• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXISTENCE OF SOLUTION AND APPROXIMATE CONTROLLABILITY OF A SECOND-ORDER NEUTRAL STOCHASTIC DIFFERENTIAL EQUATION WITH STATE DEPENDENT DELAY?

    2016-11-24 12:00:10SanjuktaDASDwijendraPANDEYNSUKAVANAMDepartmentofMathematicsIndianInstitutionofTechnologyRoorkeeRoorkeeUttarakhandIndiamaildassanjukta44gmailcomdwijiitkgmailcomnsukavanamgmailcom

    Sanjukta DASDwijendra PANDEYN.SUKAVANAM Department of Mathematics,Indian Institution of Technology Roorkee,Roorkee,Uttarakhand India E-mail:dassanjukta44@gmail.com;dwij.iitk@gmail.com;nsukavanam@gmail.com

    EXISTENCE OF SOLUTION AND APPROXIMATE CONTROLLABILITY OF A SECOND-ORDER NEUTRAL STOCHASTIC DIFFERENTIAL EQUATION WITH STATE DEPENDENT DELAY?

    Sanjukta DASDwijendra PANDEYN.SUKAVANAM Department of Mathematics,Indian Institution of Technology Roorkee,Roorkee,Uttarakhand India E-mail:dassanjukta44@gmail.com;dwij.iitk@gmail.com;nsukavanam@gmail.com

    This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay.In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness.In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space.Our method is an extension of co-author N.Sukavanam’s novel approach in[22].Thereby,we remove the need to assume the invertibility of a controllability operator used by authors in[5],which fails to exist in infinite dimensional spaces if the associated semigroup is compact.Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in[20],which are practically difficult to verify and apply.An example is provided to illustrate the presented theory.

    approximate controllability;cosine family;state dependent delay;neutral stochastic differential equation;measure of noncompactness

    2010 MR Subject Classification35R15;35R60;93B05;93E03

    1 Introduction

    Random noise causes fluctuations in deterministic models.So,necessarily we move from deterministic problems to stochastic ones.Stochastic evolution equations are natural generalizations of ordinary differential equations incorporating the randomness into the equations. Thereby,making the system more realistic.[7–17]and the references therein explore the qualitative properties of solutions for stochastic differential equations.Considering the environmental disturbances,Kolmanovskii and Myshkis[18]introduced a class of neutral stochastic functional differential equations,which are applicable in several fields such as chemical engineering,aeroelasticity and so on.In recent years,controllability of stochastic infinitedimensional systems wasextensively studied for various applications.Several papers studied the approximate controllability of semilinear stochastic control systems,see for instance[5,8,9,19,2o]and references therein.Controllability results are available in overwhelming majority for abstract stochastic differential delay systems;rather than for neutral second-order stochastic differential with state dependent delay.

    Mahmudov[2o]investigated conditions on the system operators so that the semilinear control system is approximately controllable provided the corresponding linear system is approximately controllable.The main drawback of the papers[8,19,2o]is the need to check the invertibility of the controllability Gramian operator and a associated limit condition,which are practically difficult to verify and apply.

    Neutral differential equations appear in several areas of applied mathematics,and thus studied in several papers and monographs,see for instance[11,12,23]and references therein. Differential equations with delay reflect physical phenomena more realistically than those without delay.

    Recently,much attention was paid to partial functional differential equation with state dependent delay.For details see[1,3,13–15].As a matter of fact,in these papers their authors assume severe conditions on the operator family generated by A,which imply that the underlying space X has finite dimension.Thus the equations treated in these works are really ordinary and not partial equations.

    Our method builds on co-author Sukavanam’s novel approach in[22].We also remove the need to assume the invertibility of a controllability operator used by authors in[4–6,21]which fails to exist in infinite dimensional spaces if the associated semigroup is compact.Our approach also removes the drawbacks of the method applied in[8,19,2o].

    Hence motivated by this fact in this paper we study the existence and uniqueness of mild solution and approximate controllability of the partial neutral stochastic differential equation of second order with state delay.Specifically we study the following second order equations modelled in the form

    where A is the infinitesimal generator of a strongly continuous cosine family{C(t):t∈R}of bounded linear operators on a Hilbert space X.Let(?,F,P)be a probability space together with a normal filtration Ft,t≥o.The state space x(t)∈X and the controlwhere X and U are separable Hilbert spaces and d is the stochastic differentiation.The history valued function xt:(?∞,o]→X,xt(θ)=x(t+θ)belongs to some abstract phase space B defined axiomatically;g,f are appropriate functions;B is a bounded linear operator on a Hilbert space U.Let K be a separable Hilbert space and{W(t)}t≥ois a given K-valued Brownian motion or Wiener process with finite trace nuclear covariance operator Q>o.The functions f,g:J×B→X are measurable mappings in X norm and G:J×B→LQ(K,X) is a measurable mapping in LQ(J,X)norm.LQ(J,X)is the space of all Q-Hilbert Schmidt operators from K into X;B is a bounded linear operator from U into X;φ(t)is B-valued random variable independent of Brownian motion W(t)with finite second moment.Also ψ(t)is a X valued Ftmeasurable function.

    2 Preliminaries

    In this section some definitions,notations and lemmas that are used throughout this paper are stated.Let(?,F,P)be a complete probability space endowed with complete family of right continuous increasing sub σ-algebras{Ft,t∈J}such that Ft?F.A X-valued random variable is a F-measurable process.A stochastic process is a collection of random variables S={x(t,w):?→X:t∈J}.We usually suppress w and write x(t)instead of x(t,w).

    Now suppose βn(t)(n=1,2,···)be a sequence of real-valued one dimensional standard Brownian motions mutually independent over(?,F,P).Let ?nbe a complete orthonormal basis in K.Q∈L(K,K)be an operator defined by∞.Let us define

    which is a K-valued stochastic process and is called a Q-Wiener process.Let Ft=σ(W(s): o≤s≤t)be the σ-algebra generated by W and Fb=F.Let φ∈L(K,X)and if then φ is called a Q-Hilbert Schmidt operator.The completion LQ(K,X)of L(K,X)with respect to the topology induced by norm‖φ‖2Q=〈φ,φ〉is a Hilbert space.

    The family{C(t):t∈?}of operators in B(X)is a strongly continuous cosine family if the following are satisfied

    (a)C(o)=I(I is the identity operator in X);

    (b)C(t+s)+C(t?s)=2C(t)C(s)for all t,s∈?;

    (c)the map t→C(t)x is strongly continuous for each x∈X,

    {S(t):t∈?}is the strongly continuous sine famRily associated to the strongly continuous cosine family{C(t):t∈?}.It is defined as S(t)x=tC(s)xds,x∈X,t∈?.

    o

    The operator A is the infinitesimal generator of a strongly continuous cosine function of bounded linear operators(C(t))t∈Rand S(t)is the associated sine function.Let N,Ne be certain constants such that‖C(t)‖≤N and‖S(t)‖≤Ne for every t∈J=[o,a].For more details see books by Goldstein[1]and Fattorini[1o].In this work,we use the axiomatic definition of phase space B,introduced by Hale and Kato[13].

    Definition 2.1(see[16])Let B be a linear space of functions mapping(?∞,o]into X endowed with the seminorm‖.‖Band satisfies the following conditions.

    (A)If x:(?∞,σ+b]→X,b>o,such that xt∈B and x|[σ,σ+b]∈C([σ,σ+b]:X),then for every t∈[σ,σ+b)the following conditions:

    where H>o is a constant K,M:[o,∞)→[1,∞),K is continuous,M is locally bounded and H,K,M are independent of x(·).

    (B)The space B is complete.

    Lemma 2.2(see[1])If y:(?∞,a]→X is a function such that yo=φ and y|J∈PC(X), then

    Let us denote E as the expectation defined by E(h)=?h(w)dP.

    Let L2(?,F,P;X)≡L2(?;X)be the Banach space of all strongly measurable,square integrable,X-valued random variables equipped with the normL2(?;X))denotes the Banach space of all continuous maps from J1=(?∞,a]into L2(?;X) which satisimportant subspace.

    We denote by C the closed subspace of all continuously differentiable process x∈C1(J, L2(?;X))consisting of Ft-adapted measurable processes such thatand semi-.It can be easily seen that C endowed with norm topology is a Banach space.

    Definition 2.3(see[2])The Hausdorff’s measure of noncompactness χYfor a bounded set B in any Banach space Y is defined by

    χY(B)=inf{r>o,B can be covered by finite number of balls with radii r}. Lemma 2.4(see[2])Let Y be a Banach space and B,C?Y be bounded,then the following properties hold:

    (1)B is pre-compact if and only if χY(B)=o;

    (3)χY(B)≤χY(C)when B?C;

    (4)χY(B+C)≤χY(B)+χY(C)where B+C={x+y;x∈B,y∈C};

    (5)χY(B∪C)=max{χY(B),χY(C)};

    (6)χY(λB)=‖λ‖χY(B)for any λ∈R;

    (7)if the map Q:D(Q)?Y→Z is Lipschitz continuous with constant k then χZ(QB)≤kχY(B)for any bounded subset B?D(Q),where Z is a Banach space;is a decreasing sequence of bounded closed nonempty subset of Y andis nonempty and compact in Y.

    Definition 2.5Let X and Y be Banach spaces and Φ,Ψ be the Measure of Noncompactness(MNC)in X and Y,respectively.If for any continuous function f:D(f)?X→Y and any O?D(f),Ψ[f(O)]≥Φ(O)implies that O is relatively compact,then f is called (Φ,Ψ)-condensing map.

    Theorem 2.6Let Ψ be a MNC on a Banach space X.Let f be(Ψ,Ψ)condensing operator.If f maps a nonempty,convex,closed subset M of the Banach space X into itself. Then f has atleast one fixed point in M.

    Definition 2.7The set given by R(f)={x(T)∈X:x is a mild solution of(1.1)}is called reachable set of system(1.1)for some T>o.R(o)is the reachable set of the corresponding linear control system(2.1).

    Definition 2.8System(1.1)is said to be approximately controllable if R(f)is dense in X.The corresponding linear system is approximately controllable if R(o)is dense in X.

    Lemma 2.9(see[22])Let X be Hilbert space and X1,X2closed subspaces such that X=X1+X2.Then there exists a bounded linear operator P:X→X2such that for each x∈X,x=x?Px∈X1and‖x1‖=min{‖y‖:y∈X1,(1?Q)(y)=(1?Q)(x)},where Q denotes the orthogonal projection on X2.

    We state the corresponding linear control system

    Lemma 2.10(see[1o])Under the assumption that h:[o,a]→X is an integrable function,such that

    and h is a function continuously differentiable,then

    3 Main Result

    We define mild solution of problem(1.1)as follows.

    Definition 3.1An Ft-adapted process x:(?∞,a]→X is a mild solution of problem (1.1),if xo=φ,x′(o)=ψ,x(.)∈C1(J,L2(?,X)),the functions f(s,xρ(s,xs)),G(s,xs)and g(s,xs)are integrable and the integral equation is satisfied

    To prove our result we always assume ρ:J×B→(?∞,a]is a continuous function.The following hypotheses are used.

    (Hφ)The function t→φtis continuous from ?(ρ?)={ρ(s,ψ):ρ(s,ψ)≤o}into B and there exists a continuous bounded function Jφ:?(ρ?)→(o,∞)such that‖φt‖B≤Jφ(t)‖φ‖Bfor every t∈?(ρ?).

    (Hf)f:J×B→X satisfies the following.

    (1)For every x:(?∞,a]→X,xo∈B and x|J∈PC,the function f(.,ψ):J→X is strongly measurable for every ψ∈B and f(.,t)is continuous for a.e.t∈J.

    (2)There exists an integrable function α:J→[o,+∞)and a monotone continuous nondecreasing function Υf:[o,+∞)→(o,+∞)such that‖f(t,v)‖≤α(t)Υf(‖v‖B)?t∈J and v∈B.

    (HG)The function G satisfies the following conditions.

    (1)For almost all t∈J the function G(t,.):B→LQ(K,X)is continuous.For all z∈B, the function G(.,z):J→LQ(K,X)is strongly Ftmeasurable.

    (2)?integrable function αG:J→[o,∞)and a monotone continuous nondecreasing function ΥG:[o,∞)→(o,∞)such that

    (Hg)The function g(.)is continuous?(t,v)∈J×B and g(t,.)is Lipschitz continuous such that there exists a positive constant Lgsuch that

    (Hl)There exists a function H:[o,∞)×[o,∞)→[o,∞),which is locally integrable in t, H is a continuous,monotone,nondecreasing in second variable and H(t,o)≡o and

    for all t∈[o,a]and m1,m2∈L2(?,F,X).

    Lemma 3.2(see[2])Let m be a nonnegative,continuous function and A>o such that

    then m has no nonzero nonnegative solution.

    3.1Existence and Uniqueness of Mild Solution

    In this section y:(?∞,a]→X is the function defined by yo=φ and y(t)=C(t)φ(o)+o≤s≤a}.

    Theorem 3.3If hypotheses(Hf),(Hg),(Hφ),(HG),(H1)and(Hl)are satisfied,then the initial value problem(1.1)has atleast one mild solution.

    ProofLet S(a)be the space S(a)={x∈C(J,L2(?;X):x(o)=o}endowed with the norm of uniform convergence;x∈Cois identified with its extension to(?∞,a]by assuming x(θ)=o for θ

    Let Γ:S(a)→S(a)be the map defined by

    Thus Γ is well defined and has values in S(a).Also by axioms of phase space,the Lebesgue dominated convergence theorem,and conditions(Hf),(HG),(Hg)it can be shown that Γ is continuous.

    Step 1We prove that there exists k>o such that Γ(Bk)?Bk,where Bk={x∈S(a): E‖x‖2≤k}.In fact,if we assume that the assertion is false,then for k>o,there exist xk∈Bkand t∈(o,a]such that k<‖E(Γxk(tk))‖2,

    where Υ=max{ΥG,Υf},α=max{αf,αG}.Thus(3.4)is a contradiction to hypothesis(H1). Hence Γ(Bk)?Bk.

    Step 2We prove that Γ is a condensing map on any bounded subset of the space C(J,L2(?;X)).Let O be a bounded subset of C(J,L2(?;X)).Let M[o,a]be the partially ordered linear space of all real monotone nondecreasing functions on[o,a]and we define a Measure of Noncompactness(MNC),Ψ:C(J,L2(?;X))→M[o,a]by

    where χtis the Hausdorff MNC in C(J,L2(?;X))and Ot={xt=x|[o,t]:x∈O}?C([o,t],L2(?;X)).If Ψ(O)≤Ψ(ΓO),then it is proved that Ψ(O)=o.Since the function t→[Ψ(O)](t)is nondecreasing and bounded,so??>o,it has only a finite number of jumps of magnitude greater than?.The disjoint δ1neighborhoods of the points corresponding tothese jumps are removed from[o,a].Using points βj,j=1,2,···,m divide the remaining part into intervals on which the oscillations of Ψ(O)is less than?.These points βjare surrounded by disjoint δ2neighborhoods.Now consider the family o={ok:k=1,···,l}of all functions continuous with probability one,such that okcoincides with an arbitrary element of [(Ψ(O))(βj)+1]net of the set Oβjon the segment σj=[βj?1+δ2,βj?δ2],j=1,···,m and linear on the complementary segments.

    Suppose p∈(ΓO)t.This implies p=Γo for some o∈O andThis implies

    that for s∈σj,

    By choosing δ1>o and δ2>o sufficiently small,we can make sure that

    Together with Lemma 3.2,we get that Ψ(O)≡o.Similarly we can prove that Γ is continuous. The MNC Ψ possess all required properties.The operator Γ is condensing.Then from Theorem 2.6,it is implied that there exist a mild solution to problem(1.1).

    The uniqueness of mild solution follows from Lemma 3.2.Let m1,m2∈C(J,L2(?;X))be two mild solution of Γ.Then it follows that

    Thus from Lemma 3.2,it follows that≡o.Hence m1=m2.

    3.2Approximate Controllability

    In this section the approximate controllability of the distributed control system(1.1)is studied as an extension of co-author Sukavanam’s method in[22].Assume that f,g,G satisfy following conditions.

    (C1)The function f,g:J×B→X are continuous.For all t∈J and?z1,z2∈L2(J;B), there exists constants Lf,Lg>o such that

    (C2)The function G:J×B→LQ(K,X)is Lipschitz continuous with constant LG>o such that

    Also,y:(?∞,a]→X is the function defined by yo=φ and y(t)=C(t)φ(o)+S(t)(z+g(o,φ) on J.Clearly

    The operators Λi:L2(J,X)→X,i=1,2 and Λ3:L2(J,X)→Co(J,L2(?,(LQ(K,X)))) are defined as Clearly Λiare bounded linear operators.We set Ni=ker(Λi),Λ=(Λ1,Λ2,Λ3)and N= ker(Λ).Let Co(J,X)denote the space consisting of continuous functions x:J→X such that x(o)=o,endowed with the norm of uniform convergence.Let Ji:L2(J,X)→Co(J,X),i= 1,2 and J3:L2(J,X)→Co(J,L (?,L(K,X)))be maps defined as follows

    So,Jix(a)=Λi(x),i=1,2.For a fixed φ∈B and x∈C(J,X)such that x(o)=φ(o),we define maps F,g:Co(J,X)→L2(J,X)by F(z)(t)=f(t,zt+xt)and g(z)(t)=g(t,zt+xt).We also define maps G(z)(t)=G(t,zt+xt),here xt(θ)=x(t+θ),for t+θ≥o and xt(θ)=φ(t+θ) for t+θ≤o and zt(θ)=z(t+θ)for t+θ≥o and zt(θ)=o for t+θ≤o.Clearly,F,g,G are continuous maps.We also assume thatWe denote Pi,i=1,2,3 the map associated to this decomposition and construct X2=Ni,i=1,2,3 andWe introduce the space

    Lemma 3.4If hypothesis(Hφ)–(Hg)and conditions(C1)–(C2)hold for f,g,G and aKa(c1NeLf+c2NLg)

    is a contraction for n sufficiently large and therefore Γ has a fixed point.

    Theorem 3.5If the associated linear control system(2.1)is approximately controllableand condition of the preceding lemma hold then the semilinear control system with state dependent delay is approximately controllable on J.

    ProofAssume x(.)to be the mild solution and u(.)to be an admissible control function of system(2.1)with initial conditions x(o)=φ(o)and x′(o)=ψ+g(o,φ).Let z be the fixed point of Γ.So,z(o)=o and z(a)=Λ1(P1(F(z)))?Λ2(P2(g(z)))+Λ3(P3(G(z)))=o.ByLemma 2.9,we can split the functions F(z),g(z)with respect to the decomposition L2(J,X)=

    We define the function y(t)=z(t)+x(t)for t∈J and yo=φ.So,x(a)=y(a).Thus by the properties of x and z,

    As C1(J,L2(?,U))is dense inand aBy Lemma 2.1o,we get

    Hence by Definition 2.8 and the last expression we conclude that ynis the mild solution of the following equation

    Hence yn(a)∈R(a,f,g,G,φ,ψ).Since the solution map is generally continuous,yn→y as

    4 Example

    In this section,we discuss a concrete partial differential equation applying the abstract results of this paper.In this application,B is the phase space Co×L2(h,X),see[11].

    Consider the second order neutral differential equation

    where φ∈Co×L2(h,X),o

    system(4.1)can be transformed into system(1.1).Assume that the functions ρi:?→[o,∞), a:?→? are piecewise continuous.

    Moreover g(t,·)is bounded linear operators.

    Hence by assumptions(a)–(c)and Theorem 3.3,it is ensured that problem(4.1)has a unique mild solution.

    Now,we check the approximate controllability of(4.1).and Ayeigenfunction corresponding to the eigenvaluebase;A will generate the operators S(t),C(t)such that1,2,···,?y∈X,and the operatorthe infinite dimensional control space be definedThe bounded linear operator B:L2([o,T];U)→L2([o,T];X)is defined by(Bu)(t)=eBu(t).

    Let a∈N?L(o,T:X),N is the null space of Γ.

    The Hilbert space L2(o,T)can be written as

    Thus for h1,h2∈L2(o,T),there exists a1∈{sins}⊥,a2∈{sin4s}⊥such that h1?2h2= a1?2a2.So let u2=h2?a2.Then h1=a1+2u2,h2=a2+u2also let un=hn,n=3,4,··· and an=o,n=3,4,···.Thus we see that hypothesis(HR)is satisfied as U={u:u=controllability is deduced from Theorem 3.5.

    References

    [1]Ahmad B.Instability of impulsive hybrid state dependent delay differential systems.Vietnam J Math,2007, 35:285–298

    [2]Akhmerov R,Kamenskii M,Potapov A,Rodkina A,Sadovskii B.Measures of Noncompactness and Condensing Perators.Basel,Boston,Berlin:Birkhauser-Verlag

    [3]Anguraj A,Arjunan M M,Hernndez E.Existence results for an impulsive neutral functional differential equation with state-dependent delay.Appl Anal,2007,86:861–872

    [4]Balachandran K,Park J Y.Existence of solutions and controllability of nonlinear integrodifferential systems in Banach spaces.Math Probl Eng,2003,2:65–79

    [5]Balasubramaniam P,Dauer J P.Controllability of semilinear stochastic delay evolution equations in Hilbert spaces.Int J Math Math Sci,2002,31(3):157–166

    [6]Balasubramaniam P,Park J,Muthukumar P.Approximate controllability of neutral stochastic functional differential systems with infinite delay.Stoch Anal Appl,2010,28(2):389–400

    [7]Bao H,Cao J.Existence and uniqueness of solutions to neutral stochastic functional differential equations with infinite delay.Appl Math Comput,2009,215:1732–1743

    [8]Dauer J,Mahmudov N.Controllability of stochastic semilinear functional differential equations in Hilbert spaces.J Math Anal Appl,2004,290:373–394

    [9]Ehrhard M,Kliemann W.Controllability of stochastic linear systems.Syst Control Lett,1982,2:145–153

    [10]Fattorini H O.Second Order Linear Differential Equations in Banach Spaces.North-Holland Math Stud 108.Amsterdam:North-Holland,1985

    [11]Hern′andez E.Existence results for partial neutral integrodifferential equations with unbounded delay.J Math Anal Appl,2004,292:194–210

    [12]Hern′andez E,Henr′?quez H.Existence results for partial neutral functional differential equation with unbounded delay.J Math Anal Appl,1998,22:452–475

    [13]Hern′andez E,McKibben M.On state-dependent delay partial neutral functional-differential equations. Appl Math Comput,2007,186:294–301

    [14]Hern′andez E,Rabello M,Henr′?quez H R.Existence of solutions for impulsive partial neutral functional differential equations.J Math Anal Appl,2007,331:1135–1158

    [15]Hern′andez E,Sakthivel R,Aki S T.Existence results for impulsive evolution differential equations with state-dependent delay.Elec J Differ Equ,2008,28:1–11

    [16]Hale J K,Kato J.Phase space for retarded equations with infinite delay.Funkcial Ekvac,1978,21:11–41 [17]Jankovic S,Randjelovi J,Jovanovi M.Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations.Math Anal Appl,2009,355:811–820

    [18]Kolmanovskii V,Myshkis A.Applied Theory of Functional Differential Equations.Norwell,MA:Kluwer Academic Publishers,1992

    [19]Mahmudov N.Controllability of linear stochastic systems.IEEE Trans Autom Control,2001,46:724–731

    [20]Mahmudov N,McKibben M.Approximate controllability of second-order neutral stochastic evolution equations.Dyn Cont,Discr Impul Syst Series B:Appl Algor,2006,13:619–634

    [21]Park J,Balasubramaniam P,Kumaresan N.Controllability for neutral stochastic functional integrodifferential infinite delay systems in abstract space.Numer Funct Anal Optim,2007,28:1–18

    [22]Sukavanam N.Approximate controllability of semilinear control of control system with growing nonlinearity//Math Theory of Control Proc Int Conf.New York:Marcel Dekker,1993:353–357

    [23]Wang L.Approximate controllability of delayed semilinear control of control system.J Appl Math Stoch Anal,2005,1:67–76

    ?June 23,2014;revised April 25,2016.The

    was supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304).

    AcknowledgementsThe would like to thank Ministry of Human Resource and Development with grant no.MHR-o2-23-2oo-429/3o4 for their funding.

    日本爱情动作片www.在线观看 | 国产美女午夜福利| 亚洲成人久久爱视频| 夜夜夜夜夜久久久久| 99热这里只有是精品在线观看| 久久午夜亚洲精品久久| 欧美色视频一区免费| 免费在线观看成人毛片| 蜜桃久久精品国产亚洲av| 亚洲国产精品久久男人天堂| 欧美国产日韩亚洲一区| 久久久精品大字幕| 久久久欧美国产精品| 久久久久久久久久成人| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品合色在线| 欧美区成人在线视频| 成人av一区二区三区在线看| 国产爱豆传媒在线观看| 无遮挡黄片免费观看| 午夜a级毛片| 日本精品一区二区三区蜜桃| 淫秽高清视频在线观看| 两个人视频免费观看高清| 亚洲四区av| 国产亚洲精品久久久com| 亚洲人与动物交配视频| 男人狂女人下面高潮的视频| 精品久久久久久久久久久久久| 国内精品久久久久精免费| 欧美高清成人免费视频www| 看免费成人av毛片| 亚洲电影在线观看av| 此物有八面人人有两片| 欧美日韩精品成人综合77777| 国产精品国产三级国产av玫瑰| 亚洲国产欧洲综合997久久,| 国产一区二区亚洲精品在线观看| 日本a在线网址| 日本一二三区视频观看| 少妇人妻精品综合一区二区 | 国产精品女同一区二区软件| 美女xxoo啪啪120秒动态图| 超碰av人人做人人爽久久| av在线播放精品| 岛国在线免费视频观看| 国模一区二区三区四区视频| 国产成人aa在线观看| 精品午夜福利视频在线观看一区| 精品久久久久久久久久久久久| 国产激情偷乱视频一区二区| 伊人久久精品亚洲午夜| 亚洲国产高清在线一区二区三| 欧美又色又爽又黄视频| 久久精品久久久久久噜噜老黄 | 不卡视频在线观看欧美| 日本黄色视频三级网站网址| 国产精品福利在线免费观看| 精品一区二区免费观看| 亚洲av成人av| 一级毛片久久久久久久久女| 日韩高清综合在线| 美女 人体艺术 gogo| 高清毛片免费看| 精品久久久噜噜| 久久这里只有精品中国| 国产精品人妻久久久影院| 中国国产av一级| 岛国在线免费视频观看| 午夜爱爱视频在线播放| 特大巨黑吊av在线直播| 亚洲三级黄色毛片| 天天一区二区日本电影三级| 日本黄大片高清| 搡老岳熟女国产| 精品午夜福利在线看| av在线天堂中文字幕| 亚洲va在线va天堂va国产| 在线看三级毛片| 亚洲第一电影网av| 免费av观看视频| 九九在线视频观看精品| 最好的美女福利视频网| 一区福利在线观看| 97在线视频观看| 久久天躁狠狠躁夜夜2o2o| 最近的中文字幕免费完整| 欧美另类亚洲清纯唯美| 黄色欧美视频在线观看| 黄色配什么色好看| 22中文网久久字幕| 久久精品国产亚洲av香蕉五月| 国产一区二区在线av高清观看| 少妇猛男粗大的猛烈进出视频 | 男女边吃奶边做爰视频| 两个人视频免费观看高清| 简卡轻食公司| 亚洲国产精品久久男人天堂| 亚洲欧美成人精品一区二区| 熟女电影av网| 精华霜和精华液先用哪个| 国产一区二区在线av高清观看| 毛片一级片免费看久久久久| 人妻少妇偷人精品九色| 亚洲不卡免费看| 日日摸夜夜添夜夜添av毛片| 精品一区二区三区视频在线观看免费| 看非洲黑人一级黄片| 亚洲国产欧美人成| 国产高清有码在线观看视频| 亚洲国产色片| 免费黄网站久久成人精品| 小蜜桃在线观看免费完整版高清| av天堂中文字幕网| 2021天堂中文幕一二区在线观| 国产精品一区二区三区四区久久| 欧美在线一区亚洲| 免费在线观看成人毛片| 精品一区二区三区av网在线观看| 欧美激情久久久久久爽电影| 久久热精品热| 国产精品国产三级国产av玫瑰| av在线播放精品| 欧美色欧美亚洲另类二区| 国产精品永久免费网站| 亚洲性久久影院| 99久久久亚洲精品蜜臀av| 久久久久久久久大av| 综合色丁香网| 日韩 亚洲 欧美在线| av黄色大香蕉| 一个人看视频在线观看www免费| 一区二区三区高清视频在线| 久久婷婷人人爽人人干人人爱| 成人漫画全彩无遮挡| 精品一区二区三区视频在线| 国内久久婷婷六月综合欲色啪| 亚洲无线观看免费| av在线蜜桃| 亚洲美女视频黄频| 精品免费久久久久久久清纯| 亚洲成人久久爱视频| 又爽又黄a免费视频| 欧美激情国产日韩精品一区| 又粗又爽又猛毛片免费看| 免费不卡的大黄色大毛片视频在线观看 | 美女大奶头视频| 男女边吃奶边做爰视频| 国内精品宾馆在线| 一本精品99久久精品77| 亚洲最大成人中文| av天堂在线播放| 九色成人免费人妻av| 久久久久九九精品影院| 成年av动漫网址| 欧美激情国产日韩精品一区| 亚洲精品日韩在线中文字幕 | 久久综合国产亚洲精品| 在线免费十八禁| 亚洲av成人精品一区久久| .国产精品久久| 18禁黄网站禁片免费观看直播| 日韩强制内射视频| 国产精品嫩草影院av在线观看| 亚洲图色成人| 黄色一级大片看看| 欧美日韩在线观看h| 国产一区二区三区在线臀色熟女| 麻豆国产av国片精品| 国产又黄又爽又无遮挡在线| 色综合色国产| 亚洲成人精品中文字幕电影| 亚洲最大成人av| 国产人妻一区二区三区在| 亚洲在线自拍视频| 日本成人三级电影网站| 国内揄拍国产精品人妻在线| 我要看日韩黄色一级片| 禁无遮挡网站| 久久久久精品国产欧美久久久| 亚洲人成网站在线观看播放| 永久网站在线| 精品一区二区免费观看| 99久久无色码亚洲精品果冻| 久久草成人影院| 不卡视频在线观看欧美| 两个人的视频大全免费| 菩萨蛮人人尽说江南好唐韦庄 | 精品少妇黑人巨大在线播放 | 国产探花在线观看一区二区| av.在线天堂| 国产精品,欧美在线| 日韩av在线大香蕉| 啦啦啦啦在线视频资源| 99热精品在线国产| 免费av不卡在线播放| 婷婷色综合大香蕉| 美女xxoo啪啪120秒动态图| 久久人人爽人人片av| 天堂av国产一区二区熟女人妻| 成年女人看的毛片在线观看| 一进一出好大好爽视频| 天天躁日日操中文字幕| 国产91av在线免费观看| 少妇熟女aⅴ在线视频| 欧美日韩在线观看h| 99九九线精品视频在线观看视频| 中文字幕精品亚洲无线码一区| 日韩一区二区视频免费看| 91久久精品电影网| 久久久久久久久大av| 亚洲五月天丁香| 亚洲久久久久久中文字幕| 亚洲最大成人中文| 欧美bdsm另类| 少妇猛男粗大的猛烈进出视频 | 国产麻豆成人av免费视频| 国产av麻豆久久久久久久| 国产午夜福利久久久久久| 97超视频在线观看视频| 国产亚洲av嫩草精品影院| 精品久久久久久久久久免费视频| 成人亚洲欧美一区二区av| www.色视频.com| 久久6这里有精品| 亚洲一区高清亚洲精品| 成人高潮视频无遮挡免费网站| 欧美日韩在线观看h| 精品免费久久久久久久清纯| 极品教师在线视频| 日本熟妇午夜| 国产一区二区在线观看日韩| 欧美在线一区亚洲| 日本三级黄在线观看| 亚洲av二区三区四区| 九九久久精品国产亚洲av麻豆| 亚洲高清免费不卡视频| 日本三级黄在线观看| 国产老妇女一区| 一进一出好大好爽视频| 亚洲最大成人手机在线| 精品久久久噜噜| 欧美一区二区精品小视频在线| 国国产精品蜜臀av免费| 成人性生交大片免费视频hd| 99热精品在线国产| 欧美+亚洲+日韩+国产| 99九九线精品视频在线观看视频| 干丝袜人妻中文字幕| 99久久九九国产精品国产免费| 菩萨蛮人人尽说江南好唐韦庄 | 小说图片视频综合网站| 国产精品一及| 老司机影院成人| 精品久久久噜噜| 日韩人妻高清精品专区| 露出奶头的视频| 最新在线观看一区二区三区| 伊人久久精品亚洲午夜| 日本 av在线| 一边摸一边抽搐一进一小说| 99热这里只有是精品50| 午夜福利高清视频| 91久久精品国产一区二区三区| 91精品国产九色| 日韩成人伦理影院| 亚洲成人中文字幕在线播放| 日本爱情动作片www.在线观看 | 草草在线视频免费看| 男插女下体视频免费在线播放| 淫妇啪啪啪对白视频| 午夜福利高清视频| 国产精品精品国产色婷婷| 91精品国产九色| 国产高清不卡午夜福利| 波多野结衣高清作品| 1024手机看黄色片| 国产av一区在线观看免费| 亚洲人成网站在线播放欧美日韩| 99热只有精品国产| 亚洲欧美中文字幕日韩二区| 亚洲精华国产精华液的使用体验 | 久久久久久伊人网av| 国产亚洲av嫩草精品影院| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 亚洲av一区综合| 国产91av在线免费观看| 国产熟女欧美一区二区| 亚洲国产欧美人成| 日本黄色片子视频| 国产伦在线观看视频一区| 黄片wwwwww| 久久久精品欧美日韩精品| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久免费视频| 免费看光身美女| 欧美性猛交╳xxx乱大交人| 97超碰精品成人国产| 成人三级黄色视频| 91久久精品国产一区二区成人| 久久久a久久爽久久v久久| 日韩av不卡免费在线播放| 男女之事视频高清在线观看| 成熟少妇高潮喷水视频| 亚洲国产高清在线一区二区三| 亚洲自偷自拍三级| 99热全是精品| 伊人久久精品亚洲午夜| 久久精品国产清高在天天线| 在线免费十八禁| 久久久久久久久久成人| 久久精品国产清高在天天线| 麻豆成人午夜福利视频| 久久亚洲国产成人精品v| 亚洲自拍偷在线| 嫩草影院入口| 国产色婷婷99| 日韩欧美精品v在线| 欧美xxxx黑人xx丫x性爽| 99精品在免费线老司机午夜| 此物有八面人人有两片| 欧美zozozo另类| 国内精品久久久久精免费| 欧美日本亚洲视频在线播放| 色噜噜av男人的天堂激情| 色播亚洲综合网| 午夜精品一区二区三区免费看| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 中文字幕人妻熟人妻熟丝袜美| 99久久久亚洲精品蜜臀av| 男女之事视频高清在线观看| 国产aⅴ精品一区二区三区波| 在线观看av片永久免费下载| 日本爱情动作片www.在线观看 | 亚洲精品日韩av片在线观看| 一级毛片我不卡| 午夜视频国产福利| 少妇丰满av| 麻豆国产av国片精品| 内射极品少妇av片p| 日韩三级伦理在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲色图av天堂| 精品久久国产蜜桃| 亚洲人成网站在线播| 三级国产精品欧美在线观看| 欧美性猛交╳xxx乱大交人| 亚洲精品乱码久久久v下载方式| 成年女人看的毛片在线观看| 99在线人妻在线中文字幕| 夜夜夜夜夜久久久久| 九九在线视频观看精品| 我要看日韩黄色一级片| 级片在线观看| 最好的美女福利视频网| videossex国产| 欧美高清成人免费视频www| 色综合亚洲欧美另类图片| 一进一出抽搐动态| 亚洲av五月六月丁香网| 床上黄色一级片| 校园春色视频在线观看| 久久热精品热| 美女内射精品一级片tv| 午夜免费男女啪啪视频观看 | 老司机福利观看| 91久久精品电影网| 免费搜索国产男女视频| 午夜视频国产福利| 精品一区二区免费观看| 99热全是精品| 国产亚洲精品久久久久久毛片| a级毛片a级免费在线| 亚洲第一电影网av| 蜜臀久久99精品久久宅男| 插阴视频在线观看视频| 在线播放无遮挡| 久久99热这里只有精品18| 久久久久性生活片| 九九在线视频观看精品| 欧美日韩乱码在线| 青春草视频在线免费观看| 男女下面进入的视频免费午夜| 国产黄色视频一区二区在线观看 | 欧美3d第一页| 99久久久亚洲精品蜜臀av| 欧美成人a在线观看| 国产亚洲精品av在线| 亚洲18禁久久av| 欧美另类亚洲清纯唯美| 午夜福利在线在线| 99久久精品国产国产毛片| 天天一区二区日本电影三级| 国产黄a三级三级三级人| 精品99又大又爽又粗少妇毛片| 嫩草影视91久久| 99riav亚洲国产免费| 搞女人的毛片| 精品久久国产蜜桃| 级片在线观看| 97人妻精品一区二区三区麻豆| 久久久国产成人免费| 亚洲经典国产精华液单| 18禁在线播放成人免费| 久久久精品大字幕| 搡女人真爽免费视频火全软件 | 免费无遮挡裸体视频| 舔av片在线| 联通29元200g的流量卡| 99热网站在线观看| 亚洲精品456在线播放app| 午夜福利高清视频| 一本久久中文字幕| 久久鲁丝午夜福利片| 成人特级av手机在线观看| 十八禁国产超污无遮挡网站| av国产免费在线观看| 久99久视频精品免费| 中文亚洲av片在线观看爽| 搡老妇女老女人老熟妇| 国产在线男女| 亚洲精品色激情综合| 内地一区二区视频在线| 午夜福利18| 亚洲欧美中文字幕日韩二区| 女同久久另类99精品国产91| av视频在线观看入口| 国产精品不卡视频一区二区| 亚洲av成人av| 老师上课跳d突然被开到最大视频| 精华霜和精华液先用哪个| 精品无人区乱码1区二区| 日本黄大片高清| 在线观看午夜福利视频| 黄色配什么色好看| av在线天堂中文字幕| 美女被艹到高潮喷水动态| 丰满人妻一区二区三区视频av| 老司机福利观看| 村上凉子中文字幕在线| 51国产日韩欧美| 国产极品精品免费视频能看的| 一个人观看的视频www高清免费观看| 亚洲成av人片在线播放无| 精品午夜福利在线看| 又爽又黄a免费视频| 少妇丰满av| 中出人妻视频一区二区| 一区二区三区高清视频在线| 69人妻影院| 国产在线男女| 麻豆成人午夜福利视频| 成人亚洲欧美一区二区av| 亚洲av熟女| 伦精品一区二区三区| 国产精品日韩av在线免费观看| 国产高清不卡午夜福利| 18禁在线播放成人免费| 国产在线男女| 99在线人妻在线中文字幕| 老女人水多毛片| 99久久精品热视频| 人妻久久中文字幕网| 无遮挡黄片免费观看| 少妇熟女欧美另类| 午夜福利高清视频| 国产精品嫩草影院av在线观看| 在线观看免费视频日本深夜| 99久久无色码亚洲精品果冻| 亚洲欧美日韩东京热| 成人特级av手机在线观看| 成人一区二区视频在线观看| 丰满人妻一区二区三区视频av| 直男gayav资源| 亚洲欧美成人综合另类久久久 | 亚洲无线在线观看| 啦啦啦韩国在线观看视频| 国产精品国产三级国产av玫瑰| 在线播放国产精品三级| 午夜a级毛片| 色av中文字幕| 色噜噜av男人的天堂激情| 欧美成人免费av一区二区三区| 亚洲欧美日韩无卡精品| 国产精品一二三区在线看| 日韩精品青青久久久久久| 国产淫片久久久久久久久| 亚洲第一区二区三区不卡| 插阴视频在线观看视频| 亚洲成人av在线免费| 精品久久久久久久末码| 婷婷精品国产亚洲av| 欧美成人a在线观看| 三级经典国产精品| 卡戴珊不雅视频在线播放| 亚洲欧美日韩东京热| 综合色丁香网| 两性午夜刺激爽爽歪歪视频在线观看| 久久综合国产亚洲精品| 成人永久免费在线观看视频| 激情 狠狠 欧美| 日日摸夜夜添夜夜添av毛片| 俄罗斯特黄特色一大片| 亚洲成av人片在线播放无| 国产一区二区三区在线臀色熟女| 亚洲中文日韩欧美视频| 久久久久久大精品| 国产色婷婷99| АⅤ资源中文在线天堂| 成人综合一区亚洲| 国产av不卡久久| 亚洲丝袜综合中文字幕| 亚洲国产欧美人成| 亚洲人成网站在线观看播放| or卡值多少钱| 国产伦在线观看视频一区| 校园人妻丝袜中文字幕| 黄色配什么色好看| 男女视频在线观看网站免费| 亚洲专区国产一区二区| 亚洲精品久久国产高清桃花| 日本成人三级电影网站| 美女cb高潮喷水在线观看| 色哟哟哟哟哟哟| 午夜爱爱视频在线播放| 又粗又爽又猛毛片免费看| 久久人人爽人人片av| 久久人人精品亚洲av| 老司机午夜福利在线观看视频| 深夜a级毛片| 午夜福利成人在线免费观看| 久久精品久久久久久噜噜老黄 | 日韩成人av中文字幕在线观看 | 免费人成视频x8x8入口观看| 婷婷亚洲欧美| 久久午夜福利片| 国产亚洲精品久久久久久毛片| 男人的好看免费观看在线视频| 国产精品久久久久久久电影| videossex国产| av.在线天堂| 国产淫片久久久久久久久| 国产乱人视频| 在线免费观看不下载黄p国产| 亚洲真实伦在线观看| 麻豆av噜噜一区二区三区| 97人妻精品一区二区三区麻豆| 午夜福利成人在线免费观看| 草草在线视频免费看| 观看免费一级毛片| 天堂√8在线中文| 免费一级毛片在线播放高清视频| 日韩强制内射视频| 精品少妇黑人巨大在线播放 | 日本与韩国留学比较| 欧美中文日本在线观看视频| 少妇被粗大猛烈的视频| 久久久久精品国产欧美久久久| 久久久久久久久久黄片| 亚洲欧美日韩高清在线视频| 久久精品综合一区二区三区| 欧美日本视频| 一区二区三区四区激情视频 | 91久久精品电影网| 麻豆乱淫一区二区| 日本色播在线视频| 国产久久久一区二区三区| 国产精品,欧美在线| 精品国内亚洲2022精品成人| 97在线视频观看| 成人永久免费在线观看视频| 亚洲国产精品成人综合色| 亚洲人成网站在线播放欧美日韩| 老司机影院成人| 91午夜精品亚洲一区二区三区| 最新在线观看一区二区三区| 国产不卡一卡二| 国产色爽女视频免费观看| 97在线视频观看| 内射极品少妇av片p| 欧美成人a在线观看| 午夜福利在线观看免费完整高清在 | 最近中文字幕高清免费大全6| 变态另类成人亚洲欧美熟女| 好男人在线观看高清免费视频| 此物有八面人人有两片| 国产精品久久久久久久久免| 亚洲综合色惰| 国产探花在线观看一区二区| 国产精品精品国产色婷婷| 国产精品一区二区三区四区免费观看 | 亚洲国产精品久久男人天堂| 日韩三级伦理在线观看| 亚洲中文日韩欧美视频| 最近中文字幕高清免费大全6| 亚洲成人av在线免费| 亚洲国产精品成人久久小说 | 香蕉av资源在线| 赤兔流量卡办理| 国产高清有码在线观看视频| 国产精品亚洲一级av第二区| 亚洲欧美中文字幕日韩二区| 国产精品无大码| 99久久成人亚洲精品观看| 床上黄色一级片| 国产成人freesex在线 | 免费观看在线日韩| 99热全是精品| 久久精品夜夜夜夜夜久久蜜豆| 天堂网av新在线| 国产精品女同一区二区软件| av福利片在线观看| 国产精品美女特级片免费视频播放器|