• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical Transmission Properties of Asymmetric Bowtie Nano-Aperture Array

    2016-11-28 03:50:31SUNXinFENGMinWANGBinCAOXueweiWANGYufang
    光散射學(xué)報 2016年3期
    關(guān)鍵詞:基模非對稱偏置

    SUN Xin,FENG Min,WANG Bin,CAO Xue-wei,WANG Yu-fang

    (School of Physics,Nankai University,Tianjin 300071)

    ?

    Optical Transmission Properties of Asymmetric Bowtie Nano-Aperture Array

    SUN Xin,FENG Min,WANG Bin,CAO Xue-wei,WANG Yu-fang*

    (SchoolofPhysics,NankaiUniversity,Tianjin300071)

    We investigated the optical properties of two different asymmetric bowtie nano-aperture (BNA) structures using numerical simulation.For the BNA with its gap displaced,the fundamental resonance is in linear relation with aperture perimeter.And different gap sizes show different sensitivity to gap displacement.For the BNA with one edge geometrically modified,the fundamental resonance can be tuned in linear fashion by changing one geometrical parameter (the height of the remaining parth2).Furthermore,peak splitting of Fabry-Perot-like resonance can also be observed in the study.Both approaches we propose in this work to break the symmetry of BNA can be used flexibly to manipulate the resonances of BNA structure.

    bowtie nano-aperture; extraordinary optical transmission; surface plasmon polaritons; optical resonance

    1 Introduction

    Light concentration,manipulation,and transmission enhancement at nanoscale have attracted numerous attentions in the recent decade.Typically,these novel optical phenomena arise when small geometric characteristics are introduced for the metal nano-structures that can give rise to various kinds of resonances.These resonances often lead to an exotic phenomenon called extraordinary optical transmission (EOT) which has a plethora of potential applications.EOT was discovered by Ebbesen,et al[1]in 1998 and since then has generated great interest among researchers.Lots of work explored various nano-structures that may give rise to EOT phenomenon.Some nano-aperture based structures such as circular apertures,rectangular apertures[2-3],and other apertures of novel shapes[4-7]have been studied.One of the most interesting and prominent structures among them is bowtie nano-aperture (BNA).BNAs have bowtie-shaped profiles.They are usually drilled in the film made of noble metal and arranged in two dimensional array.The film with BNAs on it exhibits large cutoff wavelength,high light concentration and transmission enhancement effects[8-10].In the works above,most of the apertures on the metal films are symmetric.However,some studies also investigated optical properties of asymmetric apertures.Yin,et al[11]studied the influence of introduction of protuberances inside square apertures on the whole structure′s transmission properties.They discovered that for asymmetric square holes,there is an obvious peak splitting phenomenon.This phenomenon originates from a new resonant mode due to the asymmetry of the structure.Here,it is interesting for us to question,how the transmission properties would change when asymmetry is introduced to BNA.In this study,we adopt two approaches to break the symmetry of BNA.Using FDTD simulation,we found that both have interesting effects on the two main resonant modes of the structure.

    2 Model and Simulation

    The structure we study is a free-standing silver film with BNAs on it.BNAs are arranged in two-dimensional array on the film.By "two dimensional",we mean that aperture repeats itself in bothxandydirection with a certain spatial period.Figure 1 (a) is the schematic of a typical BNA structure.We simulated a single computation cell with periodic boundaries around.The cell has square cross-section on x-y plane.The length of the square cross-section is 500 nm.Thus,the entire simulation system is equivalent to a 2D BNA array of 500 nm spatial period.Each BNA on the film has a square outline of length 200 nm.The thickness of the film is also 200 nm.The structure is under normal incidence from+zdirection.The incident light is plane wave and its E-field is polarized alongxdirection.

    Fig.1 (a) Bowtie nano-aperture (BNA) in x-y plane.The outline length of the aperture is 200 nm.The length of the square cross section is 500 nm.Dashed line represents the aperture after gap displacement.(b) BNA with two parts of right edge cut off viewed in x-z plane.The cut length along x directiondis 50 nm.h1 andh3 are the height of the two cut parts,respectively.h2 is the height of the remaining part

    3 Results and Discussions

    3.1 Transmission properties of a typical BNA structure

    Figure 2 is the transmission spectrum of a BNA structure with 50 nm gap.From this figure,we can see that there are three distinguishable peaks on the spectrum.The peak in the near infrared region corresponds to the fundamental resonance.At this resonant mode,the E-field enhanced area is uniform alongzdirection in the gap.It is equivalent to the mode at cutoff wavelength of an equivalent infinitely long waveguide with same profile as BNA[9].The resonant wavelength of fundamental mode is independent of film thickness and is linearly dependent of aperture perimeter[8].The peak located at about 615 nm is the Fabry-Perot-like (FP) resonance whose resonant wavelength is determined by film thickness.We refer to this resonance as FP-1 resonance since there is only one node in the center of the cavity.The two resonances we mentioned here belong to localized resonant mode.The third peak on the spectrum at 500 nm corresponds to the Rayleigh-Wood anomaly (RWA) phenomenon.It is inherently extended surface mode.Both the localized mode and extended surface mode can be identified on a typical nano-structure that exhibits extraordinary optical transmission[12].

    Fig.2 The transmission spectrum of BNA with 50 nm gap size.The peak at 865 nm corresponds to the fundamental resonance.The peak at 615 corresponds to the Fabry-Perot-like resonance.The peak at 505 is attributed to Rayleigh-Wood anomaly (RWA)

    3.2 Displacing gap

    Fig.3 The linear relation of fundamental resonant wavelength with aperture perimeter of 20 nm gap size BNA.The aperture perimeter is changed due to gap displacement.The dots represent the data obtained from our simulations.The gray dashed line is the linear fitting of the actual data

    The FP peaks also red-shift with increasing gap displacement.However,its changing range is not large compared to fundamental peak.For a typical BNA,i.e.20 nm gap,the changing range of FP resonant wavelength is only 56 nm,while the fundamental one can reach 226 nm.Like the fundamental resonance,the FP resonant wavelength can also be well fitted quadratically.But no obvious pattern is discovered among these fitted curves.

    Fig.4 The curves are quadratic fittings with constant terms dropped.The curves in the figure correspond to gap sizes of 20,30,40,and 50 nm,respectively.The curve that grows faster with gap displacement indicates that the BNA is more sensitive to gap displacement.Note that the two curves that correspond to 30 and 40 nm gap are very close to each other.The inset shows a closer look at these two curves from 74 to 75 nm gap displacement

    It is also worth noting that besides the peaks that correspond to fundamental,FP,and RWA resonance,there are also two small peaks in between RWA and FP peak as shown in figure 5.These two peaks appear when both large gap and large displacement are introduced.The peak near RWA peak,once appears,remains at 550 nm while the other one changes its position with displacement of gap.The wavelength of the peak near RWA peak coincides with the FP resonant wavelength of square aperture of 200 nm length (555 nm resonant wavelength).Figure 6 demonstrates the case of maximum displacement for BNA of 75 nm gap size.One node is present in the middle,indicating a FP resonance pattern.Since the field pattern is FP-like and the resonant wavelength is the same as that of the square aperture,we attribute this peak to the FP resonance of square hole.As we know,when the displacement steadily grows larger,the left edge gradually flattens and becomes more like the wall of square aperture.When one side approaches the wall of a square aperture,its characteristic resonance starts to appear.However,there is one difference that the enhanced E-field extends more to the front and rear surface than the square aperture case due to the influence of the right sharp edge.

    Fig.5 The transmission spectrum of BNA of 75 nm gap size and of maximum gap displacement.Two additional peaks (at 550 and 582 nm) appear between RWA peak and FP peak

    Fig.6 The E-field distribution on x-z plane.The BNA is of 75 nm gap size and of maximum gap displacement.The resonant wavelength of this distribution of field is 550 nm.This wavelength is the same as the FP resonant wavelength of square aperture array

    The other peak near FP resonant peak varies with gap displacement for a fixed gap size.Figure 7 is the energy flux density distribution in x-y plane.From this figure,we can clearly observe the enhanced field intensity at two right corners.Large displacement of gap directly leads to acute angles of the two corners.As it has been studied that apertures with acute angles can give rise to another strongly localized resonance -- channel plasmon resonance (CPR)[14].The field of CPR is highly confined at the corner area.And its resonant energy is highly dependent of the angle of corner.When the gap displacement grows larger,the sharp corners start to take effect and finally lead to the presence of another resonance mode that manifests itself as another peak on the transmission spectrum.

    Fig.7 Energy flux density distribution of x-y plane at 582 nm resonance.The gap size is also 75 nm and displacement reaches maximum.One can view that the energy is mainly tunneled through sharp corner area and the right gap edge.This resonance is related to channel plasmon resonance (CPR) and is dependent of the angle of sharp corners

    However,we emphasize again that square hole′s FP resonance and CPR only take place when there is a large displacement of gap.Because displacement leads to flattened edge and sharp corners which are the necessary causes for square hole′s FP resonance and channel plasmon resonance,respectively.

    As we have discussed above,displacing the gap breaks the symmetry with respect to y-z plane and the change of fundamental resonance can be simply understood through change the electric charge oscillation path,though corner effect should be taken into account in order to have a more precise insight into the change of resonant wavelength.For the FP resonance,the charges are mainly centered at two gap edges.With that being said,we mean that the resonance is influenced by both the geometries of two edges.The modification of resonance by geometry change is more complex than that of fundamental resonance.But the resonance of two modes can be both well fitted into quadratic relation,which makes it predictable for other resonant wavelengths when several wavelengths for their corresponding gap displacement are already known.

    3.3 Cutting one edge

    The strategy of breaking the symmetry by displacement of gap is a simple and effective way of modifying BNA structure′s two main resonances.However,change of FP resonance is not quite impressive and its changing pattern is not regular.This irregularity of change indicates that this strategy,though simple as it seems to be for fundamental resonance,may not be an effective way to reduce the complexity in manipulating FP resonance.Perhaps the most effective way to change the FP resonance is just to use a film of different thickness.Changing the film thickness is equivalent to changing the cavity length for FP resonance,hence the change of FP resonant wavelength.And this approach can also isolate the manipulation of FP resonance from that of the fundamental resonance,since fundamental resonance is irrelevant to film thickness.This method apparently does not involve any symmetry breaking.We then question,is there any other way to modify FP resonance by other symmetry breaking strategy? We know that FP resonance is essentially due to the charge oscillation on two gap edges along z direction.And the resonance is defined by two gap edges as a whole.Thus altering the geometry of one edge should be effective.We further investigate the influence of breaking symmetry along z direction on one gap edge.

    Figure 1 (b) presents the changed geometry viewed in x-z plane.Two parts of right edge are cut off.The length of the cut part alongxdirection d is 50 nm.The height of top and bottom parts cut off areh1 andh3,respectively.The height of the remaining part ish2.his the thickness of the film:h=h1+h2+h3.

    We first seth2 to be 50 nm and keep it constant while increaseh1 from 0 to 75 nm.With increasingh1 and constanth2,the remaining block on the cut edge moves from top to center,gradually restoring the symmetry with respect to x-y plane.Note that,according to our simulation results (not shown here),whether illuminated from top or from bottom,the structure we study in this section has the same transmission spectrum.Thus,it is sufficient to stoph1 at 75 nm.Figure 8 (a) depicts the transmission spectra for differenth1 which is represented by y axis.From the spectra,we can see that the position of the fundamental peak remains unchanged with increasingh1 while FP resonance splits into two peaks.The FP peak of longer wavelength gradually blue-shifts with increasingh1 and finally merge into the other FP peak whenh1 grows large enough.The position of the FP peak of shorter wavelength,surprisingly,does not change at all withh1.

    To understand the different dependence of the three resonant peaks mentioned above on geometry,we studied another case.In this case,we gradually decreaseh2 while always keepsh1 equals toh3.For convenience,we refer to this case as symmetric case since the symmetry with respect to x-y plane is maintained.And we refer to the case studied above in this section as asymmetric case.The result is shown in figure 8 (b).Thexaxis represents wavelength and the y representsh1.We can see from this figure that the position of fundamental resonance changes linearly withh1 and apparently also withh2.Comparing to the previous case in which the resonant position does not change whenh2 is kept constant.We can conclude that the wavelength of fundamental resonance is linearly connected withh2.As for FP resonance,different from the previous case where there is a peak split,a gradual transition from one FP resonance to the other can be observed.Whenh1 is zero,the aperture is a common BNA (20 nm gap size) whose FP resonant wavelength is 665 nm.Then,with increasingh1,this peak starts to blue-shift.Whenh1 becomes larger than 40 nm,the peak position stops changing and remains constant at about 610 nm.

    Fig.8 Transmission spectra of structures for two cut-edge approaches.(a)h2 is kept 50 nm.The position of fundamental peak remains constant,while FP peak splits into two separate peaks.(b)h1 is kept equal toh3 in this case.With increasingh1 (also decreasingh2),the position of fundamental peak changes linearly,while the FP peak experiences a gradual transition

    In the extreme case whereh2 is zero,the FP resonant wavelength is 610 nm.This wavelength is exactly the same as the FP resonant wavelength that is irrelevant toh2 in the second case whenh1 is larger than 40 nm.Thus,we categorize this resonance as FP resonance.We know that for a typical BNA structure,its FP resonance is inherently due to the local charge oscillation along two gap edges.In the all cases we study in which the film thickness is 200 nm,there is only one FP resonant peak can be observed in the transmission spectrum.And this resonance should be named FP-1 resonance to reveal its resonant pattern since there is one node in the center of the cavity.In order to distinguish two different FP resonances,we refer to the resonance which changes withh1 as FP-1-1 resonance and the other which remains at 610 nm as FP-1-2 resonance.When the resonant condition is satisfied,two semi-circle-like charge oscillation paths are formed on two edges.This pair of paths,which do not go directly straight up or down along the edges,leads to the immunity to geometry change at the center area in the gap.This is the reason why FP-1-2 peak remains constant whenh1 increased beyond 40 nm in the symmetric case.Whenh1 is smaller than 40 nm,the remaining block of lengthh2 interferes with the resonance defined by the two paths and consequently modifies the resonance.This influence by the remaining block is manifested by the dependence of FP resonance onh1.This theory can also explain the phenomenon that there is a gradual energy transition between FP-1-1 and FP-1-2 peaks in the asymmetric case.With increasingh1,the remaining block changes its position from top to the central part the gap,reducing its influence on FP-1-2 resonance and consequently the intensity of FP-1-2 peaks steadily grows.

    Another point worth noting is that,as shown in figure 8 (b),the change of position of fundamental peak withh1 is gradual and smooth in the symmetric case.This is because the fundamental resonance is dominated by the remaining block on the right edge as well as part of the left edge.However,whenh2 turns 0 nm,there is no remaining block in the gap any more,the resonance is suddenly handed over to the new structure.This structure,withh2=0,is essentially different from the structure with remaining block on its right edge.Because the current density is uniformly distributed alongzdirection,which is why the fundamental resonance of this kind of structure is independent of film thickness.In the case whereh2 is not zero,since the current density is mainly concentrated in the area of the remaining block,the fundamental resonance is highly dependent onh2,as we have shown above.

    4 Conclusions

    We proposed two simple approaches to breaking the symmetry in order to manipulate both of BNA′s fundamental and Fabry-Perot resonant peaks for extraordinary optical transmission.Both approaches show interesting results.With displacing the gap of BNA,one can predictably change the fundamental peak based on the linear relation with aperture perimeter.Using cut-one-edge method,one has the great flexibility in changing the fundamental resonance in linear fashion and altering the FP resonance in a predictable way.Our research can be applied to help to design better optical filters and other applications to meet a large array of possible needs.

    [1] Ebbesen T W,Lezec H J,Ghaemi H F,etal.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature,1998,391:667-669.

    [2] Shao Weijia,Xu Xiaoliang,Wang Huijie.A manipulated extraordinary optical transmission filter composed with subwavelength hole complex arrays[J].Plasmonics,2014,9:1025-1030.

    [3] Ruan Zhichao,Qiu Min.Enhanced transmission through periodic arrays of subwavelength holes:the role of localized waveguide resonances[J].Phys Rev Lett,2006,96:233901.

    [4] Wang Yongkai,Qin Yan,Zhang Zhongyue.Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays[J].Plasmonics,2014,9:203-207.

    [5] Rodrigo S G,Mahboub O,Degiron A,etal.Holes with very acute angles:a new paradigm of extraordinary optical transmission through strongly localized modes[J].Opt Express,2010,18:23691-23697.

    [6] Lin L,Roberts A.Light transmission through nanostructured metallic films:coupling between surface waves and localized resonances[J].Opt Express,2011,19:2626-2633.

    [7] Degiron A,Ebbesen T W.The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J].J Opt A:Pure Appl Opt,2005,7:S90-S96.

    [8] Guo Hongcang,Meyrath T P,Zentgraf T,etal.Optical resonances of bowtie slot antennas and their geometry and material dependence[J].Opt Express,2008,16:7756-7766.

    [9] Ibrahim I A,Mivelle M,Grosjean T,etal.Bowtie-shaped nanoaperture:a modal study[J].Opt Lett,2010,35:2448-2450.

    [10] Kinzel E C,Xu Xianfan.Extraordinary infrared transmission through a periodic bowtie aperture array[J].Opt Lett,2010,35:992-994.

    [11] Yin Xiaogang,Huang Chengping,Shen Zhiqiang,etal.Splitting of transmission peak due to the hole symmetry breaking[J].Appl Phys Lett,2009,94:161904.

    [12] Carretero-Palacios S,Garcia-Vidal F J,Martin-Moreno L,etal.Effect of film thickness and dielectric environment on optical transmission through subwavelength holes[J].Phys Rev B,2012,85:035417.

    [13] Huang Chengping,Wang Qianjin,Zhu Yongyuan.Dual effect of surface plasmons in light transmission through perforated metal films[J].Phys Rev B,2007,75:245421.

    [14] Moreno E,Garcia-Vidal F J,Rodrigo S G,etal.Channel plasmon-polaritons:modal shape,dispersion,and losses[J].Opt Lett,2006,31:3447-3449.

    非對稱領(lǐng)結(jié)型納米孔陣列的光透射特性

    孫鑫,馮敏,王斌,曹學(xué)偉,王玉芳*

    (南開大學(xué)物理科學(xué)學(xué)院,天津 300071)

    本文利用數(shù)值模擬的方法研究了兩種不同的非對稱領(lǐng)結(jié)型納米孔結(jié)構(gòu)的光學(xué)特性。對于偏置間隙的領(lǐng)結(jié)型納米孔,其基模共振與孔的周長呈線性關(guān)系。并且,不同的間隙尺寸對間隙偏置的敏感度不同。對于間隙的一邊的結(jié)構(gòu)發(fā)生變化的領(lǐng)結(jié)型納米孔,基模共振可以通過改變單個幾何參量(剩余部分的高度h2)進(jìn)行線性調(diào)制。另外,研究中還觀察到了類Fabry-Perot共振的共振峰分裂。我們在這項工作中提出的這兩種打破領(lǐng)結(jié)型納米孔的對稱性的方法可以靈活地對領(lǐng)結(jié)型納米孔結(jié)構(gòu)的共振進(jìn)行操控。

    領(lǐng)結(jié)型納米孔;異常光透射;表面等離子體基元;光學(xué)共振

    2015-08-10; 修改稿日期:2015-09-20

    孫鑫(1990-),男,碩士,主要從事微納光學(xué)、光透射增強(qiáng)研究.E-mail:sunxin_mail213@126.com

    王玉芳.E-mail:yfwang@nankai.edu.cn

    1004-5929(2016)03-0285-08

    O43

    A

    10.13883/j.issn1004-5929.201603016

    猜你喜歡
    基模非對稱偏置
    基于40%正面偏置碰撞的某車型仿真及結(jié)構(gòu)優(yōu)化
    基于雙向線性插值的車道輔助系統(tǒng)障礙避讓研究
    中國信息化(2022年5期)2022-06-13 11:12:49
    非對稱Orlicz差體
    從基模理論談新媒體環(huán)境下網(wǎng)民媒介素養(yǎng)的提高
    采寫編(2017年2期)2017-06-29 11:28:36
    “基模導(dǎo)向”在初中數(shù)學(xué)教學(xué)中的應(yīng)用
    一級旋流偏置對雙旋流杯下游流場的影響
    點數(shù)不超過20的旗傳遞非對稱2-設(shè)計
    革新實驗室:一種新的工作場所學(xué)習(xí)方法的基模
    初創(chuàng)企業(yè)組織共享基模的形成機(jī)理研究
    非對稱負(fù)載下矩陣變換器改進(jìn)型PI重復(fù)控制
    電測與儀表(2015年4期)2015-04-12 00:43:04
    国产亚洲最大av| 成人美女网站在线观看视频| 午夜久久久在线观看| 亚洲国产欧美在线一区| 国产黄频视频在线观看| 边亲边吃奶的免费视频| 欧美人与善性xxx| 亚洲人与动物交配视频| 欧美日韩视频高清一区二区三区二| 99热国产这里只有精品6| 久久久久久久亚洲中文字幕| 91在线精品国自产拍蜜月| 少妇被粗大猛烈的视频| 天堂中文最新版在线下载| 人人妻人人看人人澡| 欧美一级a爱片免费观看看| 国模一区二区三区四区视频| av免费在线看不卡| 一级,二级,三级黄色视频| 国产黄片美女视频| 亚洲欧美成人精品一区二区| 亚洲精品456在线播放app| 中文乱码字字幕精品一区二区三区| 日本vs欧美在线观看视频 | 久久国产精品男人的天堂亚洲 | 欧美性感艳星| 看十八女毛片水多多多| 国产精品伦人一区二区| 久久99热这里只频精品6学生| 成人特级av手机在线观看| 国产一区亚洲一区在线观看| 精品国产露脸久久av麻豆| 丝瓜视频免费看黄片| 黄色毛片三级朝国网站 | 99久久综合免费| 日韩伦理黄色片| 亚洲精品自拍成人| 男女无遮挡免费网站观看| 伦理电影免费视频| 一区在线观看完整版| 国产精品一区二区性色av| 国产成人freesex在线| 狠狠精品人妻久久久久久综合| 国内揄拍国产精品人妻在线| 国产伦精品一区二区三区四那| 婷婷色av中文字幕| 99久国产av精品国产电影| 日本猛色少妇xxxxx猛交久久| 日韩中字成人| 色94色欧美一区二区| freevideosex欧美| 九草在线视频观看| 美女中出高潮动态图| 国产日韩一区二区三区精品不卡 | 看免费成人av毛片| 国产在线一区二区三区精| 亚洲情色 制服丝袜| 亚洲精品aⅴ在线观看| 少妇被粗大的猛进出69影院 | av黄色大香蕉| 熟妇人妻不卡中文字幕| 欧美精品高潮呻吟av久久| 国产精品人妻久久久久久| 黄色日韩在线| 亚洲av中文av极速乱| 精品久久久久久久久亚洲| 我的女老师完整版在线观看| 亚洲欧洲精品一区二区精品久久久 | 久久久久精品性色| 超碰97精品在线观看| 亚洲婷婷狠狠爱综合网| 国产精品人妻久久久影院| 成人黄色视频免费在线看| 国产永久视频网站| 天天躁夜夜躁狠狠久久av| 国产精品一区二区性色av| 国产av码专区亚洲av| 伦理电影大哥的女人| 一个人看视频在线观看www免费| 亚洲精品乱码久久久v下载方式| 99九九在线精品视频 | 丝瓜视频免费看黄片| www.色视频.com| 男人和女人高潮做爰伦理| 精华霜和精华液先用哪个| 国产毛片在线视频| 欧美一级a爱片免费观看看| 我要看黄色一级片免费的| 亚洲av福利一区| 哪个播放器可以免费观看大片| 大话2 男鬼变身卡| 国产精品99久久久久久久久| 十八禁网站网址无遮挡 | 国产高清不卡午夜福利| h视频一区二区三区| 妹子高潮喷水视频| 日日啪夜夜爽| 精品视频人人做人人爽| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久久久免| videos熟女内射| 午夜免费观看性视频| 国产淫语在线视频| 中文字幕久久专区| 国产高清三级在线| tube8黄色片| 亚洲精品乱码久久久v下载方式| 啦啦啦啦在线视频资源| 18禁动态无遮挡网站| 亚洲美女搞黄在线观看| 成人美女网站在线观看视频| 欧美人与善性xxx| 一级毛片黄色毛片免费观看视频| 亚洲一区二区三区欧美精品| 亚洲天堂av无毛| 免费观看a级毛片全部| 3wmmmm亚洲av在线观看| 亚洲国产精品专区欧美| 少妇的逼好多水| 久久久精品94久久精品| 欧美日韩视频高清一区二区三区二| 亚洲高清免费不卡视频| 久久午夜福利片| 国产亚洲精品久久久com| 狂野欧美激情性bbbbbb| 亚洲国产精品成人久久小说| 在现免费观看毛片| 五月天丁香电影| 中文乱码字字幕精品一区二区三区| 国产一级毛片在线| av线在线观看网站| 十八禁高潮呻吟视频 | 国产免费一级a男人的天堂| 人体艺术视频欧美日本| 人妻制服诱惑在线中文字幕| 国产精品99久久久久久久久| 久久久国产欧美日韩av| 特大巨黑吊av在线直播| videos熟女内射| 男女无遮挡免费网站观看| 午夜福利,免费看| 老司机影院毛片| av网站免费在线观看视频| 国产精品偷伦视频观看了| 男人舔奶头视频| 久久久久久久久久久久大奶| 国产熟女欧美一区二区| 黄色日韩在线| 欧美最新免费一区二区三区| av在线老鸭窝| 亚洲精品成人av观看孕妇| 丰满迷人的少妇在线观看| 国产有黄有色有爽视频| 秋霞伦理黄片| 日本黄色片子视频| 一本久久精品| 伦理电影免费视频| 亚洲欧美成人综合另类久久久| 日本黄大片高清| 欧美+日韩+精品| 91精品国产九色| 建设人人有责人人尽责人人享有的| 三上悠亚av全集在线观看 | 黑丝袜美女国产一区| 69精品国产乱码久久久| 天天躁夜夜躁狠狠久久av| 大码成人一级视频| 中文字幕精品免费在线观看视频 | 国产一区二区在线观看av| 久久 成人 亚洲| 日本午夜av视频| 精品久久久久久久久av| 成年人午夜在线观看视频| 亚洲国产毛片av蜜桃av| 性高湖久久久久久久久免费观看| 久久精品久久久久久噜噜老黄| 国精品久久久久久国模美| 日韩一区二区三区影片| 黑人巨大精品欧美一区二区蜜桃 | 99久久中文字幕三级久久日本| 卡戴珊不雅视频在线播放| 麻豆乱淫一区二区| 亚洲精华国产精华液的使用体验| av网站免费在线观看视频| 一级片'在线观看视频| 老司机亚洲免费影院| 中文字幕人妻熟人妻熟丝袜美| 波野结衣二区三区在线| 最黄视频免费看| 午夜免费鲁丝| 成年av动漫网址| 波野结衣二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 日韩人妻高清精品专区| 亚洲,一卡二卡三卡| 又黄又爽又刺激的免费视频.| freevideosex欧美| 国产亚洲精品久久久com| 午夜福利,免费看| 色吧在线观看| 久热久热在线精品观看| 高清黄色对白视频在线免费看 | 成人亚洲欧美一区二区av| 有码 亚洲区| 国产爽快片一区二区三区| av网站免费在线观看视频| 久久6这里有精品| 精品一品国产午夜福利视频| 色吧在线观看| 内地一区二区视频在线| 亚洲精品,欧美精品| av国产久精品久网站免费入址| 另类亚洲欧美激情| 中国三级夫妇交换| 中文字幕制服av| a级毛片在线看网站| 亚洲婷婷狠狠爱综合网| 免费看光身美女| 国产亚洲欧美精品永久| 久久久久久久久久久丰满| 亚洲精品乱码久久久久久按摩| 少妇猛男粗大的猛烈进出视频| 日韩欧美一区视频在线观看 | 夜夜爽夜夜爽视频| 国产精品秋霞免费鲁丝片| 国产美女午夜福利| 亚洲国产精品一区二区三区在线| 18禁在线无遮挡免费观看视频| 蜜桃在线观看..| 最近最新中文字幕免费大全7| 国产乱来视频区| 中文字幕人妻丝袜制服| 91精品国产国语对白视频| 成年女人在线观看亚洲视频| 免费不卡的大黄色大毛片视频在线观看| 超碰97精品在线观看| 日本-黄色视频高清免费观看| 美女xxoo啪啪120秒动态图| 亚洲第一av免费看| 最新中文字幕久久久久| 男人狂女人下面高潮的视频| 日产精品乱码卡一卡2卡三| 亚洲综合精品二区| 三级经典国产精品| 久久97久久精品| 少妇的逼水好多| 99热网站在线观看| 亚洲不卡免费看| 自拍偷自拍亚洲精品老妇| 色婷婷久久久亚洲欧美| 免费播放大片免费观看视频在线观看| 日韩一区二区三区影片| 久久久久久久久久久久大奶| 午夜福利视频精品| 看免费成人av毛片| 黄色怎么调成土黄色| 午夜影院在线不卡| 国产精品秋霞免费鲁丝片| 国产精品一二三区在线看| 亚洲成色77777| 99九九线精品视频在线观看视频| 国产欧美日韩精品一区二区| 97超视频在线观看视频| 久久人人爽人人片av| 免费观看在线日韩| 一区二区三区乱码不卡18| 欧美+日韩+精品| 国产精品欧美亚洲77777| 观看免费一级毛片| 亚洲av.av天堂| 成人二区视频| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av成人精品| 一个人看视频在线观看www免费| 亚洲欧洲日产国产| 精品一区二区三卡| 中文精品一卡2卡3卡4更新| 99热这里只有精品一区| 午夜av观看不卡| 午夜福利影视在线免费观看| 国产在线免费精品| 99久久中文字幕三级久久日本| 亚洲国产成人一精品久久久| 国产 一区精品| 在线免费观看不下载黄p国产| 国产av码专区亚洲av| 久久 成人 亚洲| 人人妻人人爽人人添夜夜欢视频 | 少妇精品久久久久久久| 少妇人妻 视频| 国产精品99久久99久久久不卡 | 成人国产麻豆网| 美女cb高潮喷水在线观看| 麻豆成人午夜福利视频| 在线 av 中文字幕| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 91久久精品国产一区二区三区| 日本黄色片子视频| 成人亚洲精品一区在线观看| 各种免费的搞黄视频| 精品人妻熟女av久视频| 不卡视频在线观看欧美| www.色视频.com| 日韩 亚洲 欧美在线| 亚洲国产日韩一区二区| 国产一区亚洲一区在线观看| 人妻系列 视频| 日韩,欧美,国产一区二区三区| 色吧在线观看| 少妇 在线观看| 成年人免费黄色播放视频 | 亚洲,一卡二卡三卡| 久久国产精品男人的天堂亚洲 | 大香蕉久久网| 日韩强制内射视频| 亚洲人成网站在线观看播放| 日韩强制内射视频| 熟女av电影| 亚洲欧洲日产国产| 日韩一区二区视频免费看| 777米奇影视久久| 新久久久久国产一级毛片| 欧美bdsm另类| 国产爽快片一区二区三区| 一区在线观看完整版| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕| a级毛色黄片| 日韩av不卡免费在线播放| 亚洲国产色片| 日韩av不卡免费在线播放| 人妻少妇偷人精品九色| 天天躁夜夜躁狠狠久久av| 麻豆成人午夜福利视频| 天天躁夜夜躁狠狠久久av| 下体分泌物呈黄色| 亚洲av欧美aⅴ国产| av不卡在线播放| 最近中文字幕2019免费版| 美女内射精品一级片tv| 久久久久久久久久人人人人人人| 精品卡一卡二卡四卡免费| 黄色一级大片看看| 毛片一级片免费看久久久久| 黄色日韩在线| 好男人视频免费观看在线| h日本视频在线播放| 国产成人a∨麻豆精品| 黄色一级大片看看| 18禁在线无遮挡免费观看视频| 日韩熟女老妇一区二区性免费视频| 色视频在线一区二区三区| 亚洲,欧美,日韩| 久久影院123| 人人妻人人看人人澡| 亚洲精品国产成人久久av| 赤兔流量卡办理| 男女国产视频网站| 麻豆成人av视频| 色视频在线一区二区三区| 高清视频免费观看一区二区| 啦啦啦中文免费视频观看日本| 国产探花极品一区二区| 一区二区三区四区激情视频| 五月开心婷婷网| 国精品久久久久久国模美| 欧美激情极品国产一区二区三区 | 在线观看美女被高潮喷水网站| 国产伦在线观看视频一区| 久久综合国产亚洲精品| 看免费成人av毛片| videossex国产| 看十八女毛片水多多多| 好男人视频免费观看在线| 国产av精品麻豆| av国产久精品久网站免费入址| 黑丝袜美女国产一区| 国语对白做爰xxxⅹ性视频网站| 国产有黄有色有爽视频| 精品一区二区三区视频在线| 国产黄色免费在线视频| 亚洲精品456在线播放app| 日本色播在线视频| av线在线观看网站| 亚洲精品色激情综合| 日韩视频在线欧美| 国产亚洲最大av| 日日摸夜夜添夜夜添av毛片| 日韩成人av中文字幕在线观看| 国产一区二区三区综合在线观看 | 天美传媒精品一区二区| 国产白丝娇喘喷水9色精品| 久久韩国三级中文字幕| 国产av精品麻豆| 大香蕉97超碰在线| 亚洲av欧美aⅴ国产| 少妇人妻精品综合一区二区| 国产精品福利在线免费观看| 极品教师在线视频| 久久精品久久久久久噜噜老黄| 亚洲图色成人| 一本色道久久久久久精品综合| 国产高清三级在线| 欧美国产精品一级二级三级 | 欧美日韩国产mv在线观看视频| 熟女电影av网| 国产精品一区www在线观看| 亚洲一区二区三区欧美精品| 国产精品久久久久久久久免| 亚洲av成人精品一二三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品色激情综合| 精品一品国产午夜福利视频| 久久综合国产亚洲精品| 看十八女毛片水多多多| 亚洲精品国产av成人精品| 我的老师免费观看完整版| 人妻少妇偷人精品九色| 国产精品成人在线| 久久久久久久国产电影| 亚洲精品乱久久久久久| 久久这里有精品视频免费| 在线观看国产h片| 国产成人午夜福利电影在线观看| 久久精品久久精品一区二区三区| 在线观看三级黄色| 久久婷婷青草| 在线观看国产h片| 内射极品少妇av片p| 国产av国产精品国产| 精品酒店卫生间| 午夜老司机福利剧场| 我的老师免费观看完整版| 国产精品一区www在线观看| 免费高清在线观看视频在线观看| 国产91av在线免费观看| 爱豆传媒免费全集在线观看| 精品一品国产午夜福利视频| 人人妻人人添人人爽欧美一区卜| 日韩,欧美,国产一区二区三区| 亚洲成人手机| 天天操日日干夜夜撸| 亚洲精品第二区| 免费人妻精品一区二区三区视频| 在线亚洲精品国产二区图片欧美 | 久久99热这里只频精品6学生| 男女无遮挡免费网站观看| a级毛片免费高清观看在线播放| 国产精品99久久久久久久久| 狂野欧美激情性xxxx在线观看| 在线观看免费视频网站a站| 亚洲激情五月婷婷啪啪| 亚洲伊人久久精品综合| 亚洲av不卡在线观看| 亚洲精品视频女| 日韩 亚洲 欧美在线| 久久久亚洲精品成人影院| 狂野欧美激情性bbbbbb| 永久免费av网站大全| 亚洲成人手机| 国产精品.久久久| 视频中文字幕在线观看| 欧美老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| a级一级毛片免费在线观看| 午夜激情久久久久久久| 免费看日本二区| 日韩一本色道免费dvd| 少妇熟女欧美另类| 久久久午夜欧美精品| 三级国产精品片| 男女免费视频国产| 亚洲综合精品二区| 午夜免费观看性视频| 成人特级av手机在线观看| h视频一区二区三区| 男女边吃奶边做爰视频| 大又大粗又爽又黄少妇毛片口| 欧美日韩精品成人综合77777| 国产精品久久久久久精品电影小说| 99视频精品全部免费 在线| 热re99久久国产66热| 人妻制服诱惑在线中文字幕| 国国产精品蜜臀av免费| 久久久久久久亚洲中文字幕| 亚洲欧洲国产日韩| 特大巨黑吊av在线直播| 午夜日本视频在线| av不卡在线播放| 亚洲第一区二区三区不卡| 久久午夜福利片| 国产精品一区二区三区四区免费观看| 国产精品免费大片| 国产日韩欧美在线精品| 国产男人的电影天堂91| 日韩电影二区| 欧美另类一区| 欧美变态另类bdsm刘玥| 亚洲欧洲精品一区二区精品久久久 | 亚洲av.av天堂| 夜夜爽夜夜爽视频| 2018国产大陆天天弄谢| 国产精品国产av在线观看| 久久久精品94久久精品| 免费看不卡的av| 视频中文字幕在线观看| 国产伦理片在线播放av一区| 精品久久国产蜜桃| 亚洲精品一二三| 免费观看性生交大片5| 国产探花极品一区二区| 亚洲,一卡二卡三卡| h日本视频在线播放| 六月丁香七月| 99精国产麻豆久久婷婷| 精品一区二区三区视频在线| 婷婷色麻豆天堂久久| 国产视频内射| 亚洲精品日韩av片在线观看| 女的被弄到高潮叫床怎么办| 成人国产麻豆网| 丝袜喷水一区| 国产精品欧美亚洲77777| 人妻 亚洲 视频| 一边亲一边摸免费视频| 另类亚洲欧美激情| 97在线视频观看| 人人妻人人看人人澡| 狂野欧美激情性xxxx在线观看| 国产又色又爽无遮挡免| 97在线视频观看| 亚洲精品一二三| 人人澡人人妻人| 亚洲久久久国产精品| 嫩草影院新地址| 岛国毛片在线播放| videossex国产| 欧美日韩一区二区视频在线观看视频在线| 国模一区二区三区四区视频| 插逼视频在线观看| 五月天丁香电影| 久久免费观看电影| 久久精品国产亚洲网站| 国产一区二区三区av在线| 中文字幕亚洲精品专区| 亚洲av成人精品一二三区| 国产乱人偷精品视频| 最近最新中文字幕免费大全7| 日本欧美视频一区| 午夜久久久在线观看| 另类亚洲欧美激情| 亚洲精品久久午夜乱码| 欧美日韩综合久久久久久| 老司机影院成人| 在线观看免费日韩欧美大片 | 国产午夜精品一二区理论片| 午夜老司机福利剧场| av播播在线观看一区| 免费黄频网站在线观看国产| 国产日韩一区二区三区精品不卡 | 国产精品偷伦视频观看了| 国产色爽女视频免费观看| 色视频在线一区二区三区| 亚洲国产精品一区二区三区在线| 国产欧美日韩一区二区三区在线 | 国产精品国产三级国产专区5o| 中国三级夫妇交换| 久久鲁丝午夜福利片| 国产美女午夜福利| 日日撸夜夜添| 十八禁网站网址无遮挡 | 日韩中字成人| 欧美变态另类bdsm刘玥| 亚洲综合精品二区| 观看av在线不卡| av视频免费观看在线观看| 一级毛片我不卡| 久久99精品国语久久久| 丝袜喷水一区| 日日爽夜夜爽网站| freevideosex欧美| 成人美女网站在线观看视频| 久久国产亚洲av麻豆专区| 日韩一本色道免费dvd| 在线观看人妻少妇| 亚洲色图综合在线观看| 亚洲av中文av极速乱| 国产一区有黄有色的免费视频| 中文字幕av电影在线播放| 美女大奶头黄色视频| av在线app专区| 久久99热这里只频精品6学生| 精品人妻偷拍中文字幕| 老女人水多毛片| 天美传媒精品一区二区| 日韩一本色道免费dvd| 丝袜喷水一区| 久久 成人 亚洲| 国产极品天堂在线| 欧美97在线视频| av国产久精品久网站免费入址| 深夜a级毛片| 国产午夜精品一二区理论片| 国产精品久久久久成人av| 国内揄拍国产精品人妻在线| 午夜福利,免费看| 欧美日韩av久久| 日本vs欧美在线观看视频 | 亚洲av免费高清在线观看| 看非洲黑人一级黄片| 中文资源天堂在线| 久久久久精品性色|