• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE ASSOCIATED FAMILIES OF SEMI-HOMOGENEOUS COMPLETE HYPERBOLIC AFFINE SPHERES?

    2016-12-05 00:43:23ZhichengLIN林至誠
    關(guān)鍵詞:王二小

    Zhicheng LIN(林至誠)

    Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,ChinaE-mail:flyriverms@qq.com

    Erxiao WANG(王二?。?

    Department of Mathematics,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong KongE-mail:maexwang@ust.hk

    THE ASSOCIATED FAMILIES OF SEMI-HOMOGENEOUS COMPLETE HYPERBOLIC AFFINE SPHERES?

    Zhicheng LIN(林至誠)

    Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China
    E-mail:flyriverms@qq.com

    Erxiao WANG(王二小)?

    Department of Mathematics,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong Kong
    E-mail:maexwang@ust.hk

    Hildebrand classified all semi-homogeneous cones in R3and computed their corresponding complete hyperbolic affine spheres.We compute isothermal parametrizations for Hildebrand’s new examples.After giving their affine metrics and affine cubic forms,we construct the whole associated family for each of Hildebrand’s examples.The generic member of these affine spheres is given by Weierstrass P,ζ and σ functions.In general any regular convex cone in R3has a natural associated S1-family of such cones,which deserves further studies.

    hyperbolic affine spheres;isothermal coordinates;Weierstrass elliptic functions; Monge-Amp`ere equation;Tzitz′eica equation

    2010 MR Subject Classification37K25;53A15

    1 Introduction

    Classical equiaffine differential geometry investigates the properties of hypersurface r(x1,x2,···,xn)in Rn+1invariant under the equiaffine transformations r→ Ar+v,where A∈SLn+1(R)and v∈Rn+1.Although the Euclidean angle is no longer invariant,there exists an affine invariant transversal vector field along r,called the affine normal.The affine metric and the affine cubic form give a set of complete affine invariants.The fundamental theorem tells us that any given affine metric and affine cubic form satisfying certain compatibility conditions(Gauss-Codazzi type)will determine an affine hypersurface uniquely up to equiaffine transformations(see[20]).The affine metric(conformal to the Euclidean second fundamental form)is definite if and only if the hypersurface is locally strictly convex.The simplest interestingclass of hypersurfaces is the affine spheres,which are defined by the condition that all affine normal lines meet in a point.Specially,definite affine spheres(with a mean curvature H and with center at the origin or infinity)can be represented as a graph of a locally strictly convex function f if and only if the Legendre transform u of f solves a Monge-Amp`ere equation(see Calabi[1]):

    Cheng and Yau[5]showed that on a bounded convex domain there is for H <0 a unique negative convex solution of(1.1)extending continuously to be 0 on the boundary.This leads to a beautiful geometric picture of any complete hyperbolic(H<0)affine sphere r(conjectured by Calabi[1]):it is always asymptotic to the boundary of the cone given by the convex hull of r and its center;and conversely the interior of any regular convex cone is foliated by complete hyperbolic affine spheres asymptotic to it with all H<0 and with centers at the vertex.

    However,explicit representations are rarely known except for homogeneous cones.Hildebrand classified three-dimensional regular convex cone with an automorphism group of dimension at least 2,which he also called“semi-homogeneous”.In this case,he reduced the Monge-Amp`ere equation to some ODE and was able to solve it with elliptic integrals in[15].

    It is known that 2 dimensional affine spheres have additional features than higher dimensional ones.For example,the affine metric can be expressed simply in some natural isothermal coordinates(definite case)or asymptotic coordinates(indefinite case).In addition,each 2 dimensional affine sphere has a natural associated family of the same type with the same affine metric but different affine cubic forms.In particular,this implies that the structure equations actually form an integrable system,called Tzitz′eica equation or the affine-Toda field equation(see[7,8,20]).It is then natural to ask for the isothermal parametrizations and the associated families of Hildebrand’s new examples.Specially,one wish to see the natural associated family of cones.This paper will answer these questions.

    Our extensive studies of definite affine spheres were motivated by Loftin,Yau and Zaslow’s‘trinoid’construction(see[22])with applications in mirror symmetry.The dressing actions on proper definite affine spheres and soliton examples were presented in[20].The Permutability Theorem and group structure of dressing actions will be presented in a subsequent paper[29]. Their Weierstrass or DPW representations were studied in[8],using an Iwasawa decomposition of certain twisted loop group.The equivariant solutions were constructed in[9].

    The rest of the paper is organized as follows.In Section 2,we introduce the fundamental concepts of affine sphere and review the main results in[15].In Section 3,we compute the isothermal parametrizations and the affine invariants of Hildebrand’s examples case by case. We also get the whole associated family for each case by solving their structure equations.In general any regular convex cone in R3has a natural associated S1-family of such cones,which deserves further studies.

    2 Affine Spheres and Semi-homogeneous Cones

    Let

    be an immersion with a non-degenerate second fundamental form.Introduce

    is equiaffine invariant,and it is called the affine(or Blaschke)metric of the immersion.The surface is said to be definite or indefinite if this metric g is so.The surface is definite if and only if it is locally strictly convex.A transversal vector field ξ on a surface r(M)is called affine normal if it satisfies

    where Δgis the Laplace-Beltrami operator of the affine metric.The connection?induced by the affine normal is called the Blaschke connection.The affine metric and the affine normal are then uniquely determined(up to a sign)by requiring the following decomposition into tangential and transverse components:

    where D is the canonical flat connection on R3and X,Y are any tangent vector fields on the surface.The affine cubic form measures the difference between the induced Blaschke connection?and g’s Levi-Civita connection?g:

    It is actually symmetric in all 3 arguments and is a 3rd order invariant.

    If all affine normals of r meet in one point(the center),then the surface is called affine sphere.If this point is not infinite it may be chosen as the origin of R3so that

    H is called the affine mean curvature,and such surface is called proper affine sphere.For a convex proper affine sphere,if the center is outside the surface,it is called hyperbolic.

    In the sequel we consider the cone K ?R3,with the vertex at the origin.The complete hyperbolic affine spheres foliating K are the level sets of the solution F:K?→ R of the following Monge-Amp`ere equation(see[3,4,11,21]for detail):

    Let AutK denote the automorphism group of the cone K.The equiaffine invariance of(2.1)implies F is invariant under unimodular automorphisms g∈AutK(see[11]or[14]).Then the number of variables of F can be effectively reduced by the generic dimension of the orbits of AutK.If there are orbits of dimension 2,the PDE(2.1)will reduce to an ODE.This kindof cone is also called semi-homogeneous cone.Hildebrand provided an important classification theorem of such cones:

    Fig.1 Semi-homogeneous cone

    Theorem 2.1([15],Theorem 3.2)Let K?R3be a regular convex cone such that dim AutK≥2.Then K is isomorphic to exactly one of the following cones:

    1.the cone obtained by the homogenization of the epigraph of the exponential function;

    We choose p=5 for each case and give the pictures of these five cases of semi-homogeneous cones in Fig.1.It could be useful for knowing the shape of semi-homogeneous cones.

    3 The Associated Families of Affine Spheres

    For convex affine spheres,the affine metric is positive-definite,and thus it provides a conformal structure in dimension two.There exists local complex coordinate z=x+iy so thatThe affine cubic formThe affine normal satisfies:

    Simon-Wang derived in[23]the following equations for the frame

    and showed that the compatibility conditions(Tzitz′eica equation)are:

    The above system is invariant underInserting the parameter λ=e3itinto the frame equations(3.1),we obtain the following Lax representation of system(3.2):

    In this section we compute the isothermal parametrizations of Hildebrand’s examples,then obtain the affine invariants.Substituting these affine invariants into the frame equations(3.3)and solving them,we get the whole associated family for each examples.

    3.1The Isothermal Parametrization and the Associated Family of Case 1

    In this subsection we consider the complete hyperbolic affine sphere asymptotic to the boundary of the cone obtained by the homogenization of the epigraph of the exponential function(case 1 in Theorem 2.1).The corresponding example in[15]is given by:

    Let us briefly review the classical results of isothermal coordinates in[24].If the metric is given locally as

    then in the complex coordinate z=x+iy,it takes the form:

    In isothermal coordinates(u,v)the metric should take the form

    The complex coordinate ω=u+iv satisfies

    so that the coordinates(u,v)will be isothermal if the Beltrami equation

    has a diffeomorphic solution.

    To compute the isothermal parametrization of the affine sphere,we should compute the affine metric.Then we get

    The Beltrami equation(3.5)can be written as

    Then we divide our computation into the following steps.

    and

    Summarize the above computations,we use the coordinate transformation

    By a direct computation,we can get the affine metric,the affine mean curvature and the affine cubic form:

    It is easy to see that g gives an explicit solution of Tzitz′eica equation(3.2).Substituting g,H,U into frame equations(3.3)and solving them,then we can conclude the above computations into the following theorem.

    Theorem 3.1The associated family of the complete hyperbolic affine sphere(3.4)in[15]is given by:

    here

    with the affine metric,the affine mean curvature and the affine cubic form are as follows:

    Remark 3.2Expression(3.10)is gauged by the initial condition

    With this initial condition,one can checkby direct computation.

    3.2The Isothermal Parametrizations of Remaining Cases

    The complete hyperbolic affine spheres asymptotic to the boundary of the remaining cones can be treated in a common framework.In this subsection we compute the common isothermal coordinates transformation for these affine spheres by Weierstrass elliptic functions.Let us review the results in[15].

    Now we begin to compute the transformation.We consider Blaschke metric of the immersion

    Similar to case 1,we divide the computation into the following 3 steps:

    Summarizing the above computation,we obtain the transformation:

    The above integral can be expressed by Weierstrass elliptic function(see[13]or[17]):

    By this expression and a gauge transformation:

    we can simplify(3.18)-(3.20)as

    Then we obtain the affine metric,the affine mean curvature and the affine cubic form:

    Invariants(3.25)-(3.26)imply that the two affine spheres coresponding to s=1 and s=-1 are in the same associated family.The coefficients U of these two affine spheres can be expressed asrespectively,in other words

    4 The Associated Families of Remaining Cases

    With the generic formulas(3.22)-(3.24),we can construct the complete hyperbolic affine spheres and the associated families case by case.Some parts of construction have referred to the formulas of the affine spheres in[15].We consider the following cases.

    Since φ is analytic in t,it must be an even function of t.For each negative t,s=-1,we have

    This affine sphere is asymptotic to the cone given in case 4 of Theorem 2.1,for α 6=1.The affine invariants are given in(3.25)-(3.26).When computing the associated family,we can consider the coefficient U of this affine sphere isThen,for convenience,substitute g,H,into frame equations(3.3)and solve them.We conclude the above discussions into the following theorem.

    Theorem 4.1The associated family the complete hyperbolic affine sphere(3.13)-(3.15) within[15]is given by

    What’s more,the affine metric,the affine mean curvature and the affine cubic form are given as

    Case(ii)c=0.In this case s=1,β=1 and(3.22)-(3.24)become

    for each positive t.Then for each negative t,we have

    This affine sphere is asymptotic to the cone given in case 4 of Theorem 2.1,with α=1.The affine metric,the affine mean curvature and the affine cubic form of this affine sphere are

    Remark 4.2By direct computation,it is easy check the expression of affine spheres(4.4)-(4.5)can get from(4.1)-(4.2)when c→0.Henceforth,the associated families in this case can also get from(4.3)by c→0.

    Case(iii)c=-2(p+q),β=1.In this case s=1,and(3.22)-(3.24)become

    This affine sphere is asymptotic to the cone given in case 5 of Theorem 2.1.The affine metric,the affine mean curvature and the affine cubic form of this affine sphere are

    Theorem 4.3The associated family of the complete hyperbolic affine sphere in[15]:

    with the affine metric,the affine mean curvature and the affine cubic form are as follows:

    This affine sphere is asymptotic to the cone given in case 3 of Theorem 2.1.Since this affine sphere is in the same associated family with the previous case,their affine metrics and affine mean curvatures are the same,and the cubic form of this case is

    At last,we explain that any regular convex cone in R3should have a natural associated family of such cones.

    If we use the transformationsand

    it is easy to see that the associated family in Theorem 3.3 is the same with it in Theorem 3.1,i.e.,case 1,case 3 and case 5 are all in the same associated family.Conversely,any member in this family can be found in these three cases.The cones which these members are asymptotic to also can be found in the corresponding cases of the semi-homogeneous cones,which form a natural associated family of cones.

    There are similar results for case 4.To show this,we should use the following relationship between Weierstrass P-function and Jacobi SN-function:

    In conclusion,in general any regular convex cone in R3has a natural associated S1-family of such cones,which deserves further studies.Given any natural associated family of some semi-homogeneous cone,it may contain case 1,case 3 and case 5 of semi-homogenous cones or case 4.

    AcknowledgementsThe second author would like to express the deepest gratitude for the support of the Hong Kong University of Science and Technology during the project,especially Min Yan,Yong-Chang Zhu,Bei-Fang Chen and Guo-Wu Meng.

    References

    [1]Calabi E.Complete affine hyperspheres I//Symposia Mathematica.London:Academic Press(10),1972: 19-38

    [2]Cao F,Tian C.Integrable system and spacelike surfaces with proscribed weak curvature in Minkowski 3-space.Acta Math Sci,1999,19(1):91-96

    [3]Cheng S Y,Yau S T.On the existence of a complete K¨ahler metric on noncompact complex manifolds and the regularity of Fefferman’s equation.Comm Pure Appl Math,1980,33(4):507-544

    [4]Cheng S Y,Yau S T.The real Monge-Amp`ere equation and affine flat structures//Proc 1980 Beijing Symp on Diff Geom and Diff Equ,vol 1.Beijing:Science Press,1982:339-370

    [5]Cheng S Y,Yau S T.Complete affine hyperspheres part I,The completeness of affine metrics.Comm Pure Appl Math,1986,39(6):839-866

    [6]Chern S S.An elementary proof of the existence of isothermal parameters on a surface.Proc Amer Math Soc,1955,6(5):771-782

    [7]Dorfmeister J,Eitner U.Weierstrass-type representation of affine sphere.Abh Math Sem Univ Hamburg,2001,71:225-250

    [8]Dorfmeister J,Wang E X.Definite affine spheres via loop groups I:general theory.(preprint)

    [9]Dorfmeister J,Wang E X.Definite affine spheres via loop groups II:equivariant solutions.(draft)

    [10]Dunajski M,Plansangkate P.Strominger-Yau-Zaslow geometry,affine spheres and Painlev′e III.Commun Math Phys,2009,290:997-1024

    [11]Fox D J F.A Schwarz lemma for K¨ahler affine metrics and the canonical potential of a proper convex cone. arXiv e-print math.DG:1206.3176,2012

    [12]Guest M.Harmonic Maps,Loop Groups,and Integrable Systems.Cambridge University Press,1997

    [13]Hancock H.Theory of Elliptic Functions.New York:Dover,1958

    [14]Hildebrand R.Einstein-Hessian barriers on convex cones.Optimization Online e-print 2012/05/3474,2012

    [15]Hildebrand R.Analytic formulas for complete hyperbolic affine spheres.Beitrage zur Algebra und Geometrie/Contributions to Algebra and Geometry,2014,55(2):497-520

    [16]Kaptsov O V,Shan’ko Yu V.Trilinear representation and the Moutard transformation for the Tzitzeica equation.arXiv:solv-int/9704014v1

    [17]Lang S.Elliptic Functions.New York:Springer,1987

    [18]Li A M,Simon U,Zhao G S.Global Affine Differential Geometry of Hypersurfaces.Volume 11 of De Gruyter Expositions in Mathematics.Walter de Gruyter,1993

    [19]Li W,Han Y,Zhou G.Damboux transformation of a nonlinear evolution equation and its explicit solutions. Acta Math Sci,2011,31(4):1457-1464

    [20]Lin Z C,Wang G,Wang E X.Dressing actions on proper definite affine spheres.arXiv:1502.04766

    [21]Loftin J C.Affine spheres and K¨ahler-Einstein metrics.Math Res Lett,2002,9(4):425-432

    [22]Loftin J,Yau S T,Zaslow E.Affine manifolds,SYZ geometry and the Y vertex.J Differ Geom,2005,71(1): 129-158

    [23]Simon U,Wang C P.Local theory of affine 2-spheres.Proc Symposia Pure Math,1993,54:585-598

    [24]Spivak M.A Comprehensive Introduction to Differential Geometry 4.3rd ed.Publish or Perish Inc,tome,1999:314-346

    [25]Terng C L.Geometries and symmetries of soliton equations and integrable elliptic equations.Surveys Geometry Integrable Systems,2008,30:401-488

    [26]Tian C,Zhou K H,Tian C B.Blacklund transformation on surfaces with constant mean curvature in R2. Acta Math Sci,2003,23(3):369-376

    [27]Uhlenbeck K.Harmonic maps into Lie groups(classical solutions of the chiral model).J Diff Geom,1989,30:1-50

    [28]Wang E X.Tzitz′eica transformation is a dressing action.J Math Phys,2006,47(5):875-901

    [29]Wang G,Lin Z C,Wang E X.Permutability theorem for definite affine spheres and the group structure of dressing actions.(preprint)

    [30]Zakharov V E,Shabat A B.Integration of non-linear equations of mathematical physics by the inverse scattering method II.Funct Anal Appl,1979,13:166-174

    ?March 31,2015;revised May 12,2015.The authors were supported by the NSF of China(10941002,11001262),and the Starting Fund for Distinguished Young Scholars of Wuhan Institute of Physics and Mathematics(O9S6031001).

    ?Erxiao WANG.

    猜你喜歡
    王二小
    剪出紅色故事
    小英雄王二小
    小英雄王二小
    家教世界(2023年13期)2023-05-25 04:42:52
    傳承王二小精神 爭(zhēng)做新時(shí)代少年——“王二小中隊(duì)”風(fēng)采錄
    為王二小守墓
    放牛娃
    小英雄王二小
    向小英雄王二小學(xué)習(xí)
    王二小永遠(yuǎn)活在我心中
    舞臺(tái)劇《放牛的孩子王二小》:在北京人民大會(huì)堂上演
    中國火炬(2014年9期)2014-07-25 10:23:08
    高清不卡的av网站| 亚洲欧美成人精品一区二区| 丝瓜视频免费看黄片| 晚上一个人看的免费电影| 2021少妇久久久久久久久久久| 久久精品久久精品一区二区三区| 国产亚洲最大av| 午夜激情久久久久久久| 十分钟在线观看高清视频www | 97热精品久久久久久| 美女福利国产在线 | 91精品国产九色| 国产精品国产三级国产专区5o| 日韩 亚洲 欧美在线| 国产精品久久久久久精品电影小说 | 男女啪啪激烈高潮av片| 亚洲中文av在线| 国产在线视频一区二区| 岛国毛片在线播放| 日韩,欧美,国产一区二区三区| 久久亚洲国产成人精品v| 精品一品国产午夜福利视频| 久久精品熟女亚洲av麻豆精品| 国产色婷婷99| 免费黄频网站在线观看国产| 新久久久久国产一级毛片| 亚洲美女搞黄在线观看| 久热久热在线精品观看| 韩国高清视频一区二区三区| 秋霞在线观看毛片| 97精品久久久久久久久久精品| 丝袜脚勾引网站| 亚洲精品日本国产第一区| 久久午夜福利片| 亚洲婷婷狠狠爱综合网| 最近手机中文字幕大全| 久久韩国三级中文字幕| 亚洲欧美日韩卡通动漫| 人人妻人人添人人爽欧美一区卜 | 亚洲国产最新在线播放| 一二三四中文在线观看免费高清| 国产亚洲最大av| 国产精品免费大片| 亚洲国产欧美在线一区| 亚洲精品色激情综合| 日韩三级伦理在线观看| 亚洲内射少妇av| 狂野欧美激情性xxxx在线观看| 久久ye,这里只有精品| 激情 狠狠 欧美| 美女xxoo啪啪120秒动态图| 天堂8中文在线网| 久久综合国产亚洲精品| 国产高清国产精品国产三级 | 久久久精品免费免费高清| 国产精品麻豆人妻色哟哟久久| tube8黄色片| 国产日韩欧美在线精品| 亚洲第一av免费看| 亚洲三级黄色毛片| 日本欧美视频一区| 日本欧美视频一区| 在线播放无遮挡| 中文资源天堂在线| 成人高潮视频无遮挡免费网站| 联通29元200g的流量卡| 亚洲三级黄色毛片| 午夜视频国产福利| 亚洲欧美成人精品一区二区| 国产伦在线观看视频一区| 麻豆成人av视频| 日日摸夜夜添夜夜添av毛片| 内射极品少妇av片p| 成人高潮视频无遮挡免费网站| 日韩,欧美,国产一区二区三区| 国产精品.久久久| 国产av精品麻豆| 黄片无遮挡物在线观看| 国产高潮美女av| 亚洲av日韩在线播放| 91午夜精品亚洲一区二区三区| 午夜日本视频在线| 哪个播放器可以免费观看大片| 日韩制服骚丝袜av| 免费不卡的大黄色大毛片视频在线观看| 欧美精品国产亚洲| 亚洲国产精品一区三区| 久久午夜福利片| 成年人午夜在线观看视频| 免费在线观看成人毛片| 亚洲精品中文字幕在线视频 | 噜噜噜噜噜久久久久久91| 我要看日韩黄色一级片| 丰满迷人的少妇在线观看| 观看美女的网站| 日韩免费高清中文字幕av| 老司机影院成人| 人妻系列 视频| 嘟嘟电影网在线观看| 国产乱人偷精品视频| 日韩电影二区| 欧美人与善性xxx| 精品熟女少妇av免费看| 男人舔奶头视频| 免费观看a级毛片全部| 国产一区亚洲一区在线观看| 欧美一区二区亚洲| av卡一久久| 亚洲av免费高清在线观看| 亚洲欧美日韩另类电影网站 | 午夜视频国产福利| 欧美激情极品国产一区二区三区 | 亚洲在久久综合| 亚洲色图av天堂| 国产高潮美女av| 26uuu在线亚洲综合色| 亚洲精品乱久久久久久| 中国三级夫妇交换| 亚洲国产欧美人成| 综合色丁香网| 99久国产av精品国产电影| 三级国产精品片| 99久久人妻综合| 久久久久久久亚洲中文字幕| a级一级毛片免费在线观看| 国产毛片在线视频| 你懂的网址亚洲精品在线观看| 边亲边吃奶的免费视频| 精品人妻视频免费看| 美女国产视频在线观看| 一级毛片电影观看| 亚洲精品国产色婷婷电影| 美女福利国产在线 | 黄色欧美视频在线观看| 久久精品国产亚洲av涩爱| av天堂中文字幕网| 日韩欧美 国产精品| 3wmmmm亚洲av在线观看| 午夜激情久久久久久久| 国产综合精华液| 日韩免费高清中文字幕av| 国产中年淑女户外野战色| 尤物成人国产欧美一区二区三区| 国产午夜精品一二区理论片| 国产精品一区二区三区四区免费观看| 日本黄大片高清| 欧美日韩在线观看h| 成人国产av品久久久| 在线观看免费视频网站a站| 午夜免费男女啪啪视频观看| 免费大片黄手机在线观看| 国产成人精品久久久久久| 在线观看免费日韩欧美大片 | 尤物成人国产欧美一区二区三区| 日韩在线高清观看一区二区三区| 亚洲成色77777| 日韩av在线免费看完整版不卡| 免费播放大片免费观看视频在线观看| 一级片'在线观看视频| 青青草视频在线视频观看| 99久国产av精品国产电影| 国产精品久久久久久久久免| h视频一区二区三区| 大话2 男鬼变身卡| 国产精品国产三级国产av玫瑰| 91精品国产国语对白视频| 国产v大片淫在线免费观看| 免费少妇av软件| 精品酒店卫生间| 亚洲精品自拍成人| 边亲边吃奶的免费视频| 精品人妻视频免费看| 中文字幕av成人在线电影| 视频区图区小说| 免费大片18禁| 国产人妻一区二区三区在| 精品99又大又爽又粗少妇毛片| 国产成人a区在线观看| 国产欧美亚洲国产| 在线观看av片永久免费下载| 精品久久久久久电影网| 欧美一区二区亚洲| 亚洲人与动物交配视频| 国产大屁股一区二区在线视频| 国产在线视频一区二区| 22中文网久久字幕| 高清日韩中文字幕在线| 国产午夜精品久久久久久一区二区三区| 亚洲人成网站在线观看播放| 又爽又黄a免费视频| 在线免费十八禁| 少妇 在线观看| 精品人妻视频免费看| 亚洲第一区二区三区不卡| 日日啪夜夜撸| 在线观看av片永久免费下载| 亚洲精品久久久久久婷婷小说| 国产极品天堂在线| 国产精品成人在线| 黄片wwwwww| 亚洲自偷自拍三级| 久久久久久久精品精品| 欧美日韩国产mv在线观看视频 | 97精品久久久久久久久久精品| 国产精品久久久久久精品古装| av在线app专区| 亚洲av成人精品一区久久| 中文字幕久久专区| 亚洲最大成人中文| av福利片在线观看| 久久久午夜欧美精品| 亚洲av.av天堂| 搡老乐熟女国产| 午夜福利影视在线免费观看| 亚洲精品第二区| 直男gayav资源| 人妻 亚洲 视频| 成人亚洲精品一区在线观看 | 免费不卡的大黄色大毛片视频在线观看| 久久人人爽人人爽人人片va| 我要看日韩黄色一级片| 国产精品精品国产色婷婷| 一区二区三区四区激情视频| 一区二区三区乱码不卡18| 久久久久精品性色| 国产一级毛片在线| 成年av动漫网址| 久久久久国产精品人妻一区二区| 热re99久久精品国产66热6| 国产大屁股一区二区在线视频| 人妻 亚洲 视频| 亚洲久久久国产精品| 亚洲欧美一区二区三区黑人 | 亚洲精品国产av成人精品| 日韩亚洲欧美综合| 啦啦啦啦在线视频资源| 国产精品麻豆人妻色哟哟久久| 日韩一区二区视频免费看| 女性生殖器流出的白浆| 在线看a的网站| av播播在线观看一区| 又大又黄又爽视频免费| 麻豆国产97在线/欧美| 最近中文字幕高清免费大全6| 午夜老司机福利剧场| 少妇 在线观看| 中文字幕亚洲精品专区| 久久久久久久亚洲中文字幕| 久热这里只有精品99| .国产精品久久| 在线观看av片永久免费下载| 亚洲熟女精品中文字幕| 国内揄拍国产精品人妻在线| 久久久国产一区二区| 视频中文字幕在线观看| 丝袜脚勾引网站| 蜜桃久久精品国产亚洲av| 亚洲三级黄色毛片| 亚洲无线观看免费| 边亲边吃奶的免费视频| 亚洲欧美精品专区久久| 国产 一区精品| 亚洲精品乱久久久久久| 美女xxoo啪啪120秒动态图| 18禁在线无遮挡免费观看视频| 高清欧美精品videossex| 啦啦啦啦在线视频资源| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久免费av| 三级国产精品欧美在线观看| 国产爱豆传媒在线观看| 91aial.com中文字幕在线观看| 最黄视频免费看| 成人特级av手机在线观看| 最后的刺客免费高清国语| 久久久久性生活片| 精品人妻一区二区三区麻豆| 中文资源天堂在线| 肉色欧美久久久久久久蜜桃| 成人黄色视频免费在线看| 亚洲内射少妇av| 最近手机中文字幕大全| 我要看日韩黄色一级片| 亚洲精品乱久久久久久| 91精品国产国语对白视频| 国产精品嫩草影院av在线观看| 久久精品国产亚洲网站| 午夜精品国产一区二区电影| 免费人成在线观看视频色| 久久久久久久久久成人| 亚洲经典国产精华液单| 亚洲精品亚洲一区二区| 国产成人免费观看mmmm| 国产亚洲欧美精品永久| 校园人妻丝袜中文字幕| 欧美精品亚洲一区二区| 久久久a久久爽久久v久久| 色5月婷婷丁香| 国产av码专区亚洲av| 日韩av不卡免费在线播放| 汤姆久久久久久久影院中文字幕| 一级a做视频免费观看| 久久 成人 亚洲| 大香蕉97超碰在线| 国产一级毛片在线| 一个人免费看片子| 在线播放无遮挡| 99国产精品免费福利视频| 夜夜看夜夜爽夜夜摸| 26uuu在线亚洲综合色| 一级a做视频免费观看| 日本爱情动作片www.在线观看| 中文乱码字字幕精品一区二区三区| 三级国产精品片| 国产成人a区在线观看| 成人午夜精彩视频在线观看| 国产在线免费精品| 久久99蜜桃精品久久| av免费在线看不卡| 偷拍熟女少妇极品色| 国内精品宾馆在线| 久热久热在线精品观看| 久久国产亚洲av麻豆专区| 午夜福利影视在线免费观看| 亚洲av不卡在线观看| 人人妻人人看人人澡| 精品国产一区二区三区久久久樱花 | 激情五月婷婷亚洲| 91精品国产国语对白视频| 18禁动态无遮挡网站| 美女中出高潮动态图| 在线精品无人区一区二区三 | 久久综合国产亚洲精品| 久久人人爽人人片av| 日韩电影二区| 国产av精品麻豆| 精品国产乱码久久久久久小说| 黑人猛操日本美女一级片| 亚洲欧美中文字幕日韩二区| 少妇精品久久久久久久| 久久国产精品大桥未久av | 亚洲一区二区三区欧美精品| 国产精品国产三级国产av玫瑰| 久久国内精品自在自线图片| 国产免费又黄又爽又色| 成人毛片a级毛片在线播放| 国产亚洲欧美精品永久| 国产精品一区www在线观看| 欧美高清成人免费视频www| 免费高清在线观看视频在线观看| 国产亚洲最大av| 久热久热在线精品观看| 国产高清不卡午夜福利| 精品午夜福利在线看| 亚洲国产精品成人久久小说| 久久久欧美国产精品| 一区在线观看完整版| 91精品伊人久久大香线蕉| 精品亚洲成a人片在线观看 | 久久国产亚洲av麻豆专区| 又黄又爽又刺激的免费视频.| 国产乱人视频| 亚洲色图综合在线观看| 99久久人妻综合| 国产免费一级a男人的天堂| 伦理电影免费视频| 欧美成人精品欧美一级黄| 黑丝袜美女国产一区| 亚洲av福利一区| 亚洲人与动物交配视频| 亚洲无线观看免费| 日本wwww免费看| 丝袜脚勾引网站| 亚洲久久久国产精品| 99久久中文字幕三级久久日本| 麻豆成人午夜福利视频| 亚洲无线观看免费| 又大又黄又爽视频免费| 久久国内精品自在自线图片| 秋霞伦理黄片| 日本午夜av视频| 97热精品久久久久久| 青春草视频在线免费观看| 国产精品福利在线免费观看| 美女内射精品一级片tv| 最近最新中文字幕大全电影3| 日韩av不卡免费在线播放| 日本av手机在线免费观看| 国产乱人偷精品视频| 男女免费视频国产| 欧美性感艳星| 国产深夜福利视频在线观看| 中文天堂在线官网| 少妇猛男粗大的猛烈进出视频| 国产成人a区在线观看| 免费人妻精品一区二区三区视频| 大片免费播放器 马上看| 日韩电影二区| av免费观看日本| 王馨瑶露胸无遮挡在线观看| 在线观看免费视频网站a站| 观看av在线不卡| 婷婷色综合www| 亚洲久久久国产精品| 亚洲精品色激情综合| 青春草国产在线视频| 毛片一级片免费看久久久久| 午夜精品国产一区二区电影| 欧美日韩一区二区视频在线观看视频在线| 成人18禁高潮啪啪吃奶动态图 | av在线蜜桃| 免费大片18禁| 久久久久久久亚洲中文字幕| 欧美精品一区二区免费开放| 精品久久久精品久久久| 午夜视频国产福利| 91aial.com中文字幕在线观看| 中文字幕精品免费在线观看视频 | 国产成人精品福利久久| 国产成人免费观看mmmm| 免费看av在线观看网站| 制服丝袜香蕉在线| 日本爱情动作片www.在线观看| 丝袜喷水一区| 免费人妻精品一区二区三区视频| 能在线免费看毛片的网站| 国产成人午夜福利电影在线观看| 久久久久久久久大av| 免费在线观看成人毛片| 精品国产露脸久久av麻豆| 深爱激情五月婷婷| 亚洲丝袜综合中文字幕| 亚洲av成人精品一二三区| 99热这里只有是精品在线观看| 成年美女黄网站色视频大全免费 | 肉色欧美久久久久久久蜜桃| 多毛熟女@视频| 国产深夜福利视频在线观看| 亚洲精品视频女| 亚洲av免费高清在线观看| 人人妻人人爽人人添夜夜欢视频 | 高清黄色对白视频在线免费看 | 在线观看免费高清a一片| 中文字幕久久专区| 久久99热这里只有精品18| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站| 国产av国产精品国产| 久久这里有精品视频免费| 亚洲欧美成人综合另类久久久| a级毛色黄片| 日本免费在线观看一区| 日本av手机在线免费观看| 亚洲av不卡在线观看| 日本一二三区视频观看| 国产欧美日韩一区二区三区在线 | 国产精品久久久久久精品古装| 纵有疾风起免费观看全集完整版| 亚洲va在线va天堂va国产| 国产精品人妻久久久久久| 日韩三级伦理在线观看| 国产爽快片一区二区三区| 亚洲欧美精品专区久久| 麻豆成人午夜福利视频| 欧美激情极品国产一区二区三区 | 女人十人毛片免费观看3o分钟| av专区在线播放| 久久久成人免费电影| 成人二区视频| 汤姆久久久久久久影院中文字幕| 高清欧美精品videossex| 国产在线免费精品| 久久久久人妻精品一区果冻| 日韩欧美一区视频在线观看 | 国产成人精品婷婷| 亚洲国产精品国产精品| 欧美日韩视频精品一区| 日韩 亚洲 欧美在线| 永久网站在线| 亚洲欧美日韩卡通动漫| 日日摸夜夜添夜夜添av毛片| 免费久久久久久久精品成人欧美视频 | 又粗又硬又长又爽又黄的视频| 亚洲av在线观看美女高潮| 亚洲欧美精品专区久久| 人妻系列 视频| 国产成人精品久久久久久| 亚洲va在线va天堂va国产| 九草在线视频观看| 人人妻人人添人人爽欧美一区卜 | 国产精品成人在线| 国产成人aa在线观看| 99视频精品全部免费 在线| 久久韩国三级中文字幕| 欧美激情极品国产一区二区三区 | 黄色视频在线播放观看不卡| 欧美区成人在线视频| 国产成人免费无遮挡视频| 国产伦精品一区二区三区四那| 免费不卡的大黄色大毛片视频在线观看| 熟妇人妻不卡中文字幕| 亚洲欧美精品专区久久| 亚洲欧美日韩另类电影网站 | 男女国产视频网站| 免费人成在线观看视频色| www.色视频.com| 中文字幕免费在线视频6| 精品人妻视频免费看| 少妇熟女欧美另类| 中文字幕av成人在线电影| av不卡在线播放| 夜夜看夜夜爽夜夜摸| 一级毛片我不卡| 亚洲经典国产精华液单| 最近中文字幕高清免费大全6| 91狼人影院| 亚洲av电影在线观看一区二区三区| h视频一区二区三区| 国产精品三级大全| 精品一区二区三卡| 七月丁香在线播放| 国产乱人偷精品视频| 日本wwww免费看| 亚洲国产成人一精品久久久| 少妇人妻一区二区三区视频| 妹子高潮喷水视频| 亚洲中文av在线| 亚洲精品国产成人久久av| 精品一品国产午夜福利视频| 一本—道久久a久久精品蜜桃钙片| 精品人妻一区二区三区麻豆| 久久久成人免费电影| 蜜桃久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 蜜桃亚洲精品一区二区三区| 91aial.com中文字幕在线观看| 建设人人有责人人尽责人人享有的 | 久久久久久久久久人人人人人人| 久久国产亚洲av麻豆专区| 黄色配什么色好看| 观看美女的网站| 国产伦在线观看视频一区| 亚洲国产精品一区三区| 91狼人影院| 视频中文字幕在线观看| 伦精品一区二区三区| 国产精品女同一区二区软件| 中文资源天堂在线| 亚洲av电影在线观看一区二区三区| 日韩在线高清观看一区二区三区| 97在线视频观看| 另类亚洲欧美激情| 久久久久人妻精品一区果冻| 蜜桃在线观看..| 青青草视频在线视频观看| 亚洲久久久国产精品| av国产精品久久久久影院| 伊人久久精品亚洲午夜| 超碰av人人做人人爽久久| 91狼人影院| 久久人人爽av亚洲精品天堂 | av一本久久久久| kizo精华| 色视频在线一区二区三区| 一个人看视频在线观看www免费| 久久人人爽av亚洲精品天堂 | 多毛熟女@视频| 小蜜桃在线观看免费完整版高清| 91久久精品国产一区二区三区| 蜜桃在线观看..| 偷拍熟女少妇极品色| 欧美+日韩+精品| 亚洲色图综合在线观看| 色综合色国产| 六月丁香七月| 国产熟女欧美一区二区| 亚洲av免费高清在线观看| 交换朋友夫妻互换小说| 亚洲五月色婷婷综合| 十八禁人妻一区二区| 亚洲精品国产区一区二| 国产成人av教育| 午夜福利视频在线观看免费| 久久久国产一区二区| 久久精品aⅴ一区二区三区四区| 精品国产超薄肉色丝袜足j| 18在线观看网站| 欧美 日韩 精品 国产| 免费观看a级毛片全部| 狠狠精品人妻久久久久久综合| 精品久久久久久电影网| videos熟女内射| av网站在线播放免费| 久久毛片免费看一区二区三区| 久久综合国产亚洲精品| 国产三级黄色录像| 9191精品国产免费久久| 天堂中文最新版在线下载| 丝袜脚勾引网站| 免费高清在线观看视频在线观看| 国产高清视频在线播放一区 | 国产成人免费观看mmmm| 国产免费又黄又爽又色| 男女国产视频网站| 捣出白浆h1v1| 丰满少妇做爰视频| 男女免费视频国产| 亚洲五月色婷婷综合| 久久性视频一级片| 999精品在线视频| 黄色片一级片一级黄色片| 亚洲国产毛片av蜜桃av| 男女边吃奶边做爰视频| 亚洲av美国av| 美女福利国产在线|