523.50) and (32.54±43.13) mm3, and the tumor average weight was respectively (0.873±0.372) and (0.023±0.031) g, and significant difference was found between the two groups (allP<0.01). Besides, compared with the control group, the expression rate of Rac1 in the observation group was significantly lower than that in the control group (P<0.01). Conclusion Silencing the expression of Rac1 decreases the proliferation of colon cancer cells SW480 and inhibits the tumor formation in nude mice.
colon cancer; Rac1; RNA interference; tumor growth in nude mice; cell proliferation
國家自然科學(xué)基金資助項(xiàng)目(81260321)。
解娜(1979-),女,講師,研究方向?yàn)槟[瘤病因及發(fā)病機(jī)制。E-mail: xiena2005@163.com
簡介:黃幼生(1976-),男,副教授,研究方向?yàn)橄到y(tǒng)惡性腫瘤浸潤轉(zhuǎn)移機(jī)制。E-mail: hys768811@163.com
10.3969/j.issn.1002-266X.2016.40.001
R735.3
A
1002-266X(2016)40-0001-04
2016-01-22)