• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automatic counting of microglial cell activation and its applications

    2016-12-01 09:23:28BeatrizGallegoColladoPablodeGracia
    關鍵詞:黃姓江夏瓊花

    Beatriz I. Gallego Collado, Pablo de Gracia

    1 Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain2 Facultad de óptica y Optometría, Departamento de Oftalmología y Otorrinolaringología, Universidad Complutense de Madrid, Madrid, Spain3 Midwestern University, Chicago College of Optometry, Downers Grove, IL, USA4 Department of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA

    Automatic counting of microglial cell activation and its applications

    Beatriz I. Gallego Collado1,2,*,#, Pablo de Gracia3,4,*,#

    1 Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
    2 Facultad de óptica y Optometría, Departamento de Oftalmología y Otorrinolaringología, Universidad Complutense de Madrid, Madrid, Spain
    3 Midwestern University, Chicago College of Optometry, Downers Grove, IL, USA
    4 Department of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA

    How to cite this article: Gallego BI, de Gracia P (2016) Automatic counting of microglial cell activation and its applications. Neural Regen Res 11(8)∶1212-1215.

    Funding: This work was supported by the Science Foundation of Arizona through the Bisgrove Program to PdG, Grant Number∶ BSP 0529-13. BIG received funding from the Ophthalmological Network OFTARED (RD12-0034/0002) and the Institute of Health Carlos III. And also from the PN I+D+i 2008-2011, from the ISCIII-Subdireccion General de Redes y Centros de Investigación Cooperativa, from the European Programme FEDER, and from the project SAF2014-53779-R. BIG also received funding from the project∶ “The role of encapsulated NSAIDs in PLGA microparticles as a neuroprotective treatment” funded by the Spanish Ministry of Economy and Competitiveness.

    Beatriz I. Gallego Collado, O.D., Ph.D. or Pablo de Gracia, O.D., Ph.D., F.A.A.O.,

    bgallegocollado@gmail.com or pdegracia@midwestern.edu

    Both of these two authors

    contributed equally to this article.

    orcid:

    0000-0001-9864-3140

    (Beatriz I. Gallego Collado) 0000-0003-4319-2797

    (Pablo de Gracia)

    Accepted: 2016-08-15

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability.

    glaucoma; glial cells; microglial cells; automatic counting; image processing; inner plexiform layer; outer plexiform layer; bilateral activation

    Introduction

    Vision in mammals begins at the retina, which is the innermost layer of the eye and part of the central nervous system (CNS). The retina comprises a high scaffold of complex neurons that transform light into nerve impulses, which propagate through the visual pathway to the brain where visual processing is completed.

    Glaucoma is a chronic optic neuropathy characterized by neuronal death of retinal ganglion cells (RGCs). The disease is a prevalent visual pathology that leads to vision impairment (affecting > 60 million people worldwide) and is the second most frequent cause of irreversible blindness in the world (Quigley and Broman, 2006). Although age and ocular hypertension (OHT) constitute the major risk factors for the disease, the exact mechanisms involved in glaucoma pathophysiology are unknown. In some instances, the progress of the disease cannot be halted and, in others, major damage has already occurred by the time of diagnosis. Therefore, understanding the pathogenic mechanisms of glaucoma and developing new strategies for early diagnosis are paramount for improving the well-being of individuals suffering from glaucoma.

    Glial Cell Activation in Glaucoma: the Good and the Bad

    Activation of glial cells seems to play an important role in glaucomatous neurodegeneration. Glia are non-neuronal cells in the nervous system that support and protect neurons. Glia, especially microglial cells, are considered to be immune cells in the CNS (including the retina) and their activation after damage is crucial. Early, moderate, transient, well-controlled glial activation could be initially responsible for restoring damaged tissue. However, the sustained tissue stress that occurs in human glaucoma is associated with a chronic activation of glial cells-this hallmark of a harmful neuro-inflammatory process could lead to tissue damage. This concept supports the contention that, in glaucomatous neurodegeneration, glial cells could initiate an immune response that mayexacerbate the glaucomatous neurodegenerative injury (Tezel and the Fourth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group, 2009).

    Although gliotic processes are heterogeneous, common features are shared among them. The most important features of gliotic processes are morphologic and immunophenotypic changes, increase or de novo expression of certain molecules, production of pro- or anti-inflammatory molecules, and cell proliferation (Ramírez et al., 2015b; de Hoz et al., 2016).

    Most research employs experimental unilateral glaucoma initiated in mice by an increase of intraocular pressure (IOP), with the contralateral normotensive eye used as a control. However, glaucomatous optic neuropathy is usually a bilateral disease, although asymmetric. Thus, the neuronal damage initially present in one eye eventually appears later in the contralateral eye (Ramírez et al., 2015b; de Hoz et al., 2016).

    With this in mind, our recent work has focused on the role of bilateral glial activation observed in a unilateral OHT mouse model, as a possible mechanism for understanding early development and progression of glaucomatous neurodegeneration. A significant finding from our research is that bilateral retinal gliosis was observed in both hypertensive and contralateral normotensive untreated eyes; this result supports the concept that the eye contralateral to experimental glaucoma should not be used as an internal control. Briefly, in our study, hypertensive eyes exhibited neuronal damage, evidenced by the frequent presence of NF-200+immunostaining localized in the soma and primary dendrites of some RGCs; this indicated an impairment of these neurons. In hypertensive eyes, a gliotic phenomenon presence was characterized by i) non-proliferative glial fibrillary acidic protein (GFAP)+astrocytic gliosis with morphological changes (loss of cellular complexity); ii) an overall GFAP increase in astrocytes and Müller cells, which is a clear sign of glial activation; iii) proliferative gliosis of ionized calcium binding adaptor molecule 1 (Iba-1)+microglia, characterized by shrinkage of cell processes and displaced microglia between different retinal layers; and iv) the presence of new Iba-1+cell morphotypes (morphologically suggestive of cell migration from the bloodstream). More interesting, in the contralateral normotensive untreated eyes, despite the absence of evidence of RGC death, macroglial and microglial gliosis occurred, similar to the hypertensive eyes. To underline, in both hypertensive and contralateral normotensive untreated eyes, Iba-1+cells and GFAP+cells showed up-regulation of major histocompatibility complex class II (MHC-II) molecules immunostaining (Ramírez et al., 2010, 2015b; Gallego et al., 2012; de Hoz et al., 2013; Rojas et al., 2014). Under normal conditions, MHC-II expression is very low in the CNS, because it is required for antigen presentation to T cells; however, under nearly all inflammatory and neurodegenerative conditions, MHC-II expression significantly increases in reactive glia.

    In light of these findings, and bearing in mind that glia constitute the immune cell population in the CNS, we suggested that an immune process was taking place in not only lasered eyes but also in contralateral retinas. Because we found no evidence of neuronal damage in contralateral retinas, we deduced that the glial response observed may represent an attempt to maintain homeostasis and protect retinal neurons from a stimulus that could come from the hypertensive eye and reach the contralateral retina by a hitherto unknown route. Possible mechanisms that would explain this bilateral eye communication include: i) a systemic hematic-immune involvement through a compromised blood-brain barrier in the hypertensive eyes, which has been found in glaucoma; ii) the propagation of signals into the opposite contralateral retina, passing through the optic chiasma; iii) some fibers from RGCs that cross the optic chiasm to reach the contralateral retina, known as retino-retinal projections; iv) a bilateral disruption of the anterior chamber associated immune deviation (ACAID), which has been reported with several unilateral eye injuries; or v) neurogenic mechanisms, which are also involved in the symmetrical spread of inflammation in rheumatoid arthritis (Ramírez et al., 2015b).

    These results do not clarify whether glial activation precedes or is a consequence of neuronal damage in glaucoma. It is possible that before any neuronal damage occurs, some early inflammatory responses are involved in the onset or progression of the glaucomatous neurodegeneration.

    We do know that ophthalmic diseases that affect retinal neurons share common pathophysiological features with cerebral neurodegenerative diseases. Thus, glial activation could be used in the development of new strategies for early diagnosis and treatment of neurodegenerative diseases, by controlling the development of neurodegeneration in the retina and also in other CNS locations.

    Microglial Proliferation: Challenges in Quantitative Assessments

    Microglial proliferation is a sign of gliosis and provides information about ongoing stress situations in the nervous system, including the retina (Ramírez et al., 2015a). This proliferation has been evaluated in quantitative studies of microglial cells using animal models of different eye diseases, and in other CNS conditions such as Alzheimer disease.

    The analysis of large numbers of tissue samples is required to achieve decisive data of statistical significance in these studies. The manual method (a researcher counts cellson an image) is still considered the gold standard for quantitative assessments of microglial cells in the CNS. These manual processes, however, are time consuming, affected by the bias of the researcher, and prone to human error. In an attempt to overcome these shortcomings, our group recently developed an image processing algorithm in MATLAB that accurately and automatically identifies and quantifies mouse retinal microglial cells, in both na?ve tissue and in a unilateral model of OHT exhibiting microgliotic processes (de Gracia et al., 2015).

    Figure 1 Illustration of the automatic retinal microglial cell quantification methodology.

    Microglial cells are characterized by small cellular bodies from which emerge numerous, long, profusely ramified branches; these cells are distributed over the parenchyma of the nervous tissue, but without overlap of neighboring cells. These cellular features, which are also observed in the retina, allow visual identification of a single microglial cell and are the key to our algorithm, which automatically determines the number of microglial cells in the inner and outer plexiform layers of the retina (Ramírez et al., 2015a).

    這是敲門歌,XX指出嫁姑娘家族的堂號?!疤锰枴笔羌易彘T戶的代稱,是家族文化重要的組成部分。如果出嫁姑娘姓黃,九寨黃姓的堂號是江夏堂,則會改成“江夏朝中招駙馬”。這里用了借喻,“揚州瓊花”代替嫁姑娘這件喜事;“滎陽城”代替女方的家?!皳P州瓊花”指《隋唐演義》中,揚州有一朵漂亮的牡丹花,楊廣去看而花不開;但李世民去,花就開了,說明李世民才是花主,暗示他才是天子。所以這里就用“揚州瓊花現(xiàn)”來表示要嫁的姑娘像揚州的花一樣找到正主了。

    These specific microglial cell features remain even during proliferative events; however, depending on particular characteristics of the tissue analyzed, microglial cells sometimes do not completely fulfil these criteria. This makes the process of cell recognition complex and not very reliable for both human and computational approaches. That complexity is noted on the nerve fiber layer of the retina, where Iba-1+cells adapt their somas and processes to the spaces within the fibers of the RGCs and the blood vessels. Nonetheless, instead of counting independent events in a research scenario, another quantitative approach is to calculate the area covered by specific immunolabeling, which produces an indirect measure of the number of cells in the tissue. An increase of the area covered by, for example, Iba-1 immunolabeling is also a mark of gliosis. This approach provided the key to developing another automatic tool in our algorithm that allows quantitative analysis of the area of the retina occupied by microglial cells (Figure 1).

    One of the benefits of our algorithm is the interactive work interface, which was developed to supply researchers with a graphic visualization of the process and the ability to change some parameters of interest, such as cell distance and image threshold. As a result, and despite a complex mathematicalprogramming environment, this new algorithm is easy to use and does not require the user to have a programing background. Another advantage of our algorithm is that it allows researchers not only to work with a 2-dimensional image but also to study 3-dimensional volume (de Gracia et al., 2015). Because of the complex 3-dimensional spatial distribution of microglial cells in nervous tissue, this is a very useful feature.

    With our new automated microglial cell quantification method, the time for counting a huge set of images can be radically reduced from weeks (manual procedure) to a few hours (computational analysis) without any statistically significant difference from results of a manual count by a human (gold standard). In addition, our results exhibited a good correlation not only in na?ve tissues but also in highly proliferative gliotic states (de Gracia et al., 2015).

    This algorithm has been developed for the quantification of microglial cells in retinal flat mount; however, due to the similarities of microglial cells within the CNS, this algorithm (once calibrated) will also facilitate quantitative tasks in other regions of the nervous system.

    Microglial Analysis: Development of New Neuroprotective Therapies

    Although it was already known that glaucoma is usually a bilateral but asymmetrically presenting disease, the contralateral eye in unilateral glaucoma models has been frequently used as an internal control. In our unilateral mouse model of laser induced OHT, the contralateral gliosis (bilateral reaction) may represent events linked with the initial steps of the glaucomatous neurodegeneration, previous to a neuronal death, and probably mediated by the ongoing inflammatory processes. Research about the events observed in the contralateral eyes in response to a unilateral model of glaucoma is sparse (Ramírez et al., 2015b); however, new studies focused on the implication of this activation of glial cells could provide a better understanding of glaucomatous pathophysiology. Research on steps prior to neurodegeneration in glaucoma, and therefore possible intervention points in the disease, has the potential to allow assessment and development of new neuroprotective therapies.

    Microglial proliferation has been observed in our studies, both in the presence of neuronal death and also without it; thus, future quantitative microglial studies could assist in the detection of early neurodegeneration and establish signs or events related to neurodegeneration. Also, the number of microglial cells in tissue could be issued as an index of recovery after the application of neuroprotective therapies. A prodigious amount of research is needed to collect strong evidence to fully understand the etiology of glaucoma and to develop treatments. At this point in time, our algorithm provides researchers with a useful tool to perform quick and accurate microglial cell analysis on large data sets of images.

    The algorithm will be provided at no cost to any researcher contacting the authors of this study (de Gracia et al., 2015).

    Acknowledgments: The authors of this paper thanks the Neuroscience Publications office at Barrow Neurological Institute for their editorial and manuscript preparation assistance.

    Conflicts of interest: None declared.

    This work has been presented in the following meetings:

    1. Salazar JJ, Gallego BI, Rojas B, Trivi?o A, Ramírez JM, de Gracia P (2013) A new automatic method for counting microglial cells in whole-mount mice retinas. Sociedad de Investigación de Retina de la Comunidad Valenciana (SIRCOVA). Co-patrocinio Association for Research in Vision and Ophthalmology (ARVO). Ophthal Res 50∶27-53.

    2. de Hoz R, Gallego BI, Rojas B, Ramírez AI, Salazar JJ, Trivi?o A, de Gracia P, Ramírez JM (2013) A new automatic method for microglial-cell quantification in whole-mount mouse retinas. Joint Eu ropean Research Meeting in Ophthalmology and Vision. European As sociation for Vision and Eye Research (EVER). Acta Ophthalmol 89. 3. de Gracia P, Gallego BI (2012) A new automatic method for coun ting microglial cells in healthy and glaucomatous retinas. American Academy of Optometry meeting, American Academy of Optometry (AAO).

    References

    de Gracia P, Gallego BI, Rojas B, Ramírez AI, de Hoz R, Salazar JJ, Trivino A, Ramírez JM (2015) Automatic counting of microglial cells in healthy and glaucomatous mouse retinas. PLoS One 10:e0143278.

    de Hoz R, Rojas B, Ramírez AI, Salazar JJ, Gallego BI, Trivino A, Ramírez JM (2016) Retinal macroglial responses in health and disease. Biomed Res Int 2016:2954721.

    de Hoz R, Gallego BI, Ramírez AI, Rojas B, Salazar JJ, Valiente-Soriano FJ, Aviles-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Trivino A, Ramírez JM (2013) Rod-like microglia are restricted to eyes with laser-induced ocular hypertension but absent from the microglial changes in the contralateral untreated eye. PLoS One 8:e83733.

    Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramírez AI, Salinas-Navarro M, Ortin-Martinez A, Valiente-Soriano FJ, Aviles-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Trivino A, Ramírez JM (2012) IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation 9:92.

    Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262-267.

    Ramírez AI, Rojas B, de Hoz R, Salazar JJ, Gallego BI, Trivi?o A, Ramírez JM (2015a) Microglia, inflammation, and glaucoma. Dover: SM Group Open Access eBooks ed.

    Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salobrar-Garcia E, Valiente-Soriano FJ, Trivino A, Ramírez JM (2015b) Macro- and microglial responses in the fellow eyes contralateral to glaucomatous eyes. Prog Brain Res 220:155-172.

    Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salinas-Navarro M, Alarcon-Martinez L, Ortin-Martinez A, Aviles-Trigueros M, Vidal-Sanz M, Trivino A, Ramírez JM (2010) Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. Invest Ophthalmol Vis Sci 51:5690-5696.

    Rojas B, Gallego BI, Ramírez AI, Salazar JJ, de Hoz R, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas Pérez MP, Vidal-Sanz M, Trivi?o A, Ramírez JM (2014) Microglia in mice retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers: a detailed description. J Neuroinflammation 11:133.

    Tezel G. the Fourth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group (2009) The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci 50:1001-1012.

    10.4103/1673-5374.189166

    *Correspondence to:

    猜你喜歡
    黃姓江夏瓊花
    福建江夏學院學報2021年總目次
    窗外飛絮
    瓊花的修剪技巧及在園林景觀設計中的應用
    揚州瓊花涂裝工程技術有限公司
    專用汽車(2020年2期)2020-04-08 10:57:28
    給你一個橙子好不好?
    中學生博覽(2018年8期)2018-05-07 08:59:28
    黃姓源頭 青銅器里的潢川黃國
    大眾考古(2015年9期)2015-06-26 07:58:28
    一起撐傘吧
    福建江夏學院法學院簡介
    海峽法學(2015年2期)2015-02-27 15:08:25
    生路
    生路
    小小說月刊(2010年9期)2010-05-14 14:55:03
    亚洲精品视频女| 日韩欧美一区视频在线观看| 咕卡用的链子| 777米奇影视久久| 精品久久久久久电影网| 国产一区二区三区av在线| 老鸭窝网址在线观看| 亚洲成人av在线免费| 不卡视频在线观看欧美| 国产又色又爽无遮挡免| 国产一区有黄有色的免费视频| 精品人妻一区二区三区麻豆| 在线观看www视频免费| 国产 精品1| 最近2019中文字幕mv第一页| 97精品久久久久久久久久精品| 女性被躁到高潮视频| 免费观看无遮挡的男女| 成人影院久久| 欧美精品av麻豆av| 欧美精品国产亚洲| 国产黄色免费在线视频| 99精国产麻豆久久婷婷| 欧美激情极品国产一区二区三区| 极品少妇高潮喷水抽搐| 日韩 亚洲 欧美在线| 天堂8中文在线网| 哪个播放器可以免费观看大片| 欧美激情高清一区二区三区 | 啦啦啦在线观看免费高清www| 男女啪啪激烈高潮av片| 女性生殖器流出的白浆| 国产色婷婷99| 在线亚洲精品国产二区图片欧美| av不卡在线播放| 亚洲内射少妇av| 99热国产这里只有精品6| 最近最新中文字幕大全免费视频 | 欧美精品一区二区免费开放| 国产白丝娇喘喷水9色精品| 美女午夜性视频免费| 18禁动态无遮挡网站| 亚洲欧美中文字幕日韩二区| 精品少妇久久久久久888优播| 十分钟在线观看高清视频www| 欧美精品人与动牲交sv欧美| 欧美日本中文国产一区发布| tube8黄色片| 久久人人爽人人片av| 搡老乐熟女国产| 最近最新中文字幕免费大全7| 一级毛片黄色毛片免费观看视频| 不卡视频在线观看欧美| 免费看不卡的av| 丰满饥渴人妻一区二区三| 97精品久久久久久久久久精品| 欧美国产精品va在线观看不卡| 伦理电影免费视频| 欧美国产精品一级二级三级| 欧美bdsm另类| 欧美精品国产亚洲| 免费久久久久久久精品成人欧美视频| 91aial.com中文字幕在线观看| 日本-黄色视频高清免费观看| kizo精华| 女人高潮潮喷娇喘18禁视频| 久久精品夜色国产| √禁漫天堂资源中文www| 丝袜人妻中文字幕| 天天躁夜夜躁狠狠久久av| 97在线人人人人妻| 色婷婷久久久亚洲欧美| 熟女少妇亚洲综合色aaa.| 久久精品国产自在天天线| 日韩av不卡免费在线播放| 亚洲,欧美,日韩| 亚洲av在线观看美女高潮| 精品国产超薄肉色丝袜足j| 亚洲精品一区蜜桃| 新久久久久国产一级毛片| 国产精品国产三级国产专区5o| 免费在线观看视频国产中文字幕亚洲 | 欧美少妇被猛烈插入视频| freevideosex欧美| 精品酒店卫生间| 国产日韩欧美亚洲二区| 精品国产超薄肉色丝袜足j| 亚洲av免费高清在线观看| 色播在线永久视频| 国产视频首页在线观看| 国产精品秋霞免费鲁丝片| 这个男人来自地球电影免费观看 | 国产精品香港三级国产av潘金莲 | 久久99一区二区三区| 国产白丝娇喘喷水9色精品| 国产又爽黄色视频| 久久久久久人妻| 亚洲一区中文字幕在线| 啦啦啦在线免费观看视频4| 精品午夜福利在线看| 汤姆久久久久久久影院中文字幕| 亚洲中文av在线| 免费在线观看完整版高清| 黄色配什么色好看| 亚洲精品久久成人aⅴ小说| 老熟女久久久| 一本久久精品| 人人澡人人妻人| 国产男女内射视频| 一级毛片 在线播放| 免费观看a级毛片全部| 亚洲精品aⅴ在线观看| 成人毛片60女人毛片免费| 久久久国产精品麻豆| 美女午夜性视频免费| 国产在线一区二区三区精| 999久久久国产精品视频| 亚洲精品一区蜜桃| 丰满饥渴人妻一区二区三| 高清欧美精品videossex| 亚洲av电影在线观看一区二区三区| 亚洲av福利一区| 69精品国产乱码久久久| 久久精品国产亚洲av高清一级| 国产伦理片在线播放av一区| 免费少妇av软件| 99久久人妻综合| 丰满饥渴人妻一区二区三| 欧美 亚洲 国产 日韩一| 亚洲情色 制服丝袜| 日本猛色少妇xxxxx猛交久久| 国产熟女午夜一区二区三区| 欧美精品一区二区大全| 久久人妻熟女aⅴ| 亚洲av电影在线进入| kizo精华| 少妇精品久久久久久久| 蜜桃国产av成人99| 成年人午夜在线观看视频| 一区二区三区乱码不卡18| 国产免费视频播放在线视频| 黑人猛操日本美女一级片| 日本wwww免费看| 欧美日韩精品成人综合77777| 日韩av在线免费看完整版不卡| 边亲边吃奶的免费视频| 国产av精品麻豆| 美女高潮到喷水免费观看| 久久av网站| 日本欧美视频一区| 国产av一区二区精品久久| 久久av网站| 热99久久久久精品小说推荐| 国产伦理片在线播放av一区| 考比视频在线观看| 老女人水多毛片| 亚洲国产欧美日韩在线播放| 侵犯人妻中文字幕一二三四区| 久久国产亚洲av麻豆专区| 黑人欧美特级aaaaaa片| 大片电影免费在线观看免费| av免费在线看不卡| 一级片'在线观看视频| 人人妻人人澡人人看| 视频区图区小说| 最新的欧美精品一区二区| 黄频高清免费视频| 久久人妻熟女aⅴ| 99国产综合亚洲精品| 国产男女超爽视频在线观看| 在线天堂最新版资源| 亚洲精品美女久久久久99蜜臀 | 久久国产精品大桥未久av| 免费看不卡的av| 日韩精品免费视频一区二区三区| 三上悠亚av全集在线观看| 青春草国产在线视频| 免费黄色在线免费观看| av女优亚洲男人天堂| 亚洲国产色片| 老司机亚洲免费影院| 少妇人妻精品综合一区二区| 久久精品久久久久久久性| 99热全是精品| 欧美成人午夜精品| 毛片一级片免费看久久久久| 免费观看性生交大片5| 最近手机中文字幕大全| 丰满少妇做爰视频| 一二三四中文在线观看免费高清| 国产精品秋霞免费鲁丝片| 香蕉精品网在线| 国产野战对白在线观看| 秋霞在线观看毛片| 精品少妇内射三级| 亚洲精品国产av成人精品| 日韩 亚洲 欧美在线| 丝袜在线中文字幕| 97在线人人人人妻| 男人舔女人的私密视频| 侵犯人妻中文字幕一二三四区| 女性被躁到高潮视频| 一本久久精品| 97人妻天天添夜夜摸| 一级a爱视频在线免费观看| 777久久人妻少妇嫩草av网站| 午夜激情av网站| 国产乱来视频区| 曰老女人黄片| 日韩欧美精品免费久久| 2021少妇久久久久久久久久久| 欧美 亚洲 国产 日韩一| 侵犯人妻中文字幕一二三四区| 久久精品久久久久久久性| 欧美成人精品欧美一级黄| 婷婷成人精品国产| 精品一区二区三卡| 国产成人精品一,二区| 美女午夜性视频免费| 热99久久久久精品小说推荐| 国产又色又爽无遮挡免| 亚洲人成网站在线观看播放| 亚洲精品一二三| 国产成人一区二区在线| 久久久精品免费免费高清| 成年女人在线观看亚洲视频| 国产不卡av网站在线观看| 国产精品不卡视频一区二区| 五月开心婷婷网| 日本黄色日本黄色录像| 久久久久国产网址| 色94色欧美一区二区| 人人妻人人澡人人爽人人夜夜| 亚洲成av片中文字幕在线观看 | 亚洲男人天堂网一区| 久久精品aⅴ一区二区三区四区 | 91精品伊人久久大香线蕉| 丰满乱子伦码专区| 中文字幕最新亚洲高清| 一区二区三区四区激情视频| 一本—道久久a久久精品蜜桃钙片| 99久久中文字幕三级久久日本| 成年女人毛片免费观看观看9 | 毛片一级片免费看久久久久| 日本av手机在线免费观看| 9色porny在线观看| 人人妻人人添人人爽欧美一区卜| 国产老妇伦熟女老妇高清| 久久午夜福利片| 国语对白做爰xxxⅹ性视频网站| 亚洲,一卡二卡三卡| 国产精品免费视频内射| 欧美97在线视频| 亚洲精华国产精华液的使用体验| 人成视频在线观看免费观看| 2018国产大陆天天弄谢| www日本在线高清视频| 亚洲欧美色中文字幕在线| 精品福利永久在线观看| 日韩中文字幕视频在线看片| 一区二区三区乱码不卡18| 欧美亚洲日本最大视频资源| 久久久欧美国产精品| 美女大奶头黄色视频| 久久精品久久久久久噜噜老黄| 在线观看三级黄色| 一区二区三区四区激情视频| 国语对白做爰xxxⅹ性视频网站| 国产 精品1| 丝瓜视频免费看黄片| 伦精品一区二区三区| 国产高清不卡午夜福利| 丝袜人妻中文字幕| 日韩不卡一区二区三区视频在线| 日韩制服骚丝袜av| √禁漫天堂资源中文www| 亚洲欧洲日产国产| 久久影院123| 国产精品女同一区二区软件| 男女边吃奶边做爰视频| 午夜日韩欧美国产| 亚洲精品国产av成人精品| 国产亚洲一区二区精品| 超碰97精品在线观看| 精品人妻在线不人妻| 大香蕉久久网| 亚洲精品视频女| 精品久久久久久电影网| 激情五月婷婷亚洲| 99九九在线精品视频| 久久久精品区二区三区| 欧美在线黄色| 不卡视频在线观看欧美| 国产成人精品久久久久久| 欧美精品一区二区免费开放| 日日撸夜夜添| 色视频在线一区二区三区| 最近的中文字幕免费完整| 久热久热在线精品观看| 精品国产一区二区三区四区第35| 欧美日韩一区二区视频在线观看视频在线| 欧美精品一区二区免费开放| 国产精品人妻久久久影院| 人人澡人人妻人| 又黄又粗又硬又大视频| 人妻系列 视频| 精品亚洲乱码少妇综合久久| 国产成人精品在线电影| 麻豆av在线久日| 国产一区亚洲一区在线观看| 日韩欧美精品免费久久| 久久久久久久久免费视频了| 一本大道久久a久久精品| 晚上一个人看的免费电影| a级片在线免费高清观看视频| 日本-黄色视频高清免费观看| 五月伊人婷婷丁香| 国产男女内射视频| 毛片一级片免费看久久久久| 国产精品久久久久久精品古装| 久久这里有精品视频免费| 免费大片黄手机在线观看| 电影成人av| 亚洲欧洲国产日韩| 搡老乐熟女国产| 亚洲精品国产av成人精品| 另类精品久久| 久久狼人影院| 欧美日韩综合久久久久久| 国产 一区精品| 国产视频首页在线观看| 在线 av 中文字幕| 久久精品国产a三级三级三级| 91精品三级在线观看| 日韩人妻精品一区2区三区| 国产97色在线日韩免费| 一区二区三区四区激情视频| 激情视频va一区二区三区| 在线观看免费视频网站a站| 国产免费福利视频在线观看| 最近最新中文字幕免费大全7| 黄色怎么调成土黄色| 老熟女久久久| 美女脱内裤让男人舔精品视频| 少妇的丰满在线观看| av女优亚洲男人天堂| 亚洲精品美女久久久久99蜜臀 | 秋霞在线观看毛片| 伦理电影大哥的女人| 男女边吃奶边做爰视频| 晚上一个人看的免费电影| 久久精品国产亚洲av高清一级| 成人影院久久| 国产一级毛片在线| 午夜福利在线观看免费完整高清在| 七月丁香在线播放| 亚洲精品日本国产第一区| a级片在线免费高清观看视频| 波多野结衣一区麻豆| 黄色怎么调成土黄色| 免费黄网站久久成人精品| 国产女主播在线喷水免费视频网站| 成人影院久久| 亚洲图色成人| freevideosex欧美| 日韩免费高清中文字幕av| kizo精华| 亚洲综合色网址| 香蕉精品网在线| 天天操日日干夜夜撸| 久久热在线av| 久久这里有精品视频免费| 国产97色在线日韩免费| 久久久久国产精品人妻一区二区| 亚洲av电影在线进入| 高清av免费在线| 久久久久久人人人人人| 免费女性裸体啪啪无遮挡网站| 天堂8中文在线网| 一个人免费看片子| 一区二区三区精品91| 最近手机中文字幕大全| 人妻一区二区av| 99热网站在线观看| 久久久精品区二区三区| 狠狠婷婷综合久久久久久88av| 久久久久久久精品精品| 国产xxxxx性猛交| 搡女人真爽免费视频火全软件| 一级黄片播放器| 国产精品av久久久久免费| 中国国产av一级| 国产精品久久久av美女十八| 日韩大片免费观看网站| 青春草视频在线免费观看| 亚洲精品国产一区二区精华液| 久久精品熟女亚洲av麻豆精品| 亚洲内射少妇av| 午夜福利一区二区在线看| 欧美国产精品一级二级三级| 欧美黄色片欧美黄色片| 日日爽夜夜爽网站| 精品国产一区二区三区久久久樱花| 国产在视频线精品| 国产成人精品久久二区二区91 | 在线 av 中文字幕| 麻豆av在线久日| 一区二区三区激情视频| 免费观看a级毛片全部| 18禁观看日本| 18禁裸乳无遮挡动漫免费视频| 亚洲第一av免费看| 91久久精品国产一区二区三区| kizo精华| 免费观看无遮挡的男女| 人体艺术视频欧美日本| 美女国产高潮福利片在线看| 丝袜人妻中文字幕| 女的被弄到高潮叫床怎么办| 国产麻豆69| 男女午夜视频在线观看| 大片电影免费在线观看免费| 国产成人午夜福利电影在线观看| 校园人妻丝袜中文字幕| 久久国产精品大桥未久av| 一本久久精品| 天天躁夜夜躁狠狠久久av| 秋霞在线观看毛片| av福利片在线| 免费黄频网站在线观看国产| 国产亚洲欧美精品永久| 蜜桃在线观看..| 色视频在线一区二区三区| 国产在线免费精品| 嫩草影院入口| 久久人妻熟女aⅴ| 亚洲一区中文字幕在线| 久久免费观看电影| 黄色 视频免费看| 久久这里只有精品19| 又粗又硬又长又爽又黄的视频| 十分钟在线观看高清视频www| 亚洲国产成人一精品久久久| 18在线观看网站| 2021少妇久久久久久久久久久| 十八禁网站网址无遮挡| 一边亲一边摸免费视频| 亚洲少妇的诱惑av| 五月伊人婷婷丁香| 欧美精品亚洲一区二区| 国产精品av久久久久免费| 黄片播放在线免费| 久久这里有精品视频免费| 女人精品久久久久毛片| 国产精品蜜桃在线观看| 中文天堂在线官网| 美国免费a级毛片| 欧美黄色片欧美黄色片| 少妇的丰满在线观看| 成年av动漫网址| 欧美精品一区二区免费开放| 超碰成人久久| 亚洲国产日韩一区二区| 国产高清国产精品国产三级| 人妻 亚洲 视频| 日韩av免费高清视频| 男女无遮挡免费网站观看| 久久久久久伊人网av| 久久精品国产a三级三级三级| 人人妻人人澡人人看| 国产乱来视频区| 男的添女的下面高潮视频| 亚洲,一卡二卡三卡| 久久久欧美国产精品| 99热网站在线观看| 麻豆精品久久久久久蜜桃| 这个男人来自地球电影免费观看 | 天堂8中文在线网| 午夜影院在线不卡| 哪个播放器可以免费观看大片| 一本久久精品| 日韩熟女老妇一区二区性免费视频| 久久精品久久精品一区二区三区| 看免费成人av毛片| 免费观看性生交大片5| 久久久欧美国产精品| 国产亚洲最大av| 日本欧美视频一区| 免费不卡的大黄色大毛片视频在线观看| 女人被躁到高潮嗷嗷叫费观| 肉色欧美久久久久久久蜜桃| 高清不卡的av网站| 欧美老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 亚洲伊人色综图| 观看av在线不卡| 国产乱来视频区| 国产精品 国内视频| 国产精品嫩草影院av在线观看| 精品酒店卫生间| 青春草亚洲视频在线观看| 日韩视频在线欧美| 各种免费的搞黄视频| 午夜精品国产一区二区电影| 久久久久久久久久久久大奶| 高清不卡的av网站| 80岁老熟妇乱子伦牲交| 精品久久久久久电影网| 如何舔出高潮| 日产精品乱码卡一卡2卡三| 亚洲欧美一区二区三区国产| 国产高清不卡午夜福利| 青春草亚洲视频在线观看| 美女中出高潮动态图| 极品人妻少妇av视频| 麻豆精品久久久久久蜜桃| 中文天堂在线官网| 9191精品国产免费久久| 亚洲精品美女久久av网站| 国产男女内射视频| 国产成人aa在线观看| 国产男女超爽视频在线观看| av在线播放精品| 日韩电影二区| 久久久久久伊人网av| 黄网站色视频无遮挡免费观看| 狠狠婷婷综合久久久久久88av| 中文字幕av电影在线播放| 欧美人与善性xxx| 搡女人真爽免费视频火全软件| 亚洲av综合色区一区| 日韩av在线免费看完整版不卡| 欧美 亚洲 国产 日韩一| 国产在线免费精品| 成人18禁高潮啪啪吃奶动态图| 日本欧美视频一区| av片东京热男人的天堂| 免费看av在线观看网站| 国产黄色免费在线视频| 黄色视频在线播放观看不卡| 黑丝袜美女国产一区| av一本久久久久| 精品人妻在线不人妻| 熟女少妇亚洲综合色aaa.| 老女人水多毛片| 日韩伦理黄色片| 久久精品久久久久久久性| 美女大奶头黄色视频| 天天躁日日躁夜夜躁夜夜| 欧美最新免费一区二区三区| 在线观看免费高清a一片| 亚洲国产精品999| 免费av中文字幕在线| 亚洲三级黄色毛片| 免费在线观看黄色视频的| 热re99久久精品国产66热6| 久久99精品国语久久久| 麻豆乱淫一区二区| 日韩人妻精品一区2区三区| 亚洲一区中文字幕在线| 国产成人精品久久久久久| 天天躁日日躁夜夜躁夜夜| 成年人免费黄色播放视频| 国产精品欧美亚洲77777| 日韩精品免费视频一区二区三区| 少妇的丰满在线观看| videos熟女内射| 少妇人妻久久综合中文| 18禁观看日本| 国产精品一国产av| 啦啦啦啦在线视频资源| 亚洲精品久久久久久婷婷小说| 最近的中文字幕免费完整| 大话2 男鬼变身卡| 久久精品国产综合久久久| 美女高潮到喷水免费观看| 嫩草影院入口| 欧美最新免费一区二区三区| 国产精品久久久久久av不卡| 精品国产一区二区三区久久久樱花| 91精品国产国语对白视频| 成人免费观看视频高清| 亚洲国产最新在线播放| 国产有黄有色有爽视频| 国产在视频线精品| 亚洲成人av在线免费| 我的亚洲天堂| h视频一区二区三区| 高清av免费在线| 赤兔流量卡办理| 亚洲欧洲精品一区二区精品久久久 | 午夜福利影视在线免费观看| 伦精品一区二区三区| 日日爽夜夜爽网站| 90打野战视频偷拍视频| 亚洲欧美一区二区三区久久| 免费观看av网站的网址| 成年人午夜在线观看视频| 久久久久久久久久久久大奶| 久久人人爽人人片av| 免费高清在线观看视频在线观看| 韩国av在线不卡| 欧美日韩视频精品一区| 纯流量卡能插随身wifi吗| 亚洲av成人精品一二三区| 免费黄频网站在线观看国产| 欧美日韩亚洲国产一区二区在线观看 | 国产av国产精品国产| 久久久久久久大尺度免费视频| 亚洲欧洲国产日韩| 精品人妻一区二区三区麻豆| 中国三级夫妇交换| 精品国产一区二区三区四区第35| 日本猛色少妇xxxxx猛交久久| 赤兔流量卡办理|