• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automatic counting of microglial cell activation and its applications

    2016-12-01 09:23:28BeatrizGallegoColladoPablodeGracia
    關鍵詞:黃姓江夏瓊花

    Beatriz I. Gallego Collado, Pablo de Gracia

    1 Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain2 Facultad de óptica y Optometría, Departamento de Oftalmología y Otorrinolaringología, Universidad Complutense de Madrid, Madrid, Spain3 Midwestern University, Chicago College of Optometry, Downers Grove, IL, USA4 Department of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA

    Automatic counting of microglial cell activation and its applications

    Beatriz I. Gallego Collado1,2,*,#, Pablo de Gracia3,4,*,#

    1 Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
    2 Facultad de óptica y Optometría, Departamento de Oftalmología y Otorrinolaringología, Universidad Complutense de Madrid, Madrid, Spain
    3 Midwestern University, Chicago College of Optometry, Downers Grove, IL, USA
    4 Department of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA

    How to cite this article: Gallego BI, de Gracia P (2016) Automatic counting of microglial cell activation and its applications. Neural Regen Res 11(8)∶1212-1215.

    Funding: This work was supported by the Science Foundation of Arizona through the Bisgrove Program to PdG, Grant Number∶ BSP 0529-13. BIG received funding from the Ophthalmological Network OFTARED (RD12-0034/0002) and the Institute of Health Carlos III. And also from the PN I+D+i 2008-2011, from the ISCIII-Subdireccion General de Redes y Centros de Investigación Cooperativa, from the European Programme FEDER, and from the project SAF2014-53779-R. BIG also received funding from the project∶ “The role of encapsulated NSAIDs in PLGA microparticles as a neuroprotective treatment” funded by the Spanish Ministry of Economy and Competitiveness.

    Beatriz I. Gallego Collado, O.D., Ph.D. or Pablo de Gracia, O.D., Ph.D., F.A.A.O.,

    bgallegocollado@gmail.com or pdegracia@midwestern.edu

    Both of these two authors

    contributed equally to this article.

    orcid:

    0000-0001-9864-3140

    (Beatriz I. Gallego Collado) 0000-0003-4319-2797

    (Pablo de Gracia)

    Accepted: 2016-08-15

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability.

    glaucoma; glial cells; microglial cells; automatic counting; image processing; inner plexiform layer; outer plexiform layer; bilateral activation

    Introduction

    Vision in mammals begins at the retina, which is the innermost layer of the eye and part of the central nervous system (CNS). The retina comprises a high scaffold of complex neurons that transform light into nerve impulses, which propagate through the visual pathway to the brain where visual processing is completed.

    Glaucoma is a chronic optic neuropathy characterized by neuronal death of retinal ganglion cells (RGCs). The disease is a prevalent visual pathology that leads to vision impairment (affecting > 60 million people worldwide) and is the second most frequent cause of irreversible blindness in the world (Quigley and Broman, 2006). Although age and ocular hypertension (OHT) constitute the major risk factors for the disease, the exact mechanisms involved in glaucoma pathophysiology are unknown. In some instances, the progress of the disease cannot be halted and, in others, major damage has already occurred by the time of diagnosis. Therefore, understanding the pathogenic mechanisms of glaucoma and developing new strategies for early diagnosis are paramount for improving the well-being of individuals suffering from glaucoma.

    Glial Cell Activation in Glaucoma: the Good and the Bad

    Activation of glial cells seems to play an important role in glaucomatous neurodegeneration. Glia are non-neuronal cells in the nervous system that support and protect neurons. Glia, especially microglial cells, are considered to be immune cells in the CNS (including the retina) and their activation after damage is crucial. Early, moderate, transient, well-controlled glial activation could be initially responsible for restoring damaged tissue. However, the sustained tissue stress that occurs in human glaucoma is associated with a chronic activation of glial cells-this hallmark of a harmful neuro-inflammatory process could lead to tissue damage. This concept supports the contention that, in glaucomatous neurodegeneration, glial cells could initiate an immune response that mayexacerbate the glaucomatous neurodegenerative injury (Tezel and the Fourth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group, 2009).

    Although gliotic processes are heterogeneous, common features are shared among them. The most important features of gliotic processes are morphologic and immunophenotypic changes, increase or de novo expression of certain molecules, production of pro- or anti-inflammatory molecules, and cell proliferation (Ramírez et al., 2015b; de Hoz et al., 2016).

    Most research employs experimental unilateral glaucoma initiated in mice by an increase of intraocular pressure (IOP), with the contralateral normotensive eye used as a control. However, glaucomatous optic neuropathy is usually a bilateral disease, although asymmetric. Thus, the neuronal damage initially present in one eye eventually appears later in the contralateral eye (Ramírez et al., 2015b; de Hoz et al., 2016).

    With this in mind, our recent work has focused on the role of bilateral glial activation observed in a unilateral OHT mouse model, as a possible mechanism for understanding early development and progression of glaucomatous neurodegeneration. A significant finding from our research is that bilateral retinal gliosis was observed in both hypertensive and contralateral normotensive untreated eyes; this result supports the concept that the eye contralateral to experimental glaucoma should not be used as an internal control. Briefly, in our study, hypertensive eyes exhibited neuronal damage, evidenced by the frequent presence of NF-200+immunostaining localized in the soma and primary dendrites of some RGCs; this indicated an impairment of these neurons. In hypertensive eyes, a gliotic phenomenon presence was characterized by i) non-proliferative glial fibrillary acidic protein (GFAP)+astrocytic gliosis with morphological changes (loss of cellular complexity); ii) an overall GFAP increase in astrocytes and Müller cells, which is a clear sign of glial activation; iii) proliferative gliosis of ionized calcium binding adaptor molecule 1 (Iba-1)+microglia, characterized by shrinkage of cell processes and displaced microglia between different retinal layers; and iv) the presence of new Iba-1+cell morphotypes (morphologically suggestive of cell migration from the bloodstream). More interesting, in the contralateral normotensive untreated eyes, despite the absence of evidence of RGC death, macroglial and microglial gliosis occurred, similar to the hypertensive eyes. To underline, in both hypertensive and contralateral normotensive untreated eyes, Iba-1+cells and GFAP+cells showed up-regulation of major histocompatibility complex class II (MHC-II) molecules immunostaining (Ramírez et al., 2010, 2015b; Gallego et al., 2012; de Hoz et al., 2013; Rojas et al., 2014). Under normal conditions, MHC-II expression is very low in the CNS, because it is required for antigen presentation to T cells; however, under nearly all inflammatory and neurodegenerative conditions, MHC-II expression significantly increases in reactive glia.

    In light of these findings, and bearing in mind that glia constitute the immune cell population in the CNS, we suggested that an immune process was taking place in not only lasered eyes but also in contralateral retinas. Because we found no evidence of neuronal damage in contralateral retinas, we deduced that the glial response observed may represent an attempt to maintain homeostasis and protect retinal neurons from a stimulus that could come from the hypertensive eye and reach the contralateral retina by a hitherto unknown route. Possible mechanisms that would explain this bilateral eye communication include: i) a systemic hematic-immune involvement through a compromised blood-brain barrier in the hypertensive eyes, which has been found in glaucoma; ii) the propagation of signals into the opposite contralateral retina, passing through the optic chiasma; iii) some fibers from RGCs that cross the optic chiasm to reach the contralateral retina, known as retino-retinal projections; iv) a bilateral disruption of the anterior chamber associated immune deviation (ACAID), which has been reported with several unilateral eye injuries; or v) neurogenic mechanisms, which are also involved in the symmetrical spread of inflammation in rheumatoid arthritis (Ramírez et al., 2015b).

    These results do not clarify whether glial activation precedes or is a consequence of neuronal damage in glaucoma. It is possible that before any neuronal damage occurs, some early inflammatory responses are involved in the onset or progression of the glaucomatous neurodegeneration.

    We do know that ophthalmic diseases that affect retinal neurons share common pathophysiological features with cerebral neurodegenerative diseases. Thus, glial activation could be used in the development of new strategies for early diagnosis and treatment of neurodegenerative diseases, by controlling the development of neurodegeneration in the retina and also in other CNS locations.

    Microglial Proliferation: Challenges in Quantitative Assessments

    Microglial proliferation is a sign of gliosis and provides information about ongoing stress situations in the nervous system, including the retina (Ramírez et al., 2015a). This proliferation has been evaluated in quantitative studies of microglial cells using animal models of different eye diseases, and in other CNS conditions such as Alzheimer disease.

    The analysis of large numbers of tissue samples is required to achieve decisive data of statistical significance in these studies. The manual method (a researcher counts cellson an image) is still considered the gold standard for quantitative assessments of microglial cells in the CNS. These manual processes, however, are time consuming, affected by the bias of the researcher, and prone to human error. In an attempt to overcome these shortcomings, our group recently developed an image processing algorithm in MATLAB that accurately and automatically identifies and quantifies mouse retinal microglial cells, in both na?ve tissue and in a unilateral model of OHT exhibiting microgliotic processes (de Gracia et al., 2015).

    Figure 1 Illustration of the automatic retinal microglial cell quantification methodology.

    Microglial cells are characterized by small cellular bodies from which emerge numerous, long, profusely ramified branches; these cells are distributed over the parenchyma of the nervous tissue, but without overlap of neighboring cells. These cellular features, which are also observed in the retina, allow visual identification of a single microglial cell and are the key to our algorithm, which automatically determines the number of microglial cells in the inner and outer plexiform layers of the retina (Ramírez et al., 2015a).

    這是敲門歌,XX指出嫁姑娘家族的堂號?!疤锰枴笔羌易彘T戶的代稱,是家族文化重要的組成部分。如果出嫁姑娘姓黃,九寨黃姓的堂號是江夏堂,則會改成“江夏朝中招駙馬”。這里用了借喻,“揚州瓊花”代替嫁姑娘這件喜事;“滎陽城”代替女方的家?!皳P州瓊花”指《隋唐演義》中,揚州有一朵漂亮的牡丹花,楊廣去看而花不開;但李世民去,花就開了,說明李世民才是花主,暗示他才是天子。所以這里就用“揚州瓊花現(xiàn)”來表示要嫁的姑娘像揚州的花一樣找到正主了。

    These specific microglial cell features remain even during proliferative events; however, depending on particular characteristics of the tissue analyzed, microglial cells sometimes do not completely fulfil these criteria. This makes the process of cell recognition complex and not very reliable for both human and computational approaches. That complexity is noted on the nerve fiber layer of the retina, where Iba-1+cells adapt their somas and processes to the spaces within the fibers of the RGCs and the blood vessels. Nonetheless, instead of counting independent events in a research scenario, another quantitative approach is to calculate the area covered by specific immunolabeling, which produces an indirect measure of the number of cells in the tissue. An increase of the area covered by, for example, Iba-1 immunolabeling is also a mark of gliosis. This approach provided the key to developing another automatic tool in our algorithm that allows quantitative analysis of the area of the retina occupied by microglial cells (Figure 1).

    One of the benefits of our algorithm is the interactive work interface, which was developed to supply researchers with a graphic visualization of the process and the ability to change some parameters of interest, such as cell distance and image threshold. As a result, and despite a complex mathematicalprogramming environment, this new algorithm is easy to use and does not require the user to have a programing background. Another advantage of our algorithm is that it allows researchers not only to work with a 2-dimensional image but also to study 3-dimensional volume (de Gracia et al., 2015). Because of the complex 3-dimensional spatial distribution of microglial cells in nervous tissue, this is a very useful feature.

    With our new automated microglial cell quantification method, the time for counting a huge set of images can be radically reduced from weeks (manual procedure) to a few hours (computational analysis) without any statistically significant difference from results of a manual count by a human (gold standard). In addition, our results exhibited a good correlation not only in na?ve tissues but also in highly proliferative gliotic states (de Gracia et al., 2015).

    This algorithm has been developed for the quantification of microglial cells in retinal flat mount; however, due to the similarities of microglial cells within the CNS, this algorithm (once calibrated) will also facilitate quantitative tasks in other regions of the nervous system.

    Microglial Analysis: Development of New Neuroprotective Therapies

    Although it was already known that glaucoma is usually a bilateral but asymmetrically presenting disease, the contralateral eye in unilateral glaucoma models has been frequently used as an internal control. In our unilateral mouse model of laser induced OHT, the contralateral gliosis (bilateral reaction) may represent events linked with the initial steps of the glaucomatous neurodegeneration, previous to a neuronal death, and probably mediated by the ongoing inflammatory processes. Research about the events observed in the contralateral eyes in response to a unilateral model of glaucoma is sparse (Ramírez et al., 2015b); however, new studies focused on the implication of this activation of glial cells could provide a better understanding of glaucomatous pathophysiology. Research on steps prior to neurodegeneration in glaucoma, and therefore possible intervention points in the disease, has the potential to allow assessment and development of new neuroprotective therapies.

    Microglial proliferation has been observed in our studies, both in the presence of neuronal death and also without it; thus, future quantitative microglial studies could assist in the detection of early neurodegeneration and establish signs or events related to neurodegeneration. Also, the number of microglial cells in tissue could be issued as an index of recovery after the application of neuroprotective therapies. A prodigious amount of research is needed to collect strong evidence to fully understand the etiology of glaucoma and to develop treatments. At this point in time, our algorithm provides researchers with a useful tool to perform quick and accurate microglial cell analysis on large data sets of images.

    The algorithm will be provided at no cost to any researcher contacting the authors of this study (de Gracia et al., 2015).

    Acknowledgments: The authors of this paper thanks the Neuroscience Publications office at Barrow Neurological Institute for their editorial and manuscript preparation assistance.

    Conflicts of interest: None declared.

    This work has been presented in the following meetings:

    1. Salazar JJ, Gallego BI, Rojas B, Trivi?o A, Ramírez JM, de Gracia P (2013) A new automatic method for counting microglial cells in whole-mount mice retinas. Sociedad de Investigación de Retina de la Comunidad Valenciana (SIRCOVA). Co-patrocinio Association for Research in Vision and Ophthalmology (ARVO). Ophthal Res 50∶27-53.

    2. de Hoz R, Gallego BI, Rojas B, Ramírez AI, Salazar JJ, Trivi?o A, de Gracia P, Ramírez JM (2013) A new automatic method for microglial-cell quantification in whole-mount mouse retinas. Joint Eu ropean Research Meeting in Ophthalmology and Vision. European As sociation for Vision and Eye Research (EVER). Acta Ophthalmol 89. 3. de Gracia P, Gallego BI (2012) A new automatic method for coun ting microglial cells in healthy and glaucomatous retinas. American Academy of Optometry meeting, American Academy of Optometry (AAO).

    References

    de Gracia P, Gallego BI, Rojas B, Ramírez AI, de Hoz R, Salazar JJ, Trivino A, Ramírez JM (2015) Automatic counting of microglial cells in healthy and glaucomatous mouse retinas. PLoS One 10:e0143278.

    de Hoz R, Rojas B, Ramírez AI, Salazar JJ, Gallego BI, Trivino A, Ramírez JM (2016) Retinal macroglial responses in health and disease. Biomed Res Int 2016:2954721.

    de Hoz R, Gallego BI, Ramírez AI, Rojas B, Salazar JJ, Valiente-Soriano FJ, Aviles-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Trivino A, Ramírez JM (2013) Rod-like microglia are restricted to eyes with laser-induced ocular hypertension but absent from the microglial changes in the contralateral untreated eye. PLoS One 8:e83733.

    Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramírez AI, Salinas-Navarro M, Ortin-Martinez A, Valiente-Soriano FJ, Aviles-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Trivino A, Ramírez JM (2012) IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation 9:92.

    Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262-267.

    Ramírez AI, Rojas B, de Hoz R, Salazar JJ, Gallego BI, Trivi?o A, Ramírez JM (2015a) Microglia, inflammation, and glaucoma. Dover: SM Group Open Access eBooks ed.

    Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salobrar-Garcia E, Valiente-Soriano FJ, Trivino A, Ramírez JM (2015b) Macro- and microglial responses in the fellow eyes contralateral to glaucomatous eyes. Prog Brain Res 220:155-172.

    Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salinas-Navarro M, Alarcon-Martinez L, Ortin-Martinez A, Aviles-Trigueros M, Vidal-Sanz M, Trivino A, Ramírez JM (2010) Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. Invest Ophthalmol Vis Sci 51:5690-5696.

    Rojas B, Gallego BI, Ramírez AI, Salazar JJ, de Hoz R, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas Pérez MP, Vidal-Sanz M, Trivi?o A, Ramírez JM (2014) Microglia in mice retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers: a detailed description. J Neuroinflammation 11:133.

    Tezel G. the Fourth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group (2009) The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci 50:1001-1012.

    10.4103/1673-5374.189166

    *Correspondence to:

    猜你喜歡
    黃姓江夏瓊花
    福建江夏學院學報2021年總目次
    窗外飛絮
    瓊花的修剪技巧及在園林景觀設計中的應用
    揚州瓊花涂裝工程技術有限公司
    專用汽車(2020年2期)2020-04-08 10:57:28
    給你一個橙子好不好?
    中學生博覽(2018年8期)2018-05-07 08:59:28
    黃姓源頭 青銅器里的潢川黃國
    大眾考古(2015年9期)2015-06-26 07:58:28
    一起撐傘吧
    福建江夏學院法學院簡介
    海峽法學(2015年2期)2015-02-27 15:08:25
    生路
    生路
    小小說月刊(2010年9期)2010-05-14 14:55:03
    国产v大片淫在线免费观看| 熟女人妻精品中文字幕| 嫩草影院入口| 给我免费播放毛片高清在线观看| 亚洲成av人片免费观看| 美女cb高潮喷水在线观看 | 丰满的人妻完整版| a级毛片在线看网站| 成年女人毛片免费观看观看9| 精品久久久久久久人妻蜜臀av| 国产亚洲精品久久久久久毛片| 国产高清激情床上av| 日本a在线网址| 很黄的视频免费| 高潮久久久久久久久久久不卡| 国语自产精品视频在线第100页| 久久国产乱子伦精品免费另类| 90打野战视频偷拍视频| 国产亚洲欧美98| 国产激情欧美一区二区| 此物有八面人人有两片| 嫩草影院精品99| 欧美成狂野欧美在线观看| 午夜久久久久精精品| 日韩精品中文字幕看吧| 他把我摸到了高潮在线观看| 精品久久久久久久末码| 级片在线观看| 国内精品美女久久久久久| 国产91精品成人一区二区三区| 亚洲黑人精品在线| 99久久成人亚洲精品观看| 老司机在亚洲福利影院| 热99在线观看视频| 精品久久久久久久末码| 久久午夜综合久久蜜桃| 亚洲成人免费电影在线观看| 国产精品一区二区三区四区久久| 精品熟女少妇八av免费久了| 亚洲av中文字字幕乱码综合| 精品电影一区二区在线| 偷拍熟女少妇极品色| aaaaa片日本免费| 中文字幕av在线有码专区| 一进一出抽搐gif免费好疼| 99精品欧美一区二区三区四区| 桃红色精品国产亚洲av| 欧美最黄视频在线播放免费| 午夜福利在线在线| 免费看美女性在线毛片视频| 国产日本99.免费观看| 黑人操中国人逼视频| 男人舔女人的私密视频| 久久精品综合一区二区三区| 99久久精品国产亚洲精品| 国产成人精品久久二区二区免费| 日韩成人在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美精品综合久久99| 国产精品乱码一区二三区的特点| 亚洲自拍偷在线| 搡老妇女老女人老熟妇| 国产激情久久老熟女| 日韩精品中文字幕看吧| 国产精品久久久久久精品电影| 国产精品久久视频播放| 午夜精品一区二区三区免费看| 久久精品91蜜桃| 丰满人妻一区二区三区视频av | 美女 人体艺术 gogo| 国产1区2区3区精品| 国内少妇人妻偷人精品xxx网站 | 亚洲色图av天堂| 精品国产三级普通话版| 午夜免费激情av| 亚洲av成人精品一区久久| 精品国产亚洲在线| 亚洲中文av在线| 操出白浆在线播放| 亚洲专区字幕在线| 色噜噜av男人的天堂激情| 91久久精品国产一区二区成人 | 窝窝影院91人妻| 999久久久国产精品视频| 视频区欧美日本亚洲| 午夜激情福利司机影院| 日本熟妇午夜| 日韩欧美一区二区三区在线观看| 真人一进一出gif抽搐免费| 啦啦啦观看免费观看视频高清| av在线蜜桃| 久久久久久久午夜电影| 免费在线观看亚洲国产| 色老头精品视频在线观看| 日本 av在线| 在线观看午夜福利视频| xxx96com| 男人舔奶头视频| 中文字幕熟女人妻在线| 成年女人毛片免费观看观看9| 手机成人av网站| 黄色女人牲交| 日韩有码中文字幕| 欧美乱码精品一区二区三区| 国产一区二区在线观看日韩 | 国产黄色小视频在线观看| 美女高潮的动态| 国产免费男女视频| 丰满的人妻完整版| 久99久视频精品免费| 一级毛片高清免费大全| 久久久国产欧美日韩av| 色播亚洲综合网| 午夜久久久久精精品| 亚洲一区二区三区色噜噜| 国产黄a三级三级三级人| 女警被强在线播放| 搞女人的毛片| 免费电影在线观看免费观看| 国产欧美日韩一区二区精品| 国产伦在线观看视频一区| 五月伊人婷婷丁香| 久久久久久久精品吃奶| 亚洲在线观看片| 大型黄色视频在线免费观看| 亚洲九九香蕉| 黄色丝袜av网址大全| 日本黄色视频三级网站网址| 亚洲性夜色夜夜综合| 成人三级做爰电影| 全区人妻精品视频| 色综合站精品国产| www国产在线视频色| 国产黄片美女视频| 丰满人妻一区二区三区视频av | 色综合欧美亚洲国产小说| 国产黄片美女视频| 亚洲国产欧美人成| 亚洲第一欧美日韩一区二区三区| 日本成人三级电影网站| 成人特级av手机在线观看| 国产97色在线日韩免费| 欧美日韩综合久久久久久 | 精品久久久久久久久久久久久| 精品国产亚洲在线| 极品教师在线免费播放| 中文字幕最新亚洲高清| 白带黄色成豆腐渣| 一个人看的www免费观看视频| 狂野欧美激情性xxxx| 人妻丰满熟妇av一区二区三区| 在线国产一区二区在线| 网址你懂的国产日韩在线| 亚洲精品一区av在线观看| 亚洲av免费在线观看| 母亲3免费完整高清在线观看| 操出白浆在线播放| 欧美一级a爱片免费观看看| 亚洲精品一卡2卡三卡4卡5卡| 色在线成人网| 亚洲av电影在线进入| 麻豆成人午夜福利视频| 一本精品99久久精品77| 手机成人av网站| 啦啦啦免费观看视频1| 免费大片18禁| 操出白浆在线播放| 99精品在免费线老司机午夜| 亚洲乱码一区二区免费版| 国产精品久久久久久人妻精品电影| 亚洲av成人精品一区久久| 婷婷精品国产亚洲av在线| 99国产精品一区二区蜜桃av| 亚洲av中文字字幕乱码综合| 久久精品aⅴ一区二区三区四区| 一本一本综合久久| 国产精品一区二区三区四区免费观看 | 成人国产一区最新在线观看| 一个人观看的视频www高清免费观看 | 国产精品久久久久久久电影 | 老司机午夜十八禁免费视频| 在线观看66精品国产| 亚洲熟妇熟女久久| 精品午夜福利视频在线观看一区| 久久久久久人人人人人| 国产精品久久视频播放| 韩国av一区二区三区四区| 国产蜜桃级精品一区二区三区| 在线观看日韩欧美| 麻豆成人av在线观看| 女生性感内裤真人,穿戴方法视频| 欧美中文日本在线观看视频| 麻豆久久精品国产亚洲av| 在线观看美女被高潮喷水网站 | 国产亚洲av嫩草精品影院| 人人妻人人看人人澡| 亚洲片人在线观看| 可以在线观看的亚洲视频| 岛国在线观看网站| www.999成人在线观看| 狂野欧美激情性xxxx| 亚洲电影在线观看av| 国产精品女同一区二区软件 | 欧美一区二区国产精品久久精品| 国产人伦9x9x在线观看| 国产三级在线视频| 亚洲国产色片| 亚洲国产精品合色在线| 成年女人永久免费观看视频| 99久久成人亚洲精品观看| 久久欧美精品欧美久久欧美| 日本 欧美在线| 精品久久久久久久人妻蜜臀av| 日本 av在线| 99久久国产精品久久久| 亚洲熟女毛片儿| 成在线人永久免费视频| 亚洲在线观看片| 啦啦啦免费观看视频1| 久9热在线精品视频| 久久久久国产精品人妻aⅴ院| 亚洲精品美女久久久久99蜜臀| 又爽又黄无遮挡网站| 亚洲国产高清在线一区二区三| 国产精品av久久久久免费| 两个人看的免费小视频| www日本黄色视频网| 后天国语完整版免费观看| 日韩国内少妇激情av| 亚洲18禁久久av| 精品日产1卡2卡| 亚洲专区中文字幕在线| 国模一区二区三区四区视频 | 久久久久国内视频| 99国产精品一区二区三区| 中文字幕人妻丝袜一区二区| 国产久久久一区二区三区| 国产精品久久久久久亚洲av鲁大| 禁无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 在线观看舔阴道视频| 91麻豆精品激情在线观看国产| 桃色一区二区三区在线观看| 亚洲成人久久性| 69av精品久久久久久| 真人做人爱边吃奶动态| 一进一出好大好爽视频| 免费看日本二区| 国产午夜福利久久久久久| 欧美成人性av电影在线观看| 在线观看舔阴道视频| 国产高清视频在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 2021天堂中文幕一二区在线观| 一本久久中文字幕| 免费在线观看视频国产中文字幕亚洲| 欧美性猛交黑人性爽| 黄色丝袜av网址大全| 日韩欧美精品v在线| 亚洲欧美日韩高清专用| 日韩精品中文字幕看吧| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区| 精品国产三级普通话版| 久久久久国产一级毛片高清牌| 亚洲电影在线观看av| 久久香蕉国产精品| 国产成人aa在线观看| 淫妇啪啪啪对白视频| 不卡一级毛片| 色吧在线观看| 给我免费播放毛片高清在线观看| 成人高潮视频无遮挡免费网站| 亚洲精品美女久久久久99蜜臀| 国产精品 欧美亚洲| 精品人妻1区二区| 麻豆国产av国片精品| 亚洲欧美精品综合一区二区三区| 久久中文字幕一级| 91在线观看av| 色综合站精品国产| 亚洲天堂国产精品一区在线| 亚洲专区中文字幕在线| 国产精品精品国产色婷婷| 精品午夜福利视频在线观看一区| 欧美日韩瑟瑟在线播放| 国产野战对白在线观看| 亚洲狠狠婷婷综合久久图片| 午夜精品久久久久久毛片777| 久久久久久久久免费视频了| 欧美三级亚洲精品| 19禁男女啪啪无遮挡网站| 国产亚洲欧美98| 国语自产精品视频在线第100页| 国产精品,欧美在线| 亚洲人成电影免费在线| 特级一级黄色大片| 精品久久久久久,| 日本免费一区二区三区高清不卡| 成在线人永久免费视频| 午夜激情欧美在线| 日本成人三级电影网站| 亚洲中文av在线| 婷婷丁香在线五月| 中文资源天堂在线| 国产蜜桃级精品一区二区三区| 国产蜜桃级精品一区二区三区| 久久久久性生活片| 久久精品91蜜桃| 噜噜噜噜噜久久久久久91| 丰满人妻熟妇乱又伦精品不卡| 午夜视频精品福利| 极品教师在线免费播放| 淫妇啪啪啪对白视频| 亚洲乱码一区二区免费版| 老鸭窝网址在线观看| 精品国内亚洲2022精品成人| 欧美av亚洲av综合av国产av| 丝袜人妻中文字幕| 亚洲av中文字字幕乱码综合| 99re在线观看精品视频| 亚洲色图 男人天堂 中文字幕| 国产熟女xx| 色综合亚洲欧美另类图片| 热99re8久久精品国产| 亚洲色图av天堂| 麻豆国产97在线/欧美| 老司机福利观看| 我的老师免费观看完整版| 国产黄色小视频在线观看| 男女那种视频在线观看| 亚洲美女黄片视频| 亚洲精品久久国产高清桃花| 色综合婷婷激情| 久久这里只有精品中国| 国产精品美女特级片免费视频播放器 | 三级男女做爰猛烈吃奶摸视频| 午夜福利免费观看在线| 欧美中文综合在线视频| 亚洲一区二区三区色噜噜| 久久中文字幕人妻熟女| 美女高潮的动态| 亚洲人成电影免费在线| 免费一级毛片在线播放高清视频| 美女午夜性视频免费| 日本 欧美在线| 夜夜躁狠狠躁天天躁| 日韩欧美国产一区二区入口| cao死你这个sao货| 免费观看精品视频网站| 啦啦啦免费观看视频1| 真人一进一出gif抽搐免费| 国产精品乱码一区二三区的特点| 五月玫瑰六月丁香| www国产在线视频色| 国产一级毛片七仙女欲春2| 偷拍熟女少妇极品色| 日本一本二区三区精品| 午夜福利18| 1024手机看黄色片| 老司机深夜福利视频在线观看| 97超视频在线观看视频| 国产单亲对白刺激| 久久久久久人人人人人| 中国美女看黄片| 国产精品99久久久久久久久| 波多野结衣高清作品| 人妻久久中文字幕网| 精华霜和精华液先用哪个| 久久草成人影院| 国产精品久久久av美女十八| 精品久久久久久成人av| 久久婷婷人人爽人人干人人爱| 亚洲国产中文字幕在线视频| 他把我摸到了高潮在线观看| 久久久久久久久免费视频了| 亚洲精品粉嫩美女一区| 亚洲成av人片在线播放无| 天天添夜夜摸| 日本熟妇午夜| 色精品久久人妻99蜜桃| 一区二区三区激情视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文日韩欧美视频| 日韩大尺度精品在线看网址| 亚洲成人免费电影在线观看| 久久精品综合一区二区三区| 国产精品 欧美亚洲| 国产精品久久久久久亚洲av鲁大| 久久精品91无色码中文字幕| www日本在线高清视频| or卡值多少钱| 午夜精品一区二区三区免费看| 在线视频色国产色| 又大又爽又粗| 亚洲国产欧美网| 久久中文看片网| 特大巨黑吊av在线直播| 人妻丰满熟妇av一区二区三区| 色噜噜av男人的天堂激情| 热99re8久久精品国产| 成人特级黄色片久久久久久久| 日日干狠狠操夜夜爽| 看片在线看免费视频| 色吧在线观看| 91麻豆av在线| 日韩欧美国产一区二区入口| 国产亚洲精品久久久com| 欧美日韩精品网址| 午夜福利免费观看在线| 伦理电影免费视频| 亚洲欧美日韩无卡精品| 成熟少妇高潮喷水视频| 亚洲激情在线av| 久久久精品大字幕| 亚洲无线在线观看| 日本熟妇午夜| 99riav亚洲国产免费| 亚洲精品一卡2卡三卡4卡5卡| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区视频在线观看免费| 一进一出抽搐动态| 亚洲av成人不卡在线观看播放网| 亚洲精品456在线播放app | 日韩欧美免费精品| 国产毛片a区久久久久| 中文字幕熟女人妻在线| 国产激情偷乱视频一区二区| 国产精品女同一区二区软件 | 99精品久久久久人妻精品| 男人舔奶头视频| 欧美丝袜亚洲另类 | 夜夜躁狠狠躁天天躁| 精品国内亚洲2022精品成人| 国产精品综合久久久久久久免费| 十八禁人妻一区二区| 老司机在亚洲福利影院| 亚洲av第一区精品v没综合| 一区二区三区国产精品乱码| 18禁国产床啪视频网站| 色综合欧美亚洲国产小说| 中文字幕人成人乱码亚洲影| 午夜福利成人在线免费观看| 2021天堂中文幕一二区在线观| 国产真实乱freesex| 亚洲人成网站在线播放欧美日韩| 欧美激情在线99| 欧美乱色亚洲激情| 亚洲无线在线观看| 国产精品电影一区二区三区| 久久精品国产清高在天天线| 日本三级黄在线观看| 最好的美女福利视频网| 无人区码免费观看不卡| av在线蜜桃| 国产亚洲精品久久久com| 在线观看66精品国产| 老鸭窝网址在线观看| 成人国产综合亚洲| 亚洲精品中文字幕一二三四区| 国产精品野战在线观看| 成在线人永久免费视频| 老熟妇乱子伦视频在线观看| 亚洲精品久久国产高清桃花| 亚洲欧美日韩东京热| 免费人成视频x8x8入口观看| 日本成人三级电影网站| 久久久久九九精品影院| 不卡一级毛片| 18禁黄网站禁片午夜丰满| 国产精品综合久久久久久久免费| 国产69精品久久久久777片 | 欧美另类亚洲清纯唯美| av欧美777| 日韩欧美国产在线观看| 亚洲精品美女久久av网站| 国产精品电影一区二区三区| 国产精品精品国产色婷婷| 搡老熟女国产l中国老女人| 淫秽高清视频在线观看| 中文字幕高清在线视频| 俄罗斯特黄特色一大片| 国产精品国产高清国产av| а√天堂www在线а√下载| 一个人看的www免费观看视频| a在线观看视频网站| 亚洲一区二区三区色噜噜| 精品一区二区三区四区五区乱码| 亚洲国产精品999在线| 法律面前人人平等表现在哪些方面| 亚洲国产精品999在线| 国产成人啪精品午夜网站| 免费电影在线观看免费观看| 成人欧美大片| 精品国产乱码久久久久久男人| 国产精品一区二区精品视频观看| 久久九九热精品免费| 国产乱人视频| 精品久久蜜臀av无| 一进一出好大好爽视频| 91老司机精品| 成年女人永久免费观看视频| 国产免费男女视频| 啪啪无遮挡十八禁网站| 九九在线视频观看精品| 熟女人妻精品中文字幕| 2021天堂中文幕一二区在线观| 一卡2卡三卡四卡精品乱码亚洲| 久久天堂一区二区三区四区| 淫妇啪啪啪对白视频| 综合色av麻豆| 两性午夜刺激爽爽歪歪视频在线观看| 啪啪无遮挡十八禁网站| 国内精品美女久久久久久| 麻豆成人午夜福利视频| 丁香欧美五月| 国产av一区在线观看免费| 宅男免费午夜| 亚洲国产日韩欧美精品在线观看 | 午夜免费激情av| 我的老师免费观看完整版| 久久久久性生活片| av欧美777| 最新美女视频免费是黄的| 天堂√8在线中文| 9191精品国产免费久久| 一夜夜www| 国产精品1区2区在线观看.| 午夜免费激情av| 亚洲 国产 在线| 精品午夜福利视频在线观看一区| 美女黄网站色视频| 午夜日韩欧美国产| 啪啪无遮挡十八禁网站| 两个人的视频大全免费| 国产97色在线日韩免费| 丰满的人妻完整版| 真人做人爱边吃奶动态| 国产成人精品久久二区二区91| av福利片在线观看| 久99久视频精品免费| 97人妻精品一区二区三区麻豆| 国产精品久久电影中文字幕| 88av欧美| 午夜日韩欧美国产| 母亲3免费完整高清在线观看| 99久久久亚洲精品蜜臀av| aaaaa片日本免费| 久久这里只有精品中国| 窝窝影院91人妻| 亚洲七黄色美女视频| 夜夜看夜夜爽夜夜摸| 国产视频内射| 五月玫瑰六月丁香| 色老头精品视频在线观看| 国产成人aa在线观看| 国产蜜桃级精品一区二区三区| netflix在线观看网站| 一边摸一边抽搐一进一小说| 亚洲美女黄片视频| 中文字幕久久专区| 老鸭窝网址在线观看| 午夜福利在线在线| 国产高清三级在线| 欧美成人性av电影在线观看| 国内少妇人妻偷人精品xxx网站 | 色综合站精品国产| 国产亚洲av高清不卡| 性欧美人与动物交配| 亚洲18禁久久av| 婷婷亚洲欧美| 精品无人区乱码1区二区| 美女黄网站色视频| 757午夜福利合集在线观看| 可以在线观看的亚洲视频| 日韩欧美一区二区三区在线观看| 亚洲无线观看免费| 99在线视频只有这里精品首页| 国内揄拍国产精品人妻在线| 人人妻人人看人人澡| 日本一二三区视频观看| 精华霜和精华液先用哪个| 国产1区2区3区精品| www.www免费av| 美女大奶头视频| 免费一级毛片在线播放高清视频| 亚洲精品久久国产高清桃花| 成人三级黄色视频| 麻豆一二三区av精品| 俺也久久电影网| 欧美在线黄色| 怎么达到女性高潮| 中亚洲国语对白在线视频| 色在线成人网| 可以在线观看毛片的网站| 18美女黄网站色大片免费观看| 亚洲成人精品中文字幕电影| 亚洲 欧美一区二区三区| 18美女黄网站色大片免费观看| 欧美中文日本在线观看视频| 99在线人妻在线中文字幕| 在线观看66精品国产| 国产成人欧美在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲成人免费电影在线观看| 成人三级做爰电影| 嫩草影院精品99| 两个人的视频大全免费| 黄色丝袜av网址大全| 亚洲欧美一区二区三区黑人| 午夜福利高清视频| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕熟女人妻在线| 我的老师免费观看完整版| 国产高清videossex|