• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical Transmission Properties of Asymmetric Bowtie Nano-Aperture Array

    2016-11-28 03:50:31SUNXinFENGMinWANGBinCAOXueweiWANGYufang
    光散射學(xué)報 2016年3期
    關(guān)鍵詞:基模非對稱偏置

    SUN Xin,FENG Min,WANG Bin,CAO Xue-wei,WANG Yu-fang

    (School of Physics,Nankai University,Tianjin 300071)

    ?

    Optical Transmission Properties of Asymmetric Bowtie Nano-Aperture Array

    SUN Xin,FENG Min,WANG Bin,CAO Xue-wei,WANG Yu-fang*

    (SchoolofPhysics,NankaiUniversity,Tianjin300071)

    We investigated the optical properties of two different asymmetric bowtie nano-aperture (BNA) structures using numerical simulation.For the BNA with its gap displaced,the fundamental resonance is in linear relation with aperture perimeter.And different gap sizes show different sensitivity to gap displacement.For the BNA with one edge geometrically modified,the fundamental resonance can be tuned in linear fashion by changing one geometrical parameter (the height of the remaining parth2).Furthermore,peak splitting of Fabry-Perot-like resonance can also be observed in the study.Both approaches we propose in this work to break the symmetry of BNA can be used flexibly to manipulate the resonances of BNA structure.

    bowtie nano-aperture; extraordinary optical transmission; surface plasmon polaritons; optical resonance

    1 Introduction

    Light concentration,manipulation,and transmission enhancement at nanoscale have attracted numerous attentions in the recent decade.Typically,these novel optical phenomena arise when small geometric characteristics are introduced for the metal nano-structures that can give rise to various kinds of resonances.These resonances often lead to an exotic phenomenon called extraordinary optical transmission (EOT) which has a plethora of potential applications.EOT was discovered by Ebbesen,et al[1]in 1998 and since then has generated great interest among researchers.Lots of work explored various nano-structures that may give rise to EOT phenomenon.Some nano-aperture based structures such as circular apertures,rectangular apertures[2-3],and other apertures of novel shapes[4-7]have been studied.One of the most interesting and prominent structures among them is bowtie nano-aperture (BNA).BNAs have bowtie-shaped profiles.They are usually drilled in the film made of noble metal and arranged in two dimensional array.The film with BNAs on it exhibits large cutoff wavelength,high light concentration and transmission enhancement effects[8-10].In the works above,most of the apertures on the metal films are symmetric.However,some studies also investigated optical properties of asymmetric apertures.Yin,et al[11]studied the influence of introduction of protuberances inside square apertures on the whole structure′s transmission properties.They discovered that for asymmetric square holes,there is an obvious peak splitting phenomenon.This phenomenon originates from a new resonant mode due to the asymmetry of the structure.Here,it is interesting for us to question,how the transmission properties would change when asymmetry is introduced to BNA.In this study,we adopt two approaches to break the symmetry of BNA.Using FDTD simulation,we found that both have interesting effects on the two main resonant modes of the structure.

    2 Model and Simulation

    The structure we study is a free-standing silver film with BNAs on it.BNAs are arranged in two-dimensional array on the film.By "two dimensional",we mean that aperture repeats itself in bothxandydirection with a certain spatial period.Figure 1 (a) is the schematic of a typical BNA structure.We simulated a single computation cell with periodic boundaries around.The cell has square cross-section on x-y plane.The length of the square cross-section is 500 nm.Thus,the entire simulation system is equivalent to a 2D BNA array of 500 nm spatial period.Each BNA on the film has a square outline of length 200 nm.The thickness of the film is also 200 nm.The structure is under normal incidence from+zdirection.The incident light is plane wave and its E-field is polarized alongxdirection.

    Fig.1 (a) Bowtie nano-aperture (BNA) in x-y plane.The outline length of the aperture is 200 nm.The length of the square cross section is 500 nm.Dashed line represents the aperture after gap displacement.(b) BNA with two parts of right edge cut off viewed in x-z plane.The cut length along x directiondis 50 nm.h1 andh3 are the height of the two cut parts,respectively.h2 is the height of the remaining part

    3 Results and Discussions

    3.1 Transmission properties of a typical BNA structure

    Figure 2 is the transmission spectrum of a BNA structure with 50 nm gap.From this figure,we can see that there are three distinguishable peaks on the spectrum.The peak in the near infrared region corresponds to the fundamental resonance.At this resonant mode,the E-field enhanced area is uniform alongzdirection in the gap.It is equivalent to the mode at cutoff wavelength of an equivalent infinitely long waveguide with same profile as BNA[9].The resonant wavelength of fundamental mode is independent of film thickness and is linearly dependent of aperture perimeter[8].The peak located at about 615 nm is the Fabry-Perot-like (FP) resonance whose resonant wavelength is determined by film thickness.We refer to this resonance as FP-1 resonance since there is only one node in the center of the cavity.The two resonances we mentioned here belong to localized resonant mode.The third peak on the spectrum at 500 nm corresponds to the Rayleigh-Wood anomaly (RWA) phenomenon.It is inherently extended surface mode.Both the localized mode and extended surface mode can be identified on a typical nano-structure that exhibits extraordinary optical transmission[12].

    Fig.2 The transmission spectrum of BNA with 50 nm gap size.The peak at 865 nm corresponds to the fundamental resonance.The peak at 615 corresponds to the Fabry-Perot-like resonance.The peak at 505 is attributed to Rayleigh-Wood anomaly (RWA)

    3.2 Displacing gap

    Fig.3 The linear relation of fundamental resonant wavelength with aperture perimeter of 20 nm gap size BNA.The aperture perimeter is changed due to gap displacement.The dots represent the data obtained from our simulations.The gray dashed line is the linear fitting of the actual data

    The FP peaks also red-shift with increasing gap displacement.However,its changing range is not large compared to fundamental peak.For a typical BNA,i.e.20 nm gap,the changing range of FP resonant wavelength is only 56 nm,while the fundamental one can reach 226 nm.Like the fundamental resonance,the FP resonant wavelength can also be well fitted quadratically.But no obvious pattern is discovered among these fitted curves.

    Fig.4 The curves are quadratic fittings with constant terms dropped.The curves in the figure correspond to gap sizes of 20,30,40,and 50 nm,respectively.The curve that grows faster with gap displacement indicates that the BNA is more sensitive to gap displacement.Note that the two curves that correspond to 30 and 40 nm gap are very close to each other.The inset shows a closer look at these two curves from 74 to 75 nm gap displacement

    It is also worth noting that besides the peaks that correspond to fundamental,FP,and RWA resonance,there are also two small peaks in between RWA and FP peak as shown in figure 5.These two peaks appear when both large gap and large displacement are introduced.The peak near RWA peak,once appears,remains at 550 nm while the other one changes its position with displacement of gap.The wavelength of the peak near RWA peak coincides with the FP resonant wavelength of square aperture of 200 nm length (555 nm resonant wavelength).Figure 6 demonstrates the case of maximum displacement for BNA of 75 nm gap size.One node is present in the middle,indicating a FP resonance pattern.Since the field pattern is FP-like and the resonant wavelength is the same as that of the square aperture,we attribute this peak to the FP resonance of square hole.As we know,when the displacement steadily grows larger,the left edge gradually flattens and becomes more like the wall of square aperture.When one side approaches the wall of a square aperture,its characteristic resonance starts to appear.However,there is one difference that the enhanced E-field extends more to the front and rear surface than the square aperture case due to the influence of the right sharp edge.

    Fig.5 The transmission spectrum of BNA of 75 nm gap size and of maximum gap displacement.Two additional peaks (at 550 and 582 nm) appear between RWA peak and FP peak

    Fig.6 The E-field distribution on x-z plane.The BNA is of 75 nm gap size and of maximum gap displacement.The resonant wavelength of this distribution of field is 550 nm.This wavelength is the same as the FP resonant wavelength of square aperture array

    The other peak near FP resonant peak varies with gap displacement for a fixed gap size.Figure 7 is the energy flux density distribution in x-y plane.From this figure,we can clearly observe the enhanced field intensity at two right corners.Large displacement of gap directly leads to acute angles of the two corners.As it has been studied that apertures with acute angles can give rise to another strongly localized resonance -- channel plasmon resonance (CPR)[14].The field of CPR is highly confined at the corner area.And its resonant energy is highly dependent of the angle of corner.When the gap displacement grows larger,the sharp corners start to take effect and finally lead to the presence of another resonance mode that manifests itself as another peak on the transmission spectrum.

    Fig.7 Energy flux density distribution of x-y plane at 582 nm resonance.The gap size is also 75 nm and displacement reaches maximum.One can view that the energy is mainly tunneled through sharp corner area and the right gap edge.This resonance is related to channel plasmon resonance (CPR) and is dependent of the angle of sharp corners

    However,we emphasize again that square hole′s FP resonance and CPR only take place when there is a large displacement of gap.Because displacement leads to flattened edge and sharp corners which are the necessary causes for square hole′s FP resonance and channel plasmon resonance,respectively.

    As we have discussed above,displacing the gap breaks the symmetry with respect to y-z plane and the change of fundamental resonance can be simply understood through change the electric charge oscillation path,though corner effect should be taken into account in order to have a more precise insight into the change of resonant wavelength.For the FP resonance,the charges are mainly centered at two gap edges.With that being said,we mean that the resonance is influenced by both the geometries of two edges.The modification of resonance by geometry change is more complex than that of fundamental resonance.But the resonance of two modes can be both well fitted into quadratic relation,which makes it predictable for other resonant wavelengths when several wavelengths for their corresponding gap displacement are already known.

    3.3 Cutting one edge

    The strategy of breaking the symmetry by displacement of gap is a simple and effective way of modifying BNA structure′s two main resonances.However,change of FP resonance is not quite impressive and its changing pattern is not regular.This irregularity of change indicates that this strategy,though simple as it seems to be for fundamental resonance,may not be an effective way to reduce the complexity in manipulating FP resonance.Perhaps the most effective way to change the FP resonance is just to use a film of different thickness.Changing the film thickness is equivalent to changing the cavity length for FP resonance,hence the change of FP resonant wavelength.And this approach can also isolate the manipulation of FP resonance from that of the fundamental resonance,since fundamental resonance is irrelevant to film thickness.This method apparently does not involve any symmetry breaking.We then question,is there any other way to modify FP resonance by other symmetry breaking strategy? We know that FP resonance is essentially due to the charge oscillation on two gap edges along z direction.And the resonance is defined by two gap edges as a whole.Thus altering the geometry of one edge should be effective.We further investigate the influence of breaking symmetry along z direction on one gap edge.

    Figure 1 (b) presents the changed geometry viewed in x-z plane.Two parts of right edge are cut off.The length of the cut part alongxdirection d is 50 nm.The height of top and bottom parts cut off areh1 andh3,respectively.The height of the remaining part ish2.his the thickness of the film:h=h1+h2+h3.

    We first seth2 to be 50 nm and keep it constant while increaseh1 from 0 to 75 nm.With increasingh1 and constanth2,the remaining block on the cut edge moves from top to center,gradually restoring the symmetry with respect to x-y plane.Note that,according to our simulation results (not shown here),whether illuminated from top or from bottom,the structure we study in this section has the same transmission spectrum.Thus,it is sufficient to stoph1 at 75 nm.Figure 8 (a) depicts the transmission spectra for differenth1 which is represented by y axis.From the spectra,we can see that the position of the fundamental peak remains unchanged with increasingh1 while FP resonance splits into two peaks.The FP peak of longer wavelength gradually blue-shifts with increasingh1 and finally merge into the other FP peak whenh1 grows large enough.The position of the FP peak of shorter wavelength,surprisingly,does not change at all withh1.

    To understand the different dependence of the three resonant peaks mentioned above on geometry,we studied another case.In this case,we gradually decreaseh2 while always keepsh1 equals toh3.For convenience,we refer to this case as symmetric case since the symmetry with respect to x-y plane is maintained.And we refer to the case studied above in this section as asymmetric case.The result is shown in figure 8 (b).Thexaxis represents wavelength and the y representsh1.We can see from this figure that the position of fundamental resonance changes linearly withh1 and apparently also withh2.Comparing to the previous case in which the resonant position does not change whenh2 is kept constant.We can conclude that the wavelength of fundamental resonance is linearly connected withh2.As for FP resonance,different from the previous case where there is a peak split,a gradual transition from one FP resonance to the other can be observed.Whenh1 is zero,the aperture is a common BNA (20 nm gap size) whose FP resonant wavelength is 665 nm.Then,with increasingh1,this peak starts to blue-shift.Whenh1 becomes larger than 40 nm,the peak position stops changing and remains constant at about 610 nm.

    Fig.8 Transmission spectra of structures for two cut-edge approaches.(a)h2 is kept 50 nm.The position of fundamental peak remains constant,while FP peak splits into two separate peaks.(b)h1 is kept equal toh3 in this case.With increasingh1 (also decreasingh2),the position of fundamental peak changes linearly,while the FP peak experiences a gradual transition

    In the extreme case whereh2 is zero,the FP resonant wavelength is 610 nm.This wavelength is exactly the same as the FP resonant wavelength that is irrelevant toh2 in the second case whenh1 is larger than 40 nm.Thus,we categorize this resonance as FP resonance.We know that for a typical BNA structure,its FP resonance is inherently due to the local charge oscillation along two gap edges.In the all cases we study in which the film thickness is 200 nm,there is only one FP resonant peak can be observed in the transmission spectrum.And this resonance should be named FP-1 resonance to reveal its resonant pattern since there is one node in the center of the cavity.In order to distinguish two different FP resonances,we refer to the resonance which changes withh1 as FP-1-1 resonance and the other which remains at 610 nm as FP-1-2 resonance.When the resonant condition is satisfied,two semi-circle-like charge oscillation paths are formed on two edges.This pair of paths,which do not go directly straight up or down along the edges,leads to the immunity to geometry change at the center area in the gap.This is the reason why FP-1-2 peak remains constant whenh1 increased beyond 40 nm in the symmetric case.Whenh1 is smaller than 40 nm,the remaining block of lengthh2 interferes with the resonance defined by the two paths and consequently modifies the resonance.This influence by the remaining block is manifested by the dependence of FP resonance onh1.This theory can also explain the phenomenon that there is a gradual energy transition between FP-1-1 and FP-1-2 peaks in the asymmetric case.With increasingh1,the remaining block changes its position from top to the central part the gap,reducing its influence on FP-1-2 resonance and consequently the intensity of FP-1-2 peaks steadily grows.

    Another point worth noting is that,as shown in figure 8 (b),the change of position of fundamental peak withh1 is gradual and smooth in the symmetric case.This is because the fundamental resonance is dominated by the remaining block on the right edge as well as part of the left edge.However,whenh2 turns 0 nm,there is no remaining block in the gap any more,the resonance is suddenly handed over to the new structure.This structure,withh2=0,is essentially different from the structure with remaining block on its right edge.Because the current density is uniformly distributed alongzdirection,which is why the fundamental resonance of this kind of structure is independent of film thickness.In the case whereh2 is not zero,since the current density is mainly concentrated in the area of the remaining block,the fundamental resonance is highly dependent onh2,as we have shown above.

    4 Conclusions

    We proposed two simple approaches to breaking the symmetry in order to manipulate both of BNA′s fundamental and Fabry-Perot resonant peaks for extraordinary optical transmission.Both approaches show interesting results.With displacing the gap of BNA,one can predictably change the fundamental peak based on the linear relation with aperture perimeter.Using cut-one-edge method,one has the great flexibility in changing the fundamental resonance in linear fashion and altering the FP resonance in a predictable way.Our research can be applied to help to design better optical filters and other applications to meet a large array of possible needs.

    [1] Ebbesen T W,Lezec H J,Ghaemi H F,etal.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature,1998,391:667-669.

    [2] Shao Weijia,Xu Xiaoliang,Wang Huijie.A manipulated extraordinary optical transmission filter composed with subwavelength hole complex arrays[J].Plasmonics,2014,9:1025-1030.

    [3] Ruan Zhichao,Qiu Min.Enhanced transmission through periodic arrays of subwavelength holes:the role of localized waveguide resonances[J].Phys Rev Lett,2006,96:233901.

    [4] Wang Yongkai,Qin Yan,Zhang Zhongyue.Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays[J].Plasmonics,2014,9:203-207.

    [5] Rodrigo S G,Mahboub O,Degiron A,etal.Holes with very acute angles:a new paradigm of extraordinary optical transmission through strongly localized modes[J].Opt Express,2010,18:23691-23697.

    [6] Lin L,Roberts A.Light transmission through nanostructured metallic films:coupling between surface waves and localized resonances[J].Opt Express,2011,19:2626-2633.

    [7] Degiron A,Ebbesen T W.The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J].J Opt A:Pure Appl Opt,2005,7:S90-S96.

    [8] Guo Hongcang,Meyrath T P,Zentgraf T,etal.Optical resonances of bowtie slot antennas and their geometry and material dependence[J].Opt Express,2008,16:7756-7766.

    [9] Ibrahim I A,Mivelle M,Grosjean T,etal.Bowtie-shaped nanoaperture:a modal study[J].Opt Lett,2010,35:2448-2450.

    [10] Kinzel E C,Xu Xianfan.Extraordinary infrared transmission through a periodic bowtie aperture array[J].Opt Lett,2010,35:992-994.

    [11] Yin Xiaogang,Huang Chengping,Shen Zhiqiang,etal.Splitting of transmission peak due to the hole symmetry breaking[J].Appl Phys Lett,2009,94:161904.

    [12] Carretero-Palacios S,Garcia-Vidal F J,Martin-Moreno L,etal.Effect of film thickness and dielectric environment on optical transmission through subwavelength holes[J].Phys Rev B,2012,85:035417.

    [13] Huang Chengping,Wang Qianjin,Zhu Yongyuan.Dual effect of surface plasmons in light transmission through perforated metal films[J].Phys Rev B,2007,75:245421.

    [14] Moreno E,Garcia-Vidal F J,Rodrigo S G,etal.Channel plasmon-polaritons:modal shape,dispersion,and losses[J].Opt Lett,2006,31:3447-3449.

    非對稱領(lǐng)結(jié)型納米孔陣列的光透射特性

    孫鑫,馮敏,王斌,曹學(xué)偉,王玉芳*

    (南開大學(xué)物理科學(xué)學(xué)院,天津 300071)

    本文利用數(shù)值模擬的方法研究了兩種不同的非對稱領(lǐng)結(jié)型納米孔結(jié)構(gòu)的光學(xué)特性。對于偏置間隙的領(lǐng)結(jié)型納米孔,其基模共振與孔的周長呈線性關(guān)系。并且,不同的間隙尺寸對間隙偏置的敏感度不同。對于間隙的一邊的結(jié)構(gòu)發(fā)生變化的領(lǐng)結(jié)型納米孔,基模共振可以通過改變單個幾何參量(剩余部分的高度h2)進(jìn)行線性調(diào)制。另外,研究中還觀察到了類Fabry-Perot共振的共振峰分裂。我們在這項工作中提出的這兩種打破領(lǐng)結(jié)型納米孔的對稱性的方法可以靈活地對領(lǐng)結(jié)型納米孔結(jié)構(gòu)的共振進(jìn)行操控。

    領(lǐng)結(jié)型納米孔;異常光透射;表面等離子體基元;光學(xué)共振

    2015-08-10; 修改稿日期:2015-09-20

    孫鑫(1990-),男,碩士,主要從事微納光學(xué)、光透射增強(qiáng)研究.E-mail:sunxin_mail213@126.com

    王玉芳.E-mail:yfwang@nankai.edu.cn

    1004-5929(2016)03-0285-08

    O43

    A

    10.13883/j.issn1004-5929.201603016

    猜你喜歡
    基模非對稱偏置
    基于40%正面偏置碰撞的某車型仿真及結(jié)構(gòu)優(yōu)化
    基于雙向線性插值的車道輔助系統(tǒng)障礙避讓研究
    中國信息化(2022年5期)2022-06-13 11:12:49
    非對稱Orlicz差體
    從基模理論談新媒體環(huán)境下網(wǎng)民媒介素養(yǎng)的提高
    采寫編(2017年2期)2017-06-29 11:28:36
    “基模導(dǎo)向”在初中數(shù)學(xué)教學(xué)中的應(yīng)用
    一級旋流偏置對雙旋流杯下游流場的影響
    點數(shù)不超過20的旗傳遞非對稱2-設(shè)計
    革新實驗室:一種新的工作場所學(xué)習(xí)方法的基模
    初創(chuàng)企業(yè)組織共享基模的形成機(jī)理研究
    非對稱負(fù)載下矩陣變換器改進(jìn)型PI重復(fù)控制
    電測與儀表(2015年4期)2015-04-12 00:43:04
    亚洲美女视频黄频| 国产精品国产三级专区第一集| 国产大屁股一区二区在线视频| 男人和女人高潮做爰伦理| 色视频在线一区二区三区| 久久人人爽人人爽人人片va| 日本与韩国留学比较| 在线a可以看的网站| 精品视频人人做人人爽| 欧美日韩亚洲高清精品| 日日摸夜夜添夜夜爱| 亚洲精品国产成人久久av| 精品久久久久久电影网| 成人毛片60女人毛片免费| 夜夜爽夜夜爽视频| 国产精品久久久久久精品电影小说 | 2021天堂中文幕一二区在线观| 91久久精品电影网| 日韩国内少妇激情av| 国产爽快片一区二区三区| 亚洲综合精品二区| 亚洲最大成人av| 一区二区av电影网| 亚洲av日韩在线播放| 免费看不卡的av| 99热这里只有精品一区| 亚洲四区av| 午夜免费鲁丝| 亚洲av免费在线观看| av播播在线观看一区| h日本视频在线播放| 欧美老熟妇乱子伦牲交| 久久久久精品性色| 97热精品久久久久久| 久久6这里有精品| 狂野欧美激情性xxxx在线观看| 久久久久久伊人网av| 日本wwww免费看| 亚洲av国产av综合av卡| 国产精品久久久久久久电影| 亚洲性久久影院| 新久久久久国产一级毛片| a级毛色黄片| 国产老妇伦熟女老妇高清| 免费观看性生交大片5| 高清av免费在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产极品天堂在线| 熟女电影av网| 国产精品一区二区三区四区免费观看| 亚洲av成人精品一区久久| 秋霞在线观看毛片| 热99国产精品久久久久久7| 91久久精品国产一区二区三区| 免费电影在线观看免费观看| 亚洲欧美日韩无卡精品| 男人舔奶头视频| 欧美区成人在线视频| 欧美日本视频| 国产日韩欧美亚洲二区| 欧美 日韩 精品 国产| 国产爽快片一区二区三区| 韩国高清视频一区二区三区| 日本欧美国产在线视频| 国精品久久久久久国模美| 国产精品精品国产色婷婷| 欧美国产精品一级二级三级 | 成年免费大片在线观看| 男人爽女人下面视频在线观看| 91精品伊人久久大香线蕉| 欧美激情在线99| 久久人人爽av亚洲精品天堂 | 精品一区在线观看国产| 亚洲内射少妇av| 最近最新中文字幕免费大全7| 九九久久精品国产亚洲av麻豆| 少妇人妻 视频| 白带黄色成豆腐渣| 搞女人的毛片| 国产成人午夜福利电影在线观看| 国产91av在线免费观看| 热re99久久精品国产66热6| 麻豆成人午夜福利视频| 国产亚洲精品久久久com| 好男人视频免费观看在线| 欧美激情在线99| 少妇猛男粗大的猛烈进出视频 | 国产在线一区二区三区精| 啦啦啦啦在线视频资源| 久久久久国产精品人妻一区二区| 日韩欧美精品免费久久| 日本爱情动作片www.在线观看| 久久久久久久午夜电影| 亚洲精品色激情综合| 精品久久久久久电影网| 又大又黄又爽视频免费| 亚洲自拍偷在线| 国内少妇人妻偷人精品xxx网站| 我的老师免费观看完整版| 在线看a的网站| 三级国产精品欧美在线观看| 身体一侧抽搐| 亚洲一区二区三区欧美精品 | 精品一区在线观看国产| 中文精品一卡2卡3卡4更新| 亚洲av男天堂| 一本色道久久久久久精品综合| 久久久国产一区二区| 国国产精品蜜臀av免费| 久久ye,这里只有精品| 深爱激情五月婷婷| 观看美女的网站| 精品一区在线观看国产| 青春草亚洲视频在线观看| 舔av片在线| 午夜免费鲁丝| 国模一区二区三区四区视频| 丰满少妇做爰视频| 春色校园在线视频观看| 水蜜桃什么品种好| 亚洲精品成人av观看孕妇| 男人狂女人下面高潮的视频| 亚洲不卡免费看| 久久久久久久国产电影| 亚洲精品一区蜜桃| 国产乱人偷精品视频| 国产高清三级在线| kizo精华| 岛国毛片在线播放| 亚洲成人av在线免费| 在线天堂最新版资源| 天堂中文最新版在线下载 | 免费看a级黄色片| 亚洲精品,欧美精品| 男女啪啪激烈高潮av片| 欧美精品人与动牲交sv欧美| freevideosex欧美| 亚洲成人精品中文字幕电影| 中文欧美无线码| 精品国产乱码久久久久久小说| 少妇丰满av| 国产精品国产三级国产av玫瑰| 少妇的逼好多水| 久久久精品94久久精品| 18禁在线播放成人免费| 亚洲高清免费不卡视频| 2021少妇久久久久久久久久久| 男人和女人高潮做爰伦理| 国产视频内射| av在线app专区| 亚洲精华国产精华液的使用体验| 99久久九九国产精品国产免费| 欧美区成人在线视频| 边亲边吃奶的免费视频| 亚洲真实伦在线观看| 国产精品久久久久久精品电影| 丰满乱子伦码专区| 欧美激情在线99| 久久久久精品性色| 久久精品久久久久久久性| 国产精品一二三区在线看| 男人狂女人下面高潮的视频| 久久精品国产亚洲av天美| 男人添女人高潮全过程视频| 久久精品熟女亚洲av麻豆精品| 亚洲精品一二三| 国产精品人妻久久久久久| 国产一区二区三区综合在线观看 | 久久久久精品久久久久真实原创| 精华霜和精华液先用哪个| 精品久久久久久电影网| 一边亲一边摸免费视频| 日韩强制内射视频| 免费观看无遮挡的男女| 国产av国产精品国产| 午夜老司机福利剧场| 亚洲精品日本国产第一区| 国产人妻一区二区三区在| 国产 精品1| 热re99久久精品国产66热6| 成年av动漫网址| 成人美女网站在线观看视频| 成人一区二区视频在线观看| 人人妻人人看人人澡| 欧美人与善性xxx| 国产白丝娇喘喷水9色精品| 最近中文字幕2019免费版| 91午夜精品亚洲一区二区三区| 欧美亚洲 丝袜 人妻 在线| 91aial.com中文字幕在线观看| av播播在线观看一区| 亚洲欧美成人综合另类久久久| 一级a做视频免费观看| 亚洲av福利一区| 久久久国产一区二区| 精品少妇久久久久久888优播| 性色avwww在线观看| 最近手机中文字幕大全| 免费黄色在线免费观看| 狠狠精品人妻久久久久久综合| 成年女人在线观看亚洲视频 | 亚洲国产av新网站| 高清av免费在线| 日本av手机在线免费观看| 午夜福利视频精品| 国产精品一区www在线观看| 成年av动漫网址| 中文字幕久久专区| 日日摸夜夜添夜夜添av毛片| 99久久九九国产精品国产免费| 免费观看av网站的网址| eeuss影院久久| www.色视频.com| 亚洲怡红院男人天堂| 国产成人福利小说| 欧美性猛交╳xxx乱大交人| 亚洲精品影视一区二区三区av| 亚洲精品日本国产第一区| 美女高潮的动态| 久久精品国产鲁丝片午夜精品| 一级爰片在线观看| 久久久久久久久久久免费av| 日韩av在线免费看完整版不卡| 国产精品成人在线| 亚洲av.av天堂| 丰满乱子伦码专区| 国产成人免费无遮挡视频| 亚洲va在线va天堂va国产| 亚洲欧美中文字幕日韩二区| 欧美极品一区二区三区四区| 日日摸夜夜添夜夜添av毛片| 日本-黄色视频高清免费观看| 日韩一本色道免费dvd| 亚洲欧洲国产日韩| 精品国产乱码久久久久久小说| 成人国产av品久久久| 亚洲av不卡在线观看| 国产一区有黄有色的免费视频| 97超碰精品成人国产| 久久女婷五月综合色啪小说 | 亚州av有码| 超碰av人人做人人爽久久| 热99国产精品久久久久久7| 日本三级黄在线观看| 在线精品无人区一区二区三 | h日本视频在线播放| 久久久亚洲精品成人影院| 国产成人免费观看mmmm| 免费大片18禁| 一本一本综合久久| 欧美 日韩 精品 国产| 午夜免费观看性视频| 免费观看av网站的网址| 99久久中文字幕三级久久日本| 在线观看美女被高潮喷水网站| 水蜜桃什么品种好| 99久久精品一区二区三区| 全区人妻精品视频| 日本午夜av视频| 免费大片18禁| 一级黄片播放器| 中文资源天堂在线| 久久久久久久久久成人| 国产精品国产三级专区第一集| 久久久成人免费电影| 国产黄a三级三级三级人| 久久精品久久精品一区二区三区| 少妇 在线观看| 精品亚洲乱码少妇综合久久| 少妇的逼水好多| 亚洲真实伦在线观看| 国产亚洲最大av| 男人爽女人下面视频在线观看| 国产亚洲av片在线观看秒播厂| 国产精品一区二区三区四区免费观看| 亚洲精品日韩在线中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品熟女久久久久浪| 一级黄片播放器| 日韩电影二区| 99视频精品全部免费 在线| 国产午夜精品久久久久久一区二区三区| 国产国拍精品亚洲av在线观看| 亚洲四区av| 国产高清三级在线| 波野结衣二区三区在线| 少妇被粗大猛烈的视频| 国产精品女同一区二区软件| 亚洲欧美一区二区三区国产| 日本一本二区三区精品| 黄色日韩在线| 看非洲黑人一级黄片| 欧美日韩视频高清一区二区三区二| 亚洲四区av| 国产日韩欧美在线精品| 久久久a久久爽久久v久久| 久久精品国产亚洲网站| 日韩亚洲欧美综合| 最近手机中文字幕大全| 女人十人毛片免费观看3o分钟| 中国三级夫妇交换| 九九久久精品国产亚洲av麻豆| 亚洲精品久久久久久婷婷小说| 久久久久久久久久久免费av| 久久精品国产亚洲av涩爱| 国产淫语在线视频| av线在线观看网站| 欧美 日韩 精品 国产| 熟女人妻精品中文字幕| 国内精品宾馆在线| 在线免费十八禁| 美女cb高潮喷水在线观看| 午夜福利视频精品| 久久精品久久精品一区二区三区| 亚洲av福利一区| 国产午夜精品久久久久久一区二区三区| 欧美精品人与动牲交sv欧美| 国产91av在线免费观看| 成人亚洲精品av一区二区| 欧美丝袜亚洲另类| 日本一二三区视频观看| 国产精品嫩草影院av在线观看| 能在线免费看毛片的网站| 99久久中文字幕三级久久日本| 亚洲熟女精品中文字幕| 欧美亚洲 丝袜 人妻 在线| 国内少妇人妻偷人精品xxx网站| 三级男女做爰猛烈吃奶摸视频| 99精国产麻豆久久婷婷| 国产黄色免费在线视频| 国产爱豆传媒在线观看| 街头女战士在线观看网站| 亚洲精品,欧美精品| 亚洲精品aⅴ在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产爱豆传媒在线观看| 午夜福利高清视频| 草草在线视频免费看| 18禁在线无遮挡免费观看视频| 久久午夜福利片| videossex国产| 久久99热6这里只有精品| 又黄又爽又刺激的免费视频.| 九草在线视频观看| 欧美日韩一区二区视频在线观看视频在线 | 99热这里只有是精品在线观看| 特大巨黑吊av在线直播| 又黄又爽又刺激的免费视频.| 国产探花在线观看一区二区| 尾随美女入室| 一级毛片黄色毛片免费观看视频| 街头女战士在线观看网站| 免费电影在线观看免费观看| 中国三级夫妇交换| 一个人观看的视频www高清免费观看| 亚洲高清免费不卡视频| 亚洲精品影视一区二区三区av| 在线 av 中文字幕| 国产v大片淫在线免费观看| 国产爽快片一区二区三区| 黄色欧美视频在线观看| 一级爰片在线观看| 久久这里有精品视频免费| 五月开心婷婷网| 大香蕉久久网| 国产男女超爽视频在线观看| 免费观看av网站的网址| 亚洲最大成人中文| 日本-黄色视频高清免费观看| 国产老妇伦熟女老妇高清| 91精品国产九色| 嘟嘟电影网在线观看| 直男gayav资源| 国产色婷婷99| 少妇的逼水好多| 十八禁网站网址无遮挡 | 狂野欧美白嫩少妇大欣赏| 亚洲四区av| 国产人妻一区二区三区在| 51国产日韩欧美| 一级av片app| 看黄色毛片网站| 免费av不卡在线播放| 男女边摸边吃奶| 91午夜精品亚洲一区二区三区| 99热网站在线观看| 69人妻影院| 男人狂女人下面高潮的视频| 欧美日韩亚洲高清精品| 香蕉精品网在线| 在线观看一区二区三区激情| 看黄色毛片网站| 99re6热这里在线精品视频| 日本免费在线观看一区| 神马国产精品三级电影在线观看| 欧美日韩精品成人综合77777| 青春草亚洲视频在线观看| 麻豆成人午夜福利视频| 啦啦啦啦在线视频资源| 久久久a久久爽久久v久久| 午夜免费观看性视频| 伊人久久精品亚洲午夜| 欧美精品一区二区大全| 久久精品国产自在天天线| 国产国拍精品亚洲av在线观看| 午夜免费鲁丝| 久久精品夜色国产| 欧美高清性xxxxhd video| 一级毛片aaaaaa免费看小| 精品视频人人做人人爽| a级一级毛片免费在线观看| 久久久久国产网址| 在线a可以看的网站| 久久精品国产亚洲av涩爱| 高清视频免费观看一区二区| 大又大粗又爽又黄少妇毛片口| 在线观看av片永久免费下载| 免费av不卡在线播放| 高清视频免费观看一区二区| 成人美女网站在线观看视频| 国产淫语在线视频| 夫妻性生交免费视频一级片| 国内揄拍国产精品人妻在线| 成人特级av手机在线观看| 毛片女人毛片| 欧美高清性xxxxhd video| 联通29元200g的流量卡| 欧美激情国产日韩精品一区| 精品酒店卫生间| 免费观看av网站的网址| 深夜a级毛片| 色哟哟·www| 日韩欧美精品免费久久| 国产精品久久久久久久久免| 国产精品不卡视频一区二区| 大陆偷拍与自拍| 九草在线视频观看| 国产av码专区亚洲av| 亚洲国产精品专区欧美| 国产精品久久久久久av不卡| 欧美高清性xxxxhd video| 久久久久久久久久人人人人人人| 只有这里有精品99| 夫妻午夜视频| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 成人亚洲欧美一区二区av| 国产精品无大码| 国产高清有码在线观看视频| 久久久久九九精品影院| 精品99又大又爽又粗少妇毛片| 亚洲av二区三区四区| 久久国产乱子免费精品| 99久久中文字幕三级久久日本| 欧美zozozo另类| 久久久久久久国产电影| 91狼人影院| 亚洲成人中文字幕在线播放| 国产成人精品婷婷| 在线 av 中文字幕| 国产午夜精品一二区理论片| 亚洲精品乱码久久久久久按摩| 国产亚洲最大av| 亚洲精品中文字幕在线视频 | 一级片'在线观看视频| 日韩一区二区三区影片| 国产av码专区亚洲av| av在线亚洲专区| 欧美最新免费一区二区三区| 97在线视频观看| 啦啦啦啦在线视频资源| 日韩成人伦理影院| 日韩伦理黄色片| 一区二区三区免费毛片| 男女那种视频在线观看| 久久精品人妻少妇| 国产一区亚洲一区在线观看| 97精品久久久久久久久久精品| 内射极品少妇av片p| 国产精品秋霞免费鲁丝片| 插阴视频在线观看视频| 久久久久久久亚洲中文字幕| 三级国产精品欧美在线观看| 久久人人爽人人爽人人片va| 午夜激情福利司机影院| 欧美老熟妇乱子伦牲交| 精品久久久久久久久亚洲| 久久97久久精品| 亚洲精品乱码久久久v下载方式| 尾随美女入室| 欧美bdsm另类| 大香蕉97超碰在线| 久久亚洲国产成人精品v| 日韩精品有码人妻一区| 亚洲综合精品二区| 国产亚洲av片在线观看秒播厂| 国产午夜精品久久久久久一区二区三区| 中文精品一卡2卡3卡4更新| 熟女人妻精品中文字幕| 日韩成人伦理影院| av免费观看日本| 嫩草影院入口| 免费黄频网站在线观看国产| 亚洲av欧美aⅴ国产| 一级二级三级毛片免费看| 又爽又黄无遮挡网站| 九九在线视频观看精品| 亚洲成人中文字幕在线播放| 蜜桃亚洲精品一区二区三区| 免费看光身美女| 色哟哟·www| 韩国高清视频一区二区三区| 黄色一级大片看看| 国产精品爽爽va在线观看网站| 国产欧美日韩一区二区三区在线 | 大片免费播放器 马上看| 国产大屁股一区二区在线视频| 午夜福利网站1000一区二区三区| 欧美激情在线99| 国产91av在线免费观看| 亚洲电影在线观看av| 黑人高潮一二区| 秋霞在线观看毛片| 全区人妻精品视频| 777米奇影视久久| 欧美 日韩 精品 国产| 天堂中文最新版在线下载 | 久久国产乱子免费精品| 国产成人a∨麻豆精品| 老师上课跳d突然被开到最大视频| 97人妻精品一区二区三区麻豆| 六月丁香七月| 久久久久久久久久久丰满| 欧美区成人在线视频| 噜噜噜噜噜久久久久久91| 51国产日韩欧美| av网站免费在线观看视频| 毛片一级片免费看久久久久| 欧美老熟妇乱子伦牲交| 永久免费av网站大全| 国产午夜精品久久久久久一区二区三区| 国产亚洲午夜精品一区二区久久 | 国产老妇伦熟女老妇高清| 午夜免费男女啪啪视频观看| 欧美bdsm另类| 国产片特级美女逼逼视频| 日韩国内少妇激情av| 成人国产av品久久久| 亚洲最大成人中文| 久久精品国产自在天天线| 亚洲最大成人手机在线| 亚洲人成网站在线观看播放| 国产真实伦视频高清在线观看| 色播亚洲综合网| 国产成人精品一,二区| 最新中文字幕久久久久| 国产片特级美女逼逼视频| 国产欧美亚洲国产| 精品午夜福利在线看| 久久精品国产亚洲网站| 亚洲经典国产精华液单| 一级片'在线观看视频| 欧美 日韩 精品 国产| 国内精品美女久久久久久| 欧美性猛交╳xxx乱大交人| 亚洲不卡免费看| 欧美三级亚洲精品| 丰满乱子伦码专区| 99热全是精品| 亚洲成人av在线免费| 欧美另类一区| 如何舔出高潮| 制服丝袜香蕉在线| 国产精品女同一区二区软件| 亚洲国产精品国产精品| 男女啪啪激烈高潮av片| 日本av手机在线免费观看| 新久久久久国产一级毛片| 久久久午夜欧美精品| 丝袜美腿在线中文| 黄色欧美视频在线观看| 国产极品天堂在线| 久久97久久精品| 久久精品熟女亚洲av麻豆精品| 国产精品福利在线免费观看| 亚洲婷婷狠狠爱综合网| 午夜视频国产福利| 亚洲天堂av无毛| 亚洲婷婷狠狠爱综合网| 中国美白少妇内射xxxbb| av播播在线观看一区| 亚洲精品国产av成人精品| 99久久精品一区二区三区| 91aial.com中文字幕在线观看| 亚洲国产色片| 国产精品.久久久| 成人特级av手机在线观看| 国产毛片a区久久久久| 亚洲精品国产色婷婷电影| 国产综合懂色| 五月伊人婷婷丁香| 好男人在线观看高清免费视频| 国产探花极品一区二区| 日韩三级伦理在线观看| 国产69精品久久久久777片| av.在线天堂| 欧美一区二区亚洲| 男女无遮挡免费网站观看| 精品国产乱码久久久久久小说| 午夜福利视频1000在线观看| 伦精品一区二区三区| 少妇的逼好多水| 久久精品国产a三级三级三级| 国产亚洲5aaaaa淫片| 大片免费播放器 马上看|