• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ASYMPTOTIC SOLUTION OF SINGULARLY PERTURBED HYBRID DYNAMICAL SYSTEMS?

    2016-11-24 12:00:01LimengWUJuanZHANGSchoolofMathematicsandInformationTechnologyHebeiNormalUniversityofScienceandTechnologyQinhuangdao066004Chinamailneamou123163comwulmmath2010163com

    Limeng WUJuan ZHANGSchool of Mathematics and Information Technology,Hebei Normal University of Science and Technology,Qinhuangdao 066004,China E-mail:neamou123@163.com;wulmmath2010@163.com

    Mingkang NIDepartment of Mathematics,East China Normal University,Shanghai 200241,China E-mail:mkni@math.ecnu.edu.cn

    Haibo LUSchool of Economics and Management,Shanghai Institute of Technology,Shanghai 201418,China E-mail:classten@163.com

    ASYMPTOTIC SOLUTION OF SINGULARLY PERTURBED HYBRID DYNAMICAL SYSTEMS?

    In this paper,we consider a class of optimal control problem for the singularly perturbed hybrid dynamical systems.By means of variational method,we obtain the necessary conditions of the hybrid dynamical systems.Meanwhile,the existence of solution for the hybrid dynamical system is proved by the sewing method and the uniformly valid asymptotic expansion of the optimal trajectory is constructed by the boundary function method.Finally, an example is presented to illustrate the result.

    optimal control;hybrid dynamical system;singular perturbation

    2010 MR Subject Classification34B15;34E15

    1 Introduction

    In recent years,optimal control problems of hybrid dynamical systems were successfully investigated by many scholars[1–1o].As we know,the hybrid dynamical systems involve the interaction of both continuous state and discrete state dynamics.In[11]the authors presented a very general optimal control model for hybrid systems and use the dynamic programming to solve the corresponding dynamic programming equations in the form of System of Quasi-Variational Inequalities(SQVI).In[12],the authors showed a more mathematical optimal control model of hybrid dynamical systems.In[13],the authors studied a switched system consisting of subsystems˙x=fi(x,u),i∈I={1,2,···,M},t∈[to,tf].Given a fixed time interval[to,tf]and a prespecified sequence of active subsystems(io,i1,···,ik),find a continuous input u and switching instants t1,t2,···,tksuch that the corresponding continuousstate trajectory x departs from a given initial state x(to)=xoand meets a smooth manifold Sf={x|φf(x)=o,φf:Rn→Rlf}at tfand the cost functional

    is minimized,where t1≤t2≤···≤tk≤tf.

    In[14],the author considered the singularly perturbed optimal control problem

    where x={x1,x2},x1(t)∈Rn1and x2(t)∈Rn2are the state variables,u(t)∈Rmis the control input,and ε>o is a small parameter.By using of the geometric method,the author constructed the high-order asymptotic solution to the optimal state-feedback and the optimal trajectory.In[15],the authors considered the step-like contrast structure for a class of linear singularly perturbed optimal control problem and the uniformly valid asymptotic solution is constructed by the direct scheme method.In[16],the authors developed a new approach to the singularly perturbed time-invariant linear system,which is based on the Chang decoupling transformation.

    To our knowledge,asymptotic solution of singularly perturbed hybrid dynamical systems was not investigated.Motivated by the above mentioned papers,the present paper is devoted to consider optimal control of singularly perturbed hybrid dynamical systems.By virtue of variational method and boundary layer function method[17–26],we not only prove the existence of solution for the hybrid dynamical systems,but also construct uniformly valid asymptotic solution to the optimal controller and optimal trajectory.

    2 Statement of Problem

    We consider the following optimal control problem for singularly perturbed hybrid dynamical systems

    whereμ>o is a small parameter,t∈[to,t2],o=to

    Let the following assumptions be satisfied:

    (A1)Assume that fi(yi,ui,t),Ai(t)and Bi(t)are sufficiently smooth on the domain Di={(yi,ui,t)|||yi||

    (A2)Assume that there exists unique functionsuch that

    From(2.2),we can get

    Defining the functional I(u,λ),

    From the calculus of variations,we can obtain the first order variation of I(u,λ)as

    According to the Lagrange theory,a necessary condition for a solution to be optimal is

    (A3)Assume thato is uniquely solvable with respect to ui,that is ui=hi(yi,λi,t),i=1,2.

    From assumption(A3)and(2.4),we can get the following singularly perturbed boundary value problem

    To show the existence of solution for(2.5),we introduce the left and right associated problem with the following boundary value conditions.

    Left associated problem P(?)(to≤t≤t1)

    and right associated problem P(+)

    which satisfy the conditions y2(t1)=y1(t1),λ2(t1)=λ1(t1).

    By assumption(A2),we obtain that the reduced problem

    which has a unique solution

    (A4)Assume that the matrix gixi(ˉxi(t),t)has 2n real valued eigenvaluesˉλij(t),j= 1,2,···,2n,where

    3 Construction of Asymptotic Solution

    According to the boundary function method[18],we suppose that the formal asymptotic series for the boundary value problems(2.6)and(2.7)have the form

    where τo=tμ?1,τ=(t?t1)μ?1,τ1=(t?t2)μ?1,ˉxki(t)are coefficients of regular terms, Lkx1(τo)and Rkx2(τ1)are coefficients of boundary layer terms at t=toand t=t2,Qkxi(τ) are left and right coefficients of internal transition terms at t=t1,i=1,2.

    Substituting the asymptotic solution(3.1)into(2.6)and(2.7)and separating the terms on t,τo,τ and τ1by the boundary layer function method,then equating the terms with like

    powers ofμ,we can obtain a series of boundary value problems to determine

    The equations to determine the zero-order coefficients of regular termsi=1,2 are given by

    From assumption(A2),we have

    Next,we give the equations and their conditions for determining the zero order coefficients of left boundary layer and internal transition layer of left side as follows

    The first order approximation system of(3.3)isUsing assumption(A4),we know that there exists an n dimensional unstable invariant manifold U in the neighborhood ofβ1(t1),t1,we suppose that it can be written as on G1,where G1is some neighborhood of Qoλ1(τ).

    In order to guarantee the existence of solution for(3.2)and(3.3),we give the following condition.

    (A5)Assume thatare stable manifold of(3.2)near the equilibrium point β1(to)and Qoλ1(o)=λo?α1(t1)∈G1.

    The following boundary value problems to determine Qoy2(τ),Qoλ2(τ),Roy2(τ2), and Roλ2(τ2)are given by Similarly,we know that there exists an n dimensional stable invariant manifold S in the neighborhood of?β2(t1),t1?,we suppose that it can be written as on G2,where G2is some neighborhood ofare unstable manifold of(3.5)near the equilibrium point β2(t2)and Qoy2(o)=po?φ2(t1)∈G2.

    For the high order terms of P(?),we have the equations and their boundary conditions as follows:are the known functions depending only onˉxp1(t),Lpx1(τo),Qpx1(τ)and tp(p=o,1,2,···,k?1).Consider equations(3.8),they are first order linear inhomogeneous differential equations,the inhomogeneous term QFk(τ)is a known vector functions.The homogeneous equations of(3.8)are variational equations of(3.3).Therefore,by the result of Vasil’eva,Butuzov[21],we obtain that there exists a unique solution Qkx1for(3.8),meanwhile,

    where δkis a determined constant depending on Φ1,QFk(τ),C and kpare positive constants.

    Similarly,we can get the left boundary layer terms Lkx1(τo),so far we constructed the asymptotic solution of P(?).

    For the high order approximate equation of Qkx2(τ),the initial condition for the existence of a unique solution is

    where σkis a known constant.

    Similar to the above discussion,we can get the equations and boundary conditions to determine right boundary layer coefficients Rkx2(τ1),here the details are omitted.Then,we have thus far constructed the formal asymptotic solution for the problems P(?)and P(+).By means of the expressions yi,λiand ui=hi(yi,λi,t),the asymptotic expansion of ui,i=1,2 can be obtained.It should be noted that the formal asymptotic solution contains the unknown parameters λ?and p?.

    Next,we will determine the vector parameters λ?and p?by continuity of solution,that is

    then equating the terms with like powers ofμ,we obtain the following equations

    Equating the terms with like k-th powers ofμ,we get the equations

    In order to ensure that there exist solutions for equations(3.1o)and(3.11),the following assumptions are needed.

    (A7)Assume that there exists a unique solution for the vector equations

    (A8)Assume that the matrices E?AB and E?BA are invertible.

    By virtue of(A8),the unknown parameters pkand λkcan be solved from(3.11),.So far,we have determined all the parameters pkand λk,k≥1.

    4 Existence and Formal Asymptotic Expansion for Solution

    We will use the sewing method to prove the existence of solution for(2.5),meanwhile, the asymptotic expansion will be given.Let x?=xo+μx1+···+μN(yùn)xN,here,we do not expand xN,the purpose is to prove the existence of xN,then we will prove the existence for x?.Consider the difference value function

    Let the right hand side of above equation be equal to zero,we can obtain

    here,△x|t=t1=o,that is,the value of asymptotic solutions for P(?)and P(+)are equal at the point t1.

    In[21],the authors proved the existence of solution for the two point boundary value problem,which satisfies the stability condition.Moreover,the authors showed the uniformly valid asymptotic solution for the boundary value problem.In this paper,we divide problem (2.5)into two boundary value problems,which satisfy the stability conditions.Then,we have the following theorem

    Theorem 4.1Assume that(A1)–(A8)hold.Then,for sufficiently smallμ>o,there exists a unique solution x(t,μ)for(2.1).Moreover,the following asymptotic expansion holds

    5 Example

    Consider the following optimal control problem

    whereμ>o is a small parameter.

    By using the optimality condition of optimal control problem(5.1),we have

    The equations and conditions to determine Qoy1and Qoλ1are given by

    For Qoy2and Qoλ2,we have the equations and boundary conditions as follows

    By means of y2(1)=y1(1),λ2(1)=λ1(1),we obtain that

    Similarly,we get

    From the optimality condition,we know that u1+λ1=o,u2+λ2=o,then we have the asymptotic solution for(5.1),

    References

    [1]Witsenhausen H S.A class of hybrid-state continuous-time dynamic systems.IEEE Trans Automatic Cont, 1966,11(6):665–683

    [2]Cellier F E.Combined Continuous/Discrete System Simulation by Use of Digital Computer:Techniques and Tools.Switzerland Zurich:Swiss Federal Institute of Technology,1979

    [3]Michel A N,Hu B.Towards a stability theory of general hybrid dynamical systems.Automatica,1999, 35(3):371–384

    [4]Yong J M.Systems governed by ordinary differential equations with continuous switching and impulse controls.Appl Math Opti,1989,20:223-235

    [5]Branicky M S.Multiple Lyapunov functions and analysis tools for switched and hybrid systems.IEEE Transactions on Automatic Control,1998,34(4):475–482

    [6]Mo Y W,Xiao D Y.Overview of hybrid dynamic system and its application.Contr Theory Appl,2002, 19(1):1–8

    [7]Guo L,Yu R L,Tian F Z.Optimal control of one kind general jump transition system.Journal of Shandong University,2006,41(1):35–40(in Chinese)

    [8]Zhu F,Antsaklis P J.Optimal control of hybrid switched systems:a brief survey.Discrete Event Dynamics Systems:Theory and Applications,2015,25:345–364

    [9]Marzbann H R,Hoseini S M.A hybrid approximation scheme for discretizing constrained quadratic optimal control problems.J Franklin Inst,2014,351:2640–2656

    [10]Lee T.Optimal control of partitioned hybrid systems via discrete-time Hamilton-Jacobi theory.Automatica, 2014,50:2062–2069

    [11]Branicky M S,Borkar V S,Mirtter S K.A unified framework for hybrid control:model and optimal control theory.IEEE Trans Automatic Cont,1998,43(1):31–45

    [12]Bensoussan A,Memaldi J L.Hybrid control and dynamic programming.Dynamics of Continuous,Discrete and Impulsive Systems,1997,3:395–442

    [13]Xu X P,Antsaklis P J.Optimal control of switched systems based on parameterization of the switching instants.IEEE Trans Automatic Cont,2004,49(1):2–16

    [14]Fridman E.Exact slow-fast decomposition of the nonlinear singularly perturbed optimal control problem. Syst Control Lett,2000,40:121–131

    [15]Ni M K,Dmitriev M G.Steplike contrast structure in an elementary optimal control problem.Comput Math Math Phys,2010,50(8):1312–1323

    [16]Koskie S,Coumarbatch C,Gajic Z.Exact slow-fast decomposition of the singularly perturbed matrix differential Riccati equation.Applied Mathematics and Computation,2010,216:1401–1411

    [17]Ni M K,Lin W Z.Minimizing sequence of variational problems with small parameters.Applied Mathematics and Mechanics,English Edition,2009,30(6):695–701

    [18]Ni M K,Dmitriev M G.Contrast structures in the simplest vector variational problem and their asymptotics.Avtomatika i Telemekhanika,1998,5:41–52

    [19]Vasil’eva A B,Dmitriev M G,Ni M K.On a step-like contrast structure for a problem of the calculus of variations.Comput Math Math Phys,2004,44(7):1203–1212

    [20]Kokotovic P,Khalil H,O’Reilly J.Singular Perturbation Methods in Control:Analysis and Design.Orlando: Academic Press,1986

    [21]Vasil’eva A B,Butuzov V F.Asymptotic Expansions of Singularly Perturbed Differential Equations. Moscow:Nauka,1973

    [22]Barbu L,Morosanu G.Singularly Perturbed Boundary-Value Problems.Basel,Boston,Berlin:Birkhauser, 2007

    [23]Vasilieva A B,Butuzov V F,Kalachev L V.The Boundary Function Method for Singular Perturbation Problems.Philadelphia:SIAM,1995

    [24]Wang A F,Ni M K.The interior layer for a nonlinear singularly perturbed differential difference equation. Acta Mathematica Scientia,2012,32B(2):695–709

    [25]Xie F.Singular perturbation for a class of reaction diffusion equation.Acta Mathematica Scientia,2003, 23A(3):369–373(in Chinese)

    [26]Mo J Q,Wang H,Lin W T.The solvability for a class of singularly perturbed quasi-linear differential system.Acta Mathematica Scientia,2008,28B(3):495–500

    ?December 6,2014;revised April 25,2016.This project is supported by the National Natural Science Foundation of China(11471118,11401385 and 11371140),Natural Science Foundation of Hebei Province (A2015407063)and Doctoral Foundation of Hebei Normal University of Science and Technology(2013YB008).

    寂寞人妻少妇视频99o| 丰满人妻一区二区三区视频av| 日韩精品中文字幕看吧| 午夜福利18| 色哟哟·www| 99久国产av精品国产电影| 精品日产1卡2卡| 精品久久久久久久人妻蜜臀av| 亚洲成人av在线免费| 精华霜和精华液先用哪个| 听说在线观看完整版免费高清| 国产精华一区二区三区| 日本一二三区视频观看| 插阴视频在线观看视频| 最近视频中文字幕2019在线8| av在线观看视频网站免费| 免费在线观看影片大全网站| 国产精品人妻久久久久久| 日本在线视频免费播放| 99riav亚洲国产免费| 久久精品久久久久久噜噜老黄 | 久久精品国产鲁丝片午夜精品| 久久九九热精品免费| 夜夜爽天天搞| 男女之事视频高清在线观看| 九色成人免费人妻av| АⅤ资源中文在线天堂| 国产精品爽爽va在线观看网站| 亚洲国产欧美人成| 免费电影在线观看免费观看| 国产av不卡久久| 嫩草影院精品99| av卡一久久| 狠狠狠狠99中文字幕| 久久综合国产亚洲精品| 中出人妻视频一区二区| 亚洲,欧美,日韩| av中文乱码字幕在线| 在线免费观看的www视频| 男女视频在线观看网站免费| 精品人妻一区二区三区麻豆 | 九色成人免费人妻av| 国产精品嫩草影院av在线观看| 亚洲美女搞黄在线观看 | 91久久精品国产一区二区成人| 最近在线观看免费完整版| 天堂网av新在线| 国产成人精品久久久久久| 日韩欧美三级三区| 国产成人影院久久av| 又爽又黄无遮挡网站| 99久久精品国产国产毛片| 丰满乱子伦码专区| 我要看日韩黄色一级片| 一夜夜www| 狠狠狠狠99中文字幕| 十八禁网站免费在线| 亚洲第一区二区三区不卡| 国产精品久久久久久av不卡| a级毛片a级免费在线| 欧美成人a在线观看| 欧美色欧美亚洲另类二区| 亚洲图色成人| 亚洲av中文字字幕乱码综合| 九九在线视频观看精品| 国产一区二区在线观看日韩| 欧美精品国产亚洲| 久久精品综合一区二区三区| 亚洲五月天丁香| 深夜精品福利| 国产男人的电影天堂91| 少妇的逼好多水| 免费大片18禁| 日本欧美国产在线视频| 亚洲av电影不卡..在线观看| 热99re8久久精品国产| 免费黄网站久久成人精品| 国内精品久久久久精免费| 免费看光身美女| 国内精品美女久久久久久| 婷婷六月久久综合丁香| 欧美性感艳星| 成人性生交大片免费视频hd| 欧美色视频一区免费| 午夜福利在线观看吧| 国产精华一区二区三区| 亚洲av免费高清在线观看| 国产精品久久电影中文字幕| 一本精品99久久精品77| 国产色爽女视频免费观看| 日日摸夜夜添夜夜添av毛片| 国产老妇女一区| 国内精品美女久久久久久| 国产乱人视频| 久久精品影院6| 最近视频中文字幕2019在线8| 国产高清视频在线观看网站| 99热只有精品国产| 欧美性感艳星| 精品99又大又爽又粗少妇毛片| 亚洲成av人片在线播放无| 午夜福利在线在线| 狠狠狠狠99中文字幕| 欧美xxxx性猛交bbbb| 日日摸夜夜添夜夜添小说| 午夜福利高清视频| 欧美zozozo另类| 在线播放国产精品三级| 寂寞人妻少妇视频99o| 少妇的逼好多水| 欧美xxxx性猛交bbbb| 日韩成人伦理影院| 搡女人真爽免费视频火全软件 | 一级av片app| 久久久久国产网址| 丰满人妻一区二区三区视频av| 国产成人影院久久av| 大又大粗又爽又黄少妇毛片口| 1000部很黄的大片| 最近中文字幕高清免费大全6| 久久精品国产99精品国产亚洲性色| 久久久欧美国产精品| 午夜影院日韩av| 欧美一区二区亚洲| 色尼玛亚洲综合影院| 两性午夜刺激爽爽歪歪视频在线观看| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 国产精品伦人一区二区| 亚洲国产高清在线一区二区三| 搡女人真爽免费视频火全软件 | 国产精品人妻久久久久久| 一区二区三区高清视频在线| 婷婷六月久久综合丁香| 美女cb高潮喷水在线观看| 国产精品电影一区二区三区| 亚洲美女黄片视频| 欧美成人a在线观看| 99热这里只有是精品50| 亚洲自拍偷在线| а√天堂www在线а√下载| 亚洲人成网站在线播| 熟女电影av网| 免费av不卡在线播放| 一进一出好大好爽视频| 老司机影院成人| 少妇的逼水好多| 久久国产乱子免费精品| 在现免费观看毛片| 国产探花极品一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av.av天堂| 国产淫片久久久久久久久| 亚洲国产日韩欧美精品在线观看| 少妇被粗大猛烈的视频| 成人av在线播放网站| 久久亚洲国产成人精品v| 美女免费视频网站| 久久久国产成人免费| 精品久久久久久久人妻蜜臀av| 欧美日本亚洲视频在线播放| 日韩欧美精品免费久久| 国产亚洲精品av在线| 国产高清激情床上av| 国产精华一区二区三区| 搡老熟女国产l中国老女人| 精华霜和精华液先用哪个| 插阴视频在线观看视频| 国产成人一区二区在线| 亚洲国产欧洲综合997久久,| 人妻久久中文字幕网| 成人亚洲欧美一区二区av| 免费高清视频大片| 99热全是精品| 亚洲经典国产精华液单| 国产精品三级大全| 日韩欧美国产在线观看| 国产精品无大码| 日韩欧美精品免费久久| 一个人看视频在线观看www免费| 久久这里只有精品中国| 免费在线观看成人毛片| 99视频精品全部免费 在线| 国产一区二区激情短视频| 97超级碰碰碰精品色视频在线观看| 不卡视频在线观看欧美| 国产一区二区亚洲精品在线观看| 亚洲人成网站在线播| 12—13女人毛片做爰片一| 久久久精品欧美日韩精品| 99久国产av精品| 日本-黄色视频高清免费观看| 亚洲18禁久久av| 国产亚洲欧美98| 亚洲色图av天堂| 男女做爰动态图高潮gif福利片| 在线观看午夜福利视频| 搡老熟女国产l中国老女人| 精品国产三级普通话版| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 亚洲无线在线观看| 国内久久婷婷六月综合欲色啪| 精品一区二区三区人妻视频| 我要搜黄色片| 国产欧美日韩精品一区二区| 国产精品久久久久久精品电影| 亚洲最大成人手机在线| 国产黄片美女视频| 久久综合国产亚洲精品| 天堂av国产一区二区熟女人妻| 精华霜和精华液先用哪个| 午夜精品在线福利| 99久久九九国产精品国产免费| 久久久久久久久久黄片| 午夜福利成人在线免费观看| 国产高潮美女av| 两个人视频免费观看高清| 99热精品在线国产| 亚洲av.av天堂| 色视频www国产| 全区人妻精品视频| 一区二区三区四区激情视频 | 欧美区成人在线视频| 中文字幕熟女人妻在线| 大又大粗又爽又黄少妇毛片口| 亚洲自拍偷在线| 俺也久久电影网| 国产午夜精品论理片| 国产一区亚洲一区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日本黄色视频三级网站网址| 深爱激情五月婷婷| 可以在线观看毛片的网站| 亚洲国产精品sss在线观看| 禁无遮挡网站| av福利片在线观看| 69人妻影院| 美女被艹到高潮喷水动态| 成人国产麻豆网| 非洲黑人性xxxx精品又粗又长| 三级经典国产精品| 校园人妻丝袜中文字幕| 久久久久久久久中文| 久久这里只有精品中国| 99久国产av精品| 日本免费一区二区三区高清不卡| 日韩欧美精品免费久久| 成年版毛片免费区| 99九九线精品视频在线观看视频| 人妻丰满熟妇av一区二区三区| 成人三级黄色视频| 成人性生交大片免费视频hd| 国产极品精品免费视频能看的| 成人漫画全彩无遮挡| 淫妇啪啪啪对白视频| 亚洲欧美日韩无卡精品| 精品一区二区三区视频在线| 亚洲电影在线观看av| 狠狠狠狠99中文字幕| 啦啦啦观看免费观看视频高清| 无遮挡黄片免费观看| 国产片特级美女逼逼视频| 99久久九九国产精品国产免费| 精品久久久久久久久av| 亚洲人成网站高清观看| 久久精品夜夜夜夜夜久久蜜豆| 简卡轻食公司| 精品一区二区三区视频在线观看免费| 亚洲av熟女| 欧美潮喷喷水| 国产精品人妻久久久影院| 校园春色视频在线观看| 大型黄色视频在线免费观看| 亚洲婷婷狠狠爱综合网| 特级一级黄色大片| 听说在线观看完整版免费高清| 亚洲天堂国产精品一区在线| 国产伦精品一区二区三区视频9| 亚洲成人久久爱视频| 精品不卡国产一区二区三区| av在线天堂中文字幕| 亚洲三级黄色毛片| 97超视频在线观看视频| 国产单亲对白刺激| 免费av观看视频| 日本色播在线视频| 色吧在线观看| 欧美激情在线99| 干丝袜人妻中文字幕| 亚洲人成网站在线观看播放| 村上凉子中文字幕在线| 深爱激情五月婷婷| 久久久久精品国产欧美久久久| 变态另类成人亚洲欧美熟女| 日日撸夜夜添| 在线免费十八禁| 国产精品99久久久久久久久| 成人国产麻豆网| 看片在线看免费视频| 一个人看的www免费观看视频| 看非洲黑人一级黄片| 免费搜索国产男女视频| 老司机福利观看| 免费看光身美女| 成人国产麻豆网| 午夜福利视频1000在线观看| 丝袜喷水一区| 12—13女人毛片做爰片一| 亚洲一级一片aⅴ在线观看| 简卡轻食公司| 久久亚洲国产成人精品v| 3wmmmm亚洲av在线观看| 高清毛片免费观看视频网站| 亚洲精华国产精华液的使用体验 | 一区二区三区免费毛片| 人人妻人人澡人人爽人人夜夜 | 精品一区二区三区av网在线观看| 久久99热这里只有精品18| 精品午夜福利视频在线观看一区| 国产精品福利在线免费观看| 欧美色欧美亚洲另类二区| 精品人妻偷拍中文字幕| 国产黄色视频一区二区在线观看 | 久久久久国产精品人妻aⅴ院| 国产一区二区激情短视频| 一本精品99久久精品77| 丰满人妻一区二区三区视频av| 亚洲av电影不卡..在线观看| 少妇丰满av| 男人狂女人下面高潮的视频| 欧美日本亚洲视频在线播放| 韩国av在线不卡| 91午夜精品亚洲一区二区三区| 禁无遮挡网站| 日本黄大片高清| 亚洲精品国产av成人精品 | 18禁裸乳无遮挡免费网站照片| 成人高潮视频无遮挡免费网站| 欧美一区二区国产精品久久精品| 亚洲丝袜综合中文字幕| 国产一区二区在线av高清观看| 观看免费一级毛片| 国产高清视频在线观看网站| 国产探花在线观看一区二区| 国产一区二区在线av高清观看| 十八禁国产超污无遮挡网站| 精品午夜福利在线看| av在线老鸭窝| 色吧在线观看| 亚洲人成网站高清观看| 国产av不卡久久| 免费观看精品视频网站| 亚洲国产欧洲综合997久久,| 国产探花在线观看一区二区| 一级毛片电影观看 | 亚洲七黄色美女视频| 久久久久久久亚洲中文字幕| av免费在线看不卡| 久久久a久久爽久久v久久| av中文乱码字幕在线| 欧美在线一区亚洲| 人人妻人人澡人人爽人人夜夜 | 在线播放国产精品三级| 久久精品国产亚洲av香蕉五月| 女人被狂操c到高潮| 此物有八面人人有两片| 国产精品一二三区在线看| av中文乱码字幕在线| 可以在线观看的亚洲视频| 成人毛片a级毛片在线播放| 精品欧美国产一区二区三| 色哟哟哟哟哟哟| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 女人十人毛片免费观看3o分钟| 伦精品一区二区三区| 欧美日韩乱码在线| 伊人久久精品亚洲午夜| 亚洲国产精品成人综合色| 看十八女毛片水多多多| 午夜免费激情av| av福利片在线观看| 性色avwww在线观看| av.在线天堂| 在现免费观看毛片| 又粗又爽又猛毛片免费看| 亚洲人与动物交配视频| 欧美日本亚洲视频在线播放| 美女高潮的动态| 91av网一区二区| 亚洲av电影不卡..在线观看| 亚洲av.av天堂| 真实男女啪啪啪动态图| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩高清在线视频| 天堂√8在线中文| 久久久久久久亚洲中文字幕| 欧美精品国产亚洲| 人人妻人人看人人澡| 我要看日韩黄色一级片| 久久久久国产网址| 性色avwww在线观看| 亚洲第一区二区三区不卡| 最近在线观看免费完整版| 日本免费一区二区三区高清不卡| 午夜激情欧美在线| 村上凉子中文字幕在线| 亚洲人与动物交配视频| 日韩欧美精品v在线| 亚洲欧美精品综合久久99| 97碰自拍视频| 国产视频内射| 深夜a级毛片| 亚洲人成网站在线播| 亚洲综合色惰| 免费人成在线观看视频色| 成人特级av手机在线观看| 尾随美女入室| 免费搜索国产男女视频| 一级黄色大片毛片| 亚洲国产色片| 人人妻人人澡欧美一区二区| 午夜福利成人在线免费观看| 国产私拍福利视频在线观看| 日韩一区二区视频免费看| a级毛片a级免费在线| 欧美人与善性xxx| 日韩av在线大香蕉| 波野结衣二区三区在线| 1024手机看黄色片| 又粗又爽又猛毛片免费看| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 国产精品久久电影中文字幕| 久久99热这里只有精品18| 日本一本二区三区精品| 91久久精品国产一区二区三区| 亚洲精华国产精华液的使用体验 | 啦啦啦啦在线视频资源| 久久婷婷人人爽人人干人人爱| 国产精品永久免费网站| 美女黄网站色视频| 亚洲人成网站在线观看播放| 两个人视频免费观看高清| 在线a可以看的网站| 亚洲最大成人手机在线| 亚洲成人中文字幕在线播放| 国产精品久久电影中文字幕| 丰满的人妻完整版| 久久精品国产亚洲av天美| 99热只有精品国产| 国产伦精品一区二区三区四那| 国产av不卡久久| 亚洲欧美成人精品一区二区| 夜夜爽天天搞| 一区福利在线观看| 国产成人a区在线观看| 成人特级av手机在线观看| 精品少妇黑人巨大在线播放 | 女生性感内裤真人,穿戴方法视频| 天堂av国产一区二区熟女人妻| 淫秽高清视频在线观看| 一个人看视频在线观看www免费| 亚洲av熟女| 国产精品1区2区在线观看.| 久久久久九九精品影院| ponron亚洲| 99热全是精品| 国产伦精品一区二区三区视频9| 亚洲天堂国产精品一区在线| 成人特级av手机在线观看| 国产精品乱码一区二三区的特点| 中国美女看黄片| 1000部很黄的大片| 国产单亲对白刺激| 久久婷婷人人爽人人干人人爱| 国产色爽女视频免费观看| 欧美一区二区国产精品久久精品| 成人永久免费在线观看视频| 嫩草影院新地址| 国产熟女欧美一区二区| 99热全是精品| 久久久成人免费电影| 成人欧美大片| 两个人视频免费观看高清| 久久精品91蜜桃| 国产人妻一区二区三区在| 精品人妻视频免费看| 亚洲第一电影网av| a级毛片免费高清观看在线播放| 国产精品99久久久久久久久| 俺也久久电影网| 欧美又色又爽又黄视频| 精品99又大又爽又粗少妇毛片| 免费电影在线观看免费观看| 97超碰精品成人国产| 一个人观看的视频www高清免费观看| 国产精品久久久久久久电影| 麻豆精品久久久久久蜜桃| 国产伦精品一区二区三区视频9| 精品久久久久久久久久免费视频| a级毛片a级免费在线| 精品福利观看| 国产美女午夜福利| 日本 av在线| 成人美女网站在线观看视频| 少妇裸体淫交视频免费看高清| 婷婷精品国产亚洲av| 成人性生交大片免费视频hd| 欧美bdsm另类| 一级毛片aaaaaa免费看小| 69人妻影院| 色哟哟哟哟哟哟| 国产精品一二三区在线看| 亚洲综合色惰| 日韩成人伦理影院| 午夜免费激情av| 国产三级中文精品| 直男gayav资源| 国产一区二区激情短视频| 国产免费男女视频| 俺也久久电影网| 人人妻人人澡欧美一区二区| 国产大屁股一区二区在线视频| 天堂√8在线中文| 亚洲性久久影院| 插阴视频在线观看视频| 日本与韩国留学比较| 一本精品99久久精品77| 深爱激情五月婷婷| 精品熟女少妇av免费看| 久久久国产成人精品二区| 深夜精品福利| 国产精品乱码一区二三区的特点| 久久国内精品自在自线图片| 少妇人妻一区二区三区视频| 亚洲欧美日韩高清在线视频| 听说在线观看完整版免费高清| 免费无遮挡裸体视频| 最近2019中文字幕mv第一页| 久久精品国产亚洲av香蕉五月| 一级毛片aaaaaa免费看小| 欧美在线一区亚洲| 又粗又爽又猛毛片免费看| 久久久久久久久久久丰满| 国产精品爽爽va在线观看网站| 成年版毛片免费区| 午夜爱爱视频在线播放| 久久这里只有精品中国| 免费av观看视频| 久久久久九九精品影院| 日韩人妻高清精品专区| 久久久久久久久久久丰满| 欧美性猛交黑人性爽| 日本成人三级电影网站| 欧美色欧美亚洲另类二区| 日韩欧美三级三区| 午夜视频国产福利| 日韩高清综合在线| 亚洲真实伦在线观看| 国产精品一区二区免费欧美| 偷拍熟女少妇极品色| 不卡一级毛片| 国产69精品久久久久777片| 波多野结衣高清作品| 国内精品一区二区在线观看| 熟女人妻精品中文字幕| 国产成人91sexporn| 亚洲成av人片在线播放无| 日本一二三区视频观看| av国产免费在线观看| 欧美潮喷喷水| 欧美成人一区二区免费高清观看| 欧美+亚洲+日韩+国产| 一本精品99久久精品77| 日本免费a在线| 成年女人看的毛片在线观看| 极品教师在线视频| 欧美一区二区国产精品久久精品| 国产黄片美女视频| a级毛色黄片| 欧美精品国产亚洲| 人人妻人人澡人人爽人人夜夜 | 亚洲成人av在线免费| 美女高潮的动态| 99在线人妻在线中文字幕| 国产伦一二天堂av在线观看| 美女cb高潮喷水在线观看| 日韩中字成人| 国产精品野战在线观看| 99riav亚洲国产免费| 欧美日本亚洲视频在线播放| 丝袜喷水一区| 丝袜美腿在线中文| av中文乱码字幕在线| 丝袜喷水一区| 色播亚洲综合网| 2021天堂中文幕一二区在线观| 国产91av在线免费观看| 日韩欧美三级三区| 国产激情偷乱视频一区二区| 在线观看美女被高潮喷水网站| 搡老妇女老女人老熟妇| 久久久久久久久久成人| 久久天躁狠狠躁夜夜2o2o| 日本黄色视频三级网站网址| 毛片女人毛片| 午夜影院日韩av| 国产单亲对白刺激| 久久久久久伊人网av| 免费av观看视频| 亚洲精品久久国产高清桃花| 婷婷精品国产亚洲av在线| 内地一区二区视频在线|