• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical Transmission Properties of Asymmetric Bowtie Nano-Aperture Array

    2016-11-28 03:50:31SUNXinFENGMinWANGBinCAOXueweiWANGYufang
    光散射學(xué)報 2016年3期
    關(guān)鍵詞:基模非對稱偏置

    SUN Xin,FENG Min,WANG Bin,CAO Xue-wei,WANG Yu-fang

    (School of Physics,Nankai University,Tianjin 300071)

    ?

    Optical Transmission Properties of Asymmetric Bowtie Nano-Aperture Array

    SUN Xin,FENG Min,WANG Bin,CAO Xue-wei,WANG Yu-fang*

    (SchoolofPhysics,NankaiUniversity,Tianjin300071)

    We investigated the optical properties of two different asymmetric bowtie nano-aperture (BNA) structures using numerical simulation.For the BNA with its gap displaced,the fundamental resonance is in linear relation with aperture perimeter.And different gap sizes show different sensitivity to gap displacement.For the BNA with one edge geometrically modified,the fundamental resonance can be tuned in linear fashion by changing one geometrical parameter (the height of the remaining parth2).Furthermore,peak splitting of Fabry-Perot-like resonance can also be observed in the study.Both approaches we propose in this work to break the symmetry of BNA can be used flexibly to manipulate the resonances of BNA structure.

    bowtie nano-aperture; extraordinary optical transmission; surface plasmon polaritons; optical resonance

    1 Introduction

    Light concentration,manipulation,and transmission enhancement at nanoscale have attracted numerous attentions in the recent decade.Typically,these novel optical phenomena arise when small geometric characteristics are introduced for the metal nano-structures that can give rise to various kinds of resonances.These resonances often lead to an exotic phenomenon called extraordinary optical transmission (EOT) which has a plethora of potential applications.EOT was discovered by Ebbesen,et al[1]in 1998 and since then has generated great interest among researchers.Lots of work explored various nano-structures that may give rise to EOT phenomenon.Some nano-aperture based structures such as circular apertures,rectangular apertures[2-3],and other apertures of novel shapes[4-7]have been studied.One of the most interesting and prominent structures among them is bowtie nano-aperture (BNA).BNAs have bowtie-shaped profiles.They are usually drilled in the film made of noble metal and arranged in two dimensional array.The film with BNAs on it exhibits large cutoff wavelength,high light concentration and transmission enhancement effects[8-10].In the works above,most of the apertures on the metal films are symmetric.However,some studies also investigated optical properties of asymmetric apertures.Yin,et al[11]studied the influence of introduction of protuberances inside square apertures on the whole structure′s transmission properties.They discovered that for asymmetric square holes,there is an obvious peak splitting phenomenon.This phenomenon originates from a new resonant mode due to the asymmetry of the structure.Here,it is interesting for us to question,how the transmission properties would change when asymmetry is introduced to BNA.In this study,we adopt two approaches to break the symmetry of BNA.Using FDTD simulation,we found that both have interesting effects on the two main resonant modes of the structure.

    2 Model and Simulation

    The structure we study is a free-standing silver film with BNAs on it.BNAs are arranged in two-dimensional array on the film.By "two dimensional",we mean that aperture repeats itself in bothxandydirection with a certain spatial period.Figure 1 (a) is the schematic of a typical BNA structure.We simulated a single computation cell with periodic boundaries around.The cell has square cross-section on x-y plane.The length of the square cross-section is 500 nm.Thus,the entire simulation system is equivalent to a 2D BNA array of 500 nm spatial period.Each BNA on the film has a square outline of length 200 nm.The thickness of the film is also 200 nm.The structure is under normal incidence from+zdirection.The incident light is plane wave and its E-field is polarized alongxdirection.

    Fig.1 (a) Bowtie nano-aperture (BNA) in x-y plane.The outline length of the aperture is 200 nm.The length of the square cross section is 500 nm.Dashed line represents the aperture after gap displacement.(b) BNA with two parts of right edge cut off viewed in x-z plane.The cut length along x directiondis 50 nm.h1 andh3 are the height of the two cut parts,respectively.h2 is the height of the remaining part

    3 Results and Discussions

    3.1 Transmission properties of a typical BNA structure

    Figure 2 is the transmission spectrum of a BNA structure with 50 nm gap.From this figure,we can see that there are three distinguishable peaks on the spectrum.The peak in the near infrared region corresponds to the fundamental resonance.At this resonant mode,the E-field enhanced area is uniform alongzdirection in the gap.It is equivalent to the mode at cutoff wavelength of an equivalent infinitely long waveguide with same profile as BNA[9].The resonant wavelength of fundamental mode is independent of film thickness and is linearly dependent of aperture perimeter[8].The peak located at about 615 nm is the Fabry-Perot-like (FP) resonance whose resonant wavelength is determined by film thickness.We refer to this resonance as FP-1 resonance since there is only one node in the center of the cavity.The two resonances we mentioned here belong to localized resonant mode.The third peak on the spectrum at 500 nm corresponds to the Rayleigh-Wood anomaly (RWA) phenomenon.It is inherently extended surface mode.Both the localized mode and extended surface mode can be identified on a typical nano-structure that exhibits extraordinary optical transmission[12].

    Fig.2 The transmission spectrum of BNA with 50 nm gap size.The peak at 865 nm corresponds to the fundamental resonance.The peak at 615 corresponds to the Fabry-Perot-like resonance.The peak at 505 is attributed to Rayleigh-Wood anomaly (RWA)

    3.2 Displacing gap

    Fig.3 The linear relation of fundamental resonant wavelength with aperture perimeter of 20 nm gap size BNA.The aperture perimeter is changed due to gap displacement.The dots represent the data obtained from our simulations.The gray dashed line is the linear fitting of the actual data

    The FP peaks also red-shift with increasing gap displacement.However,its changing range is not large compared to fundamental peak.For a typical BNA,i.e.20 nm gap,the changing range of FP resonant wavelength is only 56 nm,while the fundamental one can reach 226 nm.Like the fundamental resonance,the FP resonant wavelength can also be well fitted quadratically.But no obvious pattern is discovered among these fitted curves.

    Fig.4 The curves are quadratic fittings with constant terms dropped.The curves in the figure correspond to gap sizes of 20,30,40,and 50 nm,respectively.The curve that grows faster with gap displacement indicates that the BNA is more sensitive to gap displacement.Note that the two curves that correspond to 30 and 40 nm gap are very close to each other.The inset shows a closer look at these two curves from 74 to 75 nm gap displacement

    It is also worth noting that besides the peaks that correspond to fundamental,FP,and RWA resonance,there are also two small peaks in between RWA and FP peak as shown in figure 5.These two peaks appear when both large gap and large displacement are introduced.The peak near RWA peak,once appears,remains at 550 nm while the other one changes its position with displacement of gap.The wavelength of the peak near RWA peak coincides with the FP resonant wavelength of square aperture of 200 nm length (555 nm resonant wavelength).Figure 6 demonstrates the case of maximum displacement for BNA of 75 nm gap size.One node is present in the middle,indicating a FP resonance pattern.Since the field pattern is FP-like and the resonant wavelength is the same as that of the square aperture,we attribute this peak to the FP resonance of square hole.As we know,when the displacement steadily grows larger,the left edge gradually flattens and becomes more like the wall of square aperture.When one side approaches the wall of a square aperture,its characteristic resonance starts to appear.However,there is one difference that the enhanced E-field extends more to the front and rear surface than the square aperture case due to the influence of the right sharp edge.

    Fig.5 The transmission spectrum of BNA of 75 nm gap size and of maximum gap displacement.Two additional peaks (at 550 and 582 nm) appear between RWA peak and FP peak

    Fig.6 The E-field distribution on x-z plane.The BNA is of 75 nm gap size and of maximum gap displacement.The resonant wavelength of this distribution of field is 550 nm.This wavelength is the same as the FP resonant wavelength of square aperture array

    The other peak near FP resonant peak varies with gap displacement for a fixed gap size.Figure 7 is the energy flux density distribution in x-y plane.From this figure,we can clearly observe the enhanced field intensity at two right corners.Large displacement of gap directly leads to acute angles of the two corners.As it has been studied that apertures with acute angles can give rise to another strongly localized resonance -- channel plasmon resonance (CPR)[14].The field of CPR is highly confined at the corner area.And its resonant energy is highly dependent of the angle of corner.When the gap displacement grows larger,the sharp corners start to take effect and finally lead to the presence of another resonance mode that manifests itself as another peak on the transmission spectrum.

    Fig.7 Energy flux density distribution of x-y plane at 582 nm resonance.The gap size is also 75 nm and displacement reaches maximum.One can view that the energy is mainly tunneled through sharp corner area and the right gap edge.This resonance is related to channel plasmon resonance (CPR) and is dependent of the angle of sharp corners

    However,we emphasize again that square hole′s FP resonance and CPR only take place when there is a large displacement of gap.Because displacement leads to flattened edge and sharp corners which are the necessary causes for square hole′s FP resonance and channel plasmon resonance,respectively.

    As we have discussed above,displacing the gap breaks the symmetry with respect to y-z plane and the change of fundamental resonance can be simply understood through change the electric charge oscillation path,though corner effect should be taken into account in order to have a more precise insight into the change of resonant wavelength.For the FP resonance,the charges are mainly centered at two gap edges.With that being said,we mean that the resonance is influenced by both the geometries of two edges.The modification of resonance by geometry change is more complex than that of fundamental resonance.But the resonance of two modes can be both well fitted into quadratic relation,which makes it predictable for other resonant wavelengths when several wavelengths for their corresponding gap displacement are already known.

    3.3 Cutting one edge

    The strategy of breaking the symmetry by displacement of gap is a simple and effective way of modifying BNA structure′s two main resonances.However,change of FP resonance is not quite impressive and its changing pattern is not regular.This irregularity of change indicates that this strategy,though simple as it seems to be for fundamental resonance,may not be an effective way to reduce the complexity in manipulating FP resonance.Perhaps the most effective way to change the FP resonance is just to use a film of different thickness.Changing the film thickness is equivalent to changing the cavity length for FP resonance,hence the change of FP resonant wavelength.And this approach can also isolate the manipulation of FP resonance from that of the fundamental resonance,since fundamental resonance is irrelevant to film thickness.This method apparently does not involve any symmetry breaking.We then question,is there any other way to modify FP resonance by other symmetry breaking strategy? We know that FP resonance is essentially due to the charge oscillation on two gap edges along z direction.And the resonance is defined by two gap edges as a whole.Thus altering the geometry of one edge should be effective.We further investigate the influence of breaking symmetry along z direction on one gap edge.

    Figure 1 (b) presents the changed geometry viewed in x-z plane.Two parts of right edge are cut off.The length of the cut part alongxdirection d is 50 nm.The height of top and bottom parts cut off areh1 andh3,respectively.The height of the remaining part ish2.his the thickness of the film:h=h1+h2+h3.

    We first seth2 to be 50 nm and keep it constant while increaseh1 from 0 to 75 nm.With increasingh1 and constanth2,the remaining block on the cut edge moves from top to center,gradually restoring the symmetry with respect to x-y plane.Note that,according to our simulation results (not shown here),whether illuminated from top or from bottom,the structure we study in this section has the same transmission spectrum.Thus,it is sufficient to stoph1 at 75 nm.Figure 8 (a) depicts the transmission spectra for differenth1 which is represented by y axis.From the spectra,we can see that the position of the fundamental peak remains unchanged with increasingh1 while FP resonance splits into two peaks.The FP peak of longer wavelength gradually blue-shifts with increasingh1 and finally merge into the other FP peak whenh1 grows large enough.The position of the FP peak of shorter wavelength,surprisingly,does not change at all withh1.

    To understand the different dependence of the three resonant peaks mentioned above on geometry,we studied another case.In this case,we gradually decreaseh2 while always keepsh1 equals toh3.For convenience,we refer to this case as symmetric case since the symmetry with respect to x-y plane is maintained.And we refer to the case studied above in this section as asymmetric case.The result is shown in figure 8 (b).Thexaxis represents wavelength and the y representsh1.We can see from this figure that the position of fundamental resonance changes linearly withh1 and apparently also withh2.Comparing to the previous case in which the resonant position does not change whenh2 is kept constant.We can conclude that the wavelength of fundamental resonance is linearly connected withh2.As for FP resonance,different from the previous case where there is a peak split,a gradual transition from one FP resonance to the other can be observed.Whenh1 is zero,the aperture is a common BNA (20 nm gap size) whose FP resonant wavelength is 665 nm.Then,with increasingh1,this peak starts to blue-shift.Whenh1 becomes larger than 40 nm,the peak position stops changing and remains constant at about 610 nm.

    Fig.8 Transmission spectra of structures for two cut-edge approaches.(a)h2 is kept 50 nm.The position of fundamental peak remains constant,while FP peak splits into two separate peaks.(b)h1 is kept equal toh3 in this case.With increasingh1 (also decreasingh2),the position of fundamental peak changes linearly,while the FP peak experiences a gradual transition

    In the extreme case whereh2 is zero,the FP resonant wavelength is 610 nm.This wavelength is exactly the same as the FP resonant wavelength that is irrelevant toh2 in the second case whenh1 is larger than 40 nm.Thus,we categorize this resonance as FP resonance.We know that for a typical BNA structure,its FP resonance is inherently due to the local charge oscillation along two gap edges.In the all cases we study in which the film thickness is 200 nm,there is only one FP resonant peak can be observed in the transmission spectrum.And this resonance should be named FP-1 resonance to reveal its resonant pattern since there is one node in the center of the cavity.In order to distinguish two different FP resonances,we refer to the resonance which changes withh1 as FP-1-1 resonance and the other which remains at 610 nm as FP-1-2 resonance.When the resonant condition is satisfied,two semi-circle-like charge oscillation paths are formed on two edges.This pair of paths,which do not go directly straight up or down along the edges,leads to the immunity to geometry change at the center area in the gap.This is the reason why FP-1-2 peak remains constant whenh1 increased beyond 40 nm in the symmetric case.Whenh1 is smaller than 40 nm,the remaining block of lengthh2 interferes with the resonance defined by the two paths and consequently modifies the resonance.This influence by the remaining block is manifested by the dependence of FP resonance onh1.This theory can also explain the phenomenon that there is a gradual energy transition between FP-1-1 and FP-1-2 peaks in the asymmetric case.With increasingh1,the remaining block changes its position from top to the central part the gap,reducing its influence on FP-1-2 resonance and consequently the intensity of FP-1-2 peaks steadily grows.

    Another point worth noting is that,as shown in figure 8 (b),the change of position of fundamental peak withh1 is gradual and smooth in the symmetric case.This is because the fundamental resonance is dominated by the remaining block on the right edge as well as part of the left edge.However,whenh2 turns 0 nm,there is no remaining block in the gap any more,the resonance is suddenly handed over to the new structure.This structure,withh2=0,is essentially different from the structure with remaining block on its right edge.Because the current density is uniformly distributed alongzdirection,which is why the fundamental resonance of this kind of structure is independent of film thickness.In the case whereh2 is not zero,since the current density is mainly concentrated in the area of the remaining block,the fundamental resonance is highly dependent onh2,as we have shown above.

    4 Conclusions

    We proposed two simple approaches to breaking the symmetry in order to manipulate both of BNA′s fundamental and Fabry-Perot resonant peaks for extraordinary optical transmission.Both approaches show interesting results.With displacing the gap of BNA,one can predictably change the fundamental peak based on the linear relation with aperture perimeter.Using cut-one-edge method,one has the great flexibility in changing the fundamental resonance in linear fashion and altering the FP resonance in a predictable way.Our research can be applied to help to design better optical filters and other applications to meet a large array of possible needs.

    [1] Ebbesen T W,Lezec H J,Ghaemi H F,etal.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature,1998,391:667-669.

    [2] Shao Weijia,Xu Xiaoliang,Wang Huijie.A manipulated extraordinary optical transmission filter composed with subwavelength hole complex arrays[J].Plasmonics,2014,9:1025-1030.

    [3] Ruan Zhichao,Qiu Min.Enhanced transmission through periodic arrays of subwavelength holes:the role of localized waveguide resonances[J].Phys Rev Lett,2006,96:233901.

    [4] Wang Yongkai,Qin Yan,Zhang Zhongyue.Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays[J].Plasmonics,2014,9:203-207.

    [5] Rodrigo S G,Mahboub O,Degiron A,etal.Holes with very acute angles:a new paradigm of extraordinary optical transmission through strongly localized modes[J].Opt Express,2010,18:23691-23697.

    [6] Lin L,Roberts A.Light transmission through nanostructured metallic films:coupling between surface waves and localized resonances[J].Opt Express,2011,19:2626-2633.

    [7] Degiron A,Ebbesen T W.The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J].J Opt A:Pure Appl Opt,2005,7:S90-S96.

    [8] Guo Hongcang,Meyrath T P,Zentgraf T,etal.Optical resonances of bowtie slot antennas and their geometry and material dependence[J].Opt Express,2008,16:7756-7766.

    [9] Ibrahim I A,Mivelle M,Grosjean T,etal.Bowtie-shaped nanoaperture:a modal study[J].Opt Lett,2010,35:2448-2450.

    [10] Kinzel E C,Xu Xianfan.Extraordinary infrared transmission through a periodic bowtie aperture array[J].Opt Lett,2010,35:992-994.

    [11] Yin Xiaogang,Huang Chengping,Shen Zhiqiang,etal.Splitting of transmission peak due to the hole symmetry breaking[J].Appl Phys Lett,2009,94:161904.

    [12] Carretero-Palacios S,Garcia-Vidal F J,Martin-Moreno L,etal.Effect of film thickness and dielectric environment on optical transmission through subwavelength holes[J].Phys Rev B,2012,85:035417.

    [13] Huang Chengping,Wang Qianjin,Zhu Yongyuan.Dual effect of surface plasmons in light transmission through perforated metal films[J].Phys Rev B,2007,75:245421.

    [14] Moreno E,Garcia-Vidal F J,Rodrigo S G,etal.Channel plasmon-polaritons:modal shape,dispersion,and losses[J].Opt Lett,2006,31:3447-3449.

    非對稱領(lǐng)結(jié)型納米孔陣列的光透射特性

    孫鑫,馮敏,王斌,曹學(xué)偉,王玉芳*

    (南開大學(xué)物理科學(xué)學(xué)院,天津 300071)

    本文利用數(shù)值模擬的方法研究了兩種不同的非對稱領(lǐng)結(jié)型納米孔結(jié)構(gòu)的光學(xué)特性。對于偏置間隙的領(lǐng)結(jié)型納米孔,其基模共振與孔的周長呈線性關(guān)系。并且,不同的間隙尺寸對間隙偏置的敏感度不同。對于間隙的一邊的結(jié)構(gòu)發(fā)生變化的領(lǐng)結(jié)型納米孔,基模共振可以通過改變單個幾何參量(剩余部分的高度h2)進(jìn)行線性調(diào)制。另外,研究中還觀察到了類Fabry-Perot共振的共振峰分裂。我們在這項工作中提出的這兩種打破領(lǐng)結(jié)型納米孔的對稱性的方法可以靈活地對領(lǐng)結(jié)型納米孔結(jié)構(gòu)的共振進(jìn)行操控。

    領(lǐng)結(jié)型納米孔;異常光透射;表面等離子體基元;光學(xué)共振

    2015-08-10; 修改稿日期:2015-09-20

    孫鑫(1990-),男,碩士,主要從事微納光學(xué)、光透射增強(qiáng)研究.E-mail:sunxin_mail213@126.com

    王玉芳.E-mail:yfwang@nankai.edu.cn

    1004-5929(2016)03-0285-08

    O43

    A

    10.13883/j.issn1004-5929.201603016

    猜你喜歡
    基模非對稱偏置
    基于40%正面偏置碰撞的某車型仿真及結(jié)構(gòu)優(yōu)化
    基于雙向線性插值的車道輔助系統(tǒng)障礙避讓研究
    中國信息化(2022年5期)2022-06-13 11:12:49
    非對稱Orlicz差體
    從基模理論談新媒體環(huán)境下網(wǎng)民媒介素養(yǎng)的提高
    采寫編(2017年2期)2017-06-29 11:28:36
    “基模導(dǎo)向”在初中數(shù)學(xué)教學(xué)中的應(yīng)用
    一級旋流偏置對雙旋流杯下游流場的影響
    點數(shù)不超過20的旗傳遞非對稱2-設(shè)計
    革新實驗室:一種新的工作場所學(xué)習(xí)方法的基模
    初創(chuàng)企業(yè)組織共享基模的形成機(jī)理研究
    非對稱負(fù)載下矩陣變換器改進(jìn)型PI重復(fù)控制
    電測與儀表(2015年4期)2015-04-12 00:43:04
    午夜福利,免费看| 在线观看免费视频网站a站| 欧美日本视频| 校园春色视频在线观看| 日本撒尿小便嘘嘘汇集6| 69精品国产乱码久久久| 午夜精品在线福利| 男人的好看免费观看在线视频 | 窝窝影院91人妻| 黄色a级毛片大全视频| 夜夜夜夜夜久久久久| 国产精品秋霞免费鲁丝片| 精品一区二区三区四区五区乱码| 一本久久中文字幕| 黄片大片在线免费观看| 亚洲七黄色美女视频| 久久中文字幕一级| 亚洲精品中文字幕一二三四区| 精品国产乱码久久久久久男人| 中文字幕另类日韩欧美亚洲嫩草| 国产精品精品国产色婷婷| 亚洲九九香蕉| 亚洲九九香蕉| 国产高清有码在线观看视频 | 级片在线观看| 色尼玛亚洲综合影院| 91麻豆av在线| 可以在线观看的亚洲视频| 久99久视频精品免费| 国产欧美日韩综合在线一区二区| 18禁裸乳无遮挡免费网站照片 | 长腿黑丝高跟| АⅤ资源中文在线天堂| 婷婷六月久久综合丁香| 一二三四社区在线视频社区8| 欧美激情极品国产一区二区三区| 久久精品人人爽人人爽视色| 亚洲熟妇熟女久久| 露出奶头的视频| 狠狠狠狠99中文字幕| 日韩av在线大香蕉| 一级片免费观看大全| 大香蕉久久成人网| 久久精品91无色码中文字幕| 青草久久国产| 欧美日韩一级在线毛片| 成人国语在线视频| 成年女人毛片免费观看观看9| 91麻豆av在线| 制服人妻中文乱码| 九色国产91popny在线| 成人18禁高潮啪啪吃奶动态图| 国产在线精品亚洲第一网站| 久久 成人 亚洲| 午夜福利影视在线免费观看| 久久久久国产一级毛片高清牌| 国产区一区二久久| 中文字幕色久视频| 国产麻豆69| 中出人妻视频一区二区| www.熟女人妻精品国产| 人妻丰满熟妇av一区二区三区| 亚洲国产欧美网| 黑人操中国人逼视频| 亚洲av成人一区二区三| 中文字幕精品免费在线观看视频| 亚洲一区二区三区不卡视频| 亚洲欧美精品综合一区二区三区| 一边摸一边做爽爽视频免费| ponron亚洲| 村上凉子中文字幕在线| 婷婷精品国产亚洲av在线| 午夜精品国产一区二区电影| 99在线视频只有这里精品首页| 国内精品久久久久久久电影| 大码成人一级视频| 成熟少妇高潮喷水视频| 亚洲男人的天堂狠狠| 两个人看的免费小视频| 国产精品一区二区免费欧美| 日日爽夜夜爽网站| 国产免费男女视频| 欧美激情久久久久久爽电影 | 99国产精品一区二区蜜桃av| 夜夜爽天天搞| 男人操女人黄网站| 老司机午夜十八禁免费视频| 老司机午夜福利在线观看视频| 国产成人啪精品午夜网站| 淫妇啪啪啪对白视频| 日本免费a在线| 亚洲av第一区精品v没综合| 啦啦啦 在线观看视频| 色综合站精品国产| 日日干狠狠操夜夜爽| 老鸭窝网址在线观看| 69精品国产乱码久久久| 婷婷丁香在线五月| 免费久久久久久久精品成人欧美视频| 多毛熟女@视频| 欧美一级a爱片免费观看看 | 免费观看人在逋| 一区二区三区精品91| 99久久精品国产亚洲精品| 亚洲国产精品久久男人天堂| 亚洲第一电影网av| 人人澡人人妻人| 嫁个100分男人电影在线观看| 久久人妻福利社区极品人妻图片| 少妇裸体淫交视频免费看高清 | www.精华液| 9色porny在线观看| 欧美日本视频| 侵犯人妻中文字幕一二三四区| 亚洲 欧美 日韩 在线 免费| 国产一级毛片七仙女欲春2 | 人人妻,人人澡人人爽秒播| 日韩欧美一区二区三区在线观看| 亚洲av成人av| 欧美日韩乱码在线| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品成人综合色| 久久性视频一级片| 两性夫妻黄色片| 精品欧美国产一区二区三| 国产麻豆69| 亚洲精品国产一区二区精华液| 日韩大尺度精品在线看网址 | 成在线人永久免费视频| av网站免费在线观看视频| 久久久国产成人免费| 黄色片一级片一级黄色片| 精品久久久久久成人av| 一级毛片精品| 亚洲最大成人中文| 夜夜看夜夜爽夜夜摸| 男女午夜视频在线观看| 中文字幕人妻丝袜一区二区| 男女之事视频高清在线观看| 桃红色精品国产亚洲av| 精品国产一区二区久久| 午夜免费观看网址| 18禁美女被吸乳视频| 如日韩欧美国产精品一区二区三区| 在线av久久热| 夜夜躁狠狠躁天天躁| 国产精品99久久99久久久不卡| 午夜影院日韩av| 一二三四社区在线视频社区8| 亚洲精品中文字幕一二三四区| 18禁黄网站禁片午夜丰满| 欧洲精品卡2卡3卡4卡5卡区| 成人精品一区二区免费| 少妇粗大呻吟视频| 国产欧美日韩一区二区三| 88av欧美| 亚洲黑人精品在线| 很黄的视频免费| 人人澡人人妻人| 老熟妇乱子伦视频在线观看| 国产99白浆流出| 久热这里只有精品99| 人人妻人人爽人人添夜夜欢视频| 高清黄色对白视频在线免费看| 国产麻豆成人av免费视频| 色尼玛亚洲综合影院| 少妇熟女aⅴ在线视频| 麻豆久久精品国产亚洲av| 男人舔女人下体高潮全视频| 满18在线观看网站| 非洲黑人性xxxx精品又粗又长| 人人澡人人妻人| 国产单亲对白刺激| 丝袜美足系列| 91字幕亚洲| 美女高潮喷水抽搐中文字幕| a级毛片在线看网站| 精品无人区乱码1区二区| xxx96com| av电影中文网址| 日韩精品青青久久久久久| 老汉色av国产亚洲站长工具| 高清毛片免费观看视频网站| 亚洲avbb在线观看| 欧美乱码精品一区二区三区| 91字幕亚洲| 国产亚洲欧美在线一区二区| 成年人黄色毛片网站| 亚洲第一欧美日韩一区二区三区| 国产精品电影一区二区三区| 午夜两性在线视频| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全免费视频| 亚洲人成电影免费在线| 成人18禁在线播放| 久久国产精品影院| 国产精品久久久久久精品电影 | 国产精品久久久久久人妻精品电影| aaaaa片日本免费| 精品久久久久久久人妻蜜臀av | 19禁男女啪啪无遮挡网站| 国产亚洲av嫩草精品影院| 制服人妻中文乱码| 女同久久另类99精品国产91| 久久精品aⅴ一区二区三区四区| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕人妻丝袜一区二区| 久久午夜亚洲精品久久| 亚洲第一电影网av| 又紧又爽又黄一区二区| 在线观看一区二区三区| 国产成人精品无人区| 亚洲一区高清亚洲精品| 亚洲国产日韩欧美精品在线观看 | 久久 成人 亚洲| 久久人人97超碰香蕉20202| 亚洲熟妇中文字幕五十中出| 国产色视频综合| 国产成人av激情在线播放| 午夜福利高清视频| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 高潮久久久久久久久久久不卡| 黄色 视频免费看| 亚洲av成人av| 波多野结衣一区麻豆| 欧美最黄视频在线播放免费| 亚洲专区中文字幕在线| 精品乱码久久久久久99久播| a在线观看视频网站| 九色国产91popny在线| 亚洲中文字幕一区二区三区有码在线看 | 国产极品粉嫩免费观看在线| 黄色毛片三级朝国网站| 亚洲专区中文字幕在线| 在线天堂中文资源库| 一级作爱视频免费观看| 人妻丰满熟妇av一区二区三区| 日韩免费av在线播放| 久久久久久久午夜电影| 国产成人一区二区三区免费视频网站| 一级毛片女人18水好多| 国产午夜福利久久久久久| 国产午夜精品久久久久久| 国产国语露脸激情在线看| 可以在线观看毛片的网站| 午夜精品国产一区二区电影| 成人免费观看视频高清| 99久久国产精品久久久| 欧美日本视频| 波多野结衣av一区二区av| 性色av乱码一区二区三区2| 亚洲国产中文字幕在线视频| 老熟妇乱子伦视频在线观看| 欧美黑人精品巨大| 色播亚洲综合网| 国产高清videossex| 亚洲欧美精品综合一区二区三区| 色综合亚洲欧美另类图片| 十八禁人妻一区二区| 人妻丰满熟妇av一区二区三区| 黄色 视频免费看| or卡值多少钱| 色综合欧美亚洲国产小说| 黑人巨大精品欧美一区二区mp4| 亚洲精品久久成人aⅴ小说| 久久天躁狠狠躁夜夜2o2o| 91大片在线观看| 999久久久精品免费观看国产| 欧美黄色片欧美黄色片| 好男人在线观看高清免费视频 | 国产熟女xx| 久久欧美精品欧美久久欧美| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产成人精品二区| 又黄又粗又硬又大视频| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看| 色尼玛亚洲综合影院| 亚洲精品在线美女| 亚洲熟妇中文字幕五十中出| 国产麻豆69| 国产精品乱码一区二三区的特点 | e午夜精品久久久久久久| 成人永久免费在线观看视频| 日韩 欧美 亚洲 中文字幕| 大型av网站在线播放| 国产人伦9x9x在线观看| 国产一级毛片七仙女欲春2 | 亚洲欧美一区二区三区黑人| 欧美中文综合在线视频| 国产伦一二天堂av在线观看| 欧美av亚洲av综合av国产av| 亚洲国产精品成人综合色| 久久国产精品人妻蜜桃| 精品福利观看| 久久精品国产清高在天天线| 欧美色视频一区免费| 欧美乱码精品一区二区三区| 一区福利在线观看| av超薄肉色丝袜交足视频| 久久午夜综合久久蜜桃| 欧美一区二区精品小视频在线| 久久人妻福利社区极品人妻图片| 午夜久久久在线观看| 亚洲三区欧美一区| 久久香蕉国产精品| 国产单亲对白刺激| 777久久人妻少妇嫩草av网站| 他把我摸到了高潮在线观看| 一区在线观看完整版| 精品国产国语对白av| 午夜影院日韩av| 久久精品成人免费网站| 怎么达到女性高潮| 欧美一区二区精品小视频在线| 亚洲视频免费观看视频| 好男人在线观看高清免费视频 | 高潮久久久久久久久久久不卡| 午夜免费成人在线视频| 欧美在线一区亚洲| 精品久久久久久久久久免费视频| 此物有八面人人有两片| 黄色视频,在线免费观看| 亚洲第一电影网av| 每晚都被弄得嗷嗷叫到高潮| 欧美激情高清一区二区三区| 多毛熟女@视频| 九色亚洲精品在线播放| 国产精品二区激情视频| 日本一区二区免费在线视频| 欧美激情久久久久久爽电影 | 日日爽夜夜爽网站| 国产在线观看jvid| 又大又爽又粗| 人妻丰满熟妇av一区二区三区| 女人高潮潮喷娇喘18禁视频| 丝袜人妻中文字幕| 午夜日韩欧美国产| 巨乳人妻的诱惑在线观看| 乱人伦中国视频| 亚洲成人国产一区在线观看| 香蕉久久夜色| 一本久久中文字幕| 亚洲精品久久国产高清桃花| 很黄的视频免费| 国内久久婷婷六月综合欲色啪| 久久午夜综合久久蜜桃| 欧美性长视频在线观看| 成人三级黄色视频| 琪琪午夜伦伦电影理论片6080| 大型av网站在线播放| 日韩有码中文字幕| 久久人人爽av亚洲精品天堂| 又黄又粗又硬又大视频| 在线观看66精品国产| 欧美性长视频在线观看| 国产精品综合久久久久久久免费 | 亚洲性夜色夜夜综合| 亚洲五月婷婷丁香| 午夜成年电影在线免费观看| 757午夜福利合集在线观看| 婷婷精品国产亚洲av在线| АⅤ资源中文在线天堂| 国产亚洲av嫩草精品影院| 国产成人啪精品午夜网站| 韩国av一区二区三区四区| 日韩国内少妇激情av| 精品国产国语对白av| 成年人黄色毛片网站| 老司机午夜十八禁免费视频| 久久天躁狠狠躁夜夜2o2o| 欧美成人免费av一区二区三区| 久久影院123| 黑人巨大精品欧美一区二区mp4| 美女午夜性视频免费| 最近最新中文字幕大全免费视频| 女人精品久久久久毛片| 成人精品一区二区免费| 日韩精品青青久久久久久| 国产亚洲欧美在线一区二区| 一级作爱视频免费观看| 看片在线看免费视频| 激情视频va一区二区三区| 婷婷六月久久综合丁香| a级毛片在线看网站| 18禁黄网站禁片午夜丰满| √禁漫天堂资源中文www| 亚洲免费av在线视频| 搡老妇女老女人老熟妇| 亚洲五月婷婷丁香| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人澡人人看| 天堂影院成人在线观看| 9色porny在线观看| 黄网站色视频无遮挡免费观看| av欧美777| 母亲3免费完整高清在线观看| 中文字幕最新亚洲高清| 极品人妻少妇av视频| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| 啦啦啦免费观看视频1| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频| 777久久人妻少妇嫩草av网站| 亚洲精品国产区一区二| 国产真人三级小视频在线观看| 亚洲视频免费观看视频| 久久精品影院6| 亚洲精品久久国产高清桃花| 久久午夜综合久久蜜桃| 黄色 视频免费看| 久久香蕉国产精品| 美女 人体艺术 gogo| 99国产精品99久久久久| 国产成人系列免费观看| 日韩大码丰满熟妇| 看片在线看免费视频| 午夜a级毛片| 制服诱惑二区| 久久久久国产精品人妻aⅴ院| 国产成年人精品一区二区| 久久久久久亚洲精品国产蜜桃av| 一边摸一边做爽爽视频免费| 久久人妻福利社区极品人妻图片| 国产成人av激情在线播放| 巨乳人妻的诱惑在线观看| 国产精品美女特级片免费视频播放器 | a级毛片在线看网站| 一边摸一边做爽爽视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 大型黄色视频在线免费观看| av片东京热男人的天堂| 美女免费视频网站| 欧美成人免费av一区二区三区| 日韩欧美国产一区二区入口| 99久久综合精品五月天人人| 婷婷六月久久综合丁香| 50天的宝宝边吃奶边哭怎么回事| 美女高潮到喷水免费观看| 91在线观看av| 狠狠狠狠99中文字幕| 757午夜福利合集在线观看| 日本 欧美在线| 一边摸一边做爽爽视频免费| 欧美日韩一级在线毛片| 亚洲少妇的诱惑av| 欧美成人免费av一区二区三区| 国产精品久久久久久精品电影 | 女同久久另类99精品国产91| 中文字幕人妻熟女乱码| 久久国产乱子伦精品免费另类| 精品午夜福利视频在线观看一区| 国产蜜桃级精品一区二区三区| 最新美女视频免费是黄的| 变态另类丝袜制服| 搡老熟女国产l中国老女人| 免费女性裸体啪啪无遮挡网站| 日韩精品中文字幕看吧| 18禁裸乳无遮挡免费网站照片 | 精品久久久久久,| 人妻久久中文字幕网| 国产av一区二区精品久久| 两个人看的免费小视频| 亚洲av电影在线进入| 老司机深夜福利视频在线观看| 人成视频在线观看免费观看| 变态另类成人亚洲欧美熟女 | 久久人人精品亚洲av| 欧美一级毛片孕妇| 免费av毛片视频| 国内精品久久久久精免费| 视频区欧美日本亚洲| 无限看片的www在线观看| 色精品久久人妻99蜜桃| 丝袜在线中文字幕| 国产亚洲欧美98| 午夜视频精品福利| av超薄肉色丝袜交足视频| 成人精品一区二区免费| 此物有八面人人有两片| 一边摸一边抽搐一进一小说| av免费在线观看网站| 国产av精品麻豆| 怎么达到女性高潮| 一区二区日韩欧美中文字幕| 18禁裸乳无遮挡免费网站照片 | 国产亚洲欧美精品永久| 国产男靠女视频免费网站| 欧美色视频一区免费| 亚洲欧美日韩另类电影网站| 免费观看人在逋| 91精品国产国语对白视频| 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 国产男靠女视频免费网站| 可以在线观看的亚洲视频| 精品国产亚洲在线| 国产成人精品久久二区二区91| 咕卡用的链子| 亚洲av日韩精品久久久久久密| 精品国内亚洲2022精品成人| 91麻豆精品激情在线观看国产| 99久久综合精品五月天人人| 亚洲美女黄片视频| 免费在线观看亚洲国产| 国产高清视频在线播放一区| 亚洲成av人片免费观看| 黑人巨大精品欧美一区二区mp4| a级毛片在线看网站| 9热在线视频观看99| 黄色片一级片一级黄色片| 9热在线视频观看99| 国产欧美日韩精品亚洲av| av网站免费在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 免费高清视频大片| 国产片内射在线| 久久久国产欧美日韩av| 非洲黑人性xxxx精品又粗又长| 精品国产超薄肉色丝袜足j| 午夜福利免费观看在线| 99国产精品99久久久久| 国产一卡二卡三卡精品| 国产精品亚洲av一区麻豆| 老汉色∧v一级毛片| 久久久久久免费高清国产稀缺| 免费看美女性在线毛片视频| 精品国内亚洲2022精品成人| 亚洲第一青青草原| 99久久精品国产亚洲精品| 国产一级毛片七仙女欲春2 | 亚洲性夜色夜夜综合| 亚洲国产欧美网| 淫秽高清视频在线观看| 久久青草综合色| 黄片小视频在线播放| 亚洲第一电影网av| 在线观看免费视频网站a站| 亚洲第一欧美日韩一区二区三区| 搡老岳熟女国产| 国产单亲对白刺激| 亚洲自拍偷在线| 国产单亲对白刺激| 美女免费视频网站| 一卡2卡三卡四卡精品乱码亚洲| 男人舔女人下体高潮全视频| 免费久久久久久久精品成人欧美视频| 在线视频色国产色| 在线av久久热| 亚洲国产精品999在线| 99久久精品国产亚洲精品| 亚洲视频免费观看视频| 成人永久免费在线观看视频| 国产av又大| 国产在线观看jvid| 日日夜夜操网爽| 一级片免费观看大全| ponron亚洲| 熟女少妇亚洲综合色aaa.| 19禁男女啪啪无遮挡网站| 亚洲国产精品合色在线| 99精品久久久久人妻精品| 久久亚洲精品不卡| 9191精品国产免费久久| 日本 欧美在线| 日本五十路高清| 在线播放国产精品三级| 日本精品一区二区三区蜜桃| 欧美日韩瑟瑟在线播放| bbb黄色大片| 中文字幕人成人乱码亚洲影| 夜夜躁狠狠躁天天躁| 叶爱在线成人免费视频播放| 国产一区二区三区视频了| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲欧美在线一区二区| 精品不卡国产一区二区三区| 免费在线观看亚洲国产| 欧美黑人欧美精品刺激| 欧美 亚洲 国产 日韩一| 欧美日韩一级在线毛片| 色综合亚洲欧美另类图片| 真人做人爱边吃奶动态| 一级,二级,三级黄色视频| 国产精品久久久久久亚洲av鲁大| 正在播放国产对白刺激| 亚洲九九香蕉| 12—13女人毛片做爰片一| 免费久久久久久久精品成人欧美视频| 亚洲人成77777在线视频| 欧美成人午夜精品| 色综合欧美亚洲国产小说| 久久精品人人爽人人爽视色| 亚洲国产高清在线一区二区三 | 成人18禁高潮啪啪吃奶动态图| 国产av精品麻豆| 黄色 视频免费看| 丰满人妻熟妇乱又伦精品不卡| 精品国产乱码久久久久久男人| 亚洲一区二区三区色噜噜| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久午夜电影| 黄色成人免费大全| 亚洲成国产人片在线观看| 一二三四社区在线视频社区8| 97人妻天天添夜夜摸| 国产97色在线日韩免费| 黄色视频不卡| 97人妻天天添夜夜摸| 女人被狂操c到高潮| 久久久久久国产a免费观看| 日韩中文字幕欧美一区二区| 久久草成人影院|