• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE ASSOCIATED FAMILIES OF SEMI-HOMOGENEOUS COMPLETE HYPERBOLIC AFFINE SPHERES?

    2016-12-05 00:43:23ZhichengLIN林至誠
    關(guān)鍵詞:王二小

    Zhicheng LIN(林至誠)

    Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,ChinaE-mail:flyriverms@qq.com

    Erxiao WANG(王二?。?

    Department of Mathematics,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong KongE-mail:maexwang@ust.hk

    THE ASSOCIATED FAMILIES OF SEMI-HOMOGENEOUS COMPLETE HYPERBOLIC AFFINE SPHERES?

    Zhicheng LIN(林至誠)

    Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China
    E-mail:flyriverms@qq.com

    Erxiao WANG(王二小)?

    Department of Mathematics,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong Kong
    E-mail:maexwang@ust.hk

    Hildebrand classified all semi-homogeneous cones in R3and computed their corresponding complete hyperbolic affine spheres.We compute isothermal parametrizations for Hildebrand’s new examples.After giving their affine metrics and affine cubic forms,we construct the whole associated family for each of Hildebrand’s examples.The generic member of these affine spheres is given by Weierstrass P,ζ and σ functions.In general any regular convex cone in R3has a natural associated S1-family of such cones,which deserves further studies.

    hyperbolic affine spheres;isothermal coordinates;Weierstrass elliptic functions; Monge-Amp`ere equation;Tzitz′eica equation

    2010 MR Subject Classification37K25;53A15

    1 Introduction

    Classical equiaffine differential geometry investigates the properties of hypersurface r(x1,x2,···,xn)in Rn+1invariant under the equiaffine transformations r→ Ar+v,where A∈SLn+1(R)and v∈Rn+1.Although the Euclidean angle is no longer invariant,there exists an affine invariant transversal vector field along r,called the affine normal.The affine metric and the affine cubic form give a set of complete affine invariants.The fundamental theorem tells us that any given affine metric and affine cubic form satisfying certain compatibility conditions(Gauss-Codazzi type)will determine an affine hypersurface uniquely up to equiaffine transformations(see[20]).The affine metric(conformal to the Euclidean second fundamental form)is definite if and only if the hypersurface is locally strictly convex.The simplest interestingclass of hypersurfaces is the affine spheres,which are defined by the condition that all affine normal lines meet in a point.Specially,definite affine spheres(with a mean curvature H and with center at the origin or infinity)can be represented as a graph of a locally strictly convex function f if and only if the Legendre transform u of f solves a Monge-Amp`ere equation(see Calabi[1]):

    Cheng and Yau[5]showed that on a bounded convex domain there is for H <0 a unique negative convex solution of(1.1)extending continuously to be 0 on the boundary.This leads to a beautiful geometric picture of any complete hyperbolic(H<0)affine sphere r(conjectured by Calabi[1]):it is always asymptotic to the boundary of the cone given by the convex hull of r and its center;and conversely the interior of any regular convex cone is foliated by complete hyperbolic affine spheres asymptotic to it with all H<0 and with centers at the vertex.

    However,explicit representations are rarely known except for homogeneous cones.Hildebrand classified three-dimensional regular convex cone with an automorphism group of dimension at least 2,which he also called“semi-homogeneous”.In this case,he reduced the Monge-Amp`ere equation to some ODE and was able to solve it with elliptic integrals in[15].

    It is known that 2 dimensional affine spheres have additional features than higher dimensional ones.For example,the affine metric can be expressed simply in some natural isothermal coordinates(definite case)or asymptotic coordinates(indefinite case).In addition,each 2 dimensional affine sphere has a natural associated family of the same type with the same affine metric but different affine cubic forms.In particular,this implies that the structure equations actually form an integrable system,called Tzitz′eica equation or the affine-Toda field equation(see[7,8,20]).It is then natural to ask for the isothermal parametrizations and the associated families of Hildebrand’s new examples.Specially,one wish to see the natural associated family of cones.This paper will answer these questions.

    Our extensive studies of definite affine spheres were motivated by Loftin,Yau and Zaslow’s‘trinoid’construction(see[22])with applications in mirror symmetry.The dressing actions on proper definite affine spheres and soliton examples were presented in[20].The Permutability Theorem and group structure of dressing actions will be presented in a subsequent paper[29]. Their Weierstrass or DPW representations were studied in[8],using an Iwasawa decomposition of certain twisted loop group.The equivariant solutions were constructed in[9].

    The rest of the paper is organized as follows.In Section 2,we introduce the fundamental concepts of affine sphere and review the main results in[15].In Section 3,we compute the isothermal parametrizations and the affine invariants of Hildebrand’s examples case by case. We also get the whole associated family for each case by solving their structure equations.In general any regular convex cone in R3has a natural associated S1-family of such cones,which deserves further studies.

    2 Affine Spheres and Semi-homogeneous Cones

    Let

    be an immersion with a non-degenerate second fundamental form.Introduce

    is equiaffine invariant,and it is called the affine(or Blaschke)metric of the immersion.The surface is said to be definite or indefinite if this metric g is so.The surface is definite if and only if it is locally strictly convex.A transversal vector field ξ on a surface r(M)is called affine normal if it satisfies

    where Δgis the Laplace-Beltrami operator of the affine metric.The connection?induced by the affine normal is called the Blaschke connection.The affine metric and the affine normal are then uniquely determined(up to a sign)by requiring the following decomposition into tangential and transverse components:

    where D is the canonical flat connection on R3and X,Y are any tangent vector fields on the surface.The affine cubic form measures the difference between the induced Blaschke connection?and g’s Levi-Civita connection?g:

    It is actually symmetric in all 3 arguments and is a 3rd order invariant.

    If all affine normals of r meet in one point(the center),then the surface is called affine sphere.If this point is not infinite it may be chosen as the origin of R3so that

    H is called the affine mean curvature,and such surface is called proper affine sphere.For a convex proper affine sphere,if the center is outside the surface,it is called hyperbolic.

    In the sequel we consider the cone K ?R3,with the vertex at the origin.The complete hyperbolic affine spheres foliating K are the level sets of the solution F:K?→ R of the following Monge-Amp`ere equation(see[3,4,11,21]for detail):

    Let AutK denote the automorphism group of the cone K.The equiaffine invariance of(2.1)implies F is invariant under unimodular automorphisms g∈AutK(see[11]or[14]).Then the number of variables of F can be effectively reduced by the generic dimension of the orbits of AutK.If there are orbits of dimension 2,the PDE(2.1)will reduce to an ODE.This kindof cone is also called semi-homogeneous cone.Hildebrand provided an important classification theorem of such cones:

    Fig.1 Semi-homogeneous cone

    Theorem 2.1([15],Theorem 3.2)Let K?R3be a regular convex cone such that dim AutK≥2.Then K is isomorphic to exactly one of the following cones:

    1.the cone obtained by the homogenization of the epigraph of the exponential function;

    We choose p=5 for each case and give the pictures of these five cases of semi-homogeneous cones in Fig.1.It could be useful for knowing the shape of semi-homogeneous cones.

    3 The Associated Families of Affine Spheres

    For convex affine spheres,the affine metric is positive-definite,and thus it provides a conformal structure in dimension two.There exists local complex coordinate z=x+iy so thatThe affine cubic formThe affine normal satisfies:

    Simon-Wang derived in[23]the following equations for the frame

    and showed that the compatibility conditions(Tzitz′eica equation)are:

    The above system is invariant underInserting the parameter λ=e3itinto the frame equations(3.1),we obtain the following Lax representation of system(3.2):

    In this section we compute the isothermal parametrizations of Hildebrand’s examples,then obtain the affine invariants.Substituting these affine invariants into the frame equations(3.3)and solving them,we get the whole associated family for each examples.

    3.1The Isothermal Parametrization and the Associated Family of Case 1

    In this subsection we consider the complete hyperbolic affine sphere asymptotic to the boundary of the cone obtained by the homogenization of the epigraph of the exponential function(case 1 in Theorem 2.1).The corresponding example in[15]is given by:

    Let us briefly review the classical results of isothermal coordinates in[24].If the metric is given locally as

    then in the complex coordinate z=x+iy,it takes the form:

    In isothermal coordinates(u,v)the metric should take the form

    The complex coordinate ω=u+iv satisfies

    so that the coordinates(u,v)will be isothermal if the Beltrami equation

    has a diffeomorphic solution.

    To compute the isothermal parametrization of the affine sphere,we should compute the affine metric.Then we get

    The Beltrami equation(3.5)can be written as

    Then we divide our computation into the following steps.

    and

    Summarize the above computations,we use the coordinate transformation

    By a direct computation,we can get the affine metric,the affine mean curvature and the affine cubic form:

    It is easy to see that g gives an explicit solution of Tzitz′eica equation(3.2).Substituting g,H,U into frame equations(3.3)and solving them,then we can conclude the above computations into the following theorem.

    Theorem 3.1The associated family of the complete hyperbolic affine sphere(3.4)in[15]is given by:

    here

    with the affine metric,the affine mean curvature and the affine cubic form are as follows:

    Remark 3.2Expression(3.10)is gauged by the initial condition

    With this initial condition,one can checkby direct computation.

    3.2The Isothermal Parametrizations of Remaining Cases

    The complete hyperbolic affine spheres asymptotic to the boundary of the remaining cones can be treated in a common framework.In this subsection we compute the common isothermal coordinates transformation for these affine spheres by Weierstrass elliptic functions.Let us review the results in[15].

    Now we begin to compute the transformation.We consider Blaschke metric of the immersion

    Similar to case 1,we divide the computation into the following 3 steps:

    Summarizing the above computation,we obtain the transformation:

    The above integral can be expressed by Weierstrass elliptic function(see[13]or[17]):

    By this expression and a gauge transformation:

    we can simplify(3.18)-(3.20)as

    Then we obtain the affine metric,the affine mean curvature and the affine cubic form:

    Invariants(3.25)-(3.26)imply that the two affine spheres coresponding to s=1 and s=-1 are in the same associated family.The coefficients U of these two affine spheres can be expressed asrespectively,in other words

    4 The Associated Families of Remaining Cases

    With the generic formulas(3.22)-(3.24),we can construct the complete hyperbolic affine spheres and the associated families case by case.Some parts of construction have referred to the formulas of the affine spheres in[15].We consider the following cases.

    Since φ is analytic in t,it must be an even function of t.For each negative t,s=-1,we have

    This affine sphere is asymptotic to the cone given in case 4 of Theorem 2.1,for α 6=1.The affine invariants are given in(3.25)-(3.26).When computing the associated family,we can consider the coefficient U of this affine sphere isThen,for convenience,substitute g,H,into frame equations(3.3)and solve them.We conclude the above discussions into the following theorem.

    Theorem 4.1The associated family the complete hyperbolic affine sphere(3.13)-(3.15) within[15]is given by

    What’s more,the affine metric,the affine mean curvature and the affine cubic form are given as

    Case(ii)c=0.In this case s=1,β=1 and(3.22)-(3.24)become

    for each positive t.Then for each negative t,we have

    This affine sphere is asymptotic to the cone given in case 4 of Theorem 2.1,with α=1.The affine metric,the affine mean curvature and the affine cubic form of this affine sphere are

    Remark 4.2By direct computation,it is easy check the expression of affine spheres(4.4)-(4.5)can get from(4.1)-(4.2)when c→0.Henceforth,the associated families in this case can also get from(4.3)by c→0.

    Case(iii)c=-2(p+q),β=1.In this case s=1,and(3.22)-(3.24)become

    This affine sphere is asymptotic to the cone given in case 5 of Theorem 2.1.The affine metric,the affine mean curvature and the affine cubic form of this affine sphere are

    Theorem 4.3The associated family of the complete hyperbolic affine sphere in[15]:

    with the affine metric,the affine mean curvature and the affine cubic form are as follows:

    This affine sphere is asymptotic to the cone given in case 3 of Theorem 2.1.Since this affine sphere is in the same associated family with the previous case,their affine metrics and affine mean curvatures are the same,and the cubic form of this case is

    At last,we explain that any regular convex cone in R3should have a natural associated family of such cones.

    If we use the transformationsand

    it is easy to see that the associated family in Theorem 3.3 is the same with it in Theorem 3.1,i.e.,case 1,case 3 and case 5 are all in the same associated family.Conversely,any member in this family can be found in these three cases.The cones which these members are asymptotic to also can be found in the corresponding cases of the semi-homogeneous cones,which form a natural associated family of cones.

    There are similar results for case 4.To show this,we should use the following relationship between Weierstrass P-function and Jacobi SN-function:

    In conclusion,in general any regular convex cone in R3has a natural associated S1-family of such cones,which deserves further studies.Given any natural associated family of some semi-homogeneous cone,it may contain case 1,case 3 and case 5 of semi-homogenous cones or case 4.

    AcknowledgementsThe second author would like to express the deepest gratitude for the support of the Hong Kong University of Science and Technology during the project,especially Min Yan,Yong-Chang Zhu,Bei-Fang Chen and Guo-Wu Meng.

    References

    [1]Calabi E.Complete affine hyperspheres I//Symposia Mathematica.London:Academic Press(10),1972: 19-38

    [2]Cao F,Tian C.Integrable system and spacelike surfaces with proscribed weak curvature in Minkowski 3-space.Acta Math Sci,1999,19(1):91-96

    [3]Cheng S Y,Yau S T.On the existence of a complete K¨ahler metric on noncompact complex manifolds and the regularity of Fefferman’s equation.Comm Pure Appl Math,1980,33(4):507-544

    [4]Cheng S Y,Yau S T.The real Monge-Amp`ere equation and affine flat structures//Proc 1980 Beijing Symp on Diff Geom and Diff Equ,vol 1.Beijing:Science Press,1982:339-370

    [5]Cheng S Y,Yau S T.Complete affine hyperspheres part I,The completeness of affine metrics.Comm Pure Appl Math,1986,39(6):839-866

    [6]Chern S S.An elementary proof of the existence of isothermal parameters on a surface.Proc Amer Math Soc,1955,6(5):771-782

    [7]Dorfmeister J,Eitner U.Weierstrass-type representation of affine sphere.Abh Math Sem Univ Hamburg,2001,71:225-250

    [8]Dorfmeister J,Wang E X.Definite affine spheres via loop groups I:general theory.(preprint)

    [9]Dorfmeister J,Wang E X.Definite affine spheres via loop groups II:equivariant solutions.(draft)

    [10]Dunajski M,Plansangkate P.Strominger-Yau-Zaslow geometry,affine spheres and Painlev′e III.Commun Math Phys,2009,290:997-1024

    [11]Fox D J F.A Schwarz lemma for K¨ahler affine metrics and the canonical potential of a proper convex cone. arXiv e-print math.DG:1206.3176,2012

    [12]Guest M.Harmonic Maps,Loop Groups,and Integrable Systems.Cambridge University Press,1997

    [13]Hancock H.Theory of Elliptic Functions.New York:Dover,1958

    [14]Hildebrand R.Einstein-Hessian barriers on convex cones.Optimization Online e-print 2012/05/3474,2012

    [15]Hildebrand R.Analytic formulas for complete hyperbolic affine spheres.Beitrage zur Algebra und Geometrie/Contributions to Algebra and Geometry,2014,55(2):497-520

    [16]Kaptsov O V,Shan’ko Yu V.Trilinear representation and the Moutard transformation for the Tzitzeica equation.arXiv:solv-int/9704014v1

    [17]Lang S.Elliptic Functions.New York:Springer,1987

    [18]Li A M,Simon U,Zhao G S.Global Affine Differential Geometry of Hypersurfaces.Volume 11 of De Gruyter Expositions in Mathematics.Walter de Gruyter,1993

    [19]Li W,Han Y,Zhou G.Damboux transformation of a nonlinear evolution equation and its explicit solutions. Acta Math Sci,2011,31(4):1457-1464

    [20]Lin Z C,Wang G,Wang E X.Dressing actions on proper definite affine spheres.arXiv:1502.04766

    [21]Loftin J C.Affine spheres and K¨ahler-Einstein metrics.Math Res Lett,2002,9(4):425-432

    [22]Loftin J,Yau S T,Zaslow E.Affine manifolds,SYZ geometry and the Y vertex.J Differ Geom,2005,71(1): 129-158

    [23]Simon U,Wang C P.Local theory of affine 2-spheres.Proc Symposia Pure Math,1993,54:585-598

    [24]Spivak M.A Comprehensive Introduction to Differential Geometry 4.3rd ed.Publish or Perish Inc,tome,1999:314-346

    [25]Terng C L.Geometries and symmetries of soliton equations and integrable elliptic equations.Surveys Geometry Integrable Systems,2008,30:401-488

    [26]Tian C,Zhou K H,Tian C B.Blacklund transformation on surfaces with constant mean curvature in R2. Acta Math Sci,2003,23(3):369-376

    [27]Uhlenbeck K.Harmonic maps into Lie groups(classical solutions of the chiral model).J Diff Geom,1989,30:1-50

    [28]Wang E X.Tzitz′eica transformation is a dressing action.J Math Phys,2006,47(5):875-901

    [29]Wang G,Lin Z C,Wang E X.Permutability theorem for definite affine spheres and the group structure of dressing actions.(preprint)

    [30]Zakharov V E,Shabat A B.Integration of non-linear equations of mathematical physics by the inverse scattering method II.Funct Anal Appl,1979,13:166-174

    ?March 31,2015;revised May 12,2015.The authors were supported by the NSF of China(10941002,11001262),and the Starting Fund for Distinguished Young Scholars of Wuhan Institute of Physics and Mathematics(O9S6031001).

    ?Erxiao WANG.

    猜你喜歡
    王二小
    剪出紅色故事
    小英雄王二小
    小英雄王二小
    家教世界(2023年13期)2023-05-25 04:42:52
    傳承王二小精神 爭(zhēng)做新時(shí)代少年——“王二小中隊(duì)”風(fēng)采錄
    為王二小守墓
    放牛娃
    小英雄王二小
    向小英雄王二小學(xué)習(xí)
    王二小永遠(yuǎn)活在我心中
    舞臺(tái)劇《放牛的孩子王二小》:在北京人民大會(huì)堂上演
    中國火炬(2014年9期)2014-07-25 10:23:08
    青春草视频在线免费观看| 一本—道久久a久久精品蜜桃钙片| 国产精品一区二区在线不卡| av不卡在线播放| 亚洲av综合色区一区| 少妇被粗大的猛进出69影院 | 人人澡人人妻人| 国产亚洲精品久久久com| 亚洲人成网站在线播| 亚洲国产精品999| 天天躁夜夜躁狠狠久久av| 亚州av有码| 久久97久久精品| 日本黄色片子视频| 欧美老熟妇乱子伦牲交| 亚洲av中文av极速乱| 久久久国产一区二区| 精品久久久精品久久久| 新久久久久国产一级毛片| 国产一区二区三区综合在线观看 | 欧美三级亚洲精品| 日韩三级伦理在线观看| 久久国内精品自在自线图片| 99热这里只有是精品50| 亚洲欧美精品自产自拍| 一级毛片 在线播放| 国产精品久久久久久av不卡| 中文字幕亚洲精品专区| 伦理电影大哥的女人| av免费观看日本| 欧美另类一区| 51国产日韩欧美| 日韩精品免费视频一区二区三区 | 老女人水多毛片| 亚洲经典国产精华液单| 九九久久精品国产亚洲av麻豆| 国精品久久久久久国模美| 人妻系列 视频| 秋霞伦理黄片| 欧美精品人与动牲交sv欧美| 伦理电影免费视频| 99热全是精品| 亚洲无线观看免费| 哪个播放器可以免费观看大片| 一级二级三级毛片免费看| 国产精品久久久久久精品电影小说| 午夜影院在线不卡| 天堂中文最新版在线下载| 我的女老师完整版在线观看| 国产精品久久久久成人av| 久久精品国产鲁丝片午夜精品| h日本视频在线播放| 国产欧美日韩综合在线一区二区 | 97超碰精品成人国产| 亚洲精品自拍成人| 久久综合国产亚洲精品| 久热久热在线精品观看| 亚洲中文av在线| 欧美bdsm另类| 性色avwww在线观看| 国产乱人偷精品视频| 波野结衣二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 午夜91福利影院| 国产日韩欧美亚洲二区| 两个人的视频大全免费| 少妇的逼好多水| 精品一区二区三区视频在线| 久久这里有精品视频免费| 男的添女的下面高潮视频| 国产男女内射视频| 亚洲欧美日韩另类电影网站| 99久久精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产亚洲欧美精品永久| 久久精品夜色国产| 国产精品99久久久久久久久| 成人国产麻豆网| 亚洲成人手机| 乱码一卡2卡4卡精品| 插逼视频在线观看| 啦啦啦在线观看免费高清www| 一本一本综合久久| 赤兔流量卡办理| 亚洲精品日韩在线中文字幕| 日韩成人av中文字幕在线观看| 亚洲精品中文字幕在线视频 | 91久久精品国产一区二区三区| 99热6这里只有精品| 久久毛片免费看一区二区三区| 日日啪夜夜撸| 免费观看无遮挡的男女| av在线app专区| 国产视频内射| 人人妻人人看人人澡| 久久99精品国语久久久| 91精品国产国语对白视频| 免费黄网站久久成人精品| 人人妻人人澡人人爽人人夜夜| 婷婷色综合大香蕉| 99久久综合免费| 新久久久久国产一级毛片| av.在线天堂| 777米奇影视久久| 久久久久精品性色| 欧美+日韩+精品| av播播在线观看一区| 亚洲内射少妇av| 日本av手机在线免费观看| 最黄视频免费看| 日韩一区二区视频免费看| 欧美日韩一区二区视频在线观看视频在线| 九九久久精品国产亚洲av麻豆| 嫩草影院入口| 久久久久久久国产电影| 国产精品99久久久久久久久| 男人舔奶头视频| 亚洲精品国产成人久久av| 亚洲精品第二区| 国产伦精品一区二区三区四那| 我的老师免费观看完整版| 亚洲精品色激情综合| 美女福利国产在线| 黄色视频在线播放观看不卡| 成年女人在线观看亚洲视频| 纵有疾风起免费观看全集完整版| 2018国产大陆天天弄谢| 大片免费播放器 马上看| 国产中年淑女户外野战色| 伊人久久国产一区二区| 人妻 亚洲 视频| 成人毛片a级毛片在线播放| 97超视频在线观看视频| 最后的刺客免费高清国语| 狠狠精品人妻久久久久久综合| 少妇的逼水好多| 成人二区视频| 韩国高清视频一区二区三区| 高清视频免费观看一区二区| 天天操日日干夜夜撸| 国产一区二区在线观看av| 黄色毛片三级朝国网站 | 人体艺术视频欧美日本| 黄片无遮挡物在线观看| 日韩大片免费观看网站| 久久97久久精品| a级毛色黄片| 少妇精品久久久久久久| 精品人妻熟女毛片av久久网站| 日本黄大片高清| 亚洲欧洲国产日韩| 美女xxoo啪啪120秒动态图| 午夜福利影视在线免费观看| 热re99久久精品国产66热6| 精品一区二区三卡| 国产精品一区二区在线观看99| 这个男人来自地球电影免费观看 | 日本黄大片高清| 最近最新中文字幕免费大全7| 校园人妻丝袜中文字幕| 国产亚洲av片在线观看秒播厂| 国产免费一级a男人的天堂| 噜噜噜噜噜久久久久久91| 狠狠精品人妻久久久久久综合| 欧美三级亚洲精品| 观看美女的网站| 日日啪夜夜爽| 中文天堂在线官网| 大片免费播放器 马上看| 中文字幕久久专区| av福利片在线| 狂野欧美激情性bbbbbb| 亚洲中文av在线| 中文精品一卡2卡3卡4更新| 韩国av在线不卡| 国产成人精品福利久久| 国产精品欧美亚洲77777| 18禁动态无遮挡网站| 你懂的网址亚洲精品在线观看| 国国产精品蜜臀av免费| 久久精品国产鲁丝片午夜精品| 亚洲成色77777| 男女边摸边吃奶| 国产精品人妻久久久久久| 国产女主播在线喷水免费视频网站| 久久久久久久久大av| 国产精品久久久久成人av| av在线老鸭窝| 永久免费av网站大全| 国产成人精品婷婷| av女优亚洲男人天堂| 少妇的逼水好多| 午夜日本视频在线| 中国三级夫妇交换| 欧美日韩视频高清一区二区三区二| 国内精品宾馆在线| 99热这里只有精品一区| 高清视频免费观看一区二区| 午夜日本视频在线| 国产亚洲午夜精品一区二区久久| 亚洲欧美清纯卡通| 精品亚洲乱码少妇综合久久| 成年人免费黄色播放视频 | 精品久久久久久电影网| 日本爱情动作片www.在线观看| 日韩一区二区三区影片| 赤兔流量卡办理| 婷婷色麻豆天堂久久| 毛片一级片免费看久久久久| 午夜视频国产福利| 成人国产av品久久久| 亚洲人成网站在线播| 边亲边吃奶的免费视频| 美女内射精品一级片tv| 久久久久久久久久成人| 一级爰片在线观看| 亚洲欧洲国产日韩| 欧美3d第一页| 国产精品一区二区性色av| 日本爱情动作片www.在线观看| 在线观看一区二区三区激情| 亚洲欧洲国产日韩| 国产精品久久久久久精品古装| 肉色欧美久久久久久久蜜桃| 精品久久国产蜜桃| 亚洲人成网站在线播| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久av不卡| 少妇被粗大的猛进出69影院 | 久久国产精品大桥未久av | 亚洲av二区三区四区| 亚洲精品国产色婷婷电影| 日日啪夜夜爽| 日韩中字成人| 青春草国产在线视频| 熟女电影av网| 国产免费视频播放在线视频| 久久精品熟女亚洲av麻豆精品| 久久精品久久久久久噜噜老黄| 狂野欧美激情性bbbbbb| 国产有黄有色有爽视频| 啦啦啦视频在线资源免费观看| 在线观看免费视频网站a站| 91久久精品电影网| 黑人猛操日本美女一级片| 国产深夜福利视频在线观看| 成年美女黄网站色视频大全免费 | 人妻少妇偷人精品九色| 永久网站在线| 插阴视频在线观看视频| 日韩熟女老妇一区二区性免费视频| 黑人猛操日本美女一级片| av黄色大香蕉| 国产极品粉嫩免费观看在线 | 国产欧美日韩一区二区三区在线 | 日韩强制内射视频| 在线观看免费视频网站a站| 99久久精品热视频| 国产精品蜜桃在线观看| 在线观看av片永久免费下载| 免费观看的影片在线观看| 亚洲国产精品999| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲自偷自拍三级| 亚洲av在线观看美女高潮| 亚洲真实伦在线观看| av不卡在线播放| 精品酒店卫生间| 国产高清国产精品国产三级| 亚洲丝袜综合中文字幕| 777米奇影视久久| 内地一区二区视频在线| 国产熟女午夜一区二区三区 | 国产精品国产av在线观看| 亚洲av男天堂| 乱人伦中国视频| av播播在线观看一区| 亚洲国产精品成人久久小说| 成年美女黄网站色视频大全免费 | 丝瓜视频免费看黄片| 国产亚洲5aaaaa淫片| 老司机亚洲免费影院| 女人久久www免费人成看片| 亚洲av电影在线观看一区二区三区| 精品久久久噜噜| 国产一区二区在线观看av| 婷婷色av中文字幕| 亚洲真实伦在线观看| 精品一区二区三区视频在线| 欧美日韩综合久久久久久| 久久精品久久精品一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 国产高清三级在线| 精品久久久久久电影网| 久久精品国产亚洲av天美| 少妇人妻一区二区三区视频| 三级国产精品片| 永久免费av网站大全| 六月丁香七月| a级一级毛片免费在线观看| 永久网站在线| 黄色一级大片看看| 国产熟女午夜一区二区三区 | 成人18禁高潮啪啪吃奶动态图 | 国产精品久久久久久精品电影小说| 十八禁高潮呻吟视频 | 一级二级三级毛片免费看| 黑人巨大精品欧美一区二区蜜桃 | 丝袜脚勾引网站| 精品少妇黑人巨大在线播放| 国产亚洲欧美精品永久| 欧美日韩亚洲高清精品| 久久99一区二区三区| 成人影院久久| 十八禁高潮呻吟视频 | 亚洲欧美中文字幕日韩二区| 亚洲性久久影院| 免费播放大片免费观看视频在线观看| 一本久久精品| 日韩精品免费视频一区二区三区 | 老司机亚洲免费影院| 人人妻人人看人人澡| 婷婷色综合大香蕉| 亚洲精品国产av成人精品| 日韩欧美一区视频在线观看 | 欧美丝袜亚洲另类| 欧美最新免费一区二区三区| 国产国拍精品亚洲av在线观看| 麻豆乱淫一区二区| 精品酒店卫生间| 2018国产大陆天天弄谢| 美女视频免费永久观看网站| 熟女电影av网| 国产国拍精品亚洲av在线观看| 欧美 亚洲 国产 日韩一| 亚洲三级黄色毛片| 22中文网久久字幕| 午夜免费鲁丝| videos熟女内射| 久久免费观看电影| 在线观看免费高清a一片| 伊人久久国产一区二区| 一级,二级,三级黄色视频| 久久6这里有精品| 国产色婷婷99| 91aial.com中文字幕在线观看| 亚洲婷婷狠狠爱综合网| 精品久久久噜噜| 国产精品福利在线免费观看| 国模一区二区三区四区视频| 久久毛片免费看一区二区三区| 视频区图区小说| 亚洲精品第二区| 国产av码专区亚洲av| 在线播放无遮挡| 激情五月婷婷亚洲| 国产精品人妻久久久久久| 欧美另类一区| 91精品一卡2卡3卡4卡| 久久久精品94久久精品| 欧美老熟妇乱子伦牲交| 综合色丁香网| 欧美日本中文国产一区发布| 国产av国产精品国产| 亚洲在久久综合| a级毛片免费高清观看在线播放| 久热这里只有精品99| 午夜激情久久久久久久| a级一级毛片免费在线观看| 国产精品三级大全| 日韩在线高清观看一区二区三区| 美女xxoo啪啪120秒动态图| 中国美白少妇内射xxxbb| 青春草亚洲视频在线观看| 国产精品人妻久久久久久| 国产高清国产精品国产三级| 亚洲,欧美,日韩| 综合色丁香网| 亚洲中文av在线| 91精品国产国语对白视频| 女人久久www免费人成看片| 卡戴珊不雅视频在线播放| 色94色欧美一区二区| 91精品伊人久久大香线蕉| 成人免费观看视频高清| 一区二区三区乱码不卡18| 国产白丝娇喘喷水9色精品| 久久 成人 亚洲| 久久久久久久久久久免费av| 最后的刺客免费高清国语| 精品国产露脸久久av麻豆| 亚洲欧美清纯卡通| 成人毛片a级毛片在线播放| 精品人妻熟女av久视频| 日产精品乱码卡一卡2卡三| 久久99热6这里只有精品| 国产精品无大码| 嘟嘟电影网在线观看| 观看av在线不卡| 中文字幕制服av| 日韩精品有码人妻一区| 乱码一卡2卡4卡精品| 免费不卡的大黄色大毛片视频在线观看| 国产一区有黄有色的免费视频| 在线观看三级黄色| 国产av一区二区精品久久| 狂野欧美激情性xxxx在线观看| 日日摸夜夜添夜夜添av毛片| 人人妻人人添人人爽欧美一区卜| 精品酒店卫生间| 国产免费一区二区三区四区乱码| 午夜福利在线观看免费完整高清在| 亚洲av免费高清在线观看| 国产免费一级a男人的天堂| 国产精品99久久99久久久不卡 | 男女国产视频网站| 99re6热这里在线精品视频| 国产av国产精品国产| 亚洲av二区三区四区| 亚洲综合精品二区| 交换朋友夫妻互换小说| 国产视频内射| 精品国产乱码久久久久久小说| 久久精品国产亚洲av天美| 一级毛片 在线播放| 黄色欧美视频在线观看| 91久久精品国产一区二区三区| 久久av网站| 亚洲,一卡二卡三卡| .国产精品久久| 国产精品久久久久成人av| 中文天堂在线官网| 欧美3d第一页| 精品久久久久久电影网| 男人添女人高潮全过程视频| 国产精品一区二区在线不卡| 国产精品一区二区三区四区免费观看| 午夜福利影视在线免费观看| 国产成人精品无人区| 亚洲精品成人av观看孕妇| 欧美日韩视频精品一区| 97在线人人人人妻| 亚洲内射少妇av| 日韩成人伦理影院| 国产免费视频播放在线视频| 在线天堂最新版资源| 亚洲国产精品成人久久小说| av播播在线观看一区| 亚洲三级黄色毛片| 2018国产大陆天天弄谢| 亚洲性久久影院| 午夜免费鲁丝| 精品国产一区二区三区久久久樱花| 99久久精品国产国产毛片| 22中文网久久字幕| 嘟嘟电影网在线观看| 精品一区二区免费观看| 日韩视频在线欧美| 国产高清国产精品国产三级| 女人久久www免费人成看片| 一本大道久久a久久精品| a级毛片在线看网站| 国产69精品久久久久777片| 又大又黄又爽视频免费| 成人美女网站在线观看视频| 亚洲av电影在线观看一区二区三区| 欧美激情极品国产一区二区三区 | 校园人妻丝袜中文字幕| 人体艺术视频欧美日本| 狂野欧美激情性bbbbbb| 美女主播在线视频| 免费黄频网站在线观看国产| 狂野欧美激情性xxxx在线观看| 伊人久久精品亚洲午夜| 春色校园在线视频观看| 最新的欧美精品一区二区| 国产欧美日韩一区二区三区在线 | av不卡在线播放| 亚洲精品自拍成人| 99热这里只有精品一区| 中文精品一卡2卡3卡4更新| 日韩在线高清观看一区二区三区| 美女福利国产在线| 天天操日日干夜夜撸| 超碰97精品在线观看| 日韩制服骚丝袜av| av专区在线播放| 亚洲精品久久午夜乱码| av.在线天堂| 99热全是精品| 菩萨蛮人人尽说江南好唐韦庄| 大又大粗又爽又黄少妇毛片口| 成人漫画全彩无遮挡| 色94色欧美一区二区| 国产淫片久久久久久久久| 国产精品福利在线免费观看| 又爽又黄a免费视频| 97在线视频观看| 国产欧美亚洲国产| 亚洲精品日本国产第一区| 国产黄频视频在线观看| 高清在线视频一区二区三区| a级毛片免费高清观看在线播放| 欧美激情极品国产一区二区三区 | 亚洲成人手机| 精品人妻偷拍中文字幕| 晚上一个人看的免费电影| 亚州av有码| 国产伦理片在线播放av一区| 亚洲国产最新在线播放| 日日啪夜夜撸| 十八禁高潮呻吟视频 | 伦理电影大哥的女人| 男人爽女人下面视频在线观看| 亚洲欧美精品专区久久| 国产高清三级在线| 天堂8中文在线网| 你懂的网址亚洲精品在线观看| 少妇熟女欧美另类| 亚洲伊人久久精品综合| 18+在线观看网站| 大片免费播放器 马上看| 22中文网久久字幕| 亚洲美女搞黄在线观看| 免费av中文字幕在线| 国产精品一区二区三区四区免费观看| 亚洲国产精品成人久久小说| 精品国产乱码久久久久久小说| 精品一区二区三卡| 亚洲,一卡二卡三卡| 国产成人精品无人区| 国产精品久久久久久久久免| 中文精品一卡2卡3卡4更新| 国产探花极品一区二区| 欧美 亚洲 国产 日韩一| 黄片无遮挡物在线观看| 99热这里只有是精品50| 久久久久久久精品精品| 日本黄大片高清| 一级av片app| 亚洲av福利一区| 日韩,欧美,国产一区二区三区| 国产精品久久久久成人av| 国产一区二区三区av在线| 一级爰片在线观看| 亚洲色图综合在线观看| av网站免费在线观看视频| 三上悠亚av全集在线观看 | 看免费成人av毛片| 简卡轻食公司| 亚洲美女视频黄频| 亚洲人成网站在线观看播放| 国模一区二区三区四区视频| av在线观看视频网站免费| 极品少妇高潮喷水抽搐| 美女xxoo啪啪120秒动态图| 欧美三级亚洲精品| 欧美成人精品欧美一级黄| 亚洲怡红院男人天堂| 国产精品人妻久久久久久| 国产免费一区二区三区四区乱码| 午夜日本视频在线| 精品亚洲成国产av| 日韩成人av中文字幕在线观看| 男女免费视频国产| 18禁动态无遮挡网站| 国产精品三级大全| 久久久久久久久久人人人人人人| 亚洲欧美日韩另类电影网站| 99久久中文字幕三级久久日本| 国产毛片在线视频| av不卡在线播放| 看非洲黑人一级黄片| 国产av一区二区精品久久| 午夜91福利影院| 中文欧美无线码| 精品一区二区三卡| 精品少妇内射三级| 亚洲真实伦在线观看| 一级爰片在线观看| 久久 成人 亚洲| 日日啪夜夜撸| 亚洲av成人精品一区久久| 久久午夜综合久久蜜桃| 肉色欧美久久久久久久蜜桃| 如何舔出高潮| 黑人猛操日本美女一级片| 99视频精品全部免费 在线| 性色av一级| 午夜激情久久久久久久| h日本视频在线播放| 麻豆精品久久久久久蜜桃| 大码成人一级视频| 五月开心婷婷网| 人妻系列 视频| xxx大片免费视频| 久久久久久久久久久免费av| 99热这里只有是精品在线观看| 大码成人一级视频| 久久久久久久久久久免费av| 99热这里只有是精品在线观看| 国产男人的电影天堂91| h日本视频在线播放| 日本黄色片子视频| 九色成人免费人妻av| 久久国产精品大桥未久av | 免费不卡的大黄色大毛片视频在线观看| 不卡视频在线观看欧美| 日韩 亚洲 欧美在线| 日韩大片免费观看网站| www.av在线官网国产| 国产日韩欧美视频二区| 午夜激情久久久久久久| 国产男女超爽视频在线观看| 另类精品久久|