• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical Transmission Properties of Asymmetric Bowtie Nano-Aperture Array

    2016-11-28 03:50:31SUNXinFENGMinWANGBinCAOXueweiWANGYufang
    光散射學(xué)報 2016年3期
    關(guān)鍵詞:基模非對稱偏置

    SUN Xin,FENG Min,WANG Bin,CAO Xue-wei,WANG Yu-fang

    (School of Physics,Nankai University,Tianjin 300071)

    ?

    Optical Transmission Properties of Asymmetric Bowtie Nano-Aperture Array

    SUN Xin,FENG Min,WANG Bin,CAO Xue-wei,WANG Yu-fang*

    (SchoolofPhysics,NankaiUniversity,Tianjin300071)

    We investigated the optical properties of two different asymmetric bowtie nano-aperture (BNA) structures using numerical simulation.For the BNA with its gap displaced,the fundamental resonance is in linear relation with aperture perimeter.And different gap sizes show different sensitivity to gap displacement.For the BNA with one edge geometrically modified,the fundamental resonance can be tuned in linear fashion by changing one geometrical parameter (the height of the remaining parth2).Furthermore,peak splitting of Fabry-Perot-like resonance can also be observed in the study.Both approaches we propose in this work to break the symmetry of BNA can be used flexibly to manipulate the resonances of BNA structure.

    bowtie nano-aperture; extraordinary optical transmission; surface plasmon polaritons; optical resonance

    1 Introduction

    Light concentration,manipulation,and transmission enhancement at nanoscale have attracted numerous attentions in the recent decade.Typically,these novel optical phenomena arise when small geometric characteristics are introduced for the metal nano-structures that can give rise to various kinds of resonances.These resonances often lead to an exotic phenomenon called extraordinary optical transmission (EOT) which has a plethora of potential applications.EOT was discovered by Ebbesen,et al[1]in 1998 and since then has generated great interest among researchers.Lots of work explored various nano-structures that may give rise to EOT phenomenon.Some nano-aperture based structures such as circular apertures,rectangular apertures[2-3],and other apertures of novel shapes[4-7]have been studied.One of the most interesting and prominent structures among them is bowtie nano-aperture (BNA).BNAs have bowtie-shaped profiles.They are usually drilled in the film made of noble metal and arranged in two dimensional array.The film with BNAs on it exhibits large cutoff wavelength,high light concentration and transmission enhancement effects[8-10].In the works above,most of the apertures on the metal films are symmetric.However,some studies also investigated optical properties of asymmetric apertures.Yin,et al[11]studied the influence of introduction of protuberances inside square apertures on the whole structure′s transmission properties.They discovered that for asymmetric square holes,there is an obvious peak splitting phenomenon.This phenomenon originates from a new resonant mode due to the asymmetry of the structure.Here,it is interesting for us to question,how the transmission properties would change when asymmetry is introduced to BNA.In this study,we adopt two approaches to break the symmetry of BNA.Using FDTD simulation,we found that both have interesting effects on the two main resonant modes of the structure.

    2 Model and Simulation

    The structure we study is a free-standing silver film with BNAs on it.BNAs are arranged in two-dimensional array on the film.By "two dimensional",we mean that aperture repeats itself in bothxandydirection with a certain spatial period.Figure 1 (a) is the schematic of a typical BNA structure.We simulated a single computation cell with periodic boundaries around.The cell has square cross-section on x-y plane.The length of the square cross-section is 500 nm.Thus,the entire simulation system is equivalent to a 2D BNA array of 500 nm spatial period.Each BNA on the film has a square outline of length 200 nm.The thickness of the film is also 200 nm.The structure is under normal incidence from+zdirection.The incident light is plane wave and its E-field is polarized alongxdirection.

    Fig.1 (a) Bowtie nano-aperture (BNA) in x-y plane.The outline length of the aperture is 200 nm.The length of the square cross section is 500 nm.Dashed line represents the aperture after gap displacement.(b) BNA with two parts of right edge cut off viewed in x-z plane.The cut length along x directiondis 50 nm.h1 andh3 are the height of the two cut parts,respectively.h2 is the height of the remaining part

    3 Results and Discussions

    3.1 Transmission properties of a typical BNA structure

    Figure 2 is the transmission spectrum of a BNA structure with 50 nm gap.From this figure,we can see that there are three distinguishable peaks on the spectrum.The peak in the near infrared region corresponds to the fundamental resonance.At this resonant mode,the E-field enhanced area is uniform alongzdirection in the gap.It is equivalent to the mode at cutoff wavelength of an equivalent infinitely long waveguide with same profile as BNA[9].The resonant wavelength of fundamental mode is independent of film thickness and is linearly dependent of aperture perimeter[8].The peak located at about 615 nm is the Fabry-Perot-like (FP) resonance whose resonant wavelength is determined by film thickness.We refer to this resonance as FP-1 resonance since there is only one node in the center of the cavity.The two resonances we mentioned here belong to localized resonant mode.The third peak on the spectrum at 500 nm corresponds to the Rayleigh-Wood anomaly (RWA) phenomenon.It is inherently extended surface mode.Both the localized mode and extended surface mode can be identified on a typical nano-structure that exhibits extraordinary optical transmission[12].

    Fig.2 The transmission spectrum of BNA with 50 nm gap size.The peak at 865 nm corresponds to the fundamental resonance.The peak at 615 corresponds to the Fabry-Perot-like resonance.The peak at 505 is attributed to Rayleigh-Wood anomaly (RWA)

    3.2 Displacing gap

    Fig.3 The linear relation of fundamental resonant wavelength with aperture perimeter of 20 nm gap size BNA.The aperture perimeter is changed due to gap displacement.The dots represent the data obtained from our simulations.The gray dashed line is the linear fitting of the actual data

    The FP peaks also red-shift with increasing gap displacement.However,its changing range is not large compared to fundamental peak.For a typical BNA,i.e.20 nm gap,the changing range of FP resonant wavelength is only 56 nm,while the fundamental one can reach 226 nm.Like the fundamental resonance,the FP resonant wavelength can also be well fitted quadratically.But no obvious pattern is discovered among these fitted curves.

    Fig.4 The curves are quadratic fittings with constant terms dropped.The curves in the figure correspond to gap sizes of 20,30,40,and 50 nm,respectively.The curve that grows faster with gap displacement indicates that the BNA is more sensitive to gap displacement.Note that the two curves that correspond to 30 and 40 nm gap are very close to each other.The inset shows a closer look at these two curves from 74 to 75 nm gap displacement

    It is also worth noting that besides the peaks that correspond to fundamental,FP,and RWA resonance,there are also two small peaks in between RWA and FP peak as shown in figure 5.These two peaks appear when both large gap and large displacement are introduced.The peak near RWA peak,once appears,remains at 550 nm while the other one changes its position with displacement of gap.The wavelength of the peak near RWA peak coincides with the FP resonant wavelength of square aperture of 200 nm length (555 nm resonant wavelength).Figure 6 demonstrates the case of maximum displacement for BNA of 75 nm gap size.One node is present in the middle,indicating a FP resonance pattern.Since the field pattern is FP-like and the resonant wavelength is the same as that of the square aperture,we attribute this peak to the FP resonance of square hole.As we know,when the displacement steadily grows larger,the left edge gradually flattens and becomes more like the wall of square aperture.When one side approaches the wall of a square aperture,its characteristic resonance starts to appear.However,there is one difference that the enhanced E-field extends more to the front and rear surface than the square aperture case due to the influence of the right sharp edge.

    Fig.5 The transmission spectrum of BNA of 75 nm gap size and of maximum gap displacement.Two additional peaks (at 550 and 582 nm) appear between RWA peak and FP peak

    Fig.6 The E-field distribution on x-z plane.The BNA is of 75 nm gap size and of maximum gap displacement.The resonant wavelength of this distribution of field is 550 nm.This wavelength is the same as the FP resonant wavelength of square aperture array

    The other peak near FP resonant peak varies with gap displacement for a fixed gap size.Figure 7 is the energy flux density distribution in x-y plane.From this figure,we can clearly observe the enhanced field intensity at two right corners.Large displacement of gap directly leads to acute angles of the two corners.As it has been studied that apertures with acute angles can give rise to another strongly localized resonance -- channel plasmon resonance (CPR)[14].The field of CPR is highly confined at the corner area.And its resonant energy is highly dependent of the angle of corner.When the gap displacement grows larger,the sharp corners start to take effect and finally lead to the presence of another resonance mode that manifests itself as another peak on the transmission spectrum.

    Fig.7 Energy flux density distribution of x-y plane at 582 nm resonance.The gap size is also 75 nm and displacement reaches maximum.One can view that the energy is mainly tunneled through sharp corner area and the right gap edge.This resonance is related to channel plasmon resonance (CPR) and is dependent of the angle of sharp corners

    However,we emphasize again that square hole′s FP resonance and CPR only take place when there is a large displacement of gap.Because displacement leads to flattened edge and sharp corners which are the necessary causes for square hole′s FP resonance and channel plasmon resonance,respectively.

    As we have discussed above,displacing the gap breaks the symmetry with respect to y-z plane and the change of fundamental resonance can be simply understood through change the electric charge oscillation path,though corner effect should be taken into account in order to have a more precise insight into the change of resonant wavelength.For the FP resonance,the charges are mainly centered at two gap edges.With that being said,we mean that the resonance is influenced by both the geometries of two edges.The modification of resonance by geometry change is more complex than that of fundamental resonance.But the resonance of two modes can be both well fitted into quadratic relation,which makes it predictable for other resonant wavelengths when several wavelengths for their corresponding gap displacement are already known.

    3.3 Cutting one edge

    The strategy of breaking the symmetry by displacement of gap is a simple and effective way of modifying BNA structure′s two main resonances.However,change of FP resonance is not quite impressive and its changing pattern is not regular.This irregularity of change indicates that this strategy,though simple as it seems to be for fundamental resonance,may not be an effective way to reduce the complexity in manipulating FP resonance.Perhaps the most effective way to change the FP resonance is just to use a film of different thickness.Changing the film thickness is equivalent to changing the cavity length for FP resonance,hence the change of FP resonant wavelength.And this approach can also isolate the manipulation of FP resonance from that of the fundamental resonance,since fundamental resonance is irrelevant to film thickness.This method apparently does not involve any symmetry breaking.We then question,is there any other way to modify FP resonance by other symmetry breaking strategy? We know that FP resonance is essentially due to the charge oscillation on two gap edges along z direction.And the resonance is defined by two gap edges as a whole.Thus altering the geometry of one edge should be effective.We further investigate the influence of breaking symmetry along z direction on one gap edge.

    Figure 1 (b) presents the changed geometry viewed in x-z plane.Two parts of right edge are cut off.The length of the cut part alongxdirection d is 50 nm.The height of top and bottom parts cut off areh1 andh3,respectively.The height of the remaining part ish2.his the thickness of the film:h=h1+h2+h3.

    We first seth2 to be 50 nm and keep it constant while increaseh1 from 0 to 75 nm.With increasingh1 and constanth2,the remaining block on the cut edge moves from top to center,gradually restoring the symmetry with respect to x-y plane.Note that,according to our simulation results (not shown here),whether illuminated from top or from bottom,the structure we study in this section has the same transmission spectrum.Thus,it is sufficient to stoph1 at 75 nm.Figure 8 (a) depicts the transmission spectra for differenth1 which is represented by y axis.From the spectra,we can see that the position of the fundamental peak remains unchanged with increasingh1 while FP resonance splits into two peaks.The FP peak of longer wavelength gradually blue-shifts with increasingh1 and finally merge into the other FP peak whenh1 grows large enough.The position of the FP peak of shorter wavelength,surprisingly,does not change at all withh1.

    To understand the different dependence of the three resonant peaks mentioned above on geometry,we studied another case.In this case,we gradually decreaseh2 while always keepsh1 equals toh3.For convenience,we refer to this case as symmetric case since the symmetry with respect to x-y plane is maintained.And we refer to the case studied above in this section as asymmetric case.The result is shown in figure 8 (b).Thexaxis represents wavelength and the y representsh1.We can see from this figure that the position of fundamental resonance changes linearly withh1 and apparently also withh2.Comparing to the previous case in which the resonant position does not change whenh2 is kept constant.We can conclude that the wavelength of fundamental resonance is linearly connected withh2.As for FP resonance,different from the previous case where there is a peak split,a gradual transition from one FP resonance to the other can be observed.Whenh1 is zero,the aperture is a common BNA (20 nm gap size) whose FP resonant wavelength is 665 nm.Then,with increasingh1,this peak starts to blue-shift.Whenh1 becomes larger than 40 nm,the peak position stops changing and remains constant at about 610 nm.

    Fig.8 Transmission spectra of structures for two cut-edge approaches.(a)h2 is kept 50 nm.The position of fundamental peak remains constant,while FP peak splits into two separate peaks.(b)h1 is kept equal toh3 in this case.With increasingh1 (also decreasingh2),the position of fundamental peak changes linearly,while the FP peak experiences a gradual transition

    In the extreme case whereh2 is zero,the FP resonant wavelength is 610 nm.This wavelength is exactly the same as the FP resonant wavelength that is irrelevant toh2 in the second case whenh1 is larger than 40 nm.Thus,we categorize this resonance as FP resonance.We know that for a typical BNA structure,its FP resonance is inherently due to the local charge oscillation along two gap edges.In the all cases we study in which the film thickness is 200 nm,there is only one FP resonant peak can be observed in the transmission spectrum.And this resonance should be named FP-1 resonance to reveal its resonant pattern since there is one node in the center of the cavity.In order to distinguish two different FP resonances,we refer to the resonance which changes withh1 as FP-1-1 resonance and the other which remains at 610 nm as FP-1-2 resonance.When the resonant condition is satisfied,two semi-circle-like charge oscillation paths are formed on two edges.This pair of paths,which do not go directly straight up or down along the edges,leads to the immunity to geometry change at the center area in the gap.This is the reason why FP-1-2 peak remains constant whenh1 increased beyond 40 nm in the symmetric case.Whenh1 is smaller than 40 nm,the remaining block of lengthh2 interferes with the resonance defined by the two paths and consequently modifies the resonance.This influence by the remaining block is manifested by the dependence of FP resonance onh1.This theory can also explain the phenomenon that there is a gradual energy transition between FP-1-1 and FP-1-2 peaks in the asymmetric case.With increasingh1,the remaining block changes its position from top to the central part the gap,reducing its influence on FP-1-2 resonance and consequently the intensity of FP-1-2 peaks steadily grows.

    Another point worth noting is that,as shown in figure 8 (b),the change of position of fundamental peak withh1 is gradual and smooth in the symmetric case.This is because the fundamental resonance is dominated by the remaining block on the right edge as well as part of the left edge.However,whenh2 turns 0 nm,there is no remaining block in the gap any more,the resonance is suddenly handed over to the new structure.This structure,withh2=0,is essentially different from the structure with remaining block on its right edge.Because the current density is uniformly distributed alongzdirection,which is why the fundamental resonance of this kind of structure is independent of film thickness.In the case whereh2 is not zero,since the current density is mainly concentrated in the area of the remaining block,the fundamental resonance is highly dependent onh2,as we have shown above.

    4 Conclusions

    We proposed two simple approaches to breaking the symmetry in order to manipulate both of BNA′s fundamental and Fabry-Perot resonant peaks for extraordinary optical transmission.Both approaches show interesting results.With displacing the gap of BNA,one can predictably change the fundamental peak based on the linear relation with aperture perimeter.Using cut-one-edge method,one has the great flexibility in changing the fundamental resonance in linear fashion and altering the FP resonance in a predictable way.Our research can be applied to help to design better optical filters and other applications to meet a large array of possible needs.

    [1] Ebbesen T W,Lezec H J,Ghaemi H F,etal.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature,1998,391:667-669.

    [2] Shao Weijia,Xu Xiaoliang,Wang Huijie.A manipulated extraordinary optical transmission filter composed with subwavelength hole complex arrays[J].Plasmonics,2014,9:1025-1030.

    [3] Ruan Zhichao,Qiu Min.Enhanced transmission through periodic arrays of subwavelength holes:the role of localized waveguide resonances[J].Phys Rev Lett,2006,96:233901.

    [4] Wang Yongkai,Qin Yan,Zhang Zhongyue.Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays[J].Plasmonics,2014,9:203-207.

    [5] Rodrigo S G,Mahboub O,Degiron A,etal.Holes with very acute angles:a new paradigm of extraordinary optical transmission through strongly localized modes[J].Opt Express,2010,18:23691-23697.

    [6] Lin L,Roberts A.Light transmission through nanostructured metallic films:coupling between surface waves and localized resonances[J].Opt Express,2011,19:2626-2633.

    [7] Degiron A,Ebbesen T W.The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J].J Opt A:Pure Appl Opt,2005,7:S90-S96.

    [8] Guo Hongcang,Meyrath T P,Zentgraf T,etal.Optical resonances of bowtie slot antennas and their geometry and material dependence[J].Opt Express,2008,16:7756-7766.

    [9] Ibrahim I A,Mivelle M,Grosjean T,etal.Bowtie-shaped nanoaperture:a modal study[J].Opt Lett,2010,35:2448-2450.

    [10] Kinzel E C,Xu Xianfan.Extraordinary infrared transmission through a periodic bowtie aperture array[J].Opt Lett,2010,35:992-994.

    [11] Yin Xiaogang,Huang Chengping,Shen Zhiqiang,etal.Splitting of transmission peak due to the hole symmetry breaking[J].Appl Phys Lett,2009,94:161904.

    [12] Carretero-Palacios S,Garcia-Vidal F J,Martin-Moreno L,etal.Effect of film thickness and dielectric environment on optical transmission through subwavelength holes[J].Phys Rev B,2012,85:035417.

    [13] Huang Chengping,Wang Qianjin,Zhu Yongyuan.Dual effect of surface plasmons in light transmission through perforated metal films[J].Phys Rev B,2007,75:245421.

    [14] Moreno E,Garcia-Vidal F J,Rodrigo S G,etal.Channel plasmon-polaritons:modal shape,dispersion,and losses[J].Opt Lett,2006,31:3447-3449.

    非對稱領(lǐng)結(jié)型納米孔陣列的光透射特性

    孫鑫,馮敏,王斌,曹學(xué)偉,王玉芳*

    (南開大學(xué)物理科學(xué)學(xué)院,天津 300071)

    本文利用數(shù)值模擬的方法研究了兩種不同的非對稱領(lǐng)結(jié)型納米孔結(jié)構(gòu)的光學(xué)特性。對于偏置間隙的領(lǐng)結(jié)型納米孔,其基模共振與孔的周長呈線性關(guān)系。并且,不同的間隙尺寸對間隙偏置的敏感度不同。對于間隙的一邊的結(jié)構(gòu)發(fā)生變化的領(lǐng)結(jié)型納米孔,基模共振可以通過改變單個幾何參量(剩余部分的高度h2)進(jìn)行線性調(diào)制。另外,研究中還觀察到了類Fabry-Perot共振的共振峰分裂。我們在這項工作中提出的這兩種打破領(lǐng)結(jié)型納米孔的對稱性的方法可以靈活地對領(lǐng)結(jié)型納米孔結(jié)構(gòu)的共振進(jìn)行操控。

    領(lǐng)結(jié)型納米孔;異常光透射;表面等離子體基元;光學(xué)共振

    2015-08-10; 修改稿日期:2015-09-20

    孫鑫(1990-),男,碩士,主要從事微納光學(xué)、光透射增強(qiáng)研究.E-mail:sunxin_mail213@126.com

    王玉芳.E-mail:yfwang@nankai.edu.cn

    1004-5929(2016)03-0285-08

    O43

    A

    10.13883/j.issn1004-5929.201603016

    猜你喜歡
    基模非對稱偏置
    基于40%正面偏置碰撞的某車型仿真及結(jié)構(gòu)優(yōu)化
    基于雙向線性插值的車道輔助系統(tǒng)障礙避讓研究
    中國信息化(2022年5期)2022-06-13 11:12:49
    非對稱Orlicz差體
    從基模理論談新媒體環(huán)境下網(wǎng)民媒介素養(yǎng)的提高
    采寫編(2017年2期)2017-06-29 11:28:36
    “基模導(dǎo)向”在初中數(shù)學(xué)教學(xué)中的應(yīng)用
    一級旋流偏置對雙旋流杯下游流場的影響
    點數(shù)不超過20的旗傳遞非對稱2-設(shè)計
    革新實驗室:一種新的工作場所學(xué)習(xí)方法的基模
    初創(chuàng)企業(yè)組織共享基模的形成機(jī)理研究
    非對稱負(fù)載下矩陣變換器改進(jìn)型PI重復(fù)控制
    電測與儀表(2015年4期)2015-04-12 00:43:04
    纯流量卡能插随身wifi吗| 91在线精品国自产拍蜜月| 这个男人来自地球电影免费观看 | 侵犯人妻中文字幕一二三四区| 国产成人av激情在线播放| 91午夜精品亚洲一区二区三区| 国产一区二区三区综合在线观看| www.自偷自拍.com| 咕卡用的链子| 日本猛色少妇xxxxx猛交久久| 91午夜精品亚洲一区二区三区| 国产在线视频一区二区| 美女视频免费永久观看网站| 亚洲精品日本国产第一区| 老司机影院成人| 亚洲欧美日韩另类电影网站| 精品国产国语对白av| 日韩av免费高清视频| 亚洲伊人久久精品综合| 一区在线观看完整版| 国产精品.久久久| 国产又爽黄色视频| 婷婷成人精品国产| 欧美人与性动交α欧美软件| 黑人欧美特级aaaaaa片| 国产亚洲欧美精品永久| 日韩制服骚丝袜av| 久久免费观看电影| 精品少妇黑人巨大在线播放| a级毛片黄视频| av网站在线播放免费| 日韩中字成人| 一区二区三区精品91| 亚洲欧美精品自产自拍| 男人添女人高潮全过程视频| 水蜜桃什么品种好| 天天躁日日躁夜夜躁夜夜| 久久久久人妻精品一区果冻| 亚洲av福利一区| 久久这里只有精品19| 香蕉丝袜av| 国产一区二区激情短视频 | 曰老女人黄片| 色播在线永久视频| 亚洲精品乱久久久久久| 永久免费av网站大全| 91精品三级在线观看| 精品人妻熟女毛片av久久网站| a级毛片黄视频| 一区二区三区乱码不卡18| 在线观看美女被高潮喷水网站| 国产精品人妻久久久影院| 观看av在线不卡| 亚洲一区二区三区欧美精品| 国产男女超爽视频在线观看| 亚洲视频免费观看视频| 亚洲精品久久成人aⅴ小说| 丝瓜视频免费看黄片| 亚洲欧美精品综合一区二区三区 | 亚洲精品久久午夜乱码| av网站在线播放免费| 少妇人妻 视频| 美女大奶头黄色视频| 黑丝袜美女国产一区| 欧美人与善性xxx| tube8黄色片| 欧美成人精品欧美一级黄| 国产精品99久久99久久久不卡 | av国产精品久久久久影院| 在线观看三级黄色| 亚洲欧洲国产日韩| 麻豆av在线久日| 在线天堂中文资源库| 两个人免费观看高清视频| 午夜福利一区二区在线看| 性高湖久久久久久久久免费观看| 亚洲图色成人| 亚洲三区欧美一区| 精品卡一卡二卡四卡免费| 午夜免费鲁丝| 欧美国产精品一级二级三级| 亚洲av男天堂| 国产一区二区三区av在线| 中文欧美无线码| 亚洲精品日韩在线中文字幕| av网站免费在线观看视频| 最近中文字幕2019免费版| 欧美最新免费一区二区三区| 99国产综合亚洲精品| 国产白丝娇喘喷水9色精品| 久久久精品免费免费高清| 美女视频免费永久观看网站| 建设人人有责人人尽责人人享有的| 午夜91福利影院| 少妇猛男粗大的猛烈进出视频| 精品少妇久久久久久888优播| av免费观看日本| 国产精品 国内视频| 亚洲精品aⅴ在线观看| 99国产综合亚洲精品| 国产免费现黄频在线看| 国产熟女欧美一区二区| 成人毛片60女人毛片免费| 交换朋友夫妻互换小说| 免费观看在线日韩| 成年美女黄网站色视频大全免费| 精品酒店卫生间| 免费在线观看完整版高清| 亚洲精品一二三| 人人妻人人爽人人添夜夜欢视频| 国产xxxxx性猛交| 婷婷色av中文字幕| 在线 av 中文字幕| 亚洲欧美精品综合一区二区三区 | 国产精品久久久久久av不卡| 看免费av毛片| 天美传媒精品一区二区| 精品第一国产精品| 亚洲国产精品一区三区| 国产视频首页在线观看| www.熟女人妻精品国产| www.熟女人妻精品国产| 亚洲精品国产一区二区精华液| 欧美日韩一级在线毛片| 国产精品无大码| 电影成人av| 高清黄色对白视频在线免费看| 丝袜美腿诱惑在线| 老司机影院毛片| 精品酒店卫生间| 岛国毛片在线播放| 亚洲,欧美,日韩| 久热这里只有精品99| 欧美精品高潮呻吟av久久| 亚洲精品一区蜜桃| 熟妇人妻不卡中文字幕| 欧美成人精品欧美一级黄| 另类精品久久| 狂野欧美激情性bbbbbb| 亚洲一区中文字幕在线| 亚洲综合精品二区| 亚洲婷婷狠狠爱综合网| 午夜福利视频精品| 午夜日韩欧美国产| 午夜日韩欧美国产| 中文乱码字字幕精品一区二区三区| 亚洲精品日本国产第一区| 99久国产av精品国产电影| 久久精品夜色国产| 久久久精品区二区三区| 中文字幕制服av| av在线老鸭窝| 巨乳人妻的诱惑在线观看| 18禁国产床啪视频网站| 夫妻性生交免费视频一级片| 成人毛片a级毛片在线播放| 2022亚洲国产成人精品| 国产极品天堂在线| 中文字幕人妻丝袜制服| 亚洲人成77777在线视频| 国产精品.久久久| 免费观看在线日韩| 这个男人来自地球电影免费观看 | 午夜福利,免费看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲成av片中文字幕在线观看 | 免费播放大片免费观看视频在线观看| 色婷婷av一区二区三区视频| 日日撸夜夜添| 一级黄片播放器| 咕卡用的链子| 日韩 亚洲 欧美在线| 国产亚洲一区二区精品| 999久久久国产精品视频| 国产淫语在线视频| 亚洲在久久综合| av有码第一页| 寂寞人妻少妇视频99o| 在线看a的网站| 青草久久国产| 99热国产这里只有精品6| 啦啦啦在线观看免费高清www| 欧美中文综合在线视频| 久久久久久久久免费视频了| 91精品国产国语对白视频| 亚洲国产最新在线播放| 国产精品嫩草影院av在线观看| 99热全是精品| 欧美日韩亚洲高清精品| 亚洲精品一区蜜桃| 一区二区日韩欧美中文字幕| 高清视频免费观看一区二区| 国产一区二区激情短视频 | 免费少妇av软件| 欧美97在线视频| 午夜福利一区二区在线看| 国产伦理片在线播放av一区| 国产成人一区二区在线| 90打野战视频偷拍视频| 免费观看av网站的网址| 纵有疾风起免费观看全集完整版| 2022亚洲国产成人精品| 欧美日韩精品成人综合77777| 精品国产一区二区久久| 日韩中文字幕视频在线看片| 免费av中文字幕在线| 国产成人av激情在线播放| av卡一久久| 成年人午夜在线观看视频| 在线免费观看不下载黄p国产| 婷婷成人精品国产| 十八禁高潮呻吟视频| 日韩精品免费视频一区二区三区| 欧美老熟妇乱子伦牲交| 在线天堂中文资源库| 国产女主播在线喷水免费视频网站| av网站免费在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 久久热在线av| 亚洲av免费高清在线观看| 99热全是精品| 九九爱精品视频在线观看| 国产精品久久久av美女十八| 国产探花极品一区二区| 天堂中文最新版在线下载| 哪个播放器可以免费观看大片| 少妇的丰满在线观看| 国产精品女同一区二区软件| 中文字幕精品免费在线观看视频| 婷婷色av中文字幕| 国产色婷婷99| 亚洲男人天堂网一区| 女性生殖器流出的白浆| 国产免费福利视频在线观看| 日韩中字成人| 制服人妻中文乱码| 成年人午夜在线观看视频| 国产在线一区二区三区精| 两个人免费观看高清视频| 欧美日本中文国产一区发布| 香蕉丝袜av| 国产极品天堂在线| 亚洲av.av天堂| 亚洲色图综合在线观看| 麻豆乱淫一区二区| 男女无遮挡免费网站观看| 欧美日本中文国产一区发布| 久久久亚洲精品成人影院| 亚洲美女视频黄频| 久久综合国产亚洲精品| 欧美 亚洲 国产 日韩一| 久久久久久久国产电影| 久久亚洲国产成人精品v| 亚洲一码二码三码区别大吗| 少妇人妻 视频| 人人澡人人妻人| 亚洲国产最新在线播放| 建设人人有责人人尽责人人享有的| 丝袜喷水一区| 看十八女毛片水多多多| 国产免费福利视频在线观看| 免费观看a级毛片全部| 日韩av免费高清视频| 好男人视频免费观看在线| 天堂俺去俺来也www色官网| 免费少妇av软件| 伦理电影大哥的女人| 亚洲av中文av极速乱| 精品一区二区免费观看| 少妇猛男粗大的猛烈进出视频| 国产精品一二三区在线看| 亚洲第一av免费看| 成年人免费黄色播放视频| av网站免费在线观看视频| 国产麻豆69| 9色porny在线观看| 精品少妇一区二区三区视频日本电影 | 黄色一级大片看看| 国产福利在线免费观看视频| 各种免费的搞黄视频| 久久国产亚洲av麻豆专区| 国产乱来视频区| 日韩精品免费视频一区二区三区| 99国产综合亚洲精品| 日韩一卡2卡3卡4卡2021年| 青青草视频在线视频观看| 中文字幕精品免费在线观看视频| 纯流量卡能插随身wifi吗| 国产精品国产av在线观看| 永久免费av网站大全| 又粗又硬又长又爽又黄的视频| 欧美人与性动交α欧美软件| 久久久久久久大尺度免费视频| 宅男免费午夜| 欧美精品人与动牲交sv欧美| 亚洲av男天堂| av电影中文网址| 三上悠亚av全集在线观看| 人人妻人人爽人人添夜夜欢视频| 色网站视频免费| 亚洲色图 男人天堂 中文字幕| 免费av中文字幕在线| 国产成人aa在线观看| 一区福利在线观看| 成人亚洲欧美一区二区av| 日韩伦理黄色片| 久久影院123| 人妻少妇偷人精品九色| av在线老鸭窝| 黄频高清免费视频| av免费观看日本| 丰满迷人的少妇在线观看| 啦啦啦啦在线视频资源| 十八禁网站网址无遮挡| 制服诱惑二区| 国产精品女同一区二区软件| 一二三四在线观看免费中文在| 久久婷婷青草| 老鸭窝网址在线观看| 国产激情久久老熟女| 最近手机中文字幕大全| 精品亚洲乱码少妇综合久久| 亚洲人成77777在线视频| 26uuu在线亚洲综合色| 久久人人爽av亚洲精品天堂| 国产片特级美女逼逼视频| 国产乱人偷精品视频| 大香蕉久久网| 亚洲欧美成人综合另类久久久| 制服人妻中文乱码| 韩国av在线不卡| 久久毛片免费看一区二区三区| 成人毛片a级毛片在线播放| 欧美精品国产亚洲| 老司机亚洲免费影院| 一个人免费看片子| 肉色欧美久久久久久久蜜桃| 欧美bdsm另类| av在线播放精品| 欧美日韩亚洲高清精品| 国产毛片在线视频| 这个男人来自地球电影免费观看 | 亚洲色图 男人天堂 中文字幕| 亚洲精品国产色婷婷电影| 亚洲av免费高清在线观看| av在线app专区| 女性生殖器流出的白浆| 婷婷色综合大香蕉| 在线观看美女被高潮喷水网站| 99热全是精品| 国产午夜精品一二区理论片| 欧美精品一区二区大全| 一级片'在线观看视频| 亚洲四区av| 一级爰片在线观看| 国产一区二区激情短视频 | 久久久久精品久久久久真实原创| 天美传媒精品一区二区| 晚上一个人看的免费电影| 伦理电影大哥的女人| 日韩制服骚丝袜av| 一区二区三区乱码不卡18| 亚洲av在线观看美女高潮| 波野结衣二区三区在线| 成人国产麻豆网| 国产免费一区二区三区四区乱码| 国产精品久久久av美女十八| 成人毛片a级毛片在线播放| av一本久久久久| 亚洲欧美日韩另类电影网站| 91精品三级在线观看| 亚洲美女视频黄频| 最近手机中文字幕大全| 成年女人在线观看亚洲视频| 午夜日本视频在线| 制服人妻中文乱码| 天堂俺去俺来也www色官网| 宅男免费午夜| 天天操日日干夜夜撸| 男女高潮啪啪啪动态图| 啦啦啦啦在线视频资源| 五月开心婷婷网| 777米奇影视久久| 免费黄色在线免费观看| 亚洲成av片中文字幕在线观看 | 中文精品一卡2卡3卡4更新| 丝袜脚勾引网站| 国产一区二区三区综合在线观看| 久久久精品国产亚洲av高清涩受| 9191精品国产免费久久| 欧美在线黄色| 亚洲人成电影观看| 我的亚洲天堂| 亚洲精品一区蜜桃| 国产免费福利视频在线观看| 久久ye,这里只有精品| 国产精品一二三区在线看| 大香蕉久久网| xxx大片免费视频| 日韩一区二区三区影片| 女性生殖器流出的白浆| 亚洲内射少妇av| 一二三四在线观看免费中文在| 一本色道久久久久久精品综合| 婷婷色av中文字幕| 熟女电影av网| 国产视频首页在线观看| 女人被躁到高潮嗷嗷叫费观| 一级毛片黄色毛片免费观看视频| 最新中文字幕久久久久| 高清欧美精品videossex| 成年动漫av网址| 亚洲美女黄色视频免费看| 亚洲国产欧美网| 少妇的逼水好多| 国产精品偷伦视频观看了| 久久国产亚洲av麻豆专区| av在线老鸭窝| 国产黄色免费在线视频| 黄色毛片三级朝国网站| 亚洲欧美色中文字幕在线| 这个男人来自地球电影免费观看 | 国产亚洲欧美精品永久| 久久久精品区二区三区| 欧美激情极品国产一区二区三区| 精品午夜福利在线看| 欧美成人午夜精品| 精品国产一区二区三区久久久樱花| 欧美国产精品一级二级三级| 亚洲精品在线美女| 亚洲经典国产精华液单| av又黄又爽大尺度在线免费看| 最近2019中文字幕mv第一页| 日韩在线高清观看一区二区三区| 69精品国产乱码久久久| 人妻人人澡人人爽人人| 午夜福利一区二区在线看| 91aial.com中文字幕在线观看| 欧美日韩国产mv在线观看视频| 久久毛片免费看一区二区三区| 亚洲欧洲国产日韩| 97人妻天天添夜夜摸| 在线精品无人区一区二区三| 亚洲欧洲国产日韩| 中文乱码字字幕精品一区二区三区| 80岁老熟妇乱子伦牲交| 又大又黄又爽视频免费| a 毛片基地| 亚洲成色77777| 精品一区在线观看国产| 亚洲精品一区蜜桃| 天天躁夜夜躁狠狠久久av| 亚洲,一卡二卡三卡| 午夜日韩欧美国产| 久久久久久久大尺度免费视频| 亚洲欧美精品自产自拍| 黄片播放在线免费| 极品少妇高潮喷水抽搐| 日产精品乱码卡一卡2卡三| 国产免费一区二区三区四区乱码| 国产av一区二区精品久久| 99久久中文字幕三级久久日本| 丰满饥渴人妻一区二区三| 国产男女超爽视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 精品国产露脸久久av麻豆| 国产亚洲午夜精品一区二区久久| 天天躁夜夜躁狠狠躁躁| 亚洲av国产av综合av卡| 精品少妇内射三级| 久久精品aⅴ一区二区三区四区 | 国产成人av激情在线播放| 亚洲第一av免费看| 国产极品粉嫩免费观看在线| 国产成人aa在线观看| 亚洲成人av在线免费| 亚洲欧洲精品一区二区精品久久久 | 91aial.com中文字幕在线观看| 在现免费观看毛片| 女人久久www免费人成看片| 欧美另类一区| 99久久人妻综合| 两性夫妻黄色片| a级毛片黄视频| 亚洲经典国产精华液单| 青春草亚洲视频在线观看| 少妇精品久久久久久久| 日本午夜av视频| 久久久久精品性色| 国产男女超爽视频在线观看| 成人18禁高潮啪啪吃奶动态图| 成年av动漫网址| 日韩av不卡免费在线播放| 精品少妇内射三级| 国产伦理片在线播放av一区| 成人国产av品久久久| 蜜桃在线观看..| 成人国产av品久久久| 性高湖久久久久久久久免费观看| 各种免费的搞黄视频| 天天躁夜夜躁狠狠躁躁| 91午夜精品亚洲一区二区三区| 夜夜骑夜夜射夜夜干| 亚洲男人天堂网一区| av又黄又爽大尺度在线免费看| 晚上一个人看的免费电影| 国产精品免费视频内射| 日韩,欧美,国产一区二区三区| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| 欧美bdsm另类| 青春草国产在线视频| 免费女性裸体啪啪无遮挡网站| 啦啦啦在线免费观看视频4| 久久久欧美国产精品| 亚洲国产欧美在线一区| 国产在线一区二区三区精| 中文欧美无线码| 少妇熟女欧美另类| 纵有疾风起免费观看全集完整版| 在线 av 中文字幕| 狠狠婷婷综合久久久久久88av| 久久97久久精品| 性高湖久久久久久久久免费观看| 两个人看的免费小视频| 美女中出高潮动态图| 免费不卡的大黄色大毛片视频在线观看| 超碰97精品在线观看| 亚洲精品aⅴ在线观看| 久久午夜福利片| www.av在线官网国产| 国产高清国产精品国产三级| 久久精品熟女亚洲av麻豆精品| 亚洲国产欧美在线一区| 新久久久久国产一级毛片| av免费在线看不卡| 午夜福利视频精品| 国产探花极品一区二区| 综合色丁香网| kizo精华| 有码 亚洲区| 国产色婷婷99| 少妇的丰满在线观看| 伊人久久国产一区二区| 精品国产乱码久久久久久小说| 另类精品久久| 大香蕉久久成人网| 建设人人有责人人尽责人人享有的| 91午夜精品亚洲一区二区三区| 9热在线视频观看99| 制服丝袜香蕉在线| 热99国产精品久久久久久7| 久久国产精品大桥未久av| 91精品国产国语对白视频| 十八禁网站网址无遮挡| 观看美女的网站| 亚洲在久久综合| 制服人妻中文乱码| 热99久久久久精品小说推荐| 国产精品三级大全| 在线观看一区二区三区激情| 日日撸夜夜添| 丁香六月天网| 最近最新中文字幕免费大全7| 新久久久久国产一级毛片| 精品一区二区三区四区五区乱码 | 80岁老熟妇乱子伦牲交| 高清av免费在线| 日本欧美视频一区| 久久久久国产一级毛片高清牌| 亚洲少妇的诱惑av| 视频区图区小说| 伊人久久大香线蕉亚洲五| 国产极品粉嫩免费观看在线| 亚洲图色成人| 国产一区二区在线观看av| 狠狠精品人妻久久久久久综合| 制服诱惑二区| 婷婷成人精品国产| 婷婷色综合大香蕉| 久久久久久人人人人人| 久久精品久久久久久噜噜老黄| 男人舔女人的私密视频| 少妇人妻 视频| 97在线人人人人妻| av片东京热男人的天堂| 国产亚洲精品第一综合不卡| av片东京热男人的天堂| 精品亚洲成a人片在线观看| 国产成人91sexporn| 亚洲少妇的诱惑av| 各种免费的搞黄视频| av在线老鸭窝| 久久久久国产一级毛片高清牌| 欧美精品高潮呻吟av久久| 各种免费的搞黄视频| 少妇精品久久久久久久| 久久久久视频综合| 国产日韩欧美在线精品| 在线观看三级黄色| 国产精品香港三级国产av潘金莲 | 日日啪夜夜爽| 最近最新中文字幕免费大全7| 免费黄频网站在线观看国产| 一本色道久久久久久精品综合| 欧美av亚洲av综合av国产av | 少妇被粗大猛烈的视频| 18禁观看日本| 少妇人妻久久综合中文| 日本91视频免费播放| 女人精品久久久久毛片| 久久久久久久亚洲中文字幕| 亚洲综合色网址| 精品一品国产午夜福利视频| 亚洲精品国产色婷婷电影|