• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE ASSOCIATED FAMILIES OF SEMI-HOMOGENEOUS COMPLETE HYPERBOLIC AFFINE SPHERES?

    2016-12-05 00:43:23ZhichengLIN林至誠
    關(guān)鍵詞:王二小

    Zhicheng LIN(林至誠)

    Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,ChinaE-mail:flyriverms@qq.com

    Erxiao WANG(王二?。?

    Department of Mathematics,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong KongE-mail:maexwang@ust.hk

    THE ASSOCIATED FAMILIES OF SEMI-HOMOGENEOUS COMPLETE HYPERBOLIC AFFINE SPHERES?

    Zhicheng LIN(林至誠)

    Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China
    E-mail:flyriverms@qq.com

    Erxiao WANG(王二小)?

    Department of Mathematics,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong Kong
    E-mail:maexwang@ust.hk

    Hildebrand classified all semi-homogeneous cones in R3and computed their corresponding complete hyperbolic affine spheres.We compute isothermal parametrizations for Hildebrand’s new examples.After giving their affine metrics and affine cubic forms,we construct the whole associated family for each of Hildebrand’s examples.The generic member of these affine spheres is given by Weierstrass P,ζ and σ functions.In general any regular convex cone in R3has a natural associated S1-family of such cones,which deserves further studies.

    hyperbolic affine spheres;isothermal coordinates;Weierstrass elliptic functions; Monge-Amp`ere equation;Tzitz′eica equation

    2010 MR Subject Classification37K25;53A15

    1 Introduction

    Classical equiaffine differential geometry investigates the properties of hypersurface r(x1,x2,···,xn)in Rn+1invariant under the equiaffine transformations r→ Ar+v,where A∈SLn+1(R)and v∈Rn+1.Although the Euclidean angle is no longer invariant,there exists an affine invariant transversal vector field along r,called the affine normal.The affine metric and the affine cubic form give a set of complete affine invariants.The fundamental theorem tells us that any given affine metric and affine cubic form satisfying certain compatibility conditions(Gauss-Codazzi type)will determine an affine hypersurface uniquely up to equiaffine transformations(see[20]).The affine metric(conformal to the Euclidean second fundamental form)is definite if and only if the hypersurface is locally strictly convex.The simplest interestingclass of hypersurfaces is the affine spheres,which are defined by the condition that all affine normal lines meet in a point.Specially,definite affine spheres(with a mean curvature H and with center at the origin or infinity)can be represented as a graph of a locally strictly convex function f if and only if the Legendre transform u of f solves a Monge-Amp`ere equation(see Calabi[1]):

    Cheng and Yau[5]showed that on a bounded convex domain there is for H <0 a unique negative convex solution of(1.1)extending continuously to be 0 on the boundary.This leads to a beautiful geometric picture of any complete hyperbolic(H<0)affine sphere r(conjectured by Calabi[1]):it is always asymptotic to the boundary of the cone given by the convex hull of r and its center;and conversely the interior of any regular convex cone is foliated by complete hyperbolic affine spheres asymptotic to it with all H<0 and with centers at the vertex.

    However,explicit representations are rarely known except for homogeneous cones.Hildebrand classified three-dimensional regular convex cone with an automorphism group of dimension at least 2,which he also called“semi-homogeneous”.In this case,he reduced the Monge-Amp`ere equation to some ODE and was able to solve it with elliptic integrals in[15].

    It is known that 2 dimensional affine spheres have additional features than higher dimensional ones.For example,the affine metric can be expressed simply in some natural isothermal coordinates(definite case)or asymptotic coordinates(indefinite case).In addition,each 2 dimensional affine sphere has a natural associated family of the same type with the same affine metric but different affine cubic forms.In particular,this implies that the structure equations actually form an integrable system,called Tzitz′eica equation or the affine-Toda field equation(see[7,8,20]).It is then natural to ask for the isothermal parametrizations and the associated families of Hildebrand’s new examples.Specially,one wish to see the natural associated family of cones.This paper will answer these questions.

    Our extensive studies of definite affine spheres were motivated by Loftin,Yau and Zaslow’s‘trinoid’construction(see[22])with applications in mirror symmetry.The dressing actions on proper definite affine spheres and soliton examples were presented in[20].The Permutability Theorem and group structure of dressing actions will be presented in a subsequent paper[29]. Their Weierstrass or DPW representations were studied in[8],using an Iwasawa decomposition of certain twisted loop group.The equivariant solutions were constructed in[9].

    The rest of the paper is organized as follows.In Section 2,we introduce the fundamental concepts of affine sphere and review the main results in[15].In Section 3,we compute the isothermal parametrizations and the affine invariants of Hildebrand’s examples case by case. We also get the whole associated family for each case by solving their structure equations.In general any regular convex cone in R3has a natural associated S1-family of such cones,which deserves further studies.

    2 Affine Spheres and Semi-homogeneous Cones

    Let

    be an immersion with a non-degenerate second fundamental form.Introduce

    is equiaffine invariant,and it is called the affine(or Blaschke)metric of the immersion.The surface is said to be definite or indefinite if this metric g is so.The surface is definite if and only if it is locally strictly convex.A transversal vector field ξ on a surface r(M)is called affine normal if it satisfies

    where Δgis the Laplace-Beltrami operator of the affine metric.The connection?induced by the affine normal is called the Blaschke connection.The affine metric and the affine normal are then uniquely determined(up to a sign)by requiring the following decomposition into tangential and transverse components:

    where D is the canonical flat connection on R3and X,Y are any tangent vector fields on the surface.The affine cubic form measures the difference between the induced Blaschke connection?and g’s Levi-Civita connection?g:

    It is actually symmetric in all 3 arguments and is a 3rd order invariant.

    If all affine normals of r meet in one point(the center),then the surface is called affine sphere.If this point is not infinite it may be chosen as the origin of R3so that

    H is called the affine mean curvature,and such surface is called proper affine sphere.For a convex proper affine sphere,if the center is outside the surface,it is called hyperbolic.

    In the sequel we consider the cone K ?R3,with the vertex at the origin.The complete hyperbolic affine spheres foliating K are the level sets of the solution F:K?→ R of the following Monge-Amp`ere equation(see[3,4,11,21]for detail):

    Let AutK denote the automorphism group of the cone K.The equiaffine invariance of(2.1)implies F is invariant under unimodular automorphisms g∈AutK(see[11]or[14]).Then the number of variables of F can be effectively reduced by the generic dimension of the orbits of AutK.If there are orbits of dimension 2,the PDE(2.1)will reduce to an ODE.This kindof cone is also called semi-homogeneous cone.Hildebrand provided an important classification theorem of such cones:

    Fig.1 Semi-homogeneous cone

    Theorem 2.1([15],Theorem 3.2)Let K?R3be a regular convex cone such that dim AutK≥2.Then K is isomorphic to exactly one of the following cones:

    1.the cone obtained by the homogenization of the epigraph of the exponential function;

    We choose p=5 for each case and give the pictures of these five cases of semi-homogeneous cones in Fig.1.It could be useful for knowing the shape of semi-homogeneous cones.

    3 The Associated Families of Affine Spheres

    For convex affine spheres,the affine metric is positive-definite,and thus it provides a conformal structure in dimension two.There exists local complex coordinate z=x+iy so thatThe affine cubic formThe affine normal satisfies:

    Simon-Wang derived in[23]the following equations for the frame

    and showed that the compatibility conditions(Tzitz′eica equation)are:

    The above system is invariant underInserting the parameter λ=e3itinto the frame equations(3.1),we obtain the following Lax representation of system(3.2):

    In this section we compute the isothermal parametrizations of Hildebrand’s examples,then obtain the affine invariants.Substituting these affine invariants into the frame equations(3.3)and solving them,we get the whole associated family for each examples.

    3.1The Isothermal Parametrization and the Associated Family of Case 1

    In this subsection we consider the complete hyperbolic affine sphere asymptotic to the boundary of the cone obtained by the homogenization of the epigraph of the exponential function(case 1 in Theorem 2.1).The corresponding example in[15]is given by:

    Let us briefly review the classical results of isothermal coordinates in[24].If the metric is given locally as

    then in the complex coordinate z=x+iy,it takes the form:

    In isothermal coordinates(u,v)the metric should take the form

    The complex coordinate ω=u+iv satisfies

    so that the coordinates(u,v)will be isothermal if the Beltrami equation

    has a diffeomorphic solution.

    To compute the isothermal parametrization of the affine sphere,we should compute the affine metric.Then we get

    The Beltrami equation(3.5)can be written as

    Then we divide our computation into the following steps.

    and

    Summarize the above computations,we use the coordinate transformation

    By a direct computation,we can get the affine metric,the affine mean curvature and the affine cubic form:

    It is easy to see that g gives an explicit solution of Tzitz′eica equation(3.2).Substituting g,H,U into frame equations(3.3)and solving them,then we can conclude the above computations into the following theorem.

    Theorem 3.1The associated family of the complete hyperbolic affine sphere(3.4)in[15]is given by:

    here

    with the affine metric,the affine mean curvature and the affine cubic form are as follows:

    Remark 3.2Expression(3.10)is gauged by the initial condition

    With this initial condition,one can checkby direct computation.

    3.2The Isothermal Parametrizations of Remaining Cases

    The complete hyperbolic affine spheres asymptotic to the boundary of the remaining cones can be treated in a common framework.In this subsection we compute the common isothermal coordinates transformation for these affine spheres by Weierstrass elliptic functions.Let us review the results in[15].

    Now we begin to compute the transformation.We consider Blaschke metric of the immersion

    Similar to case 1,we divide the computation into the following 3 steps:

    Summarizing the above computation,we obtain the transformation:

    The above integral can be expressed by Weierstrass elliptic function(see[13]or[17]):

    By this expression and a gauge transformation:

    we can simplify(3.18)-(3.20)as

    Then we obtain the affine metric,the affine mean curvature and the affine cubic form:

    Invariants(3.25)-(3.26)imply that the two affine spheres coresponding to s=1 and s=-1 are in the same associated family.The coefficients U of these two affine spheres can be expressed asrespectively,in other words

    4 The Associated Families of Remaining Cases

    With the generic formulas(3.22)-(3.24),we can construct the complete hyperbolic affine spheres and the associated families case by case.Some parts of construction have referred to the formulas of the affine spheres in[15].We consider the following cases.

    Since φ is analytic in t,it must be an even function of t.For each negative t,s=-1,we have

    This affine sphere is asymptotic to the cone given in case 4 of Theorem 2.1,for α 6=1.The affine invariants are given in(3.25)-(3.26).When computing the associated family,we can consider the coefficient U of this affine sphere isThen,for convenience,substitute g,H,into frame equations(3.3)and solve them.We conclude the above discussions into the following theorem.

    Theorem 4.1The associated family the complete hyperbolic affine sphere(3.13)-(3.15) within[15]is given by

    What’s more,the affine metric,the affine mean curvature and the affine cubic form are given as

    Case(ii)c=0.In this case s=1,β=1 and(3.22)-(3.24)become

    for each positive t.Then for each negative t,we have

    This affine sphere is asymptotic to the cone given in case 4 of Theorem 2.1,with α=1.The affine metric,the affine mean curvature and the affine cubic form of this affine sphere are

    Remark 4.2By direct computation,it is easy check the expression of affine spheres(4.4)-(4.5)can get from(4.1)-(4.2)when c→0.Henceforth,the associated families in this case can also get from(4.3)by c→0.

    Case(iii)c=-2(p+q),β=1.In this case s=1,and(3.22)-(3.24)become

    This affine sphere is asymptotic to the cone given in case 5 of Theorem 2.1.The affine metric,the affine mean curvature and the affine cubic form of this affine sphere are

    Theorem 4.3The associated family of the complete hyperbolic affine sphere in[15]:

    with the affine metric,the affine mean curvature and the affine cubic form are as follows:

    This affine sphere is asymptotic to the cone given in case 3 of Theorem 2.1.Since this affine sphere is in the same associated family with the previous case,their affine metrics and affine mean curvatures are the same,and the cubic form of this case is

    At last,we explain that any regular convex cone in R3should have a natural associated family of such cones.

    If we use the transformationsand

    it is easy to see that the associated family in Theorem 3.3 is the same with it in Theorem 3.1,i.e.,case 1,case 3 and case 5 are all in the same associated family.Conversely,any member in this family can be found in these three cases.The cones which these members are asymptotic to also can be found in the corresponding cases of the semi-homogeneous cones,which form a natural associated family of cones.

    There are similar results for case 4.To show this,we should use the following relationship between Weierstrass P-function and Jacobi SN-function:

    In conclusion,in general any regular convex cone in R3has a natural associated S1-family of such cones,which deserves further studies.Given any natural associated family of some semi-homogeneous cone,it may contain case 1,case 3 and case 5 of semi-homogenous cones or case 4.

    AcknowledgementsThe second author would like to express the deepest gratitude for the support of the Hong Kong University of Science and Technology during the project,especially Min Yan,Yong-Chang Zhu,Bei-Fang Chen and Guo-Wu Meng.

    References

    [1]Calabi E.Complete affine hyperspheres I//Symposia Mathematica.London:Academic Press(10),1972: 19-38

    [2]Cao F,Tian C.Integrable system and spacelike surfaces with proscribed weak curvature in Minkowski 3-space.Acta Math Sci,1999,19(1):91-96

    [3]Cheng S Y,Yau S T.On the existence of a complete K¨ahler metric on noncompact complex manifolds and the regularity of Fefferman’s equation.Comm Pure Appl Math,1980,33(4):507-544

    [4]Cheng S Y,Yau S T.The real Monge-Amp`ere equation and affine flat structures//Proc 1980 Beijing Symp on Diff Geom and Diff Equ,vol 1.Beijing:Science Press,1982:339-370

    [5]Cheng S Y,Yau S T.Complete affine hyperspheres part I,The completeness of affine metrics.Comm Pure Appl Math,1986,39(6):839-866

    [6]Chern S S.An elementary proof of the existence of isothermal parameters on a surface.Proc Amer Math Soc,1955,6(5):771-782

    [7]Dorfmeister J,Eitner U.Weierstrass-type representation of affine sphere.Abh Math Sem Univ Hamburg,2001,71:225-250

    [8]Dorfmeister J,Wang E X.Definite affine spheres via loop groups I:general theory.(preprint)

    [9]Dorfmeister J,Wang E X.Definite affine spheres via loop groups II:equivariant solutions.(draft)

    [10]Dunajski M,Plansangkate P.Strominger-Yau-Zaslow geometry,affine spheres and Painlev′e III.Commun Math Phys,2009,290:997-1024

    [11]Fox D J F.A Schwarz lemma for K¨ahler affine metrics and the canonical potential of a proper convex cone. arXiv e-print math.DG:1206.3176,2012

    [12]Guest M.Harmonic Maps,Loop Groups,and Integrable Systems.Cambridge University Press,1997

    [13]Hancock H.Theory of Elliptic Functions.New York:Dover,1958

    [14]Hildebrand R.Einstein-Hessian barriers on convex cones.Optimization Online e-print 2012/05/3474,2012

    [15]Hildebrand R.Analytic formulas for complete hyperbolic affine spheres.Beitrage zur Algebra und Geometrie/Contributions to Algebra and Geometry,2014,55(2):497-520

    [16]Kaptsov O V,Shan’ko Yu V.Trilinear representation and the Moutard transformation for the Tzitzeica equation.arXiv:solv-int/9704014v1

    [17]Lang S.Elliptic Functions.New York:Springer,1987

    [18]Li A M,Simon U,Zhao G S.Global Affine Differential Geometry of Hypersurfaces.Volume 11 of De Gruyter Expositions in Mathematics.Walter de Gruyter,1993

    [19]Li W,Han Y,Zhou G.Damboux transformation of a nonlinear evolution equation and its explicit solutions. Acta Math Sci,2011,31(4):1457-1464

    [20]Lin Z C,Wang G,Wang E X.Dressing actions on proper definite affine spheres.arXiv:1502.04766

    [21]Loftin J C.Affine spheres and K¨ahler-Einstein metrics.Math Res Lett,2002,9(4):425-432

    [22]Loftin J,Yau S T,Zaslow E.Affine manifolds,SYZ geometry and the Y vertex.J Differ Geom,2005,71(1): 129-158

    [23]Simon U,Wang C P.Local theory of affine 2-spheres.Proc Symposia Pure Math,1993,54:585-598

    [24]Spivak M.A Comprehensive Introduction to Differential Geometry 4.3rd ed.Publish or Perish Inc,tome,1999:314-346

    [25]Terng C L.Geometries and symmetries of soliton equations and integrable elliptic equations.Surveys Geometry Integrable Systems,2008,30:401-488

    [26]Tian C,Zhou K H,Tian C B.Blacklund transformation on surfaces with constant mean curvature in R2. Acta Math Sci,2003,23(3):369-376

    [27]Uhlenbeck K.Harmonic maps into Lie groups(classical solutions of the chiral model).J Diff Geom,1989,30:1-50

    [28]Wang E X.Tzitz′eica transformation is a dressing action.J Math Phys,2006,47(5):875-901

    [29]Wang G,Lin Z C,Wang E X.Permutability theorem for definite affine spheres and the group structure of dressing actions.(preprint)

    [30]Zakharov V E,Shabat A B.Integration of non-linear equations of mathematical physics by the inverse scattering method II.Funct Anal Appl,1979,13:166-174

    ?March 31,2015;revised May 12,2015.The authors were supported by the NSF of China(10941002,11001262),and the Starting Fund for Distinguished Young Scholars of Wuhan Institute of Physics and Mathematics(O9S6031001).

    ?Erxiao WANG.

    猜你喜歡
    王二小
    剪出紅色故事
    小英雄王二小
    小英雄王二小
    家教世界(2023年13期)2023-05-25 04:42:52
    傳承王二小精神 爭(zhēng)做新時(shí)代少年——“王二小中隊(duì)”風(fēng)采錄
    為王二小守墓
    放牛娃
    小英雄王二小
    向小英雄王二小學(xué)習(xí)
    王二小永遠(yuǎn)活在我心中
    舞臺(tái)劇《放牛的孩子王二小》:在北京人民大會(huì)堂上演
    中國火炬(2014年9期)2014-07-25 10:23:08
    日韩一卡2卡3卡4卡2021年| 女人久久www免费人成看片| 国产日韩欧美在线精品| 又紧又爽又黄一区二区| 精品少妇内射三级| 精品一区在线观看国产| 少妇人妻久久综合中文| 后天国语完整版免费观看| 午夜福利在线观看吧| 亚洲精品中文字幕一二三四区 | 一边摸一边抽搐一进一出视频| 我的亚洲天堂| 国产精品 欧美亚洲| 精品久久蜜臀av无| 1024视频免费在线观看| 中文字幕另类日韩欧美亚洲嫩草| 在线永久观看黄色视频| 欧美亚洲日本最大视频资源| 日韩 亚洲 欧美在线| 欧美日韩亚洲国产一区二区在线观看 | 波多野结衣av一区二区av| 国产99久久九九免费精品| 欧美另类亚洲清纯唯美| 亚洲成国产人片在线观看| 视频区图区小说| 色精品久久人妻99蜜桃| 久久久国产精品麻豆| 91av网站免费观看| 妹子高潮喷水视频| 国产精品1区2区在线观看. | 亚洲专区中文字幕在线| 亚洲精品中文字幕在线视频| 精品福利观看| 777久久人妻少妇嫩草av网站| 日韩免费高清中文字幕av| 99国产精品99久久久久| 久久久久久久精品精品| 亚洲精品国产一区二区精华液| 麻豆国产av国片精品| 亚洲五月婷婷丁香| 亚洲一区二区三区欧美精品| 电影成人av| 亚洲黑人精品在线| 高清黄色对白视频在线免费看| 亚洲人成77777在线视频| 精品少妇黑人巨大在线播放| 在线精品无人区一区二区三| 午夜免费观看性视频| 亚洲精品国产av蜜桃| 伊人久久大香线蕉亚洲五| 纯流量卡能插随身wifi吗| 999久久久国产精品视频| 18禁观看日本| 天天躁夜夜躁狠狠躁躁| 成年av动漫网址| 国产欧美日韩一区二区三区在线| 美女视频免费永久观看网站| 老汉色∧v一级毛片| 国产高清视频在线播放一区 | 日韩人妻精品一区2区三区| 日韩人妻精品一区2区三区| 日韩人妻精品一区2区三区| 国产精品久久久久久人妻精品电影 | 在线亚洲精品国产二区图片欧美| 国产精品久久久久成人av| 天天躁日日躁夜夜躁夜夜| 91大片在线观看| 男女高潮啪啪啪动态图| av一本久久久久| 国产成人啪精品午夜网站| 色综合欧美亚洲国产小说| 亚洲欧洲精品一区二区精品久久久| 人人澡人人妻人| 亚洲精品久久午夜乱码| 久久国产精品人妻蜜桃| 天堂8中文在线网| 免费一级毛片在线播放高清视频 | 国产av一区二区精品久久| 在线观看免费视频网站a站| 午夜免费观看性视频| 18禁国产床啪视频网站| 人人妻人人爽人人添夜夜欢视频| 在线观看免费视频网站a站| 国产免费av片在线观看野外av| 久久狼人影院| 亚洲国产看品久久| 国产又爽黄色视频| 欧美黑人精品巨大| 少妇被粗大的猛进出69影院| kizo精华| 久久毛片免费看一区二区三区| 国产精品久久久人人做人人爽| 国产不卡av网站在线观看| 免费在线观看完整版高清| 国产三级黄色录像| 黄色视频,在线免费观看| 欧美xxⅹ黑人| 永久免费av网站大全| 麻豆av在线久日| 久久久国产成人免费| 精品国产一区二区久久| 婷婷丁香在线五月| 国产男女内射视频| 亚洲情色 制服丝袜| 午夜91福利影院| 下体分泌物呈黄色| 久久国产精品影院| 蜜桃国产av成人99| 婷婷色av中文字幕| 女人被躁到高潮嗷嗷叫费观| 涩涩av久久男人的天堂| 一区福利在线观看| 国产欧美日韩精品亚洲av| 女人久久www免费人成看片| cao死你这个sao货| 男人操女人黄网站| 性少妇av在线| 国产精品欧美亚洲77777| 两个人看的免费小视频| 亚洲av成人一区二区三| 国产1区2区3区精品| 欧美日韩国产mv在线观看视频| 国产高清videossex| 亚洲国产中文字幕在线视频| 欧美大码av| 国产1区2区3区精品| 国产精品一区二区精品视频观看| 国产视频一区二区在线看| 韩国精品一区二区三区| 国产成人系列免费观看| 午夜福利一区二区在线看| 捣出白浆h1v1| 性色av乱码一区二区三区2| 老鸭窝网址在线观看| 一区二区三区精品91| 两性夫妻黄色片| 三级毛片av免费| 国产男人的电影天堂91| 伦理电影免费视频| 91精品伊人久久大香线蕉| 欧美性长视频在线观看| 亚洲五月色婷婷综合| 美女视频免费永久观看网站| 亚洲av成人不卡在线观看播放网 | 男人操女人黄网站| 女人精品久久久久毛片| 久久久久视频综合| 欧美国产精品一级二级三级| av在线播放精品| 91九色精品人成在线观看| 老司机影院成人| 一边摸一边做爽爽视频免费| 一个人免费看片子| 久久av网站| 国产成人精品在线电影| 美女大奶头黄色视频| 午夜精品久久久久久毛片777| 欧美一级毛片孕妇| 黄色a级毛片大全视频| 国产成+人综合+亚洲专区| 亚洲国产精品成人久久小说| 老汉色∧v一级毛片| 日韩电影二区| 视频区欧美日本亚洲| 51午夜福利影视在线观看| av超薄肉色丝袜交足视频| 亚洲美女黄色视频免费看| 久久精品久久久久久噜噜老黄| 色婷婷av一区二区三区视频| 亚洲精品国产色婷婷电影| 午夜福利影视在线免费观看| 国产精品国产三级国产专区5o| 日本五十路高清| kizo精华| 亚洲av电影在线进入| a在线观看视频网站| 视频区图区小说| 亚洲欧洲精品一区二区精品久久久| 99久久99久久久精品蜜桃| 亚洲va日本ⅴa欧美va伊人久久 | 精品国产一区二区三区四区第35| 高清视频免费观看一区二区| 黄色视频,在线免费观看| 亚洲一区二区三区欧美精品| 成人国语在线视频| 免费在线观看日本一区| 手机成人av网站| 久久久久久久国产电影| 在线永久观看黄色视频| 欧美激情高清一区二区三区| 又大又爽又粗| 狂野欧美激情性xxxx| 一级毛片女人18水好多| 亚洲欧美精品综合一区二区三区| 999久久久国产精品视频| 另类亚洲欧美激情| 精品国产乱码久久久久久男人| 国产精品偷伦视频观看了| 日本wwww免费看| 国产精品免费大片| 高潮久久久久久久久久久不卡| 国产成人免费无遮挡视频| 九色亚洲精品在线播放| 欧美亚洲日本最大视频资源| 国产日韩欧美在线精品| 亚洲精品国产精品久久久不卡| 满18在线观看网站| 麻豆国产av国片精品| 国产片内射在线| 中文字幕高清在线视频| 午夜日韩欧美国产| 亚洲五月色婷婷综合| 国产日韩欧美在线精品| 亚洲精品国产精品久久久不卡| 18在线观看网站| 午夜久久久在线观看| 超碰成人久久| 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 女警被强在线播放| 黄色a级毛片大全视频| 在线 av 中文字幕| 精品亚洲乱码少妇综合久久| 国产主播在线观看一区二区| 黄色视频不卡| 国产黄频视频在线观看| 亚洲avbb在线观看| 搡老熟女国产l中国老女人| 自线自在国产av| 欧美黑人欧美精品刺激| 亚洲国产欧美一区二区综合| 狂野欧美激情性xxxx| 久久 成人 亚洲| 亚洲 国产 在线| 国产精品久久久久成人av| 国产精品1区2区在线观看. | 久久精品国产亚洲av高清一级| 桃红色精品国产亚洲av| 午夜成年电影在线免费观看| 亚洲自偷自拍图片 自拍| 日本五十路高清| 精品国产一区二区三区久久久樱花| 久久精品成人免费网站| 大码成人一级视频| 啦啦啦视频在线资源免费观看| 日韩一区二区三区影片| 欧美在线黄色| 99精国产麻豆久久婷婷| 老司机午夜十八禁免费视频| 9191精品国产免费久久| 午夜精品国产一区二区电影| 日本精品一区二区三区蜜桃| 日韩大码丰满熟妇| 黑人猛操日本美女一级片| 91九色精品人成在线观看| 丝瓜视频免费看黄片| 日韩三级视频一区二区三区| 麻豆国产av国片精品| 黄色a级毛片大全视频| 国产精品久久久久久精品古装| av视频免费观看在线观看| 黄频高清免费视频| 国产区一区二久久| 黄色毛片三级朝国网站| 热re99久久精品国产66热6| 日韩电影二区| 狠狠婷婷综合久久久久久88av| 精品国产乱码久久久久久小说| 亚洲情色 制服丝袜| 另类精品久久| 宅男免费午夜| 这个男人来自地球电影免费观看| 久久久精品94久久精品| 久久国产精品影院| 久久中文看片网| 视频在线观看一区二区三区| www.熟女人妻精品国产| a 毛片基地| 久久久精品免费免费高清| 久久精品国产亚洲av高清一级| 精品欧美一区二区三区在线| av电影中文网址| 天天影视国产精品| 欧美xxⅹ黑人| 中文字幕色久视频| 精品久久久精品久久久| 午夜免费成人在线视频| 亚洲性夜色夜夜综合| 国产欧美日韩综合在线一区二区| 国产99久久九九免费精品| 18禁观看日本| 国产免费现黄频在线看| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频 | 免费av中文字幕在线| 国产精品1区2区在线观看. | 99热国产这里只有精品6| 成人18禁高潮啪啪吃奶动态图| 麻豆乱淫一区二区| 热99久久久久精品小说推荐| 这个男人来自地球电影免费观看| 中国国产av一级| 建设人人有责人人尽责人人享有的| a级片在线免费高清观看视频| 桃红色精品国产亚洲av| 国产精品一区二区免费欧美 | 18在线观看网站| 青青草视频在线视频观看| 天堂俺去俺来也www色官网| 99精品欧美一区二区三区四区| a级毛片在线看网站| 美女扒开内裤让男人捅视频| 免费日韩欧美在线观看| 久久精品熟女亚洲av麻豆精品| 伊人亚洲综合成人网| 美女扒开内裤让男人捅视频| 日韩 亚洲 欧美在线| 99re6热这里在线精品视频| 国产欧美日韩综合在线一区二区| 亚洲精品久久午夜乱码| 亚洲熟女毛片儿| 午夜精品国产一区二区电影| 俄罗斯特黄特色一大片| 可以免费在线观看a视频的电影网站| 欧美精品啪啪一区二区三区 | 黄频高清免费视频| 午夜激情久久久久久久| 水蜜桃什么品种好| 亚洲久久久国产精品| 三级毛片av免费| 亚洲欧美清纯卡通| 国产精品麻豆人妻色哟哟久久| 亚洲黑人精品在线| 国产日韩一区二区三区精品不卡| 男人舔女人的私密视频| 欧美激情高清一区二区三区| 亚洲国产欧美在线一区| 亚洲成人免费电影在线观看| 国产精品九九99| 免费不卡黄色视频| 色老头精品视频在线观看| 欧美老熟妇乱子伦牲交| 操出白浆在线播放| 99九九在线精品视频| 久久久精品免费免费高清| 中国美女看黄片| 免费一级毛片在线播放高清视频 | www.熟女人妻精品国产| 午夜两性在线视频| 久久久水蜜桃国产精品网| 黄色片一级片一级黄色片| 中文字幕高清在线视频| 日韩视频在线欧美| 国产福利在线免费观看视频| 免费高清在线观看视频在线观看| 精品久久久久久电影网| 在线观看舔阴道视频| 久久狼人影院| 一区二区三区精品91| 真人做人爱边吃奶动态| 91成人精品电影| 最新的欧美精品一区二区| 91老司机精品| 久久久久久久大尺度免费视频| 成在线人永久免费视频| 一本—道久久a久久精品蜜桃钙片| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 亚洲天堂av无毛| 午夜福利影视在线免费观看| 久久久欧美国产精品| 操出白浆在线播放| 女人爽到高潮嗷嗷叫在线视频| 久久久精品免费免费高清| 久久九九热精品免费| 久久久久久久精品精品| 国产深夜福利视频在线观看| 久久精品国产亚洲av高清一级| 多毛熟女@视频| 亚洲精品中文字幕在线视频| 叶爱在线成人免费视频播放| 亚洲综合色网址| 少妇粗大呻吟视频| 国产成人精品久久二区二区91| 久久久久久久久免费视频了| 国产亚洲精品第一综合不卡| 美女大奶头黄色视频| 国产成人免费无遮挡视频| 精品一品国产午夜福利视频| 久久久国产成人免费| 久久青草综合色| 天天影视国产精品| 国产一区二区三区av在线| 丁香六月欧美| 日韩精品免费视频一区二区三区| 亚洲五月婷婷丁香| 美国免费a级毛片| 亚洲视频免费观看视频| 少妇人妻久久综合中文| 9热在线视频观看99| 另类亚洲欧美激情| 欧美日韩视频精品一区| 美国免费a级毛片| 国产不卡av网站在线观看| 操出白浆在线播放| 亚洲国产精品成人久久小说| 五月开心婷婷网| 多毛熟女@视频| 91字幕亚洲| 国产成人精品久久二区二区91| 人人澡人人妻人| 日韩 欧美 亚洲 中文字幕| 亚洲人成电影免费在线| 一边摸一边抽搐一进一出视频| 亚洲精品美女久久av网站| 亚洲国产中文字幕在线视频| 好男人电影高清在线观看| 色精品久久人妻99蜜桃| 精品高清国产在线一区| 国产精品香港三级国产av潘金莲| 日本av免费视频播放| 热99国产精品久久久久久7| 捣出白浆h1v1| 午夜久久久在线观看| 人人妻,人人澡人人爽秒播| 这个男人来自地球电影免费观看| 搡老熟女国产l中国老女人| 黄片小视频在线播放| 日韩中文字幕视频在线看片| 午夜视频精品福利| 永久免费av网站大全| 久久国产亚洲av麻豆专区| 久热这里只有精品99| 精品久久久久久电影网| 亚洲熟女毛片儿| 男女之事视频高清在线观看| 日日夜夜操网爽| 日韩欧美一区二区三区在线观看 | 在线 av 中文字幕| 性高湖久久久久久久久免费观看| 亚洲国产中文字幕在线视频| 韩国精品一区二区三区| 国产黄频视频在线观看| 成年人午夜在线观看视频| 国产一区二区三区在线臀色熟女 | 午夜日韩欧美国产| kizo精华| 婷婷丁香在线五月| 99精国产麻豆久久婷婷| tocl精华| 热99国产精品久久久久久7| 国产伦理片在线播放av一区| 国产男人的电影天堂91| 国产视频一区二区在线看| 男女床上黄色一级片免费看| 纵有疾风起免费观看全集完整版| 青草久久国产| 亚洲欧美成人综合另类久久久| 波多野结衣一区麻豆| 91国产中文字幕| 99国产精品一区二区蜜桃av | 人妻人人澡人人爽人人| 热99久久久久精品小说推荐| 日韩一卡2卡3卡4卡2021年| 国产一级毛片在线| 欧美在线一区亚洲| 免费在线观看日本一区| 精品视频人人做人人爽| 操出白浆在线播放| 欧美日韩精品网址| 欧美日韩中文字幕国产精品一区二区三区 | 欧美另类一区| 精品人妻一区二区三区麻豆| 久久久国产成人免费| 亚洲中文字幕日韩| 在线看a的网站| 国产成人a∨麻豆精品| 99热全是精品| 亚洲,欧美精品.| 亚洲国产av影院在线观看| 国产精品99久久99久久久不卡| 女性生殖器流出的白浆| 两个人看的免费小视频| 久久精品熟女亚洲av麻豆精品| 最新在线观看一区二区三区| 久久久久久久国产电影| 日韩大码丰满熟妇| 老司机亚洲免费影院| 欧美激情高清一区二区三区| 亚洲色图综合在线观看| 国产伦理片在线播放av一区| 熟女少妇亚洲综合色aaa.| 国产日韩欧美亚洲二区| 午夜精品久久久久久毛片777| 亚洲欧美日韩另类电影网站| 黄频高清免费视频| 亚洲色图综合在线观看| 99精品欧美一区二区三区四区| 男女高潮啪啪啪动态图| 久久精品熟女亚洲av麻豆精品| 中文字幕色久视频| 丝瓜视频免费看黄片| 免费观看a级毛片全部| 丰满饥渴人妻一区二区三| 久久免费观看电影| 在线 av 中文字幕| 天堂中文最新版在线下载| 王馨瑶露胸无遮挡在线观看| av有码第一页| 亚洲精品久久午夜乱码| 他把我摸到了高潮在线观看 | 久久久久国产一级毛片高清牌| 老熟女久久久| 一区二区av电影网| 自线自在国产av| 久久精品久久久久久噜噜老黄| 国产精品一二三区在线看| 18在线观看网站| 不卡av一区二区三区| 国内毛片毛片毛片毛片毛片| 亚洲成人手机| www.av在线官网国产| 欧美大码av| 在线观看免费视频网站a站| 国产精品免费大片| 精品视频人人做人人爽| 少妇的丰满在线观看| 男女午夜视频在线观看| 亚洲伊人久久精品综合| 国产深夜福利视频在线观看| 热99re8久久精品国产| 乱人伦中国视频| 色婷婷av一区二区三区视频| 久久精品国产a三级三级三级| 国产精品秋霞免费鲁丝片| 999久久久国产精品视频| 99久久国产精品久久久| 国产欧美日韩一区二区三区在线| 中文字幕人妻熟女乱码| 中文字幕制服av| 在线观看免费午夜福利视频| 亚洲国产欧美日韩在线播放| 一区在线观看完整版| 亚洲国产欧美日韩在线播放| 久久久国产成人免费| 亚洲全国av大片| 亚洲国产av影院在线观看| 新久久久久国产一级毛片| 首页视频小说图片口味搜索| 久久久国产欧美日韩av| 日韩制服骚丝袜av| 国产精品影院久久| 亚洲免费av在线视频| videos熟女内射| 一本色道久久久久久精品综合| 十八禁高潮呻吟视频| 两人在一起打扑克的视频| 丁香六月天网| 日韩大片免费观看网站| 亚洲成人免费av在线播放| 精品久久蜜臀av无| 国产主播在线观看一区二区| www.熟女人妻精品国产| 美女高潮喷水抽搐中文字幕| 高潮久久久久久久久久久不卡| 日韩三级视频一区二区三区| 亚洲色图综合在线观看| 久久女婷五月综合色啪小说| netflix在线观看网站| 免费观看人在逋| 亚洲va日本ⅴa欧美va伊人久久 | 欧美一级毛片孕妇| 美女中出高潮动态图| 欧美另类一区| 亚洲精品一二三| 亚洲精品久久午夜乱码| 99国产精品免费福利视频| 丁香六月欧美| 国产在线视频一区二区| 国产免费视频播放在线视频| 亚洲人成77777在线视频| 欧美乱码精品一区二区三区| 亚洲七黄色美女视频| 欧美日韩精品网址| 桃红色精品国产亚洲av| 丝袜在线中文字幕| 国产麻豆69| 少妇精品久久久久久久| 亚洲综合色网址| 考比视频在线观看| 人人澡人人妻人| 欧美日韩中文字幕国产精品一区二区三区 | 狂野欧美激情性bbbbbb| 国产精品偷伦视频观看了| 老司机靠b影院| 少妇人妻久久综合中文| 搡老岳熟女国产| 亚洲欧洲日产国产| 午夜福利,免费看| 真人做人爱边吃奶动态| 免费女性裸体啪啪无遮挡网站| 欧美精品啪啪一区二区三区 | av一本久久久久| 99精品欧美一区二区三区四区| 日日摸夜夜添夜夜添小说| 最近中文字幕2019免费版| 国产精品久久久久成人av| a级毛片在线看网站| 欧美亚洲日本最大视频资源| 精品国产乱码久久久久久小说| 国产日韩欧美亚洲二区| 国产精品免费大片| 一本一本久久a久久精品综合妖精| 中文字幕高清在线视频| 91av网站免费观看|