• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of 2D square-like Bi2S3-BiOCl heterostructures withenhanced visible light-driven photocatalytic performance for dye pollutant degradation

    2017-02-01 08:50:26JingjingXuJingwenYangPuZhangQuanYuanYanhongZhuYuWangMiaomiaoWuZhengmeiWangMindongChen
    Water Science and Engineering 2017年4期

    Jing-jing Xu*,Jing-wen YangPu ZhangQuan YuanYan-hong ZhuYu WangMiao-miao WuZheng-mei WangMin-dong Chen

    aCollaborative Innovation Center of Atmospheric Environment and Equipment Technology,School of Environmental Science and Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China

    bJiangsu Engineering Technology Research Center of Environmental Cleaning Materials,Nanjing University of Information Science and Technology,Nanjing 210044,China

    cJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control,Nanjing University of Information Science and Technology,Nanjing 210044,China

    1.Introduction

    Photocatalytic technology has been developing quickly since Fujishima and Honda(1972)found that titanium dioxide(TiO2)photoanodes can induce water splitting.Thefirst attempt at application of photocatalytic technology in thefield of organic pollutant degradation was the use of TiO2for the photodechlorination of polychlorobiphenyls(Carey et al.,1976).Because of their high reaction speed,stability,low toxicity,and many other advantages,semiconductor photocatalysts have attracted much attention over the past several decades.In recent years,photocatalysts such as TiO2(Bianchi et al.,2014;Wang et al.,2014),BiOX(X=Cl,Br,I)(Chen et al.,2013;Ao et al.,2016a,2016b,2016c;Qin et al.,2013;Zhang et al.,2013b),and Ag/AgX(X=Cl,Br)(Wang et al.,2012,2013c)have attracted much attention in thisfield.

    Bismuth oxyhalide BiOCl has a lamellar structure and strong photocorrosion resistance.BiOCl has been put to many uses,such as pigments(Maile et al.,2005),photoluminescence(Deng et al.,2008),and photocatalysis(Shenawi-Khalil et al.,2011).Much progress has been made.Xiong et al.(2011)prepared square-like BiOCl nanosheets through an environmentally friendly hydrothermal process.At room temperature,Ye et al.(2013)synthesizedflower-like BiOCl composed of self-assembled hierarchical nanosheets,which performed well in the degradation of Rhodamine B(RhB).However,widebandgap BiOCl shows little response to visible light,which accounts for 45%of solar spectra.This means that BiOCl cannot utilize the solar energy efficiently.The fact that it can only be photo-excited under ultraviolet(UV)irradiation has limited its application to removal of organic pollutants.Major efforts have been made to obtain visible light-driven BiOClbased photocatalysts(Zhang et al.,2013a;Xia et al.,2013;Wang et al.,2013a;Cao et al.,2013).

    Narrow-bandgap Bi2S3has been used to modify TiO2(Liu et al.,2017),Bi2O2CO3(Wang et al.,2013b),ZnS(Nawaz,2017),and some other wide-bandgap photocatalysts(Cheng et al.,2012)in order to improve their performance under visible light irradiation.Cao et al.(2012)synthesized a novel Bi2S3-sensitized BiOCl photocatalyst with a rose-like structure,which photodegraded 98.0%of RhB within 2 h under visible light irradiation,much more than BiOCl,Bi2S3,or TiO2alone.This showed that the combination of Bi2S3and BiOCl can turn BiOCl into a promising visible light-driven photocatalyst(Ferreira et al.,2016;Jiang et al.,2014).However,all the studies mentioned above focused on Bi2S3-modified three-dimensional(3D)flower-like structured BiOCl,and no study has focused on the preparation and activity of Bi2S3-modified two-dimensional(2D)plate-like structured BiOCl.2D Bi2S3-BiOCl would be highly active under visible light irradiation.

    2.Experimental setup

    2.1.Synthesis

    Analytical-grade chemicals have often been used without further purification.In this study,Bi2S3-BiOCl composites with different Bi2S3contents were synthesized via a facile two-step anion exchange route at room temperature.First,we prepared white BiOCl nanosheets using the solvothermal method(Xiong et al.,2011).Second,thioacetamide(TAA)was used as the sulfur source to obtain the composites.In the experimental synthesizing of Bi2S3-BiOCl composites,0.26 g of BiOCl nanosheets were added into 25 mL of ultrapure water and sonicated for 10 min to form suspension A.Solution B was obtained after the dissolution of a certain amount of TAA in 25 mL of ultrapure water.Then,solution B was gradually poured into suspension A and stirred for 5 h at room temperature.Finally,the light gray products were obtained;they were washed with deionized water,and dried at 80°C for about 6 h.Four samples were prepared by changing the added amount of TAA.The obtained samples were defined as Bi2S3-BiOCl(8:1),Bi2S3-BiOCl(8:2),Bi2S3-BiOCl(8:4),and Bi2S3-BiOCl(8:8),as the added amounts of TAA were 0.009,0.019,0.038,and 0.075 g,respectively.

    2.2.Characterization

    We used X-ray diffraction(XRD)to examine the crystal form and crystallinity of the samples.Field emission scanning electron microscopy(SEM)and transmission electron microscopy(TEM)were utilized to observe the surface morphologies and microstructures of the samples,using a Hitachi S-4800 scanning electron microscope and a Hitachi H-7650 transmission electron microscope,respectively.The absorption ability of catalysts was measured through ultraviolet-visible(UV/Vis)diffuse reflectance spectra(DRS)on a Shimadzu UV3600 spectrometer.The Brunauer-Emmett-Teller(BET)surface area of the samples was obtained with a BET analyzer(ASAP 2020,Micromeritics Instrument Corporation)through N2adsorption-desorption isotherms.

    2.3.Photocatalytic experiments

    The photocatalytic activities of the as-prepared samples were measured through photodegradation of X-3B under visible light(λ≥ 400 nm,where λ is the wave length)irradiation,a 300 W Xe lamp was used as a light source,and a circulating cooling water system was used to keep the temperature at 12°C.In each experiment,a 0.01-g sample was added to 50 mL of X-3B solution with a concentration of 25 mg/L to form a suspension.In order to reach adsorptiondesorption equilibrium,the suspension was ultrasonic-treated for 2 min and further stirred for 30 min in the dark.Under light irradiation,about 1.5 mL of suspension was taken out for examination every 15 min.

    3.Results and discussion

    The as-prepared Bi2S3-BiOCl samples were analyzed through XRD characterization(Fig.1,where a.u.means arbitrary unit,and 2θ is the diffraction angle)to examine their phase structure,crystal form,and crystallinity.All the diffraction peaks of BiOCl and Bi2S3could be indexed according to the structures of tetragonal BiOCl(JCPDS No.06-0249)and bulk orthorhombic Bi2S3(JCPDS No.75-1306),respectively,indicating high crystal purity.No diffraction peaks of Bi2S3were observed in the curves of Bi2S3-BiOCl composites.This is probably due to the amorphous structure,high level of dispersity,and small crystallites of Bi2S3.The obtained results indicate that the addition of Bi2S3does not cause changes in the crystal phase of BiOCl.

    Fig.1.XRD patterns of BiOCl,Bi2S3,and Bi2S3-BiOCl composites.

    During the preparation process of Bi2S3-BiOCl composites,thesquare-likeBiOClnanosheetswith athicknessof 10-25 nm(Fig.2(a))were dispersed in the ultrapure waterfirst.Then,through ion exchange,a reaction between Bi3+and TAA occurred over time(the stepwise equations were as follows:CH3CSNH2+H2O→CH3CONH2+H2S↑;2Bi3++3H2S→Bi2S3↓+6H+).Finally,Bi2S3was dispersed and anchored on the surface of BiOCl nanosheets,as shown clearly in Fig.3(b).Because of the rather lower solubility of Bi2S3(Ksp=1.0×10-97,where Kspis the solubility product),compared to BiOCl(Ksp=1.8×10-31)(Cheng et al.,2012),a partial anion ion exchange reaction induced the formation of Bi2S3on the surface of BiOCl.The microstructure and morphology of the samples were investigated by SEM and TEM.Compared to the morphology of Bi2S3nanorods with lengths of 100-180 nm(Fig.2(b)),Bi2S3-BiOCl composites were nanosheets(Fig.2(c)through(f))similar to pure BiOCl.Furthermore,it can be seen that the thickness of all the nanosheets were about 10-20 nm(marked by black arrows in Fig.2).Surface area and pore structures are crucial to the activity of photocatalysts.Therefore,the surface areas of the obtained samples were obtained through N2adsorptiondesorption isotherms.The surface areas of pure BiOCl,Bi2S3-BiOCl(8:1),Bi2S3-BiOCl(8:2),Bi2S3-BiOCl(8:4),Bi2S3-BiOCl(8:8),and Bi2S3were 2.91,5.12,5.63,5.90,6.24,and 15.62 m2/g,respectively.

    The UV/Vis diffuse reflectance spectra of BiOCl,Bi2S3,and Bi2S3-BiOCl composites are shown in Fig.4.Pure BiOCl can only adsorb UV light with an absorption edge at about 360 nm.However,Bi2S3exhibits strong absorption intensity in the visible light region,even extending to the near-infrared region.As for Bi2S3-BiOCl composites,their absorption edges shift to about 420 nm and an enhancement in photoabsorption efficiency is observed.The results illustrate that Bi2S3has a photosensitization effect on BiOCl.Furthermore,the bandgap energy(Eg)of pure BiOCl,Bi2S3,and Bi2S3-BiOCl composites can be calculated to be about 3.49,1.27,and 2.95 eV,respectively.

    Fig.2.SEM images of samples.

    Fig.3.TEM images of samples.

    Fig.4.UV/Vis DRS of pure BiOCl,Bi2S3,and Bi2S3-BiOCl composites.

    Fig.5 shows the concentration changes of X-3B dye in different samples with the visible light irradiation time in order to evaluate the photocatalytic activities,where C is the concentration of X-3B in the process and C0is the initial concentration of X-3B.After 30 min of stirring in the dark,a strong adsorption was observed on Bi2S3,while other samples exhibited relatively low levels of adsorption for X-3B.Furthermore,it can be seen that only 11.6%and 37.8%of X-3B were removed by BiOCl and Bi2S3after the adsorption and photocatalytic processes,respectively.The main reasons were that BiOCl has little response to visible light,and the photoexcited electron-hole pairs of Bi2S3would be recombined due to its narrow bandgap.Meanwhile,the degradation effi-ciency of Bi2S3-BiOCl(8:4)was 74.6%,which was the highest photodegradation efficiency of the samples.The apparent rate constants were 0.0015,0.014,0.02,0.028,0.018,and 0.096 min-1for pure BiOCl,Bi2S3-BiOCl(8:1),Bi2S3-BiOCl(8:2),Bi2S3-BiOCl(8:4),Bi2S3-BiOCl(8:8),and Bi2S3,respectively.Obviously,all Bi2S3-BiOCl composites performed better than both BiOCl and Bi2S3,and 8:4 was the optimal Bi/S ratio in this study.In order to determine the factor that caused the increase of the activity of Bi2S3-BiOCl composite photocatalysts,photocurrent was measured at open circuit potentials for all samples.The samples deposited onfluorine-doped tin oxide(FTO)conductive glass were used as anodes for the measurement.The results are shown in Fig.6.A uniform and apparent photocurrent response can be seen for all electrodes.Furthermore,all Bi2S3-BiOCl composites exhibited higher photocurrent intensity values than pure BiOCl.The photocurrent is determined by the recombination at the electrolyte interface and the transferring speed of excited electrons from the photocatalyst to FTO.Therefore,the increase of photocurrent for Bi2S3-BiOCl composites should be attributed to the higher separation efficiency of photogenerated charges.This results from the coupling of BiOCl and Bi2S3and the formation of heterojunctions between the two components.The formed heterojunctions help to transfer and separate the photogenerated electron-hole pairs,and thus increase the photocatalytic activity.It can also be seen that the photocatalytic performance and photocurrent of Bi2S3-BiOCl composites strengthen gradually with the increase of the Bi/S ratio from 8:1 to 8:4.However,Bi2S3-BiOCl(8:8)shows a weaker performance than Bi2S3-BiOCl(8:4),which may stem from the overload of Bi2S3.Therefore,there is an optimal value of the Bi/S ratio(8:4 in this study)that obtains the highest photocatalytic activity for Bi2S3-BiOCl composites.

    Fig.5.Photocatalytic activities of samples.

    Fig.6.Photocurrent responses of Bi2S3-BiOCl composites under visible light irradiation.

    To explore the mechanism of photocatalytic degradation of X-3B by Bi2S3-BiOCl composites is highly significant.As shown in Fig.7,a plausible mechanism for X-3B degradation is proposed.

    Under visible light irradiation,Bi2S3is excited enough to generate electron-hole pairs.Some of the photogenerated electrons are then trapped by dissolved O2and produce·O-2,an important active species in oxidation reactions,and the others can be readily transferred to the conduction band(CB)of BiOCl.These electrons on CB of BiOCl cannot react to produce·Ο-2radicals,because the CB potential is 0.11 eV,while the redox potential of O2/·O-2is-0.046 eV(Wang et al.,2013a).The hole(h+)can either react with OH-to produce·OH or directly decompose X-3B dye since it is also a strong oxidant(the valent band(VB)potential of Bi2S3is 1.47 eV,and the redox potential of H2O/·OH is 2.72 eV)(Li et al.,2009).Consequently,the recombination of e-and h+has largely been restrained,and these oxidative species(·O-2,·OH,and h+)can degrade X-3B dye.In addition,BiOCl may degrade X-3B molecules through the photosensitition effect,although it shows little response to visible light because of its wide bandgap.The related equations in this reaction process,including two collaborative processes(photodegradation and photosensitization),are as follows(Nawaz,2017;Cao et al.,2012):

    Fig.7.Schematic photocatalytic reaction process of Bi2S3-BiOCl composites with degradation of X-3B under visible light irradiation.

    where h is the Planck constant,ν is the frequency,and*means the excited state.

    The stability of Bi2S3-BiOCl samples is crucial to their practical applications.Therefore,typical reuse experiments of Bi2S3-BiOCl(8:4)were conducted to evaluate its long-term service properties.The obtained results are shown in Fig.8.The photocatalytic performance of Bi2S3-BiOCl(8:4)has no apparent decreasing trend after three cycles.This indicates that the prepared Bi2S3-BiOCl composite photocatalysts are stable.

    Fig.8.Recyclability of Bi2S3-BiOCl(8:4)under visible light irradiation.

    4.Conclusions

    Visible light-responsive and square-like Bi2S3-BiOCl composites with different Bi/S ratios were prepared via a twostep anion exchange route.The samples were obtained through a partial anion exchange reaction between the square-like BiOCl and TAA,in which the Bi2S3was produced on the surface of BiOCl.The phase structure,morphology,and optical properties of Bi2S3-BiOCl composites were studied with XRD,SEM,TEM,and DRS.The results show that the coupling of BiOCl with Bi2S3induce enhanced photoabsorption efficiency and a narrower bandgap.The photocatalytic activity under visible light irradiation was investigated through the photocatalytic degradation of X-3B dye.The results show that all Bi2S3-BiOCl composites exhibited much higher activity than pure BiOCl and Bi2S3,and the enhanced activity was ascribed to the formation of Bi2S3on BiOCl nanosheets.Based on investigation of the effect of the Bi/S ratio on the activity of Bi2S3-BiOCl composites,an optimal value(8:4)was obtained.This work can provide ideas concerning the design of more bismuth-based photocatalysts for treatment of pollutants.

    Ao,Y.H.,Bao,J.Q.,Wang,P.F.,Wang,C.,Hou,J.,2016a.Bismuth oxychloride modified titanium phosphate nanoplates:A new p-n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants.J.Colloid Interface Sci.476,71-78.https://doi.org/10.1016/j.jcis.2016.05.021.

    Ao,Y.H.,Wang,K.D.,Wang,P.F.,Wang,C.,Hou,J.,2016b.Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7composite photocatalyst with enhanced photocatalytic performance under both UVand visible light irradiation.Appl.Catal.B Environ.194,157-168.https://doi.org/10.1016/j.apcatb.2016.04.050.

    Ao,Y.H.,Wang,K.D.,Wang,P.F.,Wang,C.,Hou,J.,2016c.Fabrication of novel p-n heterojunction BiOI/La2Ti2O7composite photocatalysts for enhanced photocatalytic performance under visible light irradiation.Dalton Trans.45(19),7986-7997.https://doi.org/10.1039/c6dt00862c.

    Bianchi,C.L.,Gatto,S.,Pirola,C.,Naldoni,A.,Di Michele,A.,Cerrato,G.,Crocella,V.,Capucci,V.,2014.Photocatalytic degradation of acetone,acetaldehyde and toluene in gas-phase:Comparison between nano and micro-sized TiO2.Appl.Catal.B Environ.146,123-130.https://doi.org/10.1016/j.apcatb.2013.02.047.

    Cao,J.,Xu,B.Y.,Lin,H.L.,Luo,B.D.,Chen,S.F.,2012.Novel Bi2S3-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B.Catal.Commun.26,204-208.https://doi.org/10.1016/j.catcom.2012.05.025.

    Cao,J.,Zhou,C.C.,Lin,H.L.,Xu,B.Y.,Chen,S.F.,2013.Surface modifi-cation of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity.Appl.Surf.Sci.284,263-269.https://doi.org/10.1016/j.apsusc.2013.07.092.

    Carey,J.H.,Lawrence,J.,Tosine,H.M.,1976.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions.Bull.Environ.Contam.Toxicol.16(6),697-701.

    Chen,L.,Huang,R.,Xiong,M.,Yuan,Q.,He,J.,Jia,J.,Yao,M.Y.,Luo,S.L.,Au,C.T.,Yin,S.F.,2013.Room-temperature synthesis offlower-like BiOX(X=Cl,Br,I)hierarchical structures and their visible-light photocatalytic activity.Inorg.Chem.52(19),11118-11125.https://doi.org/10.1021/ic401349j.

    Cheng,H.F.,Huang,B.B.,Qin,X.Y.,Zhang,X.Y.,Dai,Y.,2012.A controlled anion exchange strategy to synthesize Bi2S3nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity.Chem.Commun.48(1),97-99.https://doi.org/10.1039/c1cc15487g.

    Deng,Z.T.,Tang,F.Q.,Muscat,A.J.,2008.Strongbluephotoluminescencefrom single-crystalline bismuth oxychloridenanoplates.Nanotechnology 19(29),295705-295710.https://doi.org/10.1088/0957-4484/19/29/295705.

    Ferreira,V.C.,Neves,M.C.,Hillman,A.R.,Monteriro,O.C.,2016.Novel onepot synthesis and sensitisation of new BiOCl-Bi2S3nanostructures from DES medium displaying high photocatalytic activity.RSC Advances 6,77329-77339.https://doi.org/10.1039/C6RA14474H.

    Fujishima,A.,Honda,K.,1972.Electrochemical photolysis of water at a semiconductorelectrode.Nature 238(5358),37-38.https://doi.org/10.1038/238037a0.

    Jiang,S.H.,Zhou,K.Q.,Shi,Y.Q.,Lo,S.M.,Xu,H.Y.,Hu,Y.,Gui,Z.,2014.In situ synthesis of hierarchicalflower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity.Appl.Surf.Sci.290,313-319.https://doi.org/10.1016/j.apsusc.2013.11.074.

    Li,G.T.,Wong,K.H.,Zhang,X.W.,Hu,C.,Yu,J.C.,Chan,R.C.Y.,Wong,P.K.,2009.Degradation of acid orange 7 using magnetic AgBr under visible light:The roles of oxidizing species.Chemosphere 76(9),1185-1191.https://doi.org/10.1016/j.chemosphere.2009.06.027.

    Liu,Y.,Shi,Y.D.,Liu,X.,Li,H.X.,2017.A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue.Appl.Surf.Sci.396,58-66.https://doi.org/10.1016/j.apsusc.2016.11.028.

    Maile,F.J.,Pfaff,G.,Reynders,P.,2005.Effect pigments:Past,present and future.Prog.Org.Coating 54(3),150-163.https://doi.org/10.1016/j.porgcoat.2005.07.003.

    Nawaz,M.,2017.Morphology-controlled preparation ofBi2S3-ZnS chloroplast-like structures,formation mechanism and photocatalytic activityforhydrogenproduction.J.Photochem.Photobiol.Chem.332,326-330.https://doi.org/10.1016/j.jphotochem.2016.09.005.

    Qin,X.Y.,Cheng,H.F.,Wang,W.J.,Huang,B.B.,Zhang,X.Y.,Dai,Y.,2013.Three dimensional BiOX(X=Cl,Br and I)hierarchical architectures:Facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation.Mater.Lett.100,285-288.https://doi.org/10.1016/j.matlet.2013.03.045.

    Shenawi-Khalil,S.,Uvarov,V.,Kritsman,Y.,Mennes,E.,Popov,I.,Sasson,Y.,2011.A new family of BiO(ClxBr1-x)visible light sensitive photocatalysts.Catal.Commun.12(12),1136-1141.https://doi.org/10.1016/j.catcom.2011.03.014.

    Wang,B.,Li,C.,Cui,H.,Zhang,J.P.,Zhai,J.,Li,Q.,2014.Shifting mechanisms in the initial stage of dye photodegradation by hollow TiO2nanospheres.J.Mater.Sci.49(3),1336-1344.https://doi.org/10.1007/s10853-013-7817-4.

    Wang,P.Q.,Bai,Y.,Liu,J.Y.,Fan,Z.,Hu,Y.Q.,2012.Facile synthesis and activity of daylight-driven plasmonic catalyser Ag/AgX(X=Cl,Br).IET Micro Nano Lett.7(8),838-841.https://doi.org/10.1049/mnl.2012.0591.

    Wang,Q.Z.,Hui,J.,Li,J.J.,Cai,Y.X.,Yin,S.Q.,Wang,F.P.,Su,B.T.,2013a.Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation.Appl.Surf.Sci.283,577-583.https://doi.org/10.1016/j.apsusc.2013.06.149.

    Wang,W.J.,Cheng,H.F.,Huang,B.B.,Lin,X.J.,Qin,X.Y.,Zhang,X.Y.,Dai,Y.,2013b.Synthesis of Bi2O2CO3/Bi2S3hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants.J.Colloid Interface Sci.402,34-39.https://doi.org/10.1016/j.jcis.2013.03.054.

    Wang,Y.Q.,Sun,L.,Fugetsu,B.,2013c.Morphology-controlled synthesis of sunlight-driven plasmonic photocatalysts Ag@AgX(X=Cl,Br)with graphene oxide template.J.Mater.Chem.1(40),12536-12544.https://doi.org/10.1039/c3ta12893h.

    Xia,J.X.,Xu,L.,Zhang,J.,Yin,S.,Li,H.M.,Xu,H.,Di,J.,2013.Improved visible light photocatalytic properties of Fe/BiOCl microspheres synthesized via self-doped reactable ionic liquids.CrystEngComm 15(46),10132-10141.https://doi.org/10.1039/C3CE41555D.

    Xiong,J.Y.,Cheng,G.,Li,G.F.,Qin,F.,Chen,R.,2011.Well-crystallized square-like 2D BiOCl nanoplates:Mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance.RSC Adv.1(18),1542-1553.https://doi.org/10.1039/C1RA00335F.

    Ye,P.,Xie,J.J.,He,Y.M.,Zhang,L.,Wu,T.H.,Wu,Y.,2013.Hydrolytic synthesis offlower-like BiOCl and its photocatalytic performance under visible light.Mater.Lett.108,168-171.

    Zhang,J.,Xia,J.X.,Yin,S.,Li,H.M.,Xu,H.,He,M.Q.,Huang,L.Y.,Zhang,Q.,2013a.Improvement of visible light photocatalytic activity overflower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids.Colloid.Surface.Physicochem.Eng.Aspect.420,89-95.https://doi.org/10.1016/j.colsurfa.2012.11.054.

    Zhang,W.D.,Zhang,Q.,Dong,F.D.,2013b.Visible-light photocatalytic removal of NO in air over BiOX(X=Cl,Br,I)single-crystal nanoplates prepared at room temperature.Ind.Eng.Chem.Res.52(20),6740-6746.https://doi.org/10.1021/ie400615f.

    青草久久国产| 又黄又粗又硬又大视频| 美女国产高潮福利片在线看| 自线自在国产av| 国产精品久久久人人做人人爽| 久久中文字幕人妻熟女| 久久午夜亚洲精品久久| 国产高清videossex| 好看av亚洲va欧美ⅴa在| 一区二区三区高清视频在线| 亚洲男人天堂网一区| av超薄肉色丝袜交足视频| 日本vs欧美在线观看视频| 窝窝影院91人妻| 一区二区三区激情视频| 亚洲精品久久成人aⅴ小说| 少妇裸体淫交视频免费看高清 | 国产野战对白在线观看| av有码第一页| 国产欧美日韩一区二区精品| 国产精品一区二区在线不卡| 曰老女人黄片| 国产xxxxx性猛交| 黄频高清免费视频| 成人国语在线视频| 窝窝影院91人妻| 免费在线观看影片大全网站| 在线免费观看的www视频| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美精品综合久久99| 国产亚洲精品av在线| 亚洲全国av大片| 久久精品影院6| 成年人黄色毛片网站| 91大片在线观看| 少妇 在线观看| 精品一品国产午夜福利视频| 亚洲精品中文字幕一二三四区| 最新在线观看一区二区三区| av电影中文网址| 人人妻,人人澡人人爽秒播| 女性生殖器流出的白浆| 亚洲一卡2卡3卡4卡5卡精品中文| 我的亚洲天堂| 亚洲国产高清在线一区二区三 | 在线天堂中文资源库| 青草久久国产| 50天的宝宝边吃奶边哭怎么回事| 动漫黄色视频在线观看| 国产成年人精品一区二区| 久久久久国内视频| 在线播放国产精品三级| 国产精品一区二区精品视频观看| 男女下面进入的视频免费午夜 | 欧美乱妇无乱码| 91大片在线观看| 一区二区三区激情视频| 欧美黑人欧美精品刺激| 在线观看免费日韩欧美大片| 久久国产精品人妻蜜桃| 成人特级黄色片久久久久久久| 他把我摸到了高潮在线观看| 色精品久久人妻99蜜桃| 久久伊人香网站| 国产精品一区二区精品视频观看| 黄色女人牲交| 视频在线观看一区二区三区| 正在播放国产对白刺激| 精品少妇一区二区三区视频日本电影| 免费av毛片视频| 最近最新免费中文字幕在线| 成人18禁在线播放| 一级a爱视频在线免费观看| 国产高清激情床上av| 夜夜爽天天搞| www.熟女人妻精品国产| 久久香蕉精品热| 99热只有精品国产| 精品欧美国产一区二区三| 欧美一级a爱片免费观看看 | 亚洲五月色婷婷综合| 国产欧美日韩一区二区三| 中国美女看黄片| av天堂久久9| 一边摸一边做爽爽视频免费| 午夜福利,免费看| 久久九九热精品免费| 国内精品久久久久精免费| 亚洲成人久久性| 久久香蕉国产精品| 免费在线观看黄色视频的| 波多野结衣巨乳人妻| 日韩欧美国产一区二区入口| 91av网站免费观看| 亚洲第一欧美日韩一区二区三区| 亚洲最大成人中文| 国产一区在线观看成人免费| 亚洲黑人精品在线| 国内久久婷婷六月综合欲色啪| 精品不卡国产一区二区三区| 99热只有精品国产| av福利片在线| 看黄色毛片网站| 男女午夜视频在线观看| 欧美日韩乱码在线| 色av中文字幕| 少妇 在线观看| 亚洲av美国av| 久9热在线精品视频| 日日摸夜夜添夜夜添小说| 久久人人97超碰香蕉20202| 一个人免费在线观看的高清视频| 午夜精品在线福利| 国产成人免费无遮挡视频| 亚洲精品在线观看二区| 黄频高清免费视频| 日韩欧美在线二视频| 亚洲人成网站在线播放欧美日韩| 国产精品一区二区三区四区久久 | 国产成人一区二区三区免费视频网站| 黑人操中国人逼视频| 亚洲国产毛片av蜜桃av| 母亲3免费完整高清在线观看| 亚洲天堂国产精品一区在线| 精品一区二区三区视频在线观看免费| 免费在线观看完整版高清| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦韩国在线观看视频| 嫩草影视91久久| 久久中文字幕一级| 亚洲男人的天堂狠狠| 精品少妇一区二区三区视频日本电影| 国产一区二区三区综合在线观看| 精品一区二区三区四区五区乱码| 女人爽到高潮嗷嗷叫在线视频| 欧美亚洲日本最大视频资源| 人人妻人人澡人人看| 国内精品久久久久久久电影| 美女扒开内裤让男人捅视频| 淫妇啪啪啪对白视频| 色老头精品视频在线观看| 精品人妻1区二区| 十八禁网站免费在线| 久久天躁狠狠躁夜夜2o2o| 成人亚洲精品av一区二区| 搞女人的毛片| 午夜免费成人在线视频| 天堂动漫精品| 亚洲五月天丁香| 少妇的丰满在线观看| 亚洲av成人一区二区三| 免费在线观看影片大全网站| or卡值多少钱| 成熟少妇高潮喷水视频| 午夜两性在线视频| 亚洲av日韩精品久久久久久密| 中出人妻视频一区二区| 日韩中文字幕欧美一区二区| 琪琪午夜伦伦电影理论片6080| 成人国语在线视频| 亚洲欧美日韩另类电影网站| 国产欧美日韩精品亚洲av| 操美女的视频在线观看| 欧美日韩精品网址| 91精品三级在线观看| 国产成人av教育| 亚洲最大成人中文| 免费在线观看完整版高清| 免费在线观看亚洲国产| 国产精品99久久99久久久不卡| 亚洲,欧美精品.| 无人区码免费观看不卡| 久久精品亚洲熟妇少妇任你| 国产成年人精品一区二区| 99久久精品国产亚洲精品| 亚洲av五月六月丁香网| 啦啦啦 在线观看视频| 成人国语在线视频| 亚洲成人免费电影在线观看| 日本精品一区二区三区蜜桃| 18禁裸乳无遮挡免费网站照片 | 丝袜美腿诱惑在线| 久久久精品国产亚洲av高清涩受| 夜夜躁狠狠躁天天躁| 在线观看66精品国产| av欧美777| 亚洲国产精品成人综合色| 午夜福利成人在线免费观看| 国产免费男女视频| 国产精品久久久av美女十八| 一夜夜www| 国产区一区二久久| 欧美精品啪啪一区二区三区| 美女午夜性视频免费| 18禁观看日本| 国产精品香港三级国产av潘金莲| 亚洲无线在线观看| 午夜老司机福利片| 无限看片的www在线观看| avwww免费| 中国美女看黄片| 日韩欧美在线二视频| 夜夜看夜夜爽夜夜摸| 成人国产一区最新在线观看| 日韩三级视频一区二区三区| 精品一区二区三区四区五区乱码| 国产亚洲精品综合一区在线观看 | 热99re8久久精品国产| 成人精品一区二区免费| 999久久久国产精品视频| 91成年电影在线观看| 亚洲欧美激情综合另类| 久久久久国产精品人妻aⅴ院| 亚洲美女黄片视频| 黄频高清免费视频| 99久久综合精品五月天人人| 欧美 亚洲 国产 日韩一| av在线播放免费不卡| av超薄肉色丝袜交足视频| 日韩欧美在线二视频| 国产精品亚洲一级av第二区| 黄色视频不卡| 桃色一区二区三区在线观看| 99国产精品一区二区三区| 亚洲欧美日韩无卡精品| av在线天堂中文字幕| 给我免费播放毛片高清在线观看| 欧美一级毛片孕妇| 国产激情欧美一区二区| 涩涩av久久男人的天堂| 女性生殖器流出的白浆| 亚洲一区高清亚洲精品| 国产精品野战在线观看| 在线观看www视频免费| АⅤ资源中文在线天堂| 大香蕉久久成人网| 国内精品久久久久精免费| 神马国产精品三级电影在线观看 | 国产成+人综合+亚洲专区| 欧美+亚洲+日韩+国产| 精品久久久久久久毛片微露脸| 亚洲色图 男人天堂 中文字幕| 看黄色毛片网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲黑人精品在线| 最新美女视频免费是黄的| 欧美成人午夜精品| 男女床上黄色一级片免费看| 日韩大码丰满熟妇| 中文字幕久久专区| 人人妻,人人澡人人爽秒播| 日本a在线网址| 欧美中文日本在线观看视频| 国产精品亚洲美女久久久| 国产亚洲精品第一综合不卡| 久久人妻熟女aⅴ| www国产在线视频色| 日韩中文字幕欧美一区二区| 成人免费观看视频高清| 亚洲欧美精品综合久久99| 韩国av一区二区三区四区| 午夜福利高清视频| 国内毛片毛片毛片毛片毛片| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费视频内射| 午夜免费观看网址| 欧美日韩福利视频一区二区| 国产av一区在线观看免费| 一边摸一边抽搐一进一出视频| av视频免费观看在线观看| 后天国语完整版免费观看| 一本综合久久免费| 成人三级黄色视频| 国产成人精品无人区| 国产欧美日韩综合在线一区二区| 免费一级毛片在线播放高清视频 | 久久性视频一级片| 我的亚洲天堂| 精品久久久久久,| a级毛片在线看网站| 免费不卡黄色视频| 欧美日韩瑟瑟在线播放| 国产精品久久久久久精品电影 | 国产成人一区二区三区免费视频网站| 老司机深夜福利视频在线观看| 97人妻精品一区二区三区麻豆 | 色综合亚洲欧美另类图片| 国产色视频综合| 午夜成年电影在线免费观看| 悠悠久久av| 欧美日韩乱码在线| 午夜久久久久精精品| 午夜免费成人在线视频| 日韩视频一区二区在线观看| 精品一区二区三区四区五区乱码| 国产成人精品久久二区二区免费| 在线视频色国产色| 久久久国产成人免费| 久久精品亚洲熟妇少妇任你| 在线免费观看的www视频| 无人区码免费观看不卡| 亚洲欧美日韩高清在线视频| 亚洲成人免费电影在线观看| 久久久精品欧美日韩精品| 日本三级黄在线观看| 国产一区二区三区视频了| 欧美激情高清一区二区三区| 成人国语在线视频| 日韩国内少妇激情av| 久久精品aⅴ一区二区三区四区| 一级,二级,三级黄色视频| 亚洲精品国产色婷婷电影| 亚洲va日本ⅴa欧美va伊人久久| 一二三四社区在线视频社区8| 久久久久国产一级毛片高清牌| 又紧又爽又黄一区二区| 国产一区二区三区综合在线观看| 极品人妻少妇av视频| 国产精品乱码一区二三区的特点 | 精品久久久久久久人妻蜜臀av | 色播亚洲综合网| 国产成人av激情在线播放| 纯流量卡能插随身wifi吗| av超薄肉色丝袜交足视频| 久久 成人 亚洲| 大型黄色视频在线免费观看| 一夜夜www| 精品第一国产精品| 好男人电影高清在线观看| 国产亚洲欧美在线一区二区| 欧美成人免费av一区二区三区| 老汉色∧v一级毛片| 满18在线观看网站| 日韩大尺度精品在线看网址 | 欧美日韩乱码在线| 在线播放国产精品三级| 国产欧美日韩一区二区三区在线| 人成视频在线观看免费观看| 国产在线精品亚洲第一网站| 村上凉子中文字幕在线| 久久精品91无色码中文字幕| 真人做人爱边吃奶动态| 巨乳人妻的诱惑在线观看| 制服诱惑二区| 搞女人的毛片| 亚洲第一青青草原| 国内精品久久久久久久电影| 成人特级黄色片久久久久久久| 久久久久久大精品| 午夜福利成人在线免费观看| 亚洲 国产 在线| 免费观看人在逋| 国产片内射在线| 人人妻,人人澡人人爽秒播| 日韩高清综合在线| 欧美最黄视频在线播放免费| 日本五十路高清| 成人亚洲精品一区在线观看| 精品日产1卡2卡| ponron亚洲| 国产成人影院久久av| 女人爽到高潮嗷嗷叫在线视频| 99热只有精品国产| 午夜老司机福利片| 欧美激情久久久久久爽电影 | 人妻久久中文字幕网| 黄色 视频免费看| 国产黄a三级三级三级人| 亚洲欧美激情综合另类| 女性被躁到高潮视频| 亚洲,欧美精品.| 精品久久久久久成人av| 麻豆久久精品国产亚洲av| 久久久久久久久久久久大奶| 久久精品亚洲精品国产色婷小说| 老汉色av国产亚洲站长工具| 欧美国产日韩亚洲一区| 国产野战对白在线观看| 美女 人体艺术 gogo| 国产亚洲av高清不卡| 亚洲av第一区精品v没综合| 久久青草综合色| 国产在线观看jvid| 99在线视频只有这里精品首页| 欧美乱色亚洲激情| 欧美激情极品国产一区二区三区| 国产精品久久电影中文字幕| 国产野战对白在线观看| 在线观看免费午夜福利视频| 国产精品免费视频内射| 91成年电影在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产三级在线视频| 一级作爱视频免费观看| 欧美精品亚洲一区二区| 国产欧美日韩精品亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 国产99白浆流出| 亚洲人成77777在线视频| 真人做人爱边吃奶动态| 啦啦啦免费观看视频1| 日韩一卡2卡3卡4卡2021年| 女人被躁到高潮嗷嗷叫费观| 一本久久中文字幕| 欧美激情久久久久久爽电影 | 50天的宝宝边吃奶边哭怎么回事| 日本五十路高清| 精品欧美国产一区二区三| 在线观看66精品国产| 两个人视频免费观看高清| 麻豆一二三区av精品| 亚洲男人天堂网一区| 国产精华一区二区三区| 少妇 在线观看| 欧美激情高清一区二区三区| 国产成人精品久久二区二区免费| 亚洲男人天堂网一区| 国产片内射在线| 国产真人三级小视频在线观看| 精品欧美国产一区二区三| 精品一区二区三区视频在线观看免费| 亚洲性夜色夜夜综合| 久久青草综合色| 在线永久观看黄色视频| 亚洲人成电影免费在线| 曰老女人黄片| 深夜精品福利| 女警被强在线播放| 亚洲专区国产一区二区| 免费人成视频x8x8入口观看| 国产亚洲精品av在线| 国产精品九九99| 色综合欧美亚洲国产小说| 丝袜在线中文字幕| 9191精品国产免费久久| 伊人久久大香线蕉亚洲五| 香蕉国产在线看| 少妇 在线观看| 色播亚洲综合网| 国产乱人伦免费视频| 夜夜爽天天搞| 午夜激情av网站| 69av精品久久久久久| 99国产精品一区二区三区| 一个人免费在线观看的高清视频| 成人精品一区二区免费| 免费在线观看完整版高清| 国产单亲对白刺激| 亚洲中文字幕一区二区三区有码在线看 | 在线视频色国产色| 女人精品久久久久毛片| 麻豆久久精品国产亚洲av| a在线观看视频网站| 成人欧美大片| 天堂√8在线中文| 九色国产91popny在线| 宅男免费午夜| 日本在线视频免费播放| 精品一品国产午夜福利视频| 99久久精品国产亚洲精品| 日韩免费av在线播放| 成人手机av| 精品福利观看| 叶爱在线成人免费视频播放| 波多野结衣巨乳人妻| 人人妻人人爽人人添夜夜欢视频| 久久久久精品国产欧美久久久| 国产又爽黄色视频| 久久这里只有精品19| 一进一出抽搐gif免费好疼| 青草久久国产| 亚洲专区国产一区二区| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 久久香蕉国产精品| 精品国产乱子伦一区二区三区| 日韩欧美一区二区三区在线观看| 欧美丝袜亚洲另类 | 一进一出抽搐gif免费好疼| 国产成人影院久久av| 亚洲午夜精品一区,二区,三区| 黄色视频,在线免费观看| 波多野结衣巨乳人妻| 国产黄a三级三级三级人| 淫妇啪啪啪对白视频| 国产精品二区激情视频| 咕卡用的链子| www.www免费av| 精品电影一区二区在线| 亚洲欧美精品综合久久99| 免费在线观看完整版高清| 亚洲av片天天在线观看| 亚洲精华国产精华精| 一进一出抽搐gif免费好疼| 性欧美人与动物交配| 午夜免费观看网址| 亚洲av成人一区二区三| 久久天躁狠狠躁夜夜2o2o| 纯流量卡能插随身wifi吗| 91麻豆av在线| 88av欧美| 国产免费男女视频| 给我免费播放毛片高清在线观看| 午夜影院日韩av| 国产高清videossex| 久久久久久久午夜电影| 岛国在线观看网站| 国产熟女午夜一区二区三区| 精品久久久久久,| 制服人妻中文乱码| 嫩草影院精品99| 久热爱精品视频在线9| 国产国语露脸激情在线看| 日韩精品免费视频一区二区三区| 亚洲色图综合在线观看| 男女下面插进去视频免费观看| 久久精品91蜜桃| 亚洲免费av在线视频| 他把我摸到了高潮在线观看| 国产亚洲精品综合一区在线观看 | 亚洲av第一区精品v没综合| 激情视频va一区二区三区| 久久久久久亚洲精品国产蜜桃av| 18禁国产床啪视频网站| 在线观看舔阴道视频| 这个男人来自地球电影免费观看| 午夜免费成人在线视频| 制服人妻中文乱码| 免费看美女性在线毛片视频| 在线观看免费视频日本深夜| 免费不卡黄色视频| 亚洲第一青青草原| 欧美乱色亚洲激情| 久久午夜亚洲精品久久| 日本欧美视频一区| 精品国产乱子伦一区二区三区| 一夜夜www| 欧美亚洲日本最大视频资源| 自拍欧美九色日韩亚洲蝌蚪91| www.999成人在线观看| 国产免费男女视频| 好男人在线观看高清免费视频 | 免费人成视频x8x8入口观看| 18禁观看日本| 成人18禁在线播放| 久久久精品欧美日韩精品| 一边摸一边做爽爽视频免费| 最新在线观看一区二区三区| 88av欧美| 欧美日韩瑟瑟在线播放| 日韩有码中文字幕| 午夜福利一区二区在线看| 成人精品一区二区免费| 久久久久国内视频| 欧美日本亚洲视频在线播放| 国产精品一区二区免费欧美| 搡老妇女老女人老熟妇| 每晚都被弄得嗷嗷叫到高潮| www.精华液| 国产精品爽爽va在线观看网站 | 成人国产一区最新在线观看| 黄色丝袜av网址大全| av在线天堂中文字幕| 久久久久久免费高清国产稀缺| 成人国语在线视频| 天堂√8在线中文| 老熟妇乱子伦视频在线观看| 国产精品美女特级片免费视频播放器 | 美女 人体艺术 gogo| 午夜免费观看网址| 中文字幕精品免费在线观看视频| 久9热在线精品视频| 一区福利在线观看| 男男h啪啪无遮挡| 在线观看午夜福利视频| 亚洲欧美日韩无卡精品| 国产精品电影一区二区三区| 色精品久久人妻99蜜桃| 欧美日本亚洲视频在线播放| 啦啦啦观看免费观看视频高清 | 亚洲精品中文字幕在线视频| 大码成人一级视频| 国产黄a三级三级三级人| 国产精品一区二区精品视频观看| 日本撒尿小便嘘嘘汇集6| 国产一卡二卡三卡精品| 两性午夜刺激爽爽歪歪视频在线观看 | 99国产精品免费福利视频| 美女国产高潮福利片在线看| 亚洲人成伊人成综合网2020| 人人妻人人爽人人添夜夜欢视频| 成人国产综合亚洲| 国产成人av教育| 免费在线观看完整版高清| 女性被躁到高潮视频| 国产麻豆69| 岛国视频午夜一区免费看| 美女国产高潮福利片在线看| 免费在线观看亚洲国产| 欧美黑人欧美精品刺激| 免费无遮挡裸体视频| 夜夜夜夜夜久久久久| 天堂动漫精品| 亚洲欧美精品综合一区二区三区| 国产区一区二久久| 啦啦啦 在线观看视频| 国产亚洲av高清不卡| 99久久综合精品五月天人人| 久久久久久大精品| 999久久久精品免费观看国产| 亚洲精品国产一区二区精华液| 大陆偷拍与自拍| 女人被躁到高潮嗷嗷叫费观| 午夜久久久久精精品| 亚洲一码二码三码区别大吗|