• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dissection of the Genetic Architecture of Plant Height and Ear Height in Maize(Zeamays L.)

    2016-11-25 05:03:25ZHANGNingZHANGQiangZHANGYunaLIXinHUANGXueqing
    關(guān)鍵詞:穗位株高貢獻率

    ZHANG Ning, ZHANG Qiang, ZHANG Yuna, LI Xin, HUANG Xueqing

    (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China)

    ?

    Dissection of the Genetic Architecture of Plant Height and Ear Height in Maize(ZeamaysL.)

    ZHANG Ning, ZHANG Qiang, ZHANG Yuna, LI Xin, HUANG Xueqing

    (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China)

    Maize(ZeamaysL.) is among the crops with the greatest worldwide economic importance. Plant height(PH) and ear height(EH) are two very important traits which are considered necessary in maize breeding and are related to morphology, lodging, and yield. To explore the genetic mechanism of PH and EH, an F3:4recombinant inbred lines(RILs) population with 165 lines was generated from a cross between inbred line(Zheng58) and inbred line(B73). 189 polymorphic simple sequence repeat(SSR) markers were used to map quantitative trait loci(QTLs) for PH and EH. A total of 11 QTLs(5 QTLs for PH and 6 QTLs for EH) detected were located on 8 chromosomes except chromosome 2 and 6. Single QTL explained from 4.3% to 14.2% of the phenotypic variance. Interestingly, the novel plant height QTL(qPH04-01) was specific to the population, which was detected near umc0371 and could explain 8.8% of phenotypic variation. It is worthy of further research and utilization.

    maize; plant height; ear height; quantitative trait loci; genetic architecture

    1 Introduction

    Maize(ZeamaysL.) is one of the most important cereal crops worldwide, and increasing the grain yield and biomass has been the most important goals of maize production[1]. Among the various traits that are normally considered in maize breeding programs, plant height and ear height are two important traits affecting plant architecture and yield potential. On the one hand, they are not only closely correlated with grain yield, leaf number, flowering time[2]and other important agronomic traits, including biomass production and forage yield in maize[3], but also directly affects and determines resistance to stalk lodging. Low PH and EH can lower the center of gravity of the plant, which is considered to be important in the determination of stalk lodging[4]. On the other hand, excessively high plant will decrease planting density, lodging resistance and harvest index; too short plant will influence the permeability of population, susceptibility to diseases and insect pests and reduce biomass. Excessively high ear height will easily cause lodging; too short ear height will affect the efficient transport of the photosynthetic product to the ear. Therefore, an appropriate plant height and ear height is a prerequisite for attaining the desired yield in maize-breeding programs.

    Genetic studies have indicated that plant height and ear height in maize are complex traits controlled by both qualitative genes and quantitative genes. Plant height loci have been cloned and resolved by molecular tagging of large effect alleles often induced by mutagenesis[5-6]. Over 40 maize genes at which mutations have large effects on plant height have been identified. These are involved in hormone synthesis, transport, and signaling pathway[7]. Well-characterized maize height genes include:brachytic2, influencing polar auxin transport[8-9];dwarf-1(dt), controlling the three gibberellin-biosynthetic steps[10];dwarf3, mediating gibberellin synthesis[11];dwarf8 anddwarf9, regulating DELLA proteins of gibberellin signal transduction pathways[12-13]; andnanaplant1, impacting brassinosteroid synthesis[14]. In addition to the semi-dwarfing and dwarfing genes, the PH and EH variation in maize breeding populations is mostly controlled by a set of quantitative trait loci(QTLs) with minor effects. Over the last two decades, genetic dissection of maize PH and EH by classical QTL mapping using biparental populations has resulted in identification of numerous PH and EH QTLs[15-37]. Nevertheless, different studies provided different results, including QTL number, distribution, and genetic effect. For instance, Lima et al used maize inbred lines L-20-01F and L-02-03D as parental lines, and 9 QTLs for ear height were located on chromosomes 2(two), 3(two), 4(one), 7(one), 9(two), and 10(one)[27], while in the report by Li et al, Mo17 and Huangzao4 were employed as parents, and only 1 QTL was identified on chromosomes 1[34]. Inconsistent detection of QTLs in different research reflects the necessity and importance of QTL mapping with various parents and populations, and in various environments, to reveal the complicated heredity of plant height and ear height. Therefore, taking the complex and polygenic inheritance nature of plant architecture of maize into account, further investigations of the QTLs underlying the phenotypic variance of these traits are needed.

    In the present study, an F3:4recombinant inbred lines(RILs) population derived from a cross between inbred line Zheng58 and B73, was used to identify QTLs for two traits affecting plant architecture:plant height and ear height. The objectives were to i) better understand the genetic basis of plant architecture and ii) identify molecular markers for MAS in maize breeding projects.

    2 Materials and Method

    2.1 Plant materials

    The recombination inbred line(RIL) populations were obtained by crossing B73 with Zheng58. The parents were chosen on the basis of their different plant architecture and maize germplasm groups. B73 with the higher plant stature is the common parent in NAM population and has been sequenced. Zheng58 is an elite foundation inbred line with dwarf architecture, which is used broadly in China. From the F2progeny, a single seed descent was applied to generate 165 RILs at the F4generation.

    2.2 Field experiments and statistical analyses

    The field experiments were performed at the experimental station located in Songjiang District, Shanghai during 2014 and 2015. A randomized complete block design with two replications was applied. Each plot had one row that was 3 m long and 0.67 m wide, with a total of 10 plants at a density of 50000 plants/ha. The field management followed common agricultural practice in maize production in China. Five representative plants from the middle of each plot were chosen to measure the plant height(PH) and ear height(EH) at grain maturity stage. PH was measured as the distance(cm) from the soil surface to the tip of the tassel; EH was measured as the distance(cm) from the soil surface to the node of attachment of the primary ear. The trait value for each RIL was averaged for the five measured plants in each replication.

    Based on the means of the phenotypic data of the population, the SPSS20 software was used to perform statistics analysis. For each trait, broad-sense heritability(h2) was estimated as the proportion of variance explained by between RIL(genotypic) variance and RIL by block(error) variance. The correlation coefficients among the traits were obtained with the “cor” function in the SPSS software package.

    2.3 Genetic map construction and QTL mapping

    Young leaf samples were collected at the seedling stage from the four RIL populations, and genomic DNA was extracted using the CTAB method[38]. The F3population individuals were analyzed using Simple Sequence Repeats(SSRs) markers. In order to select the most informative SSR primer pairs, the parental lines, B73 and Zheng58, and an F1 individual were screened with 393 SSR markers chosen from Maize Genetics and Genomic Database(MaizeGDB) based on their repeat unit and physical position. This resulted in the selection of 189 pairs of SSR markers that clearly show codominant segregation. They were used to genotype the F3 individuals. Primer sequences are available from the MaizeGDB website(http:∥www. maizegdb. org). PCR reactions were run in 10μL total volume and the final concentration of each compositions as follows:1μL 10×PCR buffer, 0.2μmol/L of the forward and reverse primers, and 1.5mmol/L MgCl2, 0.2μmol/L dNTP, and 0.1 units of Taq polymerase, 50—100 ng template DNA, then metered volume to 10μL with ddH2O.

    The touchdown PCR(TD PCR) cycling programs were as follows:94℃ for 3min, 94℃ for 30s, 36 cycles with 94℃ for 30s, Tm for 30s, and 72℃ for 30s, and in the first 16 cycles the annealing temperature was reduced by 1℃ per cycle from 65℃ to 50℃, the last 20 cycles run at the constant Tm 50℃, then followed by 72℃ for 10 min.

    According to the physical position of the SSR markers obtained from the genome sequencing results of B73, a physical map was constructed through assigning the informative markers to the corresponding chromosome. The software package MapQTL 5.0 was used to identify and locate QTL on the linkage map by using interval mapping and multiple-QTL model(MQM) mapping methods as described in its reference manual(http:∥www. kyazma. nl). In a first step, putative QTL were identified using interval mapping. Thereafter, the closest marker at each putative QTL was selected as a cofactor and the selected markers were used as genetic background controls in the approximate multiple QTL model of MapQTL 5.0.LOD threshold values applied to declare the presence of QTL were estimated by performing permutation tests implemented in MapQTL 5.0 using at least 1000 permutations of the original data set, resulting in a 95% LOD threshold of 2.9. The estimated additive genetic effect and the percentage of variance explained by each QTL and the total variance explained by all the QTL affecting a trait were obtained using MQM mapping.

    3 Results

    3.1 Analysis plant architecture traits in F3:4population and parental lines

    There are significant differences between the two inbred maize varieties B73 and Zheng58 in plant architecture traits used in this study. Zheng58 had dwarf architecture with an average PH of 172.6 and EH of 58.4, whereas B73 displayed a higher plant stature with an average PH of 228.4 and EH of 92.1(Tab.1). Table 1 presents a number of descriptive statistics of the two plant architecture traits for the two parents and the F3:4population. Large differences were found for these traits between the two parents,and the wider range of variation for the traits in the F3:4population, normal distributions with transgressive segregation suggested polygenic inheritance of the traits(
    Fig.1). The estimated broad-sense heritability(h2) values for traits were generally high and ranged from 82.5 to 86.4(Tab.1). Additionally, the significant positive correlation was observed between PH and EH.

    Tab.1 Descriptive statistics of the plant architecture traits in parental lines (B73 and Zheng58) and the population of F3:4 at grain maturity stage

    1) PH, plant height; EH, ear height; 2) All the differences between the two parents are statistically significant at the 0.01 probability level.

    3.2 Linkage maps of F3:4populations

    A survey of 393 SSR primer pairs identified 189 loci polymorphic between the parents. According to the physical position of the SSR markers obtained from the genome sequencing results of B73, a physical map with 189 SSR markers was constructed through assigning the informative markers to the corresponding chromosome. The number of markers placed in different chromosomes ranged from 13—29 with averages of 18.9. The longest marker distance was 38.98 Mb, and the shortest 1.41 Mb. The average genetic distance of 10.89 Mb between two neighbouring markers and the distribution of markers in all chromosomes was relatively even without crowding(
    Fig.2).

    3.3 Identification of QTLs for plant architecture traits

    Quantitative trait loci analysis of plant architecture traits was conducted using MAPQTL 5.0 software and 11 detected QTLs were distributed on 8 chromosomes except for chromosome 2 and 6(Tab.2,
    Fig.2). Among them, two QTLs were detected on each of chromosomes 1(qPH01-01 and qEH01-01), 3(qPH03-01 and qEH03-01), 5(qPH05-01 and qEH05-01); and one QTL was detected on each of chromosomes 4(qPH04-01), 7(qEH07-01), 8(qEH08-01), 9(qEH09-01) and 10(qPH10-01). Some QTLs detected at different traits were found located in the same interval. For example, two QTLs were simultaneously detected in PH and EH and located on chromosome 3(bnlg1035-umc1644 interval) and chromosome 5(umc1155-umc1072 interval), respectively. It is notable that most QTLs for PH and EH had positive additive effects except for qPH10-01 and qEH07-01 with negative additive effects, indicating that the B73 parent contributed most alleles for increasing plant height and ear height.

    Five QTLs on chromosome 1, 3, 4, 5 and 10, respectively, were identified for PH(
    Fig.2, Tab.2), which explained 55.4% of the total phenotypic variance, and single QTL accounted for from 6.4% to 17.2% of the phenotypic variance.

    Six QTLs for EH, accounting for 58.8% of the total phenotypic variance, were identified on chromosome 1, 3, 5, 7, 8 and 9, respectively(
    Fig.2, Table 2). Single QTL explained from 6.6% to 14.1% of the phenotypic variance.

    Tab.2 QTL analysis of maize plant height and ear height in the F3:4 population of B73×Zheng58

    Additive effect:effect of the substitution of the Zheng58 allele by the B73 allele. A positive value indicates that the B73 allele increases the value of the trait; A negative value indicates that the Zheng58 allele increases the value of the trait.

    4 Discussion

    PH and EH are two important agronomic traits in the maize breeding project. They are related to morphology, lodging, and grain yield; therefore, understanding their genetic basis has important theoretical and practical meaning[39]. Quantitative trait locus(QTL) mapping is a well-reasoned solution to realize the genetic basis of traits in crop breeding. In the past few decades, to increase planting density and prevent plants from lodging, studies on the genetic mechanism of plant and ear height were given great attention. Until now, a number of QTL conferring plant height and ear height are reported to be located on all ten chromosomes in maize. In this research, we chose a dwarf-type inbred line Zheng58 and a normal inbred line B73 as the parents of mapping population and detected 11 QTLs on chromosomes 1, 3, 4, 5, 7, 8, 9 and 10 for PH and EH in an F3:4population(
    Fig.3). Compared to previous studies, ten of the 11 QTLs for PH and EH were found to have similar chromosomal locations with different mapping experiments or different genetic background, which demonstrated that the chromosome regions for these consistent QTLs might be hot spots for the important QTLs for PH and EH. Also the congruence in QTLs detected in this study with previous reports indicates the robustness of our results. However, in our study, no QTL was detected on chromosome 2 and 6; the cause of this was probably the too small genetic effects or no allelic difference between the two parents. Interestingly, one QTL for PH, qPH04-01, was detected in chromosome 4, which has not been reported in maize by previous researchers. The novel QTL may be due to the specific genetic background from dwarf-type parent Zheng58. Furthermore, newly detected major QTLs may serve a complementary role in revealing the genetic nature of plant-height traits.

    The analyses also revealed high phenotypic correlations between plant height and ear height. The genetic basis of such high correlations can largely be explained by the co-localization of the QTLs for the two traits, either due to pleiotropic effects or tight linkage. Examples of such genomic regions included:the interval marked by bnlg1035-umc1644on chromosome 3 and umc1155-umc1072 where QTLs for PH and EH were simultaneously detected. The similar co-localization QTL was widely reported[23-25]. Zhou et al detected 4 pQTLs regions that control both plant height and ear height[37]. The co-localization of the QTLs for PH and EH is of great relevance in understanding the plant architecture. Whether genes in these regions have pleiotropic effects or the plant architecture expression is due to the effect of linked genes needs to be investigated. To achieve this objective, developing heterogeneous inbred families(HIFs) for this QTL region for fine mapping and cloning of these QTLs is in progress. Undoubtedly, this will lead to better understanding of the mechanism of plant architecture in maize.

    [1] DUVICK D N, SMITH J S C, COOPER M. Long-term selection in a commercial hybrid maize breeding program [J].PlantBreedRev, 2004,24:109-151.

    [2] TROYER A F, LARKINS J R. Selection for early flowering in corn:10 late synthetics [J].CropSci, 1985,25:695-697.

    [3] LüBBERSTEDT T, MELCHINGER A E, FAHR S,etal. QTL mapping in testcrosses of flint lines of maize:Ⅲ. Comparison across populations for forage traits [J].CropSci, 1998,38(5):1278-1289.

    [4] FLINT-GARCIA S A, MCMULLEN M D, DARRAH L L. Genetic relationship of stalk strength and ear height in maize [J].CropSci, 2003,43(1):23-31.

    [5] SALAS-FERNANDEZ M G S, BECRAFT P W, YIN Y H,etal. From dwarves to giants? Plant height manipulation for biomass yield [J].TrendsinPlantSci, 2009,14(8):454-461.

    [6] ANDORF C M, LAWRENCE C J, HARPER L C,etal. The locus lookup tool at MaizeGDB:Identification of genomic regions in maize by integrating sequence information with physical and genetic maps [J].Bioinformatics, 2010,26(3):434-436.

    [7] WANG Y, LI J. Molecular basis of plant architecture [J].AnnuRevPlantBiol, 2008,59:253-279.

    [8] MULTANI D S, BRIGGS S P, CHAMBERLIN M A,etal. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants [J].Science, 2003,302(5642):81-84.

    [9] XING A, GAO Y, YE L,etal. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize [J].JExpBot, 2015,66(13):3791-3802.

    [10] SPRAY C R, KOBAYASHI M, SUZUKI Y,etal. The dwarf-1(dt) mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway [J].ProcNatlAcadSciUSA, 1996,93(19):10515-10518.

    [11] WINKLER R G, HELENTJARIS T. The maize Dwarf 3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis [J].PlantCell, 1995,7(8):1307-1317.

    [12] THORNSBERRY J M, GOODMAN M M, DOEBLEY J,etal. Dwarf8 polymorphisms associate with variation in flowering time [J].NatureGenetics, 2001,28(3):286-289.

    [13] LAWIT S J, WYCH H M, XU D,etal. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development [J].PlantCellPhysiol, 2010,51(11):1854-1868.

    [14] HARTWIG T, CHUCK G S, FUJIOKA S,etal. Brassinosteroid control of sex determination in maize [J].ProcNatlAcadSciUSA, 2011,108(49):19814-19819.

    [15] BEAVIS W D, GRANT D, ALBERTSEN M,etal. Quantitative trait loci for plant height in four maize populations and their associations with quantitative genetic loci [J].TheorApplGenet, 1991,83(2):141-145.

    [16] AJMONE-MARSAN P, MONFREDINI G, LUDWIG W F,etal. Identification of genomic affecting plant height and their relationship with grain yield and elite maize cross [J].Maydica, 1994,39:133-139.

    [17] BEAVIS W D, SMITH O S, GRANT D,etal. Identification of quantitative trait loci using a small sample of using a small sample of topcrossed and F4 progeny from maize [J].CropSci, 1994,34:882-892.

    [18] BERKE T G, ROCHEFORD T R. Quantitative trait loci for flowering, plant and ear height and kernel traits in maize [J].CropSci, 1995,35:1542-1549.

    [19] AUSTIN D F, LEE M. Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize [J].Genome, 1996,39(5):957-968.

    [20] VELDBOOM L R, LEE M, WOODMAN W L. Molecular marker-facilitated studies in an elite maize population:I. Linkage analysis and determination of QTL for morphological traits [J].TheorApplGenet, 1994,88(1):7-16.

    [21] AUSTIN D F, LEE M, VELDBOOM L R. Genetic mapping in maize with hybrid progeny across testers and generations:plant height and flowering [J].TheorApplGenet, 2001,102(1):163-176.

    [22] FLINT-GARCIA S A, MCMULLEN M D, DARRAH L L. Genetic relationship of stalk strength and ear height in maize [J].CropSci, 2003,43(1):23-31.

    [23] SIBOV S T, SOUZA J R C L, FRANCO GARCIA A A,etal. Molecular mapping in tropical maize(ZeamaysL.) using microsatellite markers. 2.Quantitative trait loci(QTL) for grain yield, plant height, ear height and grain moisture [J].Hereditas, 2003,139(2):107-115.

    [24] YAN J B, TANG H, HUANG Y Q,etal. Dynamic analysis of QTL for plant height at different developmental stages in maize(ZeamaysL.) [J].ChinSciBull, 2003,48(23):2601-2607.

    [25] LAN J H, CHU D. Study on the genetic basis of plant height and ear height in maize(ZeamaysL.) by QTL dissection [J].Hereditas, 2005,27(6):925-934.

    [26] WU J W, LIU C, SHI Y S,etal. QTL analysis of plant height and ear height in maize under different water regimes [J].JournalofPlantGeneticResources, 2005,6(3):266-271.

    [27] LIMA M D A, SOUZA C L D, BENTO D A V,etal. Mapping QTL for grain yield and plant traits in a tropical maize population [J].MolBreeding, 2006,17(3):227-239.

    [28] LI Y L, DONG Y B, NIU S Z,etal. The genetic relationship among plant-height traits found using multiple-traits found using multiple-trait QTL mapping of a dent corn and popcorn cross [J].Genome, 2007,50(4):357-364.

    [29] LIU Z H, TANG J H, WANG C L,etal. QTL analysis of plant height under N-stress and N-input at different stages in maize [J].ActaAgronomicaSinica, 2007,33(5):782-789.

    [30] TANG J H, TENG W T, YAN J B,etal. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize [J].Euphytica, 2007,155(1):117-124.

    [31] ZHANG Y, LI Y X, WANG Y,etal. Stability of QTL across environments and QTL-by-environment interactions for plant and ear height in maize [J].AgricSciChina, 2010,9(10):1400-1412.

    [32] WENG J, XIE C, HAO Z,etal. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize(ZeamaysL.) inbred lines [J].PLoSOne, 2011,6(12):e29229.

    [33] ZHENG Z P, LIU X H. Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize [J].GenetMolRes, 2013,12(2):1243-1253.

    [34] LI Z Q, ZHANG H M, WU X P,etal. Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population [J].GenetMolRes, 2014,13(1):450-456.

    [35] PEIFFER J A, ROMAY M C, GORE M A,etal. The genetic architecture of maize height [J].Genetics, 2014,196:1337-1356.

    [36] KU L X, ZHANG L K, TIAN Z Q,etal. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize(ZeamaysL.) [J].MolGenetGenom, 2015,290(4):1223-1233.

    [37] ZHOU Z, ZHANG C, ZHOU Y,etal. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines [J].BMCGenomics, 2016,17:178.

    [38] SAGHAI-MAROOF M A, SOLIMAN K M, JORGENSEN R A,etal. Ribosomal DNA spacer length polymorphisms in barley:mendelian inheritance chromosomal location and population and population dynamics [J].ProcNatlAcadSciUSA, 1984,81(24):8014-8018.

    [39] WANG Y D, DUAN M X, XING J F,etal. Progress and prospect in ideal plant type breeding in maize [J].MaizeSci, 2008,16(3):47-50.

    玉米株高和穗位高遺傳基礎(chǔ)的QTL剖析

    張 寧,張 強,張玉娜,李 鑫,黃雪清

    (復(fù)旦大學(xué) 生命科學(xué)學(xué)院 遺傳工程國家重點實驗室,上海 200438)

    玉米是世界范圍內(nèi)具有經(jīng)濟重要性的作物之一.株高和穗位高是玉米育種過程中需考慮的2個重要農(nóng)藝性狀,對玉米產(chǎn)量、抗倒伏性及株型等都有較大影響.為進一步明確玉米株高和穗位高的遺傳機制,本研究以B73×Zheng58的含有165個株系的F3:4重組自交系群體為作圖群體,利用覆蓋玉米10條染色體189個SSR標記對株高和穗位高進行QTL定位分析.總共定位到5個株高QTL和6個穗位高QTL;這11個QTL分布在除2號和6號之外的其他8條染色體上.單個QTL表型變異貢獻率的變幅為4.3%~14.2%.其中10個QTL與以前報道過的QTL的位置相近或重疊,而株高QTL(qPH04-01)是新發(fā)現(xiàn)的群體專一性的QTL,最靠近標記umc0371,表型變異貢獻率為8.8%,是值得進一步研究和利用的位點.

    玉米; 株高; 穗位高; 數(shù)量性狀位點; 遺傳基礎(chǔ)

    0427-7104(2016)05-0605-09

    Shanghai Pujiang Program(14PJ1400700); National Natural Science Foundation of China(31471151)

    Q 37 Document code:A

    Received date:2016-04-08

    Biography:ZHANG Ning(1989—), female, graduate candidate; Corresponding author:HUANG Xueqing, male, professor, E-mail:xueqinghuang@fudan.edu.cn.

    猜你喜歡
    穗位株高貢獻率
    玉米保護性耕作技術(shù)在遼陽地區(qū)的應(yīng)用效果研究
    有機物料還田對夏玉米穗位葉光合性能及氮代謝的影響
    小麥不同穗位籽粒品質(zhì)和形態(tài)性狀分析
    作物雜志(2022年6期)2022-02-03 04:56:06
    一種通用的裝備體系貢獻率評估框架
    利用大芻草滲入系群體定位玉米株高和穗位高QTL
    介紹四個優(yōu)良小麥品種
    多年秸稈還田后減追氮肥對玉米穗位葉光合特性和衰老生理的影響
    關(guān)于裝備體系貢獻率研究的幾點思考
    不同栽培密度對柴胡生長的影響
    玉米骨干親本及其衍生系中基因的序列變異及與株高等性狀的關(guān)聯(lián)分析
    国产av精品麻豆| 9色porny在线观看| 欧美日韩一区二区视频在线观看视频在线| www.自偷自拍.com| 国产有黄有色有爽视频| 久久国产亚洲av麻豆专区| 国产又色又爽无遮挡免| 久久久久精品人妻al黑| 国产av精品麻豆| 国产福利在线免费观看视频| 永久免费av网站大全| 天天躁夜夜躁狠狠久久av| 电影成人av| 青春草视频在线免费观看| 日韩一区二区视频免费看| 在线亚洲精品国产二区图片欧美| 国产亚洲午夜精品一区二区久久| av又黄又爽大尺度在线免费看| 热99久久久久精品小说推荐| 97人妻天天添夜夜摸| 一级黄片播放器| 纯流量卡能插随身wifi吗| 婷婷色av中文字幕| 妹子高潮喷水视频| 国产精品久久久久久久久免| 久热久热在线精品观看| 亚洲精品日本国产第一区| 制服丝袜香蕉在线| 老熟女久久久| 男女边吃奶边做爰视频| 免费av中文字幕在线| 日韩伦理黄色片| 狠狠婷婷综合久久久久久88av| 久久久久久久久久久久大奶| 汤姆久久久久久久影院中文字幕| 免费播放大片免费观看视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲 欧美一区二区三区| 色播在线永久视频| 菩萨蛮人人尽说江南好唐韦庄| 成人国产麻豆网| 夫妻午夜视频| 美女福利国产在线| 久久人人爽人人片av| 亚洲成人一二三区av| 国产野战对白在线观看| 国产野战对白在线观看| 免费看不卡的av| 久久这里有精品视频免费| 麻豆乱淫一区二区| 一本大道久久a久久精品| 观看美女的网站| 久久精品人人爽人人爽视色| 99久久综合免费| 精品一区二区三区四区五区乱码 | 欧美人与性动交α欧美软件| 七月丁香在线播放| 色婷婷久久久亚洲欧美| 大片免费播放器 马上看| 美女国产高潮福利片在线看| 久久国内精品自在自线图片| 久久久精品免费免费高清| 色播在线永久视频| 国产在视频线精品| 婷婷色综合www| 色视频在线一区二区三区| 亚洲精品av麻豆狂野| 99久国产av精品国产电影| 三上悠亚av全集在线观看| kizo精华| 九草在线视频观看| 久久久国产精品麻豆| 久久久欧美国产精品| 飞空精品影院首页| 国产黄色视频一区二区在线观看| 欧美亚洲日本最大视频资源| 国产成人精品一,二区| 亚洲婷婷狠狠爱综合网| 精品卡一卡二卡四卡免费| 大片免费播放器 马上看| 欧美日韩视频高清一区二区三区二| 国产精品无大码| 精品一区二区三区四区五区乱码 | 1024视频免费在线观看| a级毛片在线看网站| 久久这里只有精品19| 欧美中文综合在线视频| videossex国产| 久久精品久久精品一区二区三区| 一二三四中文在线观看免费高清| 久久久久久伊人网av| 99久久中文字幕三级久久日本| 免费观看av网站的网址| 国产精品国产av在线观看| 色94色欧美一区二区| 交换朋友夫妻互换小说| 女人精品久久久久毛片| 亚洲精品av麻豆狂野| 国产成人a∨麻豆精品| 中文字幕最新亚洲高清| 久久精品国产亚洲av高清一级| 欧美xxⅹ黑人| 精品国产超薄肉色丝袜足j| 寂寞人妻少妇视频99o| 如何舔出高潮| 日韩免费高清中文字幕av| 中文欧美无线码| 色视频在线一区二区三区| 久久国产亚洲av麻豆专区| 色94色欧美一区二区| 999精品在线视频| 久久久国产一区二区| 91成人精品电影| 欧美日韩亚洲国产一区二区在线观看 | 热re99久久国产66热| 亚洲人成77777在线视频| 国产乱来视频区| 一级毛片 在线播放| 精品少妇黑人巨大在线播放| 日本av手机在线免费观看| 亚洲精品美女久久av网站| 女性被躁到高潮视频| 五月伊人婷婷丁香| 国产淫语在线视频| 看免费av毛片| 免费在线观看黄色视频的| 国产一区二区三区av在线| 国产白丝娇喘喷水9色精品| 国产色婷婷99| 另类精品久久| 三级国产精品片| 在线观看免费高清a一片| 我的亚洲天堂| 大片电影免费在线观看免费| 欧美日韩成人在线一区二区| 美女脱内裤让男人舔精品视频| 男女无遮挡免费网站观看| 一级爰片在线观看| 性色av一级| 丰满饥渴人妻一区二区三| 男女边吃奶边做爰视频| 边亲边吃奶的免费视频| 国产精品久久久久久精品古装| 久久久久网色| 久久国内精品自在自线图片| 国产国语露脸激情在线看| 精品视频人人做人人爽| 欧美97在线视频| av国产精品久久久久影院| av福利片在线| 午夜日本视频在线| 中文字幕人妻丝袜制服| 一级爰片在线观看| 一本大道久久a久久精品| av免费在线看不卡| 日韩人妻精品一区2区三区| videosex国产| 亚洲精品一二三| 日韩电影二区| 丁香六月天网| 999久久久国产精品视频| 国产综合精华液| 两个人看的免费小视频| 久久久精品94久久精品| 国产国语露脸激情在线看| 一级片免费观看大全| 午夜福利在线观看免费完整高清在| 黄色 视频免费看| 亚洲精品第二区| 亚洲,一卡二卡三卡| 热re99久久国产66热| 两性夫妻黄色片| 亚洲欧美一区二区三区黑人 | 久久99一区二区三区| 欧美日韩亚洲高清精品| 欧美日韩国产mv在线观看视频| 国产视频首页在线观看| 国产成人91sexporn| 高清黄色对白视频在线免费看| 国产精品香港三级国产av潘金莲 | √禁漫天堂资源中文www| 精品国产乱码久久久久久小说| 宅男免费午夜| 午夜91福利影院| 少妇的丰满在线观看| 久久久国产精品麻豆| 啦啦啦啦在线视频资源| 亚洲精品第二区| 久久午夜综合久久蜜桃| 在线观看美女被高潮喷水网站| 亚洲综合色惰| 欧美另类一区| 国产精品嫩草影院av在线观看| 999精品在线视频| 免费大片黄手机在线观看| 国产国语露脸激情在线看| 中文字幕最新亚洲高清| 国产成人aa在线观看| 亚洲伊人色综图| 美女高潮到喷水免费观看| 超色免费av| 青春草亚洲视频在线观看| 九色亚洲精品在线播放| 久久久欧美国产精品| 久久精品国产亚洲av高清一级| 亚洲精品视频女| 成人黄色视频免费在线看| 日本wwww免费看| 色视频在线一区二区三区| 欧美日韩精品网址| 韩国高清视频一区二区三区| 少妇精品久久久久久久| 国产精品久久久av美女十八| 最近手机中文字幕大全| 国产精品亚洲av一区麻豆 | 熟女电影av网| 九草在线视频观看| 2022亚洲国产成人精品| 亚洲精品aⅴ在线观看| 在线观看人妻少妇| 亚洲国产精品成人久久小说| 一本大道久久a久久精品| 国产片特级美女逼逼视频| 丝袜脚勾引网站| 亚洲综合精品二区| 日本猛色少妇xxxxx猛交久久| 自拍欧美九色日韩亚洲蝌蚪91| 成人亚洲欧美一区二区av| 美女高潮到喷水免费观看| 日本-黄色视频高清免费观看| 一级片免费观看大全| 99re6热这里在线精品视频| 丝袜喷水一区| 一边摸一边做爽爽视频免费| 91成人精品电影| 免费黄频网站在线观看国产| 天天躁夜夜躁狠狠躁躁| 极品少妇高潮喷水抽搐| 九九爱精品视频在线观看| 免费黄频网站在线观看国产| 免费黄网站久久成人精品| 女性被躁到高潮视频| av女优亚洲男人天堂| 亚洲精品日本国产第一区| 欧美 日韩 精品 国产| 国产免费视频播放在线视频| 又黄又粗又硬又大视频| 97精品久久久久久久久久精品| 美女国产高潮福利片在线看| 亚洲五月色婷婷综合| 国产精品国产三级国产专区5o| 久久久久久免费高清国产稀缺| 亚洲欧美日韩另类电影网站| 99久久综合免费| 亚洲欧美中文字幕日韩二区| 少妇 在线观看| 欧美成人午夜精品| 亚洲综合精品二区| 我要看黄色一级片免费的| 国产精品久久久久成人av| 香蕉精品网在线| 少妇人妻精品综合一区二区| 国产日韩欧美视频二区| 久久久久久免费高清国产稀缺| 精品亚洲乱码少妇综合久久| 九色亚洲精品在线播放| 性色av一级| 丝瓜视频免费看黄片| 波多野结衣av一区二区av| 99久久人妻综合| 日韩电影二区| 国产精品麻豆人妻色哟哟久久| 日韩视频在线欧美| 久久久精品免费免费高清| 宅男免费午夜| 99精国产麻豆久久婷婷| 亚洲一区二区三区欧美精品| 久久97久久精品| 大片免费播放器 马上看| 国产亚洲精品第一综合不卡| 蜜桃在线观看..| 日日爽夜夜爽网站| 在线观看免费高清a一片| 午夜日韩欧美国产| 亚洲国产色片| 亚洲精品在线美女| 精品亚洲成国产av| 一区二区日韩欧美中文字幕| 国产毛片在线视频| 免费在线观看完整版高清| 看免费成人av毛片| 丝袜美腿诱惑在线| 永久网站在线| 国产极品天堂在线| 性少妇av在线| 国产精品亚洲av一区麻豆 | 欧美日韩一区二区视频在线观看视频在线| 母亲3免费完整高清在线观看 | 国产一区二区三区av在线| 亚洲欧洲国产日韩| 精品午夜福利在线看| 国产视频首页在线观看| 天天躁日日躁夜夜躁夜夜| 麻豆乱淫一区二区| 三上悠亚av全集在线观看| 飞空精品影院首页| av在线app专区| 亚洲,欧美精品.| 欧美xxⅹ黑人| 日本wwww免费看| 国产精品免费大片| 超碰成人久久| 精品亚洲成a人片在线观看| 亚洲国产看品久久| 色94色欧美一区二区| 国产高清不卡午夜福利| 男女边摸边吃奶| 99热国产这里只有精品6| 一级毛片 在线播放| 国产一区二区 视频在线| 好男人视频免费观看在线| 亚洲精品日本国产第一区| 久热久热在线精品观看| 免费黄频网站在线观看国产| 精品一区二区三卡| 国产成人一区二区在线| 夫妻性生交免费视频一级片| 在线天堂最新版资源| 亚洲av中文av极速乱| 视频在线观看一区二区三区| 精品国产乱码久久久久久小说| 性少妇av在线| 中文精品一卡2卡3卡4更新| 国产精品免费视频内射| 午夜福利,免费看| 中文字幕人妻丝袜制服| 边亲边吃奶的免费视频| freevideosex欧美| 国产激情久久老熟女| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美网| 欧美日韩av久久| 免费黄频网站在线观看国产| 成人免费观看视频高清| 久久毛片免费看一区二区三区| 免费大片黄手机在线观看| 久久久久久久久久久免费av| 国产精品 国内视频| 国产男女内射视频| 日韩 亚洲 欧美在线| 99国产精品免费福利视频| 日韩av不卡免费在线播放| 美女国产视频在线观看| 在线观看国产h片| 国产精品久久久久久精品古装| 黑丝袜美女国产一区| 制服诱惑二区| 日日撸夜夜添| 黑人猛操日本美女一级片| 国产av国产精品国产| 亚洲精品成人av观看孕妇| 久久久久久久大尺度免费视频| 欧美日本中文国产一区发布| 91午夜精品亚洲一区二区三区| 国产精品三级大全| 国产精品久久久久久av不卡| 人妻少妇偷人精品九色| 国产淫语在线视频| 欧美最新免费一区二区三区| 超色免费av| 国产成人91sexporn| 一二三四中文在线观看免费高清| 热re99久久国产66热| 久热久热在线精品观看| 少妇的逼水好多| 伊人亚洲综合成人网| 久久久久久久久久久久大奶| 亚洲一码二码三码区别大吗| 天天操日日干夜夜撸| 亚洲精品乱久久久久久| 高清不卡的av网站| 欧美日韩国产mv在线观看视频| 欧美成人午夜精品| 久久久精品免费免费高清| 中文字幕人妻丝袜制服| 成人手机av| 国产日韩一区二区三区精品不卡| 日本欧美国产在线视频| 亚洲伊人色综图| 成人毛片60女人毛片免费| 亚洲婷婷狠狠爱综合网| 午夜福利,免费看| 亚洲熟女精品中文字幕| 国产av国产精品国产| 两性夫妻黄色片| 亚洲精品国产一区二区精华液| 国产av国产精品国产| 久久久久久人妻| 亚洲成av片中文字幕在线观看 | 搡女人真爽免费视频火全软件| 国产成人免费无遮挡视频| 18禁观看日本| 天堂中文最新版在线下载| 有码 亚洲区| 9热在线视频观看99| 一区福利在线观看| 成人毛片a级毛片在线播放| 熟女少妇亚洲综合色aaa.| 日韩中文字幕欧美一区二区 | 啦啦啦在线观看免费高清www| 99久久精品国产国产毛片| 丝袜喷水一区| 成年人免费黄色播放视频| 久久久亚洲精品成人影院| 亚洲精品国产色婷婷电影| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 中文字幕色久视频| 久久精品国产综合久久久| 成年动漫av网址| 国产av码专区亚洲av| 爱豆传媒免费全集在线观看| 欧美日韩av久久| 99国产精品免费福利视频| 亚洲人成电影观看| 黑人猛操日本美女一级片| 超碰97精品在线观看| 色94色欧美一区二区| 成年女人毛片免费观看观看9 | 国产高清国产精品国产三级| 黄网站色视频无遮挡免费观看| 久久鲁丝午夜福利片| 免费久久久久久久精品成人欧美视频| 欧美日韩亚洲高清精品| 大陆偷拍与自拍| 国产精品人妻久久久影院| 美女国产高潮福利片在线看| 久热这里只有精品99| 久久99精品国语久久久| 综合色丁香网| 国产一区有黄有色的免费视频| 日韩人妻精品一区2区三区| 丰满迷人的少妇在线观看| 在线免费观看不下载黄p国产| 久久精品国产亚洲av涩爱| 18禁裸乳无遮挡动漫免费视频| 亚洲五月色婷婷综合| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 菩萨蛮人人尽说江南好唐韦庄| 精品久久久精品久久久| 国产精品国产av在线观看| 青草久久国产| 久久午夜福利片| 国产又爽黄色视频| 亚洲精品自拍成人| 久久精品久久精品一区二区三区| 丝袜喷水一区| 亚洲av中文av极速乱| 久久97久久精品| 国产日韩欧美亚洲二区| 黄色 视频免费看| 久久婷婷青草| 国产精品国产三级专区第一集| 91久久精品国产一区二区三区| 天天躁夜夜躁狠狠躁躁| 交换朋友夫妻互换小说| 色视频在线一区二区三区| 十八禁高潮呻吟视频| 只有这里有精品99| www日本在线高清视频| 亚洲国产日韩一区二区| 少妇的丰满在线观看| 纯流量卡能插随身wifi吗| 一级,二级,三级黄色视频| 男男h啪啪无遮挡| 午夜福利乱码中文字幕| 亚洲欧美成人综合另类久久久| 麻豆乱淫一区二区| 亚洲人成77777在线视频| 色哟哟·www| 涩涩av久久男人的天堂| 国产熟女午夜一区二区三区| 欧美国产精品va在线观看不卡| 亚洲精品美女久久久久99蜜臀 | 男人舔女人的私密视频| 成人毛片60女人毛片免费| 嫩草影院入口| 尾随美女入室| 国产男人的电影天堂91| 免费黄色在线免费观看| 看十八女毛片水多多多| 久久ye,这里只有精品| 涩涩av久久男人的天堂| 超色免费av| 婷婷色综合www| 日韩,欧美,国产一区二区三区| av天堂久久9| 国产在线一区二区三区精| 久久精品亚洲av国产电影网| 在现免费观看毛片| 国产男女超爽视频在线观看| 久久久久人妻精品一区果冻| 老女人水多毛片| 久久久久精品久久久久真实原创| 久久精品国产综合久久久| 亚洲经典国产精华液单| 久久综合国产亚洲精品| 少妇被粗大的猛进出69影院| 多毛熟女@视频| 亚洲欧美色中文字幕在线| 国产 一区精品| 三级国产精品片| 亚洲一码二码三码区别大吗| 9191精品国产免费久久| 国产一区二区三区综合在线观看| 啦啦啦在线观看免费高清www| 亚洲精品一区蜜桃| 婷婷色综合大香蕉| 最近2019中文字幕mv第一页| 中文字幕人妻丝袜制服| 日日摸夜夜添夜夜爱| 午夜免费观看性视频| 亚洲精品乱久久久久久| 伊人久久国产一区二区| 国产 一区精品| 亚洲欧美日韩另类电影网站| 亚洲欧美精品自产自拍| 久久 成人 亚洲| 人人妻人人爽人人添夜夜欢视频| 欧美中文综合在线视频| 国产精品麻豆人妻色哟哟久久| 99热国产这里只有精品6| 国产一级毛片在线| 母亲3免费完整高清在线观看 | 女人被躁到高潮嗷嗷叫费观| 如日韩欧美国产精品一区二区三区| 亚洲国产精品成人久久小说| 国产男女超爽视频在线观看| 免费观看性生交大片5| 久久久欧美国产精品| 又粗又硬又长又爽又黄的视频| 亚洲国产毛片av蜜桃av| 国产成人91sexporn| 久久精品国产亚洲av天美| 一区在线观看完整版| 一级黄片播放器| 亚洲精品视频女| 日韩 亚洲 欧美在线| 国产免费福利视频在线观看| 好男人视频免费观看在线| 精品酒店卫生间| 日本av手机在线免费观看| 18禁国产床啪视频网站| 两个人看的免费小视频| 熟女av电影| 丰满乱子伦码专区| 在线观看一区二区三区激情| 日韩制服骚丝袜av| 亚洲精品国产av蜜桃| 久久久久精品久久久久真实原创| 国产精品久久久久久精品古装| 日韩av在线免费看完整版不卡| 成年人午夜在线观看视频| 肉色欧美久久久久久久蜜桃| 丝袜美足系列| 久久久国产精品麻豆| 啦啦啦在线免费观看视频4| 亚洲久久久国产精品| 国产激情久久老熟女| 成年女人在线观看亚洲视频| 中文精品一卡2卡3卡4更新| 亚洲国产毛片av蜜桃av| 十分钟在线观看高清视频www| 纯流量卡能插随身wifi吗| 香蕉国产在线看| 国产日韩欧美视频二区| 国产黄色免费在线视频| 一区二区三区激情视频| 午夜日本视频在线| 国产成人aa在线观看| 一级片免费观看大全| 最近2019中文字幕mv第一页| 1024视频免费在线观看| 精品少妇一区二区三区视频日本电影 | 国产激情久久老熟女| 免费黄频网站在线观看国产| 可以免费在线观看a视频的电影网站 | 一级毛片电影观看| 成人午夜精彩视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲图色成人| 亚洲综合色惰| 精品人妻一区二区三区麻豆| 久久久久久伊人网av| 十八禁高潮呻吟视频| 最近最新中文字幕免费大全7| 伊人久久国产一区二区| 日本vs欧美在线观看视频| 国产野战对白在线观看| 国产一区亚洲一区在线观看| 午夜福利视频在线观看免费| 国产97色在线日韩免费| 丝袜喷水一区| xxx大片免费视频| 日韩一区二区视频免费看| 国产精品欧美亚洲77777| 午夜免费观看性视频| 丰满乱子伦码专区| 1024香蕉在线观看| 黑人欧美特级aaaaaa片| 日韩,欧美,国产一区二区三区| 黄色毛片三级朝国网站| 国产精品一区二区在线观看99| 久久精品国产综合久久久| 免费女性裸体啪啪无遮挡网站|