• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOLVABILITY OF A PARABOLIC-HYPERBOLIC TYPE CHEMOTAXIS SYSTEM IN 1-DIMENSIONAL DOMAIN?

    2016-11-24 11:59:31HuaCHENWenbinLShaohuaWUSchoolofMathematicsandStatisticsComputationalScienceHubeiKeyLaboratoryWuhanUniversityWuhan430072Chinamailchenhuawhueducnlvwenbinwhueducnwush8sinacom
    關鍵詞:開花期采收期基部

    Hua CHENWenbin LShaohua WUSchool of Mathematics and Statistics; Computational Science Hubei Key Laboratory,Wuhan University,Wuhan 430072,China E-mail:chenhua@whu.edu.cn;lvwenbin@whu.edu.cn;wush8@sina.com

    SOLVABILITY OF A PARABOLIC-HYPERBOLIC TYPE CHEMOTAXIS SYSTEM IN 1-DIMENSIONAL DOMAIN?

    In this paper,we use contraction mapping principle,operator-theoretic approach and some uniform estimates to establish local solvability of the parabolic-hyperbolic type chemotaxis system with fixed boundary in 1-dimensional domain.In addition,local solvability of the free boundary problem is considered by straightening the free boundary.

    parabolic-hyperbolic system;free boundary;chemotaxis model;local existence

    2010 MR Subject Classification35A01;35K57;35M10;35L10;47D03

    1 Introduction

    Isolated from decaying leaves collected in a hardwood forest of the North Carolina mountains in the summer of 1933,the cellular slime mold Dictyostelium discoideum was discovered by Raper in 1935[18].

    During its life cycle a myxamoebae population of the Dictyostelium grows by cell division as long as there is sufficient nutriment.When the food resources become rare,the myxamoebae spread over the entire domain available to them.After a while one cell starts to secrete cyclic Adenosine Monophosphate(cAMP)which create a chemical gradient attracting the other myxamoebae.The myxamoebae begin to move towards the so-called founder cell and are also stimulated to exude cAMP.At this stage a collective behavior takes place during which these organisms aggregate and start to differentiate.At the end of the aggregation the myxamoebae form a pseudoplasmoid,with each cell maintaining its individual integrity.This self-organized multicellular structure increases in fact the chance of survival with the lack of food.This pseudoplasmoid moves then towards light sources,after a time a fruiting body is formed,spores are spread and the cycle begins again[16].

    The aggregation of the Dictyostelium is a typical example of a chemotaxis process(from the Greek Chemo=chemical,taxis=arrangement),which may be defined as the influence of chemical substances on the movement of mobile species.This can lead to strictly orientedmovement or to partially oriented and tumbling movement.The movement towards a higher (resp.lower)concentration of the chemical substance is termed positive chemotaxis movement (resp.negative).

    Understanding of the partially oriented movement of cells in response to chemical signals, chemotaxis,is of great significance in various contexts.

    In those days it was hard for Raper to imagine,that more than many years later this discovery would have attracted a large group of mathematicians[1,4–8,12,14,15,2o,24,27–29,31]to lay their scientific focus on a model proposed by Keller and Segel[19]in 197o to describe the aggregation phase of the Dictyostelium discoideum.

    Suzuki[25]discussed the chemotaxis model

    carefully,where ???nis a bounded domain with smooth boundary??,n is the outer unit vector on??,and f=lnW stands for the potential of the outer force,W=W(x)>o is a smooth function of x∈?.Here u=u(x,t)and v=v(x,t)are unknown functions of (x,t)∈?×[o,T)and they stand for the density of cellular slime molds and the concentration of chemical substances secreted by themselves,respectively.The operator A can be?Δ+a with the Neumann boundary condition,where a>o is a constant.It may be?Δ with the Neumann boundary condition under the constraintR?·dx=o,that is,vt+Av=u if and only if

    In the third case,it is?Δ with the Dirichlet boundary condition.These cases were studied by [9,17,21].

    Suzuki studied the classical theory for this system in his book.First,the fundamental theorem,the unique existence of the solution locally in time,was proved in Chapter 3.Then the threshold for the existence of the solution globally in time,which was eventually explained in a unified way by the quantized blowup mechanism,was established in Chapters 4 and 5.

    Chen and Wu[1,3]studied the following parabolic-hyperbolic type chemotaxis system:

    here the hyperbolic equation describes the property of the field generated by the external stimulus,the light or the electromagnetic wave.The results of[1,3]gave the existence and uniqueness of the solution for the system with Neumann boundary value condition on a smoothly bounded open domain.

    In this paper,we replace the control equation(the second equation of system(1.1))by a hyperbolic equation

    where a>o is a constant.

    As we all know,in a standard setting for many partial differential equations,we usually assume that the process being described occurs in a fixed domain of the space.But in the real world,the following phenomenon may happen.At the initial state,a kind of amoeba occupied some areas.When foods become rare,they begin to secrete chemical substances on their own. Since the biological time scale is much slower than the chemical one,the chemical substances are full filled with whole domain and create a chemical gradient attracting the cells.In turn, the areas of amoeba may change according to the chemical gradient from time to time.In other words,a part of whose boundary is unknown in advance and that portion of the boundary is called a free boundary.In addition to the standard boundary conditions that are needed in order to solve the PDEs,an additional condition must be imposed at the free boundary.One then seeks to determine both the free boundary and the solution of the differential equations. The theory of free boundaries saw great progress in the last thirty years;for the state of the field we refer to[1o].

    Chen and Wu[2]studied the free boundary value problem and established the existence and uniqueness of the solution of system(1.2)with one dimensional space in some suitable conditions(one of them reads that the mass flow ratio is a positive constant).However,to the best of our knowledge,no results are available for the mass flow ratio being a non-constant coefficient.In the present paper,we consider the corresponding problem with the mass flow ratio to be a positive function.In view of the biological relevance,we find it worthwhile to clarify these questions.

    2 Main Results

    In this paper,we focus on the following system:

    where ΔNdenotes the differential operator Δ provided with the Neumann boundary condition. We are going to consider two typical problems:fixed boundary system and free boundary system under some suitable conditions.

    2.1Fixed Boundary Problem

    We consider the following system with fixed boundary:

    Our main result is

    Theorem 2.1(local existence of solutions)Under the condition n=1,if the initial valueis taken as

    then system(2.1)admits a unique solution(u,v)locally in time,that is,

    Furthermore,u(x,t)>o holds for(x,t)∈?×(o,T]if uo(x)/≡o.

    Remark 2.2Let Tmaxbe the supermum of the existence time T>o of the solution to system(2.1).If o

    If Tmax<+∞,we have

    Remark 2.3We integrate the first equation of(2.1)and use Green’s formula to obtain

    from which it follows that

    2.2Free Boundary Problem

    We consider the following system with free boundary:

    ·???nis a bounded open set with smooth boundary?? and n is unit outer normal vector of??;

    ·k(x,t)is a Lipschitz function on x,namely there exists a constant L>o,such that

    Besides,k(x,t)is bounded on t∈[o,+∞).In other words,there exists a constant c(x)>o, such that

    ·u=u(x,t)is an unknown function of(x,t)∈?t×(o,T)and it stands for the density of cellular slime molds.In other words,the density u(x,t)occupies the domain ?t,an open subset of ?,in time t and u(x,t)=o in the outside of ?t;

    ·v=v(x,t)is an unknown function of(x,t)∈?×(o,T)and it stands for the concentration of chemical substances secreted by the slime molds;

    ·Γt:Φ(x,t)=o is an unknown free boundary.

    Remark 2.4If n=1 and Φ(x,t)=x?h(t)=o,then?Φ=1,and the conditions of the free boundary convert into

    Moreover,if u>o on Γt,then(2.5)is equivalent to

    by equation(2.4).

    Our approach here is to find a radially symmetric solution for the problem.Without loss of generality,we had better assume that ?=(o,1)and ?o=(o,b)with o

    For simplicity,we define the spaces as follows

    where Moand σ satisfying Moand 1<σ<2 are constants.

    Our main result is

    春季最先發(fā)病的部位是花序或新梢基部,然后從這些發(fā)病中心逐步向周圍的葉片、新梢以及果實蔓延。從開花期到采收期均可發(fā)生,具有多次再侵染特性。

    Theorem 2.5(Local existence of solutions)Under the conditions of(2.2)and(2.3),if

    then there exist a pair(u,v)and a curve Γt:x=h(t)∈B which are the solutions of(2.6)for 1<σ<2 and some to>o small enough.

    2.3The Organization of the Paper

    This paper is arranged as follows.

    In Section 3,we discuss a parabolic-hyperbolic type chemotaxis system with fixed boundary in 1-dimensional space.Making use of contraction mapping principle and operator-theoretic approach,we prove the local existence of system(2.1)in Sobolev space.In addition,the local existence of system(2.6)with free boundary is established in Section 4.

    3 Fixed Boundary Problem

    In this section,we use contraction mapping principle and operator-theoretic approach to establish the local solution of system(2.1),i.e.,Theorem 2.1.In what follows,we denote by C various constants which may change from the line to line.

    3.1The Unique Existence of the Solution Locally in Time

    system(2.1)is transformed into

    Let P=(v,V),then they are reduced to the system of integral equations here and henceforth,{etΔN}and{etA}denote the semigroups generated by ΔNand A,respectively.Noticing that(uo,vo)∈H1(?)×H2(?),we can easily get Uo∈H1(?).

    Now,we consider some operator theorems which we will use in the following.

    Lemma 3.1(operator-theoretic features of?ΔN)For operator?ΔN,we have three conclusions

    ·

    ·There is a constant C>o such that

    The proof of Lemma 3.1 can be found in[23,26,3o].Here,we should know that the normis defined to be the L2(?)norm,i.e.,

    Lemma 3.2(operator-theoretic feature of A)Operator A=is a generator of a strongly continuous contractive semigroup,that is,

    In the following,we only use the case n=1,i.e.,? is an interval.The proof of Lemma 3.2 can be found in[1,11].Actually,as the restriction and extension ofare also satisfied with estimate(3.4).

    Step 2Getting the solution by contraction mapping principle. To get the solution by contraction mapping principle,we take

    Lemma 3.3We have L,T>o satisfying

    ProofFirst,we can show that(3.5)is satisfied for L≥1,arbitrarily if T>o is taken to be sufficiently small.

    Using Lemma 3.1,the first and the second terms of the right-hand side are estimated from above by respectively.

    By Sobolev Imbedding Theorem,it holds that

    For(U,P)∈B(L,T)this implies

    Therefore,we get

    If we take L>o as large as

    and then take T>o as small as

    it holds that

    By Lemma 3.2 and Minkovski inequality,we have

    for(U,P)∈B(L,T).Similar with Step 2.1,it holds that

    for T>o sufficiently small.

    Step 2.3Estimate

    The function Y=F1(U,P)solves

    The first and the second terms of the right-hand side are estimated from above by

    respectively.

    This implies

    for(U,P)∈B(L,T).Similar with Step 2.1,it holds that for T>o sufficiently small.

    Step 2.4Estimate dt,where Z=F2(U,P).

    We note

    Hence we can conclude

    The function Z=F2(U,P)solves

    Combining(3.1o),this implies

    for(U,P)∈B(L,T).Thus,we have

    for T>o sufficiently small.

    Now,we show that(3.6)is satisfied for L≥1,arbitrarily if T>o is taken to be sufficiently small.

    To achieve the goal,we only to check the following four inequalities:

    Step 2.5We note

    By Sobolev Imbedding Theorems,it holds that

    For(U1,P1),(U2,P2)∈B(L,T),this implies

    Taking T>o as small as

    we obtain(3.11).

    Step 2.6Through simple calculation,we can get

    for(U1,P1),(U2,P2)∈B(L,T).Taking T>o as small as

    we get(3.12).

    Step 2.7The functions Y1=F1(U1,P1),Y2=F1(U2,P2)solve

    respectively.Therefore,the first equation of(3.18)minus the first equation of(3.19),we obtain

    Testing(Y1?Y2)tand integrating,we get

    The first and the second terms of the right-hand side are estimated from above by

    respectively.Combining(3.15)and(3.16),we get

    we can obtain(3.13).

    Step 2.8We note

    Hence we can conclude

    The functions Z1=F2(U1,P1),Z2=F2(U2,P2)solve

    respectively.Combining(3.2o)and(3.17),we obtain

    for(U1,P1),(U2,P2)∈B(L,T).Thus,we have(3.14)for T>o sufficiently small.

    The positivity of u(x,t)follows from the strong maximum principle applied to the first equation of(2.1).

    4 Free Boundary Problem

    In this section,we establish the local solution of system(2.6),i.e.,Theorem 2.5.At first, we use a classical transform to straighten the free boundary.Then,we make use of contraction mapping principle to get the solution to the free boundary problem(2.6).

    4.1Some Basic Lemmas

    In this section,we shall establish some lemmas which are essential in our later deduction. For any fixed h(t)∈B,we consider following problems

    Lemma 4.1For h(t)∈B,uo(x)∈H2(o,b)and vsystem(4.1)admits a unique solution u∈and for each 1<σ<2 and tosmall enough,we have

    where C depends on Mobut is independent of toand h∈B.

    ProofTake the transform

    Freezing the coefficient,the equation can be written as

    for o<ξ<1,o<τ

    X=L2(o,1),??

    is Lipschitz,where D(L(o))=Y.Hence system(4.4)has a unique solution

    for each to.Thus u=is the unique solution of system(4.1).

    Let t1>o and Tt1(τ)represent the operator semigroup on X which is generated by

    We know that Tt1(τ)is a holomorphic semigroup on X and

    If t′>o,then take t1=t′in(4.5),we have

    In particular we have

    So we can obtain

    If h(t)∈B,then

    For f∈Hλ,one has

    where C is dependent on Mobut independent of t1.

    Using(4.6)and(4.7),the terms on the right-hand side are estimated from above by

    respectively,where C depends on Mobut is independent of t′and h∈B.Thus,for t′small enough,it holds that

    In case of t′=o,then for each o≤t2≤to,we have

    From(4.8)and(4.9),we can easily obtain estimate(4.3),Lemma 4.1 is proved. For system(4.2),we have the following lemma.

    Lemma 4.2For each T>o,if

    then system(4.2)has a unique solution v which satisfies

    Moreover,we have

    for 1<σ<2 and o≤t≤T≤1,where C>o is a constant which is independent of T and?=(o,1).

    Lemma 4.3If h(t)∈B,uo(x)∈H2(o,b),vo∈H2(o,1)∩{ux(o)=ux(1)=o},v1∈H1(o,1),then system(4.1)and(4.2)admit a unique solution(u,v) small enough,we have

    where σ<2.

    The proofs of Lemmas 4.2 and 4.3 can be found in[2].

    4.2Local Existence for Free Boundary Problem

    In this section,we prove the existence for the local solution of the free boundary problem (2.6).

    By Lemma 4.3,for each h(t)∈B,we know that there exists a pair(u,v)

    satisfying system(4.1)and(4.2).

    By Lemma 4.2,we knew that vx∈C([o,to],Hσ2).Thanks to Sobolev imdedding theorem,

    Then by Lemma 3.2,we know that for o≤t1≤t2≤to≤To,

    where C is independent of to.Let M1denote the constant at the right hand side of(4.1o),if tois small enough,then

    Thus we can choose Mo=M1,that means s(t)∈B.Observe that B?C[o,to]is a compact and convex subset.

    Define G:h(t)→s(t),therefore G maps B into itself.Next we will demonstrate that G is continuous.Then Schauder theorem yields that there exist a pair(u,v)and a curve Γt:x=h(t)which are the solution of(2.6).

    In fact,for h1(t),h2(t)∈B,let(u1,v1)and(u2,v2)represent the corresponding solutions of(4.1)and(4.2)respectively.Then for o≤t≤to,one has

    The terms on the right-hand side are estimated from above by On one hand by[o,1]),we know

    On the other hand,we have

    By Lemma 4.2,it holds that

    by Lemma 4.3.

    It is trivial that as h1→h2on C[o,to].

    So far,we have confirmed the local well-posedness for(2.6).We conclude this section by a note on the invariant property of u under some suitable norm.

    Lemma 4.4If uo>o and(u,v)is the solution of system(2.6),then for to>o small enough,we have u>o and

    ProofSince uo(x)>o,by standard maximal principle of the parabolic equation,it follows that u>o.Integrating the first equation of(2.6)over(o,h(t)),we have

    which implies that

    as required.

    References

    [1]Chen H,Wu S H.On existence of solutions for some hyperbolic-parabolic-type chemotaxis systems.IMA J Appl Math,2007,72(3):331–347

    [2]Chen H,Wu S H.The free boundary problem in biological phenomena.J Partial Differ Equ,2007,20(2): 155–168

    [3]Chen H,Wu S H.Hyperbolic-parabolic chemotaxis system with nonlinear product terms.J Partial Differ Equ,2008,21(1):45–58

    [4]Chen H,Wu S H.Nonlinear hyperbolic-parabolic system modeling some biological phenomena.J Partial Differ Equ,2011,24(1):1–14

    [5]Chen H and Wu S H.The moving boundary problem in a chemotaxis model.Commun Pure Appl Anal, 2012,11(2):735–746

    [6]Chen H,Zhong X H.Norm behaviour of solutions to a parabolic-elliptic system modelling chemotaxis in a domain of ?3.Math Methods Appl Sci,2004,27(9):991–1006

    [7]Chen H,Zhong X H.Global existence and blow-up for the solutions to nonlinear parabolic-elliptic system modelling chemotaxis.IMA J Appl Math,2005,70(2):221–240

    [8]Chen H,Zhong X H.Existence and stability of steady solutions to nonlinear parabolic-elliptic systems modelling chemotaxis.Math Nach,2006,279(13/14):1441–1447

    [9]Diaz J I,Nagai T.Symmetrization in a parabolic-elliptic system related to chemotaxis.Adv Math Sci Appl, 1995,5(2):659–680

    [10]Friedman A.Free boundary problems in science and technology.Notices Amer Math Soc,2000,47(8): 854–861

    [11]Haraux A.Nonlinear Evolution Equations Global Behavior of Solutions.New York:Springer,1981

    [12]Hillen T.Hyperbolic models for chemosensitive movement.Math Models Methods Appl Sci,2002,12(7): 1007–1034

    [13]Hillen T,Painter K J.Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv Appl Math,2001,26(4):280–301

    [14]Hillen T,Painter K J.A user’s guide to PDE models for chemotaxis.J Math Biology,2009,58(1/2): 183–217

    [15]Horstmann D.From 1970 until present:the Keller-Segel model in chemotaxis and its consequences I. Jahresbericht der Deutschen Mathematiker Vereinigung,2003,105(3):103–165

    [16]Horstmann D,Lucia M.Uniqueness and symmetry of equilibria in a chemotaxis model.Journal f¨ur die reine und Angewandte Mathematik,2011,2011(654):83–124

    [17]J¨ager W,Luckhaus S.On explosions of solutions to a system of partial differential equations modelling chemotaxis.Trans Amer Math Soc,1992,329(2):819–824

    [18]Raper K B.Dictyostelium discoideum,a new species of slime mold from decaying forest leaves.J Agricultural Research,1935,50(2):135–147

    [19]Keller E F,Segel L A.Initiation of slime mold aggregation viewed as an instability.J Theoretical Biology, 1970,26(3):399–415

    [20]Levine H A,Sleeman B D.A system of reaction diffusion equations arising in the theory of reinforced random walks.SIAM J Appl Math,1997,57(3):683–730

    [21]Nagai T.Blow-up of radially symmetric solutions to a chemotaxis system.Adv Math Sci Appl,1995,5(2): 581–601

    [22]Schaeffer D G.A new proof of the infinite differentiability of the free bouondary in the stefan problem.J Differ Equ,1976,20(1):266–269

    [23]Stein E M.Singular Integrals and Differentiability Properties of Functions.Princeton:Princeton University Press,1970

    [24]Sanba T,Suzuki T.Weak solutions to a parabolic-elliptic system of chemotaxis.J Funct Anal,2002,191(1): 17–51

    [25]Suzuki T.Free Energy and Self-Interacting Particles.Boston:Birkh¨auser,2005

    [26]Taylor M E.Partial Differential Equations III.New York:Springer,2011

    [27]Wu S H,Chen H,Li W X.The local and global existence of the solutions of hyperbolic-parabolic system modeling biological phenomena.Acta Math Sci,2008,28B(1):101–116

    [28]Wu S H.A free boundary problem for a chemotaxis system.Acta Math Sin Chinese Series,2010,53(3): 515–524

    [29]Wu S H,Yue B.On existence of local solutions of a moving boundary problem modelling chemotaxis in 1-D.J Partial Differ Equ,2014,27(3):268–282

    [30]Ye Q X.An Introduction to Reaction-Diffusion Equations.Beijing:Science Press,2011

    [31]Yang Y,Chen H,Liu W A.On existence of global solution and blow-up to a system of reaction diffusion equations modeling chemotaxis.SIAM J Math Anal,2001,33(4):763–785

    ?June 25,2015;revised October 12,2015.Supported by the National Natural Science Foundation of China(11131005)and the Fundamental Research Funds for the Central Universities(2014201020202).?

    Wenbin L¨U.

    猜你喜歡
    開花期采收期基部
    預防蔬菜“爛脖根”有三忌
    高寒草原針茅牧草花期物候變化特征及其影響因子分析
    厚樸葉營養(yǎng)成分隨不同采收期的變化分析
    海南三七根莖芽基部的組培快繁
    5個采收期女貞子中5種成分的動態(tài)變化
    中成藥(2017年5期)2017-06-13 13:01:12
    HPLC法同時測定5個采收期蛇莓中5種黃酮成分
    中成藥(2017年4期)2017-05-17 06:09:37
    初春氣象條件對蘋果開花期的影響分析
    蘋果夏剪怎樣轉枝
    基于RIL群體和IF2群體的玉米開花期相關性狀QTL分析
    雜交秈稻花藥基部開裂性狀的遺傳研究
    丝瓜视频免费看黄片| 欧美一级a爱片免费观看看| 一级毛片久久久久久久久女| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 久久久久久久久久久丰满| 国产av国产精品国产| 久久久久精品久久久久真实原创| 成年女人看的毛片在线观看| 亚洲,欧美,日韩| 高清在线视频一区二区三区| 国产男人的电影天堂91| eeuss影院久久| 老女人水多毛片| 高清av免费在线| 国产亚洲5aaaaa淫片| av在线亚洲专区| 亚洲av在线观看美女高潮| 日韩亚洲欧美综合| 激情 狠狠 欧美| 亚洲国产精品sss在线观看| 精品国产露脸久久av麻豆 | 三级国产精品片| 卡戴珊不雅视频在线播放| 精品国产三级普通话版| 国产午夜福利久久久久久| 国产色婷婷99| 一级av片app| 久久久久精品性色| 日本爱情动作片www.在线观看| 亚洲av中文av极速乱| 联通29元200g的流量卡| 天堂影院成人在线观看| 国产在线一区二区三区精| 狠狠精品人妻久久久久久综合| 亚洲18禁久久av| 国产成人精品久久久久久| 国产成人一区二区在线| 亚洲国产成人一精品久久久| 亚洲成人久久爱视频| 国产精品美女特级片免费视频播放器| 91久久精品国产一区二区成人| 人体艺术视频欧美日本| a级毛色黄片| 午夜老司机福利剧场| 国语对白做爰xxxⅹ性视频网站| 国产av国产精品国产| 777米奇影视久久| 亚洲精品乱码久久久久久按摩| 天堂中文最新版在线下载 | 美女主播在线视频| 搞女人的毛片| 精品久久久久久成人av| 亚洲精品国产av成人精品| 精品午夜福利在线看| 日本午夜av视频| 99视频精品全部免费 在线| av在线亚洲专区| 夜夜爽夜夜爽视频| 极品少妇高潮喷水抽搐| 亚洲av不卡在线观看| 性色avwww在线观看| 好男人视频免费观看在线| av在线播放精品| 久久久午夜欧美精品| 内射极品少妇av片p| 亚洲av在线观看美女高潮| 在线观看人妻少妇| 伊人久久国产一区二区| 午夜精品在线福利| 最新中文字幕久久久久| 1000部很黄的大片| 99久久九九国产精品国产免费| 内射极品少妇av片p| 免费观看无遮挡的男女| 亚洲婷婷狠狠爱综合网| 国产亚洲午夜精品一区二区久久 | 中文字幕人妻熟人妻熟丝袜美| 春色校园在线视频观看| 校园人妻丝袜中文字幕| 午夜激情久久久久久久| 在线观看一区二区三区| 日韩av在线免费看完整版不卡| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久久成人| 成年女人在线观看亚洲视频 | 亚洲精品456在线播放app| 成年人午夜在线观看视频 | 2021少妇久久久久久久久久久| 九色成人免费人妻av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 丝袜美腿在线中文| 免费播放大片免费观看视频在线观看| 亚洲精品久久久久久婷婷小说| 日产精品乱码卡一卡2卡三| 只有这里有精品99| 免费观看av网站的网址| 精品熟女少妇av免费看| 成人毛片a级毛片在线播放| 日本黄大片高清| 精品不卡国产一区二区三区| 啦啦啦韩国在线观看视频| 日韩一区二区三区影片| 国产视频内射| 美女高潮的动态| 午夜福利在线观看吧| 深爱激情五月婷婷| 国产精品三级大全| 亚洲18禁久久av| 国产精品一区二区三区四区久久| 亚洲av男天堂| 久久久久久久久大av| 亚洲精品乱码久久久久久按摩| 亚洲精品乱码久久久久久按摩| 国产精品国产三级专区第一集| 国产综合懂色| 美女高潮的动态| 熟女人妻精品中文字幕| 精品久久久精品久久久| 午夜福利视频精品| 日本免费a在线| 国产视频首页在线观看| 日本猛色少妇xxxxx猛交久久| 国产 亚洲一区二区三区 | 边亲边吃奶的免费视频| 在线天堂最新版资源| 在线a可以看的网站| 色网站视频免费| 少妇熟女aⅴ在线视频| 欧美激情久久久久久爽电影| 国产男女超爽视频在线观看| 99视频精品全部免费 在线| 欧美日本视频| 亚洲国产成人一精品久久久| 干丝袜人妻中文字幕| 国产v大片淫在线免费观看| 国产亚洲av片在线观看秒播厂 | 精品国内亚洲2022精品成人| 国产黄色小视频在线观看| 亚洲最大成人av| 哪个播放器可以免费观看大片| 中文欧美无线码| 最近最新中文字幕免费大全7| 久久久精品欧美日韩精品| 乱人视频在线观看| av在线老鸭窝| 三级毛片av免费| 在线 av 中文字幕| 国产精品蜜桃在线观看| 91精品一卡2卡3卡4卡| av.在线天堂| 久久99精品国语久久久| freevideosex欧美| 91精品一卡2卡3卡4卡| 一个人看的www免费观看视频| 国产av码专区亚洲av| 久久99蜜桃精品久久| 免费电影在线观看免费观看| 亚洲成人中文字幕在线播放| 免费看a级黄色片| 国产永久视频网站| 免费电影在线观看免费观看| 全区人妻精品视频| 国产精品麻豆人妻色哟哟久久 | 成人二区视频| 亚洲av不卡在线观看| 亚洲av成人精品一区久久| 亚洲一区高清亚洲精品| 亚洲欧美中文字幕日韩二区| 国产人妻一区二区三区在| 欧美日韩亚洲高清精品| 国产麻豆成人av免费视频| 少妇熟女欧美另类| 蜜桃亚洲精品一区二区三区| 精品久久国产蜜桃| 精品久久久久久久久亚洲| 国产成人freesex在线| 国产精品一区二区在线观看99 | 精品人妻视频免费看| 久久久久久久久久黄片| 久久97久久精品| 国产av国产精品国产| 丝袜美腿在线中文| 18禁在线无遮挡免费观看视频| 精品久久久久久久末码| 好男人视频免费观看在线| 久久午夜福利片| 禁无遮挡网站| 国产人妻一区二区三区在| 国产中年淑女户外野战色| 天堂俺去俺来也www色官网 | 久久精品熟女亚洲av麻豆精品 | 国产精品一区二区性色av| 国产爱豆传媒在线观看| 男女边摸边吃奶| 国产一区二区三区av在线| 日本爱情动作片www.在线观看| eeuss影院久久| 蜜臀久久99精品久久宅男| 精品久久久久久久久亚洲| 97在线视频观看| 午夜福利视频精品| 少妇人妻精品综合一区二区| 精品一区二区三区视频在线| av卡一久久| 婷婷色综合www| 久久久久久久国产电影| 欧美变态另类bdsm刘玥| 国产精品久久久久久久电影| 久久精品人妻少妇| 日韩人妻高清精品专区| 亚洲熟女精品中文字幕| 国国产精品蜜臀av免费| 丝袜美腿在线中文| 亚洲婷婷狠狠爱综合网| 成人性生交大片免费视频hd| 亚洲精品久久午夜乱码| 国产欧美另类精品又又久久亚洲欧美| 男女国产视频网站| 日韩欧美精品免费久久| 天堂俺去俺来也www色官网 | 国产精品久久久久久av不卡| 日韩欧美精品免费久久| 亚洲精品第二区| 亚洲久久久久久中文字幕| 午夜精品一区二区三区免费看| 日韩成人伦理影院| 插逼视频在线观看| 久久久久免费精品人妻一区二区| 国产高清不卡午夜福利| 纵有疾风起免费观看全集完整版 | 我的老师免费观看完整版| 国产精品国产三级专区第一集| 精华霜和精华液先用哪个| 亚洲国产精品专区欧美| 国产欧美另类精品又又久久亚洲欧美| 一边亲一边摸免费视频| 听说在线观看完整版免费高清| 久久6这里有精品| 色播亚洲综合网| 成人性生交大片免费视频hd| 99久国产av精品国产电影| 国产精品一区www在线观看| 成人二区视频| 黄色欧美视频在线观看| .国产精品久久| 人妻制服诱惑在线中文字幕| 精品少妇黑人巨大在线播放| 精品熟女少妇av免费看| 国产av在哪里看| 国产视频首页在线观看| 久99久视频精品免费| 亚洲在线观看片| 精品不卡国产一区二区三区| 街头女战士在线观看网站| 国产av码专区亚洲av| 国产女主播在线喷水免费视频网站 | 欧美激情国产日韩精品一区| 国产高潮美女av| 婷婷六月久久综合丁香| 青春草亚洲视频在线观看| 99久国产av精品国产电影| 国产精品蜜桃在线观看| 亚洲精华国产精华液的使用体验| 国产精品1区2区在线观看.| ponron亚洲| 国内少妇人妻偷人精品xxx网站| 国产av在哪里看| 哪个播放器可以免费观看大片| 亚洲av一区综合| 久久精品夜色国产| 欧美潮喷喷水| 国产女主播在线喷水免费视频网站 | 久久久久国产网址| 亚洲精品视频女| 美女黄网站色视频| 成人无遮挡网站| 日韩欧美国产在线观看| 久久久久免费精品人妻一区二区| 精品久久久久久久人妻蜜臀av| 日本熟妇午夜| 国内精品美女久久久久久| 91aial.com中文字幕在线观看| 久久久成人免费电影| av一本久久久久| 97热精品久久久久久| 三级国产精品片| 亚洲成人一二三区av| 日韩视频在线欧美| 欧美不卡视频在线免费观看| 男女啪啪激烈高潮av片| 久久这里只有精品中国| 噜噜噜噜噜久久久久久91| 性色avwww在线观看| 亚洲精品中文字幕在线视频 | 久久久久久久午夜电影| 午夜亚洲福利在线播放| 久久久久久久大尺度免费视频| 日日摸夜夜添夜夜添av毛片| 伊人久久精品亚洲午夜| 大又大粗又爽又黄少妇毛片口| 尾随美女入室| 三级男女做爰猛烈吃奶摸视频| 亚洲熟女精品中文字幕| 国产黄片视频在线免费观看| 极品教师在线视频| 中国美白少妇内射xxxbb| 人体艺术视频欧美日本| 亚洲精品久久久久久婷婷小说| 国产精品一区二区三区四区久久| 久久6这里有精品| 国产精品美女特级片免费视频播放器| 日韩视频在线欧美| 亚洲欧美精品自产自拍| 国产精品三级大全| 99热全是精品| 国产伦理片在线播放av一区| 成年版毛片免费区| 22中文网久久字幕| 久久久久久久久大av| 久久99热这里只频精品6学生| 国产老妇伦熟女老妇高清| 亚洲av不卡在线观看| 人人妻人人看人人澡| 久久久久久久久久久免费av| 2021天堂中文幕一二区在线观| 久久久久久伊人网av| 久久精品久久精品一区二区三区| 午夜激情福利司机影院| 免费少妇av软件| 色网站视频免费| 日韩伦理黄色片| 18禁在线播放成人免费| 水蜜桃什么品种好| 免费黄频网站在线观看国产| 欧美不卡视频在线免费观看| 91aial.com中文字幕在线观看| 亚洲国产欧美人成| 亚洲欧美清纯卡通| 欧美丝袜亚洲另类| 国产高清三级在线| 在线观看人妻少妇| 国产伦一二天堂av在线观看| 成人一区二区视频在线观看| 成人高潮视频无遮挡免费网站| 精品久久久久久久久亚洲| 国产亚洲午夜精品一区二区久久 | 亚洲美女视频黄频| 18禁裸乳无遮挡免费网站照片| 青春草视频在线免费观看| 国产探花极品一区二区| 日本熟妇午夜| av在线观看视频网站免费| 中国国产av一级| 国产v大片淫在线免费观看| 成人高潮视频无遮挡免费网站| 亚洲伊人久久精品综合| 国产淫片久久久久久久久| 国产一区有黄有色的免费视频 | 午夜福利网站1000一区二区三区| 国产一区亚洲一区在线观看| 蜜桃亚洲精品一区二区三区| 欧美区成人在线视频| 精品一区在线观看国产| 欧美日韩亚洲高清精品| 亚洲欧美日韩东京热| 亚洲精品日韩在线中文字幕| 精品一区二区三区人妻视频| 亚洲av成人av| 久久人人爽人人片av| 国产毛片a区久久久久| 亚洲美女视频黄频| 欧美xxxx性猛交bbbb| 亚洲欧美成人精品一区二区| 国产三级在线视频| 国产成年人精品一区二区| 嫩草影院入口| 内地一区二区视频在线| 岛国毛片在线播放| 久久这里只有精品中国| 丰满少妇做爰视频| 国产精品麻豆人妻色哟哟久久 | 亚洲精品国产成人久久av| 久久精品夜色国产| 免费av观看视频| 婷婷六月久久综合丁香| 国产在视频线精品| 国产 一区 欧美 日韩| 最近中文字幕2019免费版| 亚洲欧美成人综合另类久久久| 青青草视频在线视频观看| 精品人妻熟女av久视频| 久久精品熟女亚洲av麻豆精品 | 欧美日韩在线观看h| 一级毛片久久久久久久久女| 亚洲精品第二区| 亚洲精品一二三| 午夜福利在线在线| 青春草亚洲视频在线观看| 亚洲成人久久爱视频| 成人午夜精彩视频在线观看| 日韩一本色道免费dvd| 乱人视频在线观看| 成人鲁丝片一二三区免费| 99re6热这里在线精品视频| 精品久久久久久久久亚洲| 2018国产大陆天天弄谢| 成人av在线播放网站| 亚洲精品一区蜜桃| 大话2 男鬼变身卡| 亚洲成人中文字幕在线播放| 国产av国产精品国产| 99久国产av精品| 欧美激情久久久久久爽电影| 日产精品乱码卡一卡2卡三| 日日干狠狠操夜夜爽| 久久久久久久久久久丰满| 男的添女的下面高潮视频| 一级毛片久久久久久久久女| 别揉我奶头 嗯啊视频| 夜夜看夜夜爽夜夜摸| 日本猛色少妇xxxxx猛交久久| 好男人在线观看高清免费视频| 午夜视频国产福利| 免费观看a级毛片全部| 男女视频在线观看网站免费| 天堂网av新在线| 91午夜精品亚洲一区二区三区| 欧美激情在线99| videos熟女内射| 亚洲真实伦在线观看| 日韩av在线大香蕉| 精品人妻一区二区三区麻豆| 一区二区三区高清视频在线| 亚洲熟妇中文字幕五十中出| 能在线免费观看的黄片| 亚洲最大成人中文| 国产精品一及| 最近的中文字幕免费完整| 国产精品爽爽va在线观看网站| 国国产精品蜜臀av免费| 国产亚洲一区二区精品| 国产一区二区三区综合在线观看 | 婷婷色麻豆天堂久久| 超碰av人人做人人爽久久| 亚洲美女搞黄在线观看| 日本免费在线观看一区| 国国产精品蜜臀av免费| 国产精品久久久久久久久免| 久久久久久久久久人人人人人人| 亚洲av成人av| 中文字幕制服av| 国产高潮美女av| 久久99热这里只频精品6学生| 免费少妇av软件| 精品人妻视频免费看| 久久久久网色| 久久鲁丝午夜福利片| 精品久久国产蜜桃| 久久精品国产鲁丝片午夜精品| 男女啪啪激烈高潮av片| av在线播放精品| 国产久久久一区二区三区| 国产精品一区二区性色av| 少妇猛男粗大的猛烈进出视频 | av专区在线播放| 国产精品久久久久久精品电影| 三级国产精品片| 身体一侧抽搐| 久久97久久精品| 亚洲精品一区蜜桃| freevideosex欧美| 亚洲精品影视一区二区三区av| 大又大粗又爽又黄少妇毛片口| 久久99精品国语久久久| 日韩亚洲欧美综合| 欧美激情国产日韩精品一区| 天堂√8在线中文| 高清毛片免费看| 久久99蜜桃精品久久| 日韩 亚洲 欧美在线| 成年女人看的毛片在线观看| 国产黄片视频在线免费观看| 久久久久久久亚洲中文字幕| 亚洲欧美精品专区久久| 性色avwww在线观看| 看黄色毛片网站| 亚洲怡红院男人天堂| 国产在线男女| 国内揄拍国产精品人妻在线| 精品人妻熟女av久视频| 国产男女超爽视频在线观看| 亚洲av电影在线观看一区二区三区 | 美女xxoo啪啪120秒动态图| 久久久久久久亚洲中文字幕| 亚洲怡红院男人天堂| 超碰97精品在线观看| 日韩av在线免费看完整版不卡| 久久久久九九精品影院| 岛国毛片在线播放| 淫秽高清视频在线观看| 国产亚洲av片在线观看秒播厂 | 久久久久久久久久黄片| 欧美 日韩 精品 国产| 精品人妻偷拍中文字幕| 久久久久九九精品影院| 亚洲成色77777| 免费观看性生交大片5| 91精品一卡2卡3卡4卡| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 汤姆久久久久久久影院中文字幕 | 亚洲人成网站在线播| 国产高清不卡午夜福利| 国产精品精品国产色婷婷| 国产又色又爽无遮挡免| 欧美精品国产亚洲| 亚洲天堂国产精品一区在线| 日韩中字成人| 建设人人有责人人尽责人人享有的 | 波野结衣二区三区在线| 午夜亚洲福利在线播放| 亚洲精华国产精华液的使用体验| 国产国拍精品亚洲av在线观看| 国产综合懂色| 久久久久精品久久久久真实原创| 久久久久性生活片| 亚洲国产高清在线一区二区三| 日日干狠狠操夜夜爽| 日韩在线高清观看一区二区三区| 国产精品一区二区三区四区久久| av线在线观看网站| 亚洲成人中文字幕在线播放| 99热全是精品| 午夜福利在线观看免费完整高清在| 卡戴珊不雅视频在线播放| 91狼人影院| 一级毛片电影观看| 国产淫语在线视频| 美女黄网站色视频| 亚洲av在线观看美女高潮| av国产免费在线观看| 一级黄片播放器| 寂寞人妻少妇视频99o| 大片免费播放器 马上看| 亚洲在久久综合| 日韩强制内射视频| 欧美97在线视频| 色吧在线观看| 亚洲美女搞黄在线观看| 国产真实伦视频高清在线观看| 久久久久精品性色| 欧美日韩一区二区视频在线观看视频在线 | 天堂网av新在线| 丰满人妻一区二区三区视频av| 91精品国产九色| 自拍偷自拍亚洲精品老妇| 少妇熟女欧美另类| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品电影小说 | 哪个播放器可以免费观看大片| 国产麻豆成人av免费视频| 1000部很黄的大片| 免费观看的影片在线观看| 国产有黄有色有爽视频| 丰满少妇做爰视频| 色网站视频免费| 18禁裸乳无遮挡免费网站照片| 亚洲成人av在线免费| 一区二区三区免费毛片| 波野结衣二区三区在线| 18禁在线无遮挡免费观看视频| 亚洲欧美日韩东京热| 搡老妇女老女人老熟妇| 内射极品少妇av片p| 日韩成人av中文字幕在线观看| 国产伦理片在线播放av一区| 久久久久久国产a免费观看| 一级毛片aaaaaa免费看小| 一级片'在线观看视频| 国产欧美日韩精品一区二区| 国产精品日韩av在线免费观看| 精品久久久久久久人妻蜜臀av| 狂野欧美激情性xxxx在线观看| kizo精华| 少妇裸体淫交视频免费看高清| 熟妇人妻久久中文字幕3abv| 一级毛片久久久久久久久女| 91狼人影院| 欧美日韩视频高清一区二区三区二| 亚洲欧美成人精品一区二区| 激情五月婷婷亚洲| 赤兔流量卡办理| 淫秽高清视频在线观看| 人妻一区二区av| 最近中文字幕高清免费大全6| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 三级经典国产精品| 一级毛片我不卡| 国产精品一区二区性色av| 水蜜桃什么品种好| 久久99精品国语久久久| a级毛色黄片| 精品人妻视频免费看| 久热久热在线精品观看| 欧美bdsm另类| av黄色大香蕉| 床上黄色一级片| 国产又色又爽无遮挡免| 日本免费a在线| 一个人看的www免费观看视频| 高清欧美精品videossex| 国产爱豆传媒在线观看| 久久精品国产亚洲网站|