唐雪嬌, 肖 驊, 張 磊, 魏 瀟, 雷建明, 郭靜文
(重慶醫(yī)科大學(xué)附屬第一醫(yī)院心血管內(nèi)科, 重慶 400016)
?
芳香烴受體在體外高糖環(huán)境誘導(dǎo)心肌肥大過程中的表達(dá)*
唐雪嬌, 肖 驊△, 張 磊, 魏 瀟, 雷建明, 郭靜文
(重慶醫(yī)科大學(xué)附屬第一醫(yī)院心血管內(nèi)科, 重慶 400016)
目的: 觀察高糖環(huán)境誘導(dǎo)心肌細(xì)胞肥大過程中芳香烴受體(AhR)的表達(dá)情況,并探討其可能的作用機(jī)制。方法: 以體外培養(yǎng)的大鼠心肌細(xì)胞H9c2為研究對(duì)象,實(shí)驗(yàn)分為正常糖濃度組、高糖組、DMSO組和白藜蘆醇(AhR拮抗劑)組。免疫熒光染色觀察AhR的表達(dá)情況,羅丹明標(biāo)記的鬼筆環(huán)肽染色細(xì)胞骨架并計(jì)算細(xì)胞表面積,DCFH-DA法檢測(cè)細(xì)胞內(nèi)活性氧簇(ROS)的生成水平,實(shí)時(shí)熒光定量PCR及Western blot法檢測(cè)AhR、CYP1A1、心鈉素(ANP)和腦鈉素(BNP)的表達(dá)情況。結(jié)果: 正常糖濃度環(huán)境下,AhR的表達(dá)主要定位于細(xì)胞質(zhì),高糖刺激時(shí)轉(zhuǎn)入細(xì)胞核內(nèi)。高糖刺激可促使心肌細(xì)胞肥大、心肌細(xì)胞內(nèi)ROS生成增加,白藜蘆醇阻滯AhR后,心肌肥大得到明顯改善,同時(shí)ROS生成水平明顯減少。與正常糖濃度組及白藜蘆醇組相比,高糖組的AhR、CYP1A1、ANP和BNP mRNA及蛋白表達(dá)水平明顯升高,上述指標(biāo)高糖組與DMSO組相比差異無統(tǒng)計(jì)學(xué)顯著性,而白藜蘆醇組明顯低于DMSO組。結(jié)論: 在高糖誘導(dǎo)的心肌肥大過程,心肌細(xì)胞的AhR表達(dá)增加可能參與維持正常糖代謝過程;高糖環(huán)境可激活A(yù)hR轉(zhuǎn)入細(xì)胞核內(nèi),上調(diào)CYP1A1的表達(dá),并促進(jìn)ROS的生成,這可能是高糖誘導(dǎo)心肌肥大的重要機(jī)制之一。
高糖; 心肌肥大; 芳香烴受體
糖尿病是全球發(fā)病率較高的慢性疾病之一,其中多數(shù)為2型糖尿?。?型糖尿病主要在成人中發(fā)病,但近年在青少年兒童中發(fā)病率持續(xù)上升,已占青少年兒童糖尿病發(fā)病率的50%[1]。糖尿病與心力衰竭、心絞痛、心肌梗塞的發(fā)病密切相關(guān),且心血管疾病是糖尿病患者最常見的死因之一[2-3]。高血糖是糖尿病患者最突出的表現(xiàn),能夠直接損傷心肌細(xì)胞,引起心肌肥大[4]。目前糖尿病引起心肌肥大的發(fā)病機(jī)制尚未完全清楚。芳香烴受體(aryl hydrocarbon receptor,AhR)是一種配體激活的轉(zhuǎn)錄因子,可調(diào)節(jié)細(xì)胞色素酶P450(cytochrome P450,CYP)的表達(dá),與胰島素抵抗和糖耐量異常發(fā)生密切相關(guān)[5-6]。研究表明,AhR/CYP1A1通路在外界毒物刺激引起心肌肥大的病理生理過程中發(fā)揮重要作用[7]。但在心肌細(xì)胞中,關(guān)于AhR在高糖環(huán)境誘導(dǎo)心肌肥大中的表達(dá)研究,尚未見報(bào)道。本研究觀察高糖環(huán)境對(duì)體外培養(yǎng)的H9c2細(xì)胞內(nèi)AhR的影響,為防治糖尿病心肌病提供理論依據(jù)。
1 材料
大鼠心肌細(xì)胞H9c2細(xì)胞株購自中國科學(xué)院上海生命科學(xué)研究院。低糖DMEM培養(yǎng)基和高糖DMEM培養(yǎng)基(Corning);胎牛血清(PAN Biotech);AhR阻滯劑白藜蘆醇(resveratrol, RES; Sigma);細(xì)胞總RNA提取試劑盒、RNA逆轉(zhuǎn)錄試劑盒、實(shí)時(shí)熒光定量PCR試劑盒以及心鈉素(atrial natriuretic peptide,ANP)和腦鈉素(brain natriuretic peptide,BNP)的引物(TaKaRa);GAPDH、AhR和CYP1A1的引物(上海生物工程有限公司);DCFH-DA試劑盒(上海碧云天生物技術(shù)研究所);羅丹明標(biāo)記的鬼筆環(huán)肽(上海翊圣生物科技有限公司);抗AhR抗體、CYP1A1抗體、ANP抗體(Abcam);抗BNP抗體(萬類生物科技有限公司);抗GAPDH抗體(CST)。
2 細(xì)胞培養(yǎng)及分組
H9C2細(xì)胞于10%胎牛血清的低糖DMEM(5.5 mmol/L葡萄糖)中培養(yǎng),細(xì)胞生長至75%~85%培養(yǎng)面積后用0.25%胰蛋白酶(含0.02% ETDA)消化,1∶2傳代,8~9代細(xì)胞用于實(shí)驗(yàn)。取對(duì)數(shù)生長、密度為1×108/L的細(xì)胞培養(yǎng)24 h,待細(xì)胞成融合狀態(tài)換用無血清低糖DMEM培養(yǎng)24 h,使細(xì)胞同步化,再干預(yù)細(xì)胞。實(shí)驗(yàn)分組:正常糖濃度(normal glucose,NG)組用低糖DMEM培養(yǎng)細(xì)胞;高糖(high glucose,HG)組用高糖DMEM(25 mmol/L葡萄糖)干預(yù)細(xì)胞48 h[4];DMSO組用0.02% DMSO和高糖DMEM培養(yǎng)細(xì)胞48 h;白藜蘆醇組用含20 μmol/L白藜蘆醇和高糖DMEM處理細(xì)胞48 h。
3 主要方法
3.1 細(xì)胞內(nèi)AhR的表達(dá)情況 通過熒光染色觀察AhR表達(dá)情況。細(xì)胞爬片,4%多聚甲醛固定細(xì)胞,0.1% Triton X-100破膜,山羊血清封閉,AhR I 抗(1∶50)4 ℃過夜,DyLight 649熒光標(biāo)記的IgG(1∶400)37 ℃孵育2 h,DAPI染核5 min,熒光顯微鏡下觀察。
3.2 細(xì)胞表面積檢測(cè) 羅丹明標(biāo)記的鬼筆環(huán)肽標(biāo)記細(xì)胞骨架并計(jì)算細(xì)胞表面積。細(xì)胞爬片,4%多聚甲醛固定細(xì)胞,0.1% Triton X-100透化,山羊血清封閉,鬼筆環(huán)肽(1∶200)室溫孵育1 h,DAPI染核5 min,熒光顯微鏡觀察并攝片。每視野取10~15個(gè)細(xì)胞,Image-Pro Plus軟件計(jì)算細(xì)胞平均面積。
3.3 細(xì)胞內(nèi)活性氧簇(reactive oxygen species,ROS)的檢測(cè) DCFH-DA法檢測(cè)ROS含量。1∶1 000稀釋的 DCFH-DA于37 ℃孵育細(xì)胞30 min,熒光顯微鏡觀察并攝片。Image-Pro Plus軟件進(jìn)行分析,平均熒光強(qiáng)度表示ROS的相對(duì)含量。
3.4 AhR、CYP1A1及心肌肥大標(biāo)志物ANP、BNP的mRNA檢測(cè) 熒光定量PCR檢測(cè)mRNA表達(dá)情況。參照實(shí)時(shí)熒光定量PCR試劑盒操作說明進(jìn)行。AhR的上游引物序列為5’-CGCTAACGGATGAAGAAGGA-3’,下游引物序列為5’-GGAGAGAAAGGGCTGGAGAT-3’;CYP1A1的上游引物序列為5’-TGAGACAGTATTGTGTAGTCCAAGT-3’,下游引物序列為5’-GAGACCAAGAGCTGGTGTAGC-3’;ANP的上游引物序列為5’-CTGGGGAAGTCAACCCGTCT-3’,下游引物序列為5’-TCTGGGCTCCAATCCTGTCA-3’;BNP的上游引物序列為5’-AGCCAGTCTCCAGAACAATCCA-3’,下游引物序列為5’-TGTGCCATCTTGGAATTTCGA-3’。以GAPDH為內(nèi)參照。反應(yīng)體系10 μL,PCR擴(kuò)增條件為95 ℃ 30 s;95 ℃ 5 s、60 ℃ (AhR、CYP1A1、BNP)/62 ℃ (ANP)30 s、40個(gè)循環(huán);65 ℃ 緩慢升高至95 ℃,每5 s增加0.5 ℃,分析熔解曲線。擴(kuò)增得到的Ct值使用2-ΔΔCt法計(jì)算目的mRNA的相對(duì)表達(dá)量。
3.5 AhR、CYP1A1及心肌肥大標(biāo)志物ANP、BNP的蛋白表達(dá)水平檢測(cè) 采用Western blot法檢測(cè)蛋白表達(dá)情況。0.25%胰蛋白酶消化,離心收集細(xì)胞。RIPA蛋白裂解液裂解細(xì)胞收集蛋白,BCA法測(cè)定樣品蛋白濃度。SDS-PAGE分離蛋白后電轉(zhuǎn)至PVDF膜,5%脫脂奶粉室溫封閉1 h,I抗(AhR 1∶2 000,CYP1A1 1∶100,ANP 1∶5 000,BNP 1∶1 000)4 ℃孵育過夜,IgG II抗(1∶7 500)室溫孵育1 h,ECL法顯色。以GAPDH作為內(nèi)參照。電泳條帶使用Quantity One系統(tǒng)進(jìn)行分析,以目的條帶灰度值與GAPDH條帶灰度值之比表示目的蛋白的相對(duì)表達(dá)量。
4 統(tǒng)計(jì)學(xué)處理
采用SPSS 20.0統(tǒng)計(jì)軟件分析數(shù)據(jù)。計(jì)量資料采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,多組間比較采用單因素方差分析(one-way ANOVA),方差齊則使用Bonferroni法檢驗(yàn),若方差不齊則采用Dunnett’s T3法檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 AhR在心肌細(xì)胞內(nèi)的表達(dá)情況
如圖1所示,在NG組,AhR主要分布在細(xì)胞質(zhì),少量表達(dá)于細(xì)胞核內(nèi);在HG組,AhR在細(xì)胞核和細(xì)胞質(zhì)均有表達(dá)。這提示高糖環(huán)境刺激心肌細(xì)胞,可使AhR從細(xì)胞質(zhì)轉(zhuǎn)入細(xì)胞核內(nèi),呈激活狀態(tài)。
Figure 1.High glucose induced AhR nuclear localization (×400). AhR was visualized by DyLight 649 (red). The nuclei of the cardiomyocytes were visualized by DAPI staining (blue).
圖1 高糖誘導(dǎo)AhR轉(zhuǎn)入細(xì)胞核內(nèi)
2 各組細(xì)胞表面積比較
羅丹明標(biāo)記的鬼筆環(huán)肽染細(xì)胞骨架熒光結(jié)果顯示,HG組的細(xì)胞表面積較NG組和RES組顯著增大(P<0.01),而與DMSO組比較差異無統(tǒng)計(jì)學(xué)顯著性;RES組與DMSO組相比,細(xì)胞表面積明顯下降(P<0.01),見圖2。這表明白藜蘆醇阻滯AhR可改善高糖環(huán)境引起的心肌肥大,AhR可能參與高糖導(dǎo)致的心肌肥大過程。
Figure 2.Comparison of the cell surface area among groups. Mean±SD.n=3.**P<0.01vsNG;##P<0.01vsRES.
圖2 各組細(xì)胞表面積比較
3 各組細(xì)胞內(nèi)ROS生成水平比較
心肌細(xì)胞內(nèi)的ROS生成水平在HG組明顯上升,與NG組和RES組對(duì)比差異有統(tǒng)計(jì)學(xué)顯著性(P<0.05);與DMSO組相比,RES組的ROS生成水平明顯下降(P<0.05),而HG組的ROS生成水平與DMSO組相比差異無統(tǒng)計(jì)學(xué)顯著性,見圖3。這些結(jié)果提示,高糖環(huán)境下,細(xì)胞內(nèi)ROS表達(dá)增加,加入白藜蘆醇阻滯AhR后,ROS生成水平下降,表明高糖環(huán)境下ROS生成可能受AhR調(diào)控。
Figure 3.Comparison of the ROS generation among groups. The cellular ROS production was assessed by 2′,7′-dichlorofluorescin diacetate (DCFH-DA) staining. Mean±SD.n=3.*P<0.05vsNG;#P<0.05vsRES.
圖3 各組ROS生成水平比較
4 各組細(xì)胞AhR、CYP1A1、ANP和BNP的mRNA相對(duì)表達(dá)水平比較
細(xì)胞分組干預(yù)后,HG組AhR和CYP1A1的mRNA表達(dá)較NG組和RES組均明顯增多(P<0.01),而與DMSO組比較差異無統(tǒng)計(jì)學(xué)顯著性;與DMSO組對(duì)比,RES組AhR和CYP1A1的mRNA表達(dá)明顯減少(P<0.01)。心肌肥大標(biāo)志物ANP和BNP的mRNA在HG組表達(dá)水平明顯增高,與NG組及RES組相比差異有統(tǒng)計(jì)學(xué)顯著性(P<0.01);在RES組ANP和BNP的mRNA表達(dá)水平與DMSO組比較明顯下降(P<0.01);但在DMSO組與HG組之間ANP和BNP的mRNA的表達(dá)差異無統(tǒng)計(jì)學(xué)顯著性,見圖4。上述結(jié)果證實(shí)高糖環(huán)境可促使心肌肥大,而白藜蘆醇阻滯AhR可保護(hù)心肌細(xì)胞,抑制心肌細(xì)胞肥大,提示高糖誘導(dǎo)心肌肥大過程可能通過激活A(yù)hR調(diào)控CYP1A1,促使心肌肥大標(biāo)志物表達(dá)。
5 各組細(xì)胞AhR、CYP1A1、ANP和BNP蛋白表達(dá)水平比較
與NG組和RES組相比,HG組的AhR和CYP1A1蛋白表達(dá)水平明顯升高(P<0.05);上述指標(biāo)與DMSO組、HG組比較差異無統(tǒng)計(jì)學(xué)顯著性,但RES組的表達(dá)水平明顯低于DMSO組(P<0.01)。HG組心肌肥大標(biāo)志物ANP和BNP的蛋白表達(dá)水平較NG組、RES組明顯增高(P<0.05),但與DMSO組比較差異無統(tǒng)計(jì)學(xué)顯著性;RES組的ANP和BNP蛋白表達(dá)水平明顯低于DMSO組(P<0.05),見圖5。這進(jìn)一步證實(shí),高糖可激活A(yù)hR,誘導(dǎo)CYP1A1表達(dá)上升,調(diào)控心肌肥大標(biāo)志物ANP和BNP的表達(dá),參與心肌肥大過程。
Figure 4.Comparison of the relative mRNA expression of AhR, CYP1A1, ANP and BNP among groups. Mean±SD.n=8~9.**P<0.01vsNG;##P<0.01vsRES.
圖4 各組AhR、CYP1A1、ANP和BNP 的mRNA相對(duì)表達(dá)水平比較
糖尿病是一種全球流行性慢性疾病,發(fā)病率逐年增高[8]。盡管糖尿病的治療手段一直在進(jìn)步,但糖尿病引起的心血管疾病發(fā)病率和死亡率仍然較高[2]。高血糖是糖尿病的主要特征,可損傷心肌細(xì)胞,影響心肌功能,誘發(fā)糖尿病心肌病,最終導(dǎo)致心力衰竭、心律失常和心肌梗塞[9]。心肌肥大是糖尿病心肌病的主要表現(xiàn)之一,發(fā)病機(jī)制較為復(fù)雜,目前尚無特效治療藥物。
新近研究顯示,血清中AhR配體的活性與2型糖尿病發(fā)病密切相關(guān),可能是2型糖尿病發(fā)病的獨(dú)立危險(xiǎn)因素,其潛在的機(jī)制是胰島素抵抗[5]。多項(xiàng)研究[6,10-11]發(fā)現(xiàn),不管AhR基因缺失還是AhR被激活,都將導(dǎo)致糖脂代謝失衡,提示AhR在機(jī)體調(diào)節(jié)糖脂代謝過程中起關(guān)鍵作用。還有研究[7,12]表明,AhR在外界毒物刺激心肌細(xì)胞時(shí)介導(dǎo)心肌肥大的病理生理過程,在機(jī)體適應(yīng)和感受環(huán)境刺激方面發(fā)揮重要作用。本研究觀察到,高糖環(huán)境可激活心肌細(xì)胞內(nèi)的AhR表達(dá),促使心肌肥大。因此,AhR既可能是糖尿病發(fā)病的關(guān)鍵環(huán)節(jié),又可能是糖尿病導(dǎo)致心肌肥厚的重要介導(dǎo)者。本研究結(jié)果顯示,AhR一般在細(xì)胞質(zhì)豐富表達(dá);當(dāng)高糖環(huán)境激活A(yù)hR時(shí),AhR從細(xì)胞質(zhì)轉(zhuǎn)移到細(xì)胞核內(nèi),發(fā)生位置改變。這與高糖刺激人血管內(nèi)皮細(xì)胞的研究結(jié)果一致[13];Terashima等[14]在低糖刺激常規(guī)高糖培養(yǎng)的人肝癌細(xì)胞HepG2同樣觀察到這一現(xiàn)象。這提示AhR可能在心肌細(xì)胞調(diào)節(jié)糖代謝方面起重要作用。
CYP酶在體內(nèi)主要參與生物體內(nèi)的甾醇類激素合成等過程。AhR/CYP被認(rèn)為是心肌肥大的重要信號(hào)通路,AhR介導(dǎo)心肌肥大主要與CYP1A1的改變有關(guān)[7]。許多研究表明,心肌肥大時(shí)ANP和BNP表達(dá)明顯增高,ANP和BNP是評(píng)價(jià)心肌肥大的重要標(biāo)志物[15-16]。我們發(fā)現(xiàn),激活的AhR轉(zhuǎn)入細(xì)胞核內(nèi),上調(diào)CYP1A1表達(dá),誘發(fā)心肌細(xì)胞表面積增大伴心肌肥大標(biāo)志物ANP、BNP表達(dá)水平升高;而白藜蘆醇可阻滯AhR,下調(diào)CYP1A1表達(dá),從而改善心肌肥大[17]。Maayah等[12]在心肌肥大過程中發(fā)現(xiàn),CYP1A1表達(dá)增加的時(shí)間早于ANP、心肌營養(yǎng)素-1(CT-1)等心肌肥大標(biāo)志物,且心肌肥大標(biāo)志物ANP、CT-1等的表達(dá)強(qiáng)度與CYP1A1的表達(dá)水平呈正相關(guān)并呈濃度和時(shí)間依賴性,表明CYP1A1可能是心肌肥大標(biāo)志物產(chǎn)生的重要因素。這提示CYP1A1可能是AhR下游調(diào)控心肌肥大的重要環(huán)節(jié),可能成為糖尿病心肌肥厚治療的關(guān)鍵靶點(diǎn)。
Figure 5.Comparison of the relative protein expression of AhR, CYP1A1, ANP and BNP among groups. BNP underwent 2 cleavage events, one within the cell (BNP1, 36 kD) and the other after secretion into the blood (BNP2, 25 kD). Mean±SD.n=3.*P<0.05,**P<0.01vsNG;#P<0.05,##P<0.01vsRES.
圖5 各組AhR、CYP1A1、ANP和BNP蛋白相對(duì)表達(dá)水平比較
高糖環(huán)境下心肌細(xì)胞內(nèi)氧化應(yīng)激反應(yīng)增強(qiáng),ROS生成明顯增多,而過多的ROS可促進(jìn)心肌肥大過程[18-19]。我們發(fā)現(xiàn),細(xì)胞內(nèi)ROS生成水平與AhR、CYP1A1表達(dá)水平呈正相關(guān)。相關(guān)研究結(jié)果顯示,AhR基因缺失導(dǎo)致的心肌肥大與心肌細(xì)胞內(nèi)ROS生成增多密切相關(guān)[20]。另有研究證明,下調(diào)AhR表達(dá)時(shí),CYP1A1表達(dá)水平及ROS生成水平均下降;當(dāng)阻斷CYP1A1表達(dá)時(shí),ROS生成減少,提示ROS生成水平呈AhR依賴及受CYP1A1調(diào)控[21]。CYP1A1誘導(dǎo)ROS生成水平升高,可能通過激活核內(nèi)Nrf2等信號(hào)通路,促使心肌肥大[22-23]。這些研究提示CYP1A1誘導(dǎo)心肌細(xì)胞內(nèi)ROS生成水平增加,激活核內(nèi)其它信號(hào)通路,可能是心肌肥大的重要機(jī)制。
綜上所述,高糖環(huán)境激活心肌細(xì)胞內(nèi)AhR從細(xì)胞質(zhì)轉(zhuǎn)入細(xì)胞核內(nèi),誘導(dǎo)CYP1A1的表達(dá),進(jìn)而上調(diào)ROS生成水平,這可能是AhR參與糖尿病導(dǎo)致心肌肥厚的重要作用機(jī)制之一。本研究既豐富了糖尿病心肌病的發(fā)病機(jī)理,又為探索糖尿病心肌病治療藥物奠定理論基礎(chǔ)。
[1] Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association [J]. Circulation,2015,131(4):e29-e322.
[2] Fox CS, Golden SH, Anderson C, et al. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association [J]. Circulation,2015,132(8):691-718.
[3] Shah AD, Langenberg C, Rapsomaniki E, et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people [J]. Lancet Diabetes Endocrinol,2015,3(2):105-113.
[4] Bugyei-Twum A, Advani A, Advani SL, et al. High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy [J]. Cardiovasc Diabetol,2014,13:89.
[5] Roh E, Kwak SH, Jung HS, et al. Serum aryl hydrocarbon receptor ligand activity is associated with insulin resistance and resulting type 2 diabetes [J]. Acta Diabetol,2015,52(3):489-495.
[6] Zhang L, Hatzakis E, Nichols RG, et al. Metabolomics reveals that aryl hydrocarbon receptor activation by environmental chemicals induces systemic metabolic dysfunction in mice [J]. Environ Sci Technol,2015,49(13):8067-8077.
[7] Zordoky BN, El-Kadi AO. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and beta-naphthoflavone induce cellular hypertrophy in H9c2 cells by an aryl hydrocarbon receptor-dependant mechanism [J]. Toxicol In Vitro,2010,24(3):863-871.
[8] Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030 [J]. Diabetes Res Clin Pract,2011,94(3):311-321.
[9] Liu F, Song R, Feng Y, et al. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor alpha [J]. Circulation,2015,131(9):795-804.
[10]Baker NA, Shoemaker R, English V, et al. Effects of adipocyte aryl hydrocarbon receptor deficiency on PCB-induced disruption of glucose homeostasis in lean and obese mice [J]. Environ Health Perspect,2015,123(10):944-950.
[11]Biljes D, Hammerschmidt-Kamper C, Kadow S, et al. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice [J]. EXCLI J,2015,14:1153-1163.
[12]Maayah ZH, Ansari MA, El Gendy MA, et al. Development of cardiac hypertrophy by sunitinibinvivoandinvitrorat cardiomyocytes is influenced by the aryl hydrocarbon receptor signaling pathway [J]. Arch Toxicol,2014,88(3):725-738.
[13]Dabir P, Marinic TE, Krukovets I, et al. Aryl hydrocarbon receptor is activated by glucose and regulates the thrombospondin-1 gene promoter in endothelial cells [J]. Circ Res,2008,102(12):1558-1565.
[14]Terashima J, Habano W, Gamou T, et al. Induction of CYP1 family members under low-glucose conditions requires AhR expression and occurs through the nuclear translocation of AhR [J]. Drug Metab Pharmacokinet,2011,26(6):577-583.
[15]Liu CJ, Cheng YC, Lee KW, et al. Lipopolysaccharide induces cellular hypertrophy through calcineurin/NFAT-3 signaling pathway in H9c2 myocardiac cells [J]. Mol Cell Biochem,2008,313(1-2):167-178.
[16]Zordoky BN, Aboutabl ME, El-Kadi AO. Modulation of cytochrome P450 gene expression and arachidonic acid metabolism during isoproterenol-induced cardiac hypertrophy in rats [J]. Drug Metab Dispos,2008,36(11):2277-2286.
[17]Ciolino HP, Yeh GC. Inhibition of aryl hydrocarbon-induced cytochrome P-450 1A1 enzyme activity and CYP1A1 expression by resveratrol [J]. Mol Pharmacol,1999,56(4):760-767.
[18]Fiordaliso F, Bianchi R, Staszewsky L, et al. Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats [J]. J Mol Cell Cardiol,2004,37(5):959-968.
[19]刁雪紅, 申 鍔, 張躍力,等. 抑制Rac1通過降低磷酸化p38MAPK提高1型糖尿病小鼠的心臟功能 [J]. 中國病理生理雜志,2010,26(7):1285-1289.
[20]Lund AK, Peterson SL, Timmins GS, et al. Endothelin-1-mediated increase in reactive oxygen species and NADPH oxidase activity in hearts of aryl hydrocarbon receptor (AhR) null mice [J]. Toxicol Sci,2005,88(1):265-273.
[21]Kopf PG, Walker MK. 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases reactive oxygen species production in human endothelial cells via induction of cytochrome P4501A1 [J]. Toxicol Appl Pharmacol,2010,245(1):91-99.
[22]Tsuji G, Takahara M, Uchi H, et al. Identification of ketoconazole as an AhR-Nrf2 activator in cultured human keratinocytes: the basis of its anti-inflammatory effect [J]. J Invest Dermatol,2012,132(1):59-68.
[23]Li H, Yao W, Irwin MG, et al. Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1 [J]. Free Radic Biol Med,2015,84:311-321.
(責(zé)任編輯: 林白霜, 羅 森)
Changes of aryl hydrocarbon receptor in cardiac hypertrophy induced by high glucose in vitro
TANG Xue-jiao, XIAO Hua, ZHANG Lei, WEI Xiao, LEI Jian-ming, GUO Jing-wen
(DepartmentofCardiology,TheFirstAffiliatedHospitalofChongqingMedicalUniversity,Chongqing400016,China.E-mail:xiaohua197408@163.com)
AIM: To investigate the changes of aryl hydrocarbon receptor (AhR) in the process of cardiomyocyte hypertrophy induced by high glucose, and to explore its potential mechanisms. METHODS: The rat cardiomyocytes (H9c2 cells) were divided into normal glucose group, high glucose group, DMSO group and resveratrol (an AhR antagonist) group. The content and distribution of AhR were observed with immunofluorescence staining. The myocardial cells were stained with rhodamine-labeled phalloidin to visualize cytoskeleton, and the cell surface area were determined after imaging by fluorescence microscopy. The generation of reactive oxygen species (ROS) in the cardiomyocytes was measured using a fluorescent probe DCFH-DA. The mRNA expression of AhR, CYP1A1, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were evaluated by real-time quantitative PCR (RT-qPCR). The protein levels of AhR, CYP1A1, ANP and BNP were assessed by Western blot. RESULTS: AhR was constitutively presented in the cytosol under normal-glucose condition and was translocated to the nuclei under high-glucose condition. High glucose induced cardiac hypertrophy, and increased ROS generation. Significant reductions in the cell size and ROS generation were observed after treated with resveratrol. The expression of AhR, CYP1A1, ANP and BNP at mRNA and protein levels in high glucose group was increased as compared with normal glucose group and resveratrol group, and the above-mentioned indexes significantly decreased in resveratrol group as compared with DMSO group. CONCLUSION: High glucose-induced cardiac hypertrophy increases AhR expression, which may be involved in the maintenance of glucose homeostasis in the cardiomyocytes. AhR translocation to the nucleus induced by high glucose results in the increases in CYP1A1 expression and ROS generation, which may be an important mechanism of high glucose-induced cardiomyocyte hypertrophy.
High glucose; Cardiac hypertrophy; Aryl hydrocarbon receptor
1000- 4718(2016)10- 1744- 06
2016- 05- 24
2016- 07- 14
國家自然科學(xué)基金資助項(xiàng)目(No. 81300140)
△通訊作者 Tel: 023-89011565; E-mail: xiaohua197408@163.com
R541.8; R363
A
10.3969/j.issn.1000- 4718.2016.10.003
雜志網(wǎng)址: http://www.cjpp.net