• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PIECEWISE CONTINUOUS SOLUTIONS OF INITIAL VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS?

    2016-11-24 12:00:07YujiLIUDepartmentofMathematicsGuangdongUniversityofFinanceandEconomicsGuangzhou510320Chinamailyujiliusohucom

    Yuji LIUDepartment of Mathematics,Guangdong University of Finance and Economics, Guangzhou 510320,China E-mail:yujiliu@sohu.com

    PIECEWISE CONTINUOUS SOLUTIONS OF INITIAL VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS?

    Results on the existence of piecewise continuous solutions for two classes of initial value problems of impulsive singular fractional differential equations are obtained.

    singular fractional differential equation;impulsive effect;piecewise continuous solution;fixed point theorem

    2010 MR Subject Classification92D25;34A37;34K15

    1 Introduction

    Theory of impulsive differential equations describes processes which experience a sudden change of their state at certain moments.Processes with such a character arise naturally and often,for example,phenomena studied in physics,chemical technology,population dynamics, biotechnology and economics.For an introduction of the basic theory of impulsive differential equation,we refer the reader to[17].

    Fractional differential equations were found numerous applications in the field of viscoelasticity,feedback amplifiers,electrical circuits,electro analytical chemistry,fractional multipoles,neuron modelling encompassing different branches of physics,chemistry and biological sciences[18,19].

    In recent years,many authors studied the existence and uniqueness of solutions of the different kinds of initial value problems,two-point boundary value problems or multi-point boundary value problems for the impulsive fractional differential equations on finite intervals see papers[1–7,9–16,2o–34]and the references therein.

    In[9,1o,28,3o],the concept of solutions for fractional differential equations with impulse effects was argued extensively,while the concept presented in these papers could be controversial and deserved a further argument and mending.

    Motivated by[9,1o,28,3o],in this paper,we discuss the existence of piecewise continuous solutions of the following initial value problems of nonlinear singular fractional differential equations with impulse effects

    where

    (a)n is a positive integer and α satisfies n?1<α

    (b)o=to

    that there exist constants k>?α and l≤o with α+k+l?n+1>o and α+l?n+1>o such that|m1(t)|≤(t?ti)k(ti+1?t)lfor all t∈(ti,ti+1](m may be singular at t=ti),

    (d)m2:(o,1)→R satisfies that m2|(ti,ti+1]∈Co(ti,ti+1](s=o,1,2,···,p)and that there exist constants k>?α and l≤o with α+k+l?n+1>o and α+l?n+1>o such that|m2(t)|≤tk(1?t)lfor all t∈(o,1)(m may be singular at t=o,1),

    (e)f,Ij:(o,1)×Rn→R are Caratheodory functions(j=o,1,2,···,n?1).

    A functions x:(o,1]→R is said to be a piecewise continuous solution of(1.1)if x(j)|(ti,ti+1)∈Co(ti,ti+1)(i=o,1,2,···,p),(j=o,1,2,···,n?1)and the limits

    exist and all equations in(1.1)are satisfied.Similarly we can define the piecewise continuous solution of(1.2).

    We establish the existence results of solutions for impulsive singular fractional differential systems(1.1)and(1.2),respectively.Two example are given to illustrate the efficiency of the main theorems.

    The remainder of this paper is as follows:in Section 2,we present preliminary results.In Section 3,the main theorems on the existence of solutions of(1.1)and(1.2)are presented, respectively.

    2 Preliminary Results

    For the convenience of the readers,we present the necessary definitions from the fractional calculus theory.These definitions and results can be found in the monograph[19].For φ∈ L1(o,1),denoteLet the Gamma and beta functions Γ(α)and B(p,q)be defined by

    Definition 2.1(see[19])Let a≥o.The Riemann-Liouville fractional integral of order α>o of a function g:(a,∞)→R is given by

    provided that the right-hand side exists.

    Definition 2.2(see[19])Let a≥o.The Caputo fractional derivative of order α>o of a n-times differentiable function g:(a,∞)→R is given by

    where n?1≤α

    Remark 2.1Let n?1≤μ

    where Ci∈R,i=o,1,2,···,n?1.

    For x∈X,define the norm by

    It is easy to show that X is a real Banach space.

    Remark 2.2Define the matrix Miby

    Then|M|/=o and the inverse of M is denoted by

    Remark 2.3Define the matrix Ni(i=1,2,···,p)by

    By direct computation,we get that

    We know that aj,v,s,o=1 for j=v and aj,v,s,o=o for j/=v.

    Lemma 2.1u∈X is a solution of

    if and only if

    for t∈(ti,ti+1],i=o,1,2,···,p.Furthermore,we have

    ProofSuppose that u is a solution of(2.3).Thenis continuous and the limitsexist.Then by Remark 2.1,we get that there exists cj,i∈R (i=o,1,2,···,p,j=o,1,2,···,n?1)such that

    t∈(ti,ti+1],i=o,1,2,···,p,j=1,2,···,n?1.

    We know for t∈(ti,ti+1](using(c))that

    By Δu(j)(ti)=Ij,i(i=1,2,···,p,j=o,1,2,···,n?1),we get that

    where Ni,Biwere defined by Remark 2.3.Using Remark 2.3,we have that

    Hence we get for j=o,1,2,···,n?1 and i=1,2,···,p that

    Substituting cj,i(j=o,1,2,···,n?1,i=o,1,2,···,p)into(2.6),we get(2.4)and(2.5).Now we prove that x∈X.It is easy to see that x(j)|(ti,ti+1)is continuous and the limitsexists for all j=o,1,2,···,n?1 and i=1,2,···,p+1.exists for all j=o,1,2,···,n?1 and i=o,1,2,···,p. So x∈X.

    Now suppose that x satisfies(2.4).It is easy to show that x∈X and x is a solution of (2.3).The proof is completed.

    Lemma 2.2x∈X is a solution of

    for i=o,1,2,···,p. ProofSuppose that u is a solution of(2.7).One sees from Remark 2.1 thatu(t)= m2(t)implies that there exist constants cj,o∈R such that

    Now we will prove by using the mathematical induction method that there exist constants cj,i∈R such that

    From(2.9),we see that(2.1o)holds for i=o.Now,we suppose that(2.1o)holds for i= o,1,···,s(s≤p?1).We will prove that

    By mathematical induction method,we have that(2.1o)holds for all i=o,1,2,···,p. By(2.1o),we get that

    where i=o,1,2,···,p,v=o,1,2,···,n?1.By(d)we have

    By Δu(v)(ti)=Iv,i(v=o,1,2,···,n?1,i=1,2,···,p)and

    That is as follows:

    It follows from Remark 2.2 for i=1,2,···,p that

    Hence we get for i=o,1,2,···,p and v=o,1,2,···,n?1 that

    Substituting cj,iinto(2.1o),we get for i=o,1,2,···,p thatThis is just(2.8).We can prove that u∈X easily.On the other hand,if u satisfies(2.8),it is easy to show that u∈X and u is a solution of(2.7).The proof is completed.□

    Definition 2.3We call K:(o,1)×Rn→R a Caratheodory function if it satisfies the followings:

    (i)t→K(t,x1,···,xn)is measurable on(ti,ti+1](i=o,1,2,···,p),respectively,

    (ii)(x,y)→K(t,x1,···,xn)is continuous on Rnfor all most all t∈(o,1),

    (iii)for each r>o there exists a constant Mr>o such that

    Now,we define the operator T1,T2on X by

    Remark 2.4By Lemma 2.1,x∈X is a solution of(1.1)if and only if x∈X is a fixed point of the operator T1.By Lemma 2.2,x∈X is a solution of(1.2)if and only if x∈X is a fixed point of the operator T2.

    Lemma 2.3Suppose that(a)–(e)hold.Then both T1and T2:X→X are well defined and completely continuous.

    ProofFirst,we prove that T1is well defined;second,we prove that T1is continuous and finally,we prove that T1is compact.So T1is completely continuous.Similarly we can prove that T2is well defined and completely continuous.Thus the proof is divided into three steps.

    Step(i)Prove that T:X→X is well defined.

    For x∈X,we have‖x‖=r>o.From f,Ijare Caratheodory functions,then there exist constants Mf≥o,MI≥o such that

    By the definition of T1and Lemma 2.1,we have T1x∈X.Then T1:X→X is well defined.

    Step(ii)We prove that T1is continuous.Let xκ∈X with xκ→xoas n→∞.We will show that T1xκ→T1xoas κ→∞.

    In fact,we have r>o such that‖xκ‖≤r>o(κ=o,1,2,···).Since f,Ijare Caratheodory functions,then there exists Mf≥o,MI≥o such that(2.14)holds with x=xκ.By

    Hence for v=o,1,2,···,n?1,we have

    It is easy to show that{(T1xκ)(v)}is uniformly bounded.From the Lebesgue dominated convergence theorem,we get that both‖T1xκ?T1xo‖→o as κ→∞.It follows that T1is continuous.

    Step(iii)We prove that T1is compact,i.e.,for each nonempty open bounded subset ? of X,prove thatis uniformly bounded, equi-continuous on each interval(ti,ti+1](i=o,1,2,···,p).

    Let ? be a bounded open subset of X.We have r>o such that then‖x‖≤r for all x∈?.Since f,Ijare Caratheodory functions,then there exists Mf≥o,MI≥o such that (2.14)holds.

    Sub-step(iii1)Prove that is uniformly bounded.

    This follows similarly from the method used in Step(ii)and the details are omitted.

    Sub-step(iii2)Prove that T1(?)is equi-continuous on each interval(ti,ti+1](i=o,1,2, ···,p).

    3 Existence of Solutions

    In this section we shall establish the existence of at least one solution of(1.1)and(1.2) respectively.

    For easy referencing,we list the conditions needed as follows:

    (A)there exist numbers σ≥o(i=1,2,···,n,j=1,···,m)with

    σi,j(s=1,2,···,m)and bounded function ψ:(o,1)→R,numbers λi(i=1,2,···,p),and numbers aj≥o,bj≥o(j=1,2,···,m)such that

    Theorem 3.1Suppose that(a)–(e)and(A)σhold,f,Ijare Caratheodory functions. Then,system(1.1)has at least one solution if

    (i)σ=max{σs:s=1,2,···,m}>1 and

    (ii)σ=max{σs:s=1,2,···,m}∈[o,1),or

    (iii)σ=max{σs:s=1,2,···,m}=1 and Mo<1.

    ProofLet the Banach space X and the operator T1be defined as in Section 2.We know that

    (i)T1:X→X is well defined;

    (ii)For x∈X is a fixed point of T1if and only if x∈X is a solution of(1.1);

    (iii)T1:X→X is completely continuous.

    It is easy to show from Ψ∈X.Let r>o and define Mr={x∈X:‖x?Ψ‖≤r}. For x∈Mr,we find

    Then for t∈(ti,ti+1]and v=o,1,2,···,n?1 we get that

    Then,for x∈Mrowe have

    Hence,we have a bounded subset Mro?X such that T1(Mro)?Mro.Then,Schauder fixed point theorem implies that T1has a fixed point x∈Mro.Hence,x is a bounded solution of BVP(1.1).

    Case(ii)σ∈[o,1).Choose r>o sufficiently large such that Mo(r+‖Ψ‖)σ≤r.Then, for x∈Mrwe have

    So T(Mr)?Mrand Schauder fixed point theorem implies that T1has a fixed point x∈Mr. This x is a bounded solution of BVP(1.1).

    From above discussion,the proof is complete.

    Remark 3.1Suppose that(a)–(e)hold and f,Ijare Caratheodory functions.It follows from Theorem 3.1 that(1.1)has at least one solution if f and Ijare bounded.

    Now,let

    Theorem 3.2Suppose that(a)–(e)and(B)σhold,f,Ijare Caratheodory functions. Then,system(1.2)has at least one solution if

    (i)σ=max{σs:s=1,2,···,m}>1 and

    (ii)σ=max{σs:s=1,2,···,m}∈(o,1),or

    (iii)σ=max{σs:s=1,2,···,m}=1 and No<1.

    ProofLet the Banach space X and the operator T2be defined as in Section 2.We know that

    (i)T2:X→X is well defined;

    (ii)For x∈X is a fixed point of T2if and only if x∈X is a solution of(1.2);

    (iii)T2:X→X is completely continuous.

    It is easy to show from Ψ∈X.Let r>o and define Mr={x∈X:‖x?Ψ‖≤r}.For x∈Mr,we have(3.15).Then for t∈(ti,ti+1]and v=o,1,2,···,n?1,we get that

    The remainder of the proof is similar to that of the proof of Theorem 3.1 and is omitted.

    Remark 3.2Suppose that(a)–(e)hold and f,Ijare Caratheodory functions.It follows from Theorem 3.2 that(1.2)has at least one solution if f and Ijare bounded.

    References

    [1]Agarwal R P,Benchhra M,Slimani B A.Existence results for differential equations with fractional order and impulses.Memoirs Differ Equ Math Phys,2008,44:1–21

    [2]Anguraj A,Karthikeyan P,Rivero M,Trujillo J J.On new existence results for fractional integro-differential equations with impulsive and integral conditions.Comput Math Appl,2014,66:2587–2594

    [3]Ahmad B,Nieto J J.Existence of solutions for impulsive anti-periodic boundary value problems of fractional order.Taiwan J Math,2011,15:981–993

    [4]Ahmad B,Sivasundaram S.Existence of solutions for impulsive integral boundary value problems involving fractional differential equations.Nonlinear Anal,Hybrid Syst,2009,3:251–258

    [5]Ahmad B,Sivasundaram S.Existence of solutions for impulsive integral boundary value problems of fractional order.Nonlinear Anal,Hybrid Syst,2010,4:134–141

    [6]Ahmad B,Wang G.A study of an impulsive four-point nonlocal boundary value problem of nonlinear fractional differential equations.Comput Math Appl,2011,62:1341–1349

    [7]Bai C.Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative.J Math Anal Appl,2011,384:211–231

    [8]Babakhani A.Existence and uniqueness of solution for class of fractional order differential equations on an unbounded domain.Adv Differ Equ,2012,2012:41

    [9]Feckan M,Wang J,Zhou Y.On the concept and existence of solution for impulsive fractional differential equations.Commun Nonlinear Sci Numer Simul,2012,17:3050–3060

    [10]Feckan M,Zhou Y,Wang J.Response to“Comments on the concept of existence of solution for impulsive fractional differential equations[Commun Nonlinear Sci Numer Simul 2014;19:401-3.]”.Commun Nonlinear Sci Numer Simul,2014,DOI:http://dx.doi.org/10.1016/j.cnsns.2014.04.014

    [11]Guo T,Jiang W.Impulsive problems for fractional differential equations with boundary value conditions. Comput Math Appl,2012,64:3281–3291

    [12]Hilfer R.Applications of Fractional Calculus in Physics.River Edge,NJ:World Scientific Publishing Co Inc,2000

    [13]Henderson J,Ouahab A.Impulsive differential inclusions with fractional order.Comput Math Appl,2010, 59:1191–1226

    [14]Ke T,Luo M.Existence and uniqueness of solutions of initial value problems for nonlinear langevin equation involving two fractional orders.Commun Nonlinear Sci Numer Simulat,2014,19:1661–1668

    [15]Li X,Chen F,Li X.Generalized anti-periodic boundary value problems of impulsive fractional differential equations.Commun Nonlinear Sci Numer Simul,2013,18:28–41

    [16]Liu Z,Li X.Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations.Commun Nonlinear Sci Numer Simulat,2013,18:1362–1373

    [17]Lakshmikantham V V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations.Singapore: World Scientific,1989

    [18]Podlubny I.Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal,2002,5(4):367–386

    [19]Podlubny I.Fractional Differential Equations.London:Academic Press,1999

    [20]Rashid M H M,Al-Omari A.Local and global existence of mild solutions for impulsive fractional semilinear integro-differential equation.Commun Nonlinear Sci Numer Simul,2011,16:3493–3503

    [21]Rehman a M,Eloe P W.Existence and uniqueness of solutions for impulsive fractional differential equations. Appl Math Comput,2013,224:422–431

    [22]Stamova I.Global stability of impulsive fractional differential equations.Appl Math Comput,2014,237: 605–612

    [23]Su X,Chen Y,Lai Y.The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal,2011,74:2003–2011

    [38]Stamova I,Stamov G.Stability analysis of impulsive functional systems of fractional order.Commun Nonlinear Sci Numer Simul,2014,19:702–709

    [25]Tian Y,Bai Z.Existence results for three-point impulsive integral boundary value problems involving fractinal differential equations.Comput Math Appl,2010,59:2601–2609

    [26]Wang G,Ahmad B,Zhang L.Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order.Nonlinear Anal,2011,74:792–804

    [27]Wang G,Ahmad B,Zhang L.Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions.Comput Math Appl,2011,62:1389–1397

    [28]Wang G,Ahmad B,Zhang L,Nieto J J.Comments on the concept of existence of solution for impulsive fractional differential equations.Commun Nonlinear Sci Numer Simul,2014,19:401–403

    [29]Wang J,Zhou Y,Feckan M.Nonlinear impulsive problems for fractional differential equations and Ulam stability.Comput Math Appl,2012,64:3389–3405

    [30]Wang J,Zhou Y,Feckan M.On recent developments in the theory of boundary value problems for impulsive fractional differential equations.Comput Math Appl,2012,64:3008–3020

    [31]Wang J,Zhou Y.A class of nonlinear differential equations with fractional integrable impulses.Commun Nonlinear Sci Numer Simulat,2014,19:3001–3010

    [32]Wang X.Impulsive boundary value problem for nonlinear differential equations of fractional order.Comput Math Appl,2011,62:2383–2391

    [33]Zhou J,Feng M.Green’s function for Sturm-Liouville-type boundary value problems of fractional order impulsive differential equations and its application.Boundary Value Problems,2014,2014:69

    [34]Zhang X,Zhu C,Wu Z.Solvability for a coupled system of fractional differential equations with impulses at resonance.Boundary Value Problems,2013,2013:80

    [35]Liu Y,Ahmad B.A study of impulsive multiterm fractional differential equations with single and multiple base points and applications.Scientific World J,2014,2014:Article ID 194346

    [36]Liu Y,Nieto J J,Otero-Zarraquinos O.Existence results for a coupled system of nonlinear singular fractional differential equations with impulse effects.Math Problems Engin,2013,2013:Article ID 498781

    [37]Ahmad B,Nieto J J.Existence of solutions for impulsive anti-periodic boundary value problems of fractional order.Taiwan J Math,2011,15:981–993

    [38]Stamova I,Stamov G.Stability analysis of impulsive functional systems of fractional order.Commun Nonlinear Sci Numer Simul,2014,19:702–709

    ?July 25,2014.Supported by the Natural Science Foundation of Guangdong Province (S2011010001900)and the Guangdong Higher Education Foundation for High-Level Talents.

    国产大屁股一区二区在线视频| 午夜福利视频1000在线观看| 最好的美女福利视频网| 中文亚洲av片在线观看爽| 欧美激情久久久久久爽电影| 久久久久国产精品人妻aⅴ院| 在线天堂最新版资源| 成人av一区二区三区在线看| 亚洲人成网站高清观看| 直男gayav资源| 精品久久久久久久末码| 久久午夜福利片| 99精品久久久久人妻精品| 99久久成人亚洲精品观看| 亚洲人成伊人成综合网2020| 成人二区视频| 欧美成人免费av一区二区三区| 久久精品国产鲁丝片午夜精品 | 亚洲欧美精品综合久久99| 如何舔出高潮| 欧美日韩亚洲国产一区二区在线观看| 日韩大尺度精品在线看网址| 亚洲成av人片在线播放无| 婷婷精品国产亚洲av| 91午夜精品亚洲一区二区三区 | 直男gayav资源| 国产色婷婷99| 看免费成人av毛片| 亚洲欧美日韩东京热| 国产精品98久久久久久宅男小说| 免费一级毛片在线播放高清视频| 国产色爽女视频免费观看| 午夜日韩欧美国产| 人妻少妇偷人精品九色| 国产成人影院久久av| 69人妻影院| 国产国拍精品亚洲av在线观看| 国产精品久久久久久精品电影| 精品久久久久久,| 日韩欧美国产一区二区入口| 九九在线视频观看精品| 国产精品一区二区三区四区免费观看 | 亚洲av免费高清在线观看| 高清在线国产一区| 国内精品美女久久久久久| 美女高潮喷水抽搐中文字幕| 国产人妻一区二区三区在| 中文字幕久久专区| 日韩欧美国产一区二区入口| 91在线精品国自产拍蜜月| 免费看日本二区| 特级一级黄色大片| 精品国产三级普通话版| 嫁个100分男人电影在线观看| 亚洲图色成人| 国产一区二区三区视频了| 亚洲最大成人av| 午夜激情欧美在线| 国产免费男女视频| 国产主播在线观看一区二区| 春色校园在线视频观看| 免费在线观看日本一区| 欧美又色又爽又黄视频| 69av精品久久久久久| 如何舔出高潮| 成人国产综合亚洲| 丰满的人妻完整版| 男人和女人高潮做爰伦理| 久久久久久久久久久丰满 | 五月玫瑰六月丁香| 久99久视频精品免费| 国产欧美日韩精品一区二区| 国产三级在线视频| 狠狠狠狠99中文字幕| 老司机福利观看| 久久精品国产亚洲av涩爱 | 国内少妇人妻偷人精品xxx网站| 精品久久国产蜜桃| 亚洲一区高清亚洲精品| 国产乱人伦免费视频| 国产精品久久久久久精品电影| 亚洲va在线va天堂va国产| 国产综合懂色| 久久久久久九九精品二区国产| 国产欧美日韩精品亚洲av| 精品一区二区三区视频在线| 日日摸夜夜添夜夜添av毛片 | 在线播放国产精品三级| 成人av一区二区三区在线看| 日本免费a在线| 久久草成人影院| 日韩,欧美,国产一区二区三区 | 男女那种视频在线观看| 国内少妇人妻偷人精品xxx网站| 成人特级av手机在线观看| 很黄的视频免费| 天堂av国产一区二区熟女人妻| 亚洲专区中文字幕在线| 亚洲av第一区精品v没综合| 亚洲av电影不卡..在线观看| 中文亚洲av片在线观看爽| 天堂动漫精品| 日韩 亚洲 欧美在线| 亚洲精华国产精华液的使用体验 | 国内精品美女久久久久久| 亚洲精品粉嫩美女一区| 欧美色欧美亚洲另类二区| 韩国av一区二区三区四区| 日韩欧美精品v在线| 成人午夜高清在线视频| 黄色丝袜av网址大全| 中文亚洲av片在线观看爽| 免费高清视频大片| 欧美色欧美亚洲另类二区| 欧美绝顶高潮抽搐喷水| 久久精品国产清高在天天线| 久99久视频精品免费| 中文资源天堂在线| 久久久久久久久大av| 99久久精品国产国产毛片| 国产欧美日韩精品一区二区| 国产不卡一卡二| 在线观看午夜福利视频| 小蜜桃在线观看免费完整版高清| 久久精品久久久久久噜噜老黄 | 精品人妻偷拍中文字幕| 日本爱情动作片www.在线观看 | 桃红色精品国产亚洲av| 国产精品久久久久久久电影| 真实男女啪啪啪动态图| 色综合婷婷激情| 两性午夜刺激爽爽歪歪视频在线观看| 国产毛片a区久久久久| 老司机深夜福利视频在线观看| 韩国av一区二区三区四区| 国产精品野战在线观看| 精品久久久久久久久久免费视频| 校园春色视频在线观看| 亚洲久久久久久中文字幕| 久久久精品大字幕| 国产在视频线在精品| 成人精品一区二区免费| 中文资源天堂在线| 国内精品美女久久久久久| 变态另类丝袜制服| 老司机福利观看| 在线天堂最新版资源| 美女高潮喷水抽搐中文字幕| 久久草成人影院| 精品不卡国产一区二区三区| 床上黄色一级片| 久久久久性生活片| 精品不卡国产一区二区三区| 综合色av麻豆| 特大巨黑吊av在线直播| 国产免费一级a男人的天堂| 狂野欧美激情性xxxx在线观看| 国产精品伦人一区二区| 国产精品久久久久久久电影| 欧美日韩乱码在线| 联通29元200g的流量卡| 少妇丰满av| 毛片女人毛片| 在线观看舔阴道视频| 精品国产三级普通话版| 可以在线观看的亚洲视频| 国产伦在线观看视频一区| 久久久成人免费电影| 久9热在线精品视频| 91狼人影院| 日韩精品有码人妻一区| 国产成人aa在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久久大av| 国产精品美女特级片免费视频播放器| 亚洲经典国产精华液单| 黄色视频,在线免费观看| 亚洲avbb在线观看| 国产精品久久久久久亚洲av鲁大| 毛片一级片免费看久久久久 | 日本黄大片高清| 99九九线精品视频在线观看视频| 亚洲综合色惰| 69人妻影院| 久久久久久久亚洲中文字幕| 免费看a级黄色片| 中亚洲国语对白在线视频| 人妻丰满熟妇av一区二区三区| 国产av在哪里看| 成人无遮挡网站| 国产精品野战在线观看| 国产私拍福利视频在线观看| 免费看av在线观看网站| 国产精品综合久久久久久久免费| 最近最新免费中文字幕在线| 在线国产一区二区在线| 日本 av在线| 精品一区二区三区视频在线| 欧美+日韩+精品| 日日撸夜夜添| 91麻豆av在线| 91午夜精品亚洲一区二区三区 | 亚洲成人久久性| 欧美日韩乱码在线| 亚洲av中文字字幕乱码综合| 亚洲一级一片aⅴ在线观看| 国产日本99.免费观看| 国语自产精品视频在线第100页| 亚洲熟妇熟女久久| 久久久久久久久久久丰满 | 久久午夜亚洲精品久久| 网址你懂的国产日韩在线| 麻豆国产97在线/欧美| 色av中文字幕| 国内少妇人妻偷人精品xxx网站| 亚洲aⅴ乱码一区二区在线播放| 天堂网av新在线| 精品人妻视频免费看| 亚洲欧美清纯卡通| 国产毛片a区久久久久| 少妇的逼好多水| 婷婷丁香在线五月| 欧美又色又爽又黄视频| 久久久国产成人免费| 天天一区二区日本电影三级| 琪琪午夜伦伦电影理论片6080| 亚洲久久久久久中文字幕| 大型黄色视频在线免费观看| a在线观看视频网站| 搡老熟女国产l中国老女人| 色吧在线观看| 一卡2卡三卡四卡精品乱码亚洲| 三级国产精品欧美在线观看| 性插视频无遮挡在线免费观看| 日韩一区二区视频免费看| 热99在线观看视频| 免费看av在线观看网站| 久久欧美精品欧美久久欧美| 精品一区二区三区视频在线| 一区二区三区激情视频| 亚洲国产精品成人综合色| av专区在线播放| 久久亚洲精品不卡| 免费看av在线观看网站| 午夜福利在线在线| 可以在线观看的亚洲视频| 在线观看66精品国产| 亚洲狠狠婷婷综合久久图片| 中文在线观看免费www的网站| 国产av在哪里看| 成年人黄色毛片网站| 又黄又爽又免费观看的视频| 嫩草影院精品99| av在线老鸭窝| 少妇被粗大猛烈的视频| 又爽又黄无遮挡网站| 12—13女人毛片做爰片一| 亚洲精品影视一区二区三区av| netflix在线观看网站| 国产精品免费一区二区三区在线| 中文字幕免费在线视频6| 欧美又色又爽又黄视频| 可以在线观看的亚洲视频| 国产老妇女一区| 偷拍熟女少妇极品色| 人妻丰满熟妇av一区二区三区| 精品国产三级普通话版| 精品日产1卡2卡| 日韩一本色道免费dvd| 俺也久久电影网| 不卡视频在线观看欧美| 深爱激情五月婷婷| 欧美高清成人免费视频www| 国产蜜桃级精品一区二区三区| 嫁个100分男人电影在线观看| 老女人水多毛片| 黄色配什么色好看| 久久久久久久久中文| 网址你懂的国产日韩在线| 色综合色国产| 22中文网久久字幕| 少妇人妻一区二区三区视频| 国产精品女同一区二区软件 | 又紧又爽又黄一区二区| 少妇被粗大猛烈的视频| 午夜福利在线观看吧| 久久久精品大字幕| 日韩欧美三级三区| 欧美高清性xxxxhd video| av在线观看视频网站免费| 久9热在线精品视频| 精品不卡国产一区二区三区| 中亚洲国语对白在线视频| 免费看光身美女| 噜噜噜噜噜久久久久久91| 国产成人a区在线观看| 国产不卡一卡二| 麻豆av噜噜一区二区三区| 亚洲专区中文字幕在线| 久久久国产成人免费| 全区人妻精品视频| 久久久久九九精品影院| 中文亚洲av片在线观看爽| 亚洲黑人精品在线| 国内精品一区二区在线观看| 制服丝袜大香蕉在线| a级一级毛片免费在线观看| 久久这里只有精品中国| 别揉我奶头~嗯~啊~动态视频| 亚洲精品久久国产高清桃花| 99riav亚洲国产免费| 尤物成人国产欧美一区二区三区| 国产免费一级a男人的天堂| 国产精品精品国产色婷婷| xxxwww97欧美| 国产毛片a区久久久久| 热99在线观看视频| 中亚洲国语对白在线视频| 日韩欧美国产在线观看| 久久精品人妻少妇| bbb黄色大片| 伦理电影大哥的女人| 亚洲美女视频黄频| 在线免费观看不下载黄p国产 | 嫩草影院新地址| 韩国av一区二区三区四区| 色综合站精品国产| 国产精品人妻久久久久久| 少妇的逼好多水| 亚洲在线观看片| 国产精品,欧美在线| 亚洲男人的天堂狠狠| 亚洲精品成人久久久久久| 在线看三级毛片| 成人国产一区最新在线观看| x7x7x7水蜜桃| av天堂在线播放| 国产精品美女特级片免费视频播放器| 日韩一本色道免费dvd| 免费av毛片视频| bbb黄色大片| 国产高清视频在线播放一区| 别揉我奶头~嗯~啊~动态视频| 不卡一级毛片| 成人性生交大片免费视频hd| 亚洲 国产 在线| 简卡轻食公司| 男女啪啪激烈高潮av片| 别揉我奶头~嗯~啊~动态视频| 亚洲中文字幕一区二区三区有码在线看| 久久久久九九精品影院| 免费观看在线日韩| 好男人在线观看高清免费视频| 日本-黄色视频高清免费观看| 日韩欧美精品免费久久| 国产精品久久久久久久电影| 亚洲av免费高清在线观看| 亚洲电影在线观看av| 久久久久九九精品影院| 精品一区二区三区人妻视频| 简卡轻食公司| 神马国产精品三级电影在线观看| 99热这里只有是精品在线观看| 日韩欧美国产一区二区入口| 美女高潮的动态| 亚洲乱码一区二区免费版| 很黄的视频免费| av在线蜜桃| 男插女下体视频免费在线播放| 国产精品1区2区在线观看.| 丝袜美腿在线中文| 国产精品98久久久久久宅男小说| 最近最新免费中文字幕在线| 夜夜看夜夜爽夜夜摸| 男插女下体视频免费在线播放| 在线天堂最新版资源| 在线观看午夜福利视频| 999久久久精品免费观看国产| 免费观看的影片在线观看| 亚洲中文字幕日韩| 久久久色成人| 又粗又爽又猛毛片免费看| 久99久视频精品免费| 在线观看av片永久免费下载| 国产视频内射| 3wmmmm亚洲av在线观看| 欧美国产日韩亚洲一区| 97超视频在线观看视频| 可以在线观看毛片的网站| 少妇的逼好多水| a级一级毛片免费在线观看| 丰满乱子伦码专区| 欧美+日韩+精品| 最近中文字幕高清免费大全6 | 亚洲最大成人av| 欧美日本视频| av视频在线观看入口| 白带黄色成豆腐渣| 午夜老司机福利剧场| 成人特级黄色片久久久久久久| 俺也久久电影网| 成年女人看的毛片在线观看| 亚洲四区av| 成人av一区二区三区在线看| 久久久久性生活片| 黄片wwwwww| 久久精品国产亚洲av天美| 久久精品国产清高在天天线| 99热这里只有是精品50| 亚洲精品粉嫩美女一区| 久久久久免费精品人妻一区二区| av视频在线观看入口| h日本视频在线播放| 国模一区二区三区四区视频| 精品一区二区三区视频在线观看免费| 国产人妻一区二区三区在| 嫩草影视91久久| 亚洲欧美激情综合另类| 少妇被粗大猛烈的视频| 国产aⅴ精品一区二区三区波| 97超视频在线观看视频| 真人做人爱边吃奶动态| 国内毛片毛片毛片毛片毛片| 黄色一级大片看看| 嫁个100分男人电影在线观看| 精品一区二区三区人妻视频| 一级黄片播放器| 国产精品无大码| 校园春色视频在线观看| 久久久久久久久大av| 黄色欧美视频在线观看| a级毛片免费高清观看在线播放| 91狼人影院| 91久久精品国产一区二区成人| 日本成人三级电影网站| 国产欧美日韩一区二区精品| 亚洲真实伦在线观看| 又爽又黄无遮挡网站| 最新中文字幕久久久久| 十八禁国产超污无遮挡网站| 尾随美女入室| 亚洲三级黄色毛片| 午夜影院日韩av| 一本一本综合久久| 变态另类成人亚洲欧美熟女| 久久久精品欧美日韩精品| 日韩大尺度精品在线看网址| 免费av毛片视频| 国产精品久久久久久久久免| 国产精品久久久久久亚洲av鲁大| 在现免费观看毛片| 在线天堂最新版资源| 国产高清有码在线观看视频| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 国产高清三级在线| 男人舔女人下体高潮全视频| xxxwww97欧美| 亚洲成人久久性| 春色校园在线视频观看| 国产精品98久久久久久宅男小说| 日本爱情动作片www.在线观看 | 国产精品人妻久久久久久| 一个人免费在线观看电影| 欧美不卡视频在线免费观看| 男插女下体视频免费在线播放| 久久热精品热| 国产精品伦人一区二区| 丰满人妻一区二区三区视频av| 99久久精品一区二区三区| 深爱激情五月婷婷| 小说图片视频综合网站| 午夜激情欧美在线| 一区福利在线观看| 联通29元200g的流量卡| 校园人妻丝袜中文字幕| 在线观看免费视频日本深夜| 亚洲成人久久爱视频| 深夜a级毛片| 又爽又黄a免费视频| 亚洲精品粉嫩美女一区| 看免费成人av毛片| 免费观看的影片在线观看| 久久欧美精品欧美久久欧美| 九九爱精品视频在线观看| 亚洲av成人av| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美清纯卡通| 免费看a级黄色片| 久久精品国产亚洲av天美| 国产av不卡久久| 伦精品一区二区三区| 毛片一级片免费看久久久久 | 在线观看午夜福利视频| 又粗又爽又猛毛片免费看| 老司机福利观看| 亚洲自偷自拍三级| 韩国av一区二区三区四区| 色精品久久人妻99蜜桃| 91午夜精品亚洲一区二区三区 | 亚洲av成人av| 免费看光身美女| 99久久精品国产国产毛片| 国产av在哪里看| 在线播放国产精品三级| 亚洲无线在线观看| 婷婷精品国产亚洲av| 能在线免费观看的黄片| 在线观看一区二区三区| 男女那种视频在线观看| 在线观看美女被高潮喷水网站| 国产视频一区二区在线看| 在线免费观看不下载黄p国产 | 成人一区二区视频在线观看| 日日干狠狠操夜夜爽| 身体一侧抽搐| 亚洲欧美精品综合久久99| 国产精品人妻久久久影院| 国产伦在线观看视频一区| 高清毛片免费观看视频网站| 国产av在哪里看| 天堂影院成人在线观看| 九九热线精品视视频播放| 看十八女毛片水多多多| 狂野欧美白嫩少妇大欣赏| 国产主播在线观看一区二区| 精品久久久久久久人妻蜜臀av| 99久久无色码亚洲精品果冻| 22中文网久久字幕| 亚洲美女搞黄在线观看 | 国产美女午夜福利| 少妇高潮的动态图| 给我免费播放毛片高清在线观看| 亚洲精品一区av在线观看| 亚洲图色成人| or卡值多少钱| 熟女电影av网| 免费看av在线观看网站| 国产高清视频在线观看网站| 亚洲最大成人中文| 简卡轻食公司| 婷婷六月久久综合丁香| 18+在线观看网站| 最后的刺客免费高清国语| av在线观看视频网站免费| 国产大屁股一区二区在线视频| 欧美性猛交╳xxx乱大交人| 亚洲人成网站在线播放欧美日韩| 夜夜夜夜夜久久久久| 亚州av有码| 熟妇人妻久久中文字幕3abv| 久久国内精品自在自线图片| 一级a爱片免费观看的视频| 精品久久久久久久久久免费视频| 日本爱情动作片www.在线观看 | 国产成人福利小说| 一个人看的www免费观看视频| 一进一出抽搐动态| 一区福利在线观看| 在线国产一区二区在线| a在线观看视频网站| 亚洲自拍偷在线| 人妻丰满熟妇av一区二区三区| av视频在线观看入口| 22中文网久久字幕| 久久精品国产鲁丝片午夜精品 | 变态另类成人亚洲欧美熟女| xxxwww97欧美| 亚洲自偷自拍三级| 少妇高潮的动态图| 一级黄片播放器| 97超视频在线观看视频| 亚洲欧美日韩东京热| 人妻少妇偷人精品九色| 国产蜜桃级精品一区二区三区| 中文资源天堂在线| 男人和女人高潮做爰伦理| 男人舔女人下体高潮全视频| 少妇的逼水好多| 俺也久久电影网| 搡老岳熟女国产| 天堂av国产一区二区熟女人妻| videossex国产| 午夜免费成人在线视频| 亚洲av成人精品一区久久| 69av精品久久久久久| 久久欧美精品欧美久久欧美| 男女那种视频在线观看| 亚洲欧美日韩卡通动漫| 此物有八面人人有两片| 天堂影院成人在线观看| 校园人妻丝袜中文字幕| 国产乱人视频| 级片在线观看| 亚洲av第一区精品v没综合| 精品人妻偷拍中文字幕| 国产大屁股一区二区在线视频| 搡老妇女老女人老熟妇| 久久热精品热| 观看免费一级毛片| 女人十人毛片免费观看3o分钟| 国产精品久久久久久亚洲av鲁大| 国产色爽女视频免费观看| 亚洲av熟女| 久久精品人妻少妇| 日本一本二区三区精品| 免费人成视频x8x8入口观看| 老熟妇仑乱视频hdxx| av黄色大香蕉| 免费观看人在逋| 精品人妻偷拍中文字幕| av在线老鸭窝| 啪啪无遮挡十八禁网站| 国产三级在线视频| 成人欧美大片|