• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure gradient errors in a covariant method of implementing the σ-coordinate: idealized experiments and geometric analysis

    2016-11-23 03:30:17LIJinXiLIYiYunndWANGBin
    關(guān)鍵詞:氣壓梯度理想

    LI Jin-XiLI Yi-Yunnd WANG Bin,c

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cMinistry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China

    Pressure gradient errors in a covariant method of implementing the σ-coordinate: idealized experiments and geometric analysis

    LI Jin-Xia,bLI Yi-Yuanaand WANG Bina,c

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cMinistry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China

    A new approach is proposed to use the covariant scalar equations of the σ-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and the PGF errors are much reduced in the computational space. In addition, the validity of reducing the PGF errors by this covariant method in the computational and physical space over steep terrain is investigated. First, the authors implement a set of idealized experiments of increasing terrain slope to compare the PGF errors of the covariant method and those of the classic method in the computational space. The results demonstrate that the PGF errors of the covariant method are consistently much-reduced, compared to those of the classic method. More importantly, the steeper the terrain, the greater the reduction in the ratio of the PGF errors via the covariant method. Next,the authors use geometric analysis to further investigate the PGF errors in the physical space, and the results illustrates that the PGF of the covariant method equals that of the classic method in the physical space; namely, the covariant method based on the non-orthogonal σ-coordinate cannot reduce the PGF errors in the physical space. However, an orthogonal method can reduce the PGF errors in the physical space. Finally, a set of idealized experiments are carried out to validate the results obtained by the geometric analysis. These results indicate that the covariant method may improve the simulation of variables relevant to pressure, in addition to pressure itself, near steep terrain.

    ARTICLE HISTORY

    Revised 27 February 2016

    Accepted 25 March 2016

    Pressure gradient force errors; covariant scalar equations of the σcoordinate; steep terrain;computational and physical space; geometric analysis; non-orthogonal σ-coordinate

    本文針對(duì)經(jīng)典σ坐標(biāo)的氣壓梯度誤差(PGF誤差),采用多種地形展開(kāi)理想試驗(yàn),對(duì)比經(jīng)典σ坐標(biāo)的經(jīng)典方案和協(xié)變方案的PGF誤差。結(jié)果表明:計(jì)算空間中,協(xié)變方案始終能減小經(jīng)典方案的誤差,地形越陡,效果越明顯。然而,幾何分析和理想試驗(yàn)均表明:協(xié)變方案僅能減小計(jì)算空間的誤差,不能減小物理空間的誤差;相比經(jīng)典方案,正交地形追隨坐標(biāo)能同時(shí)減小計(jì)算空間和物理空間的誤差。

    1. Introduction

    The pressure gradient force computational errors (PGF errors) in a terrain-following coordinate (σ-coordinate) can signifcantly afect the performance of a model, including the vorticity in the downslope of steep terrain, the blocking of cold air in the upslope of steep terrain, the potential vorticity near the tropopause over steep terrain, and so on (Smagorinsky et al. 1967; Kasahara 1974; Mahrer 1984;Steppeler et al. 2003; Hoinka and Z?ngl 2004; Li, Chen, and Shen 2005; Hu and Wang 2007). The PGF computational form is expressed by two terms in each horizontal momentum equation in the σ-coordinate. Computational errors are therefore inevitable as these two terms are opposite in sign and typically of the same order near steep terrain(Haney 1991; Fortunato and Baptista 1996; Lin 1997; Ly and Jiang 1999; Berntsen 2002; Chu and Fan 2003; Shchepetkin and McWilliams 2003; Li, Chen, and Li 2012).

    Much efort has been made to alleviate the PGF errors to an acceptable level (Corby, Gilchrist, and Newson 1972;Gary 1973; Zeng 1979; Qian and Zhong 1986; Blumberg and Mellor 1987; Yu 1989; Qian and Zhou 1994; Berntsen 2011; Klemp 2011; Z?ngl 2012), without touching this twoterm PGF (the so-called classic method). Alternatively, two new methods have been proposed to create a one-term PGF to overcome the PGF errors. One is to adopt the covariant scalar equations of the σ-coordinate (the covariant method by Li, Wang, and Wang (2012)); and the other is to design an orthogonal terrain-following coordinate (the orthogonal method by Li et al. (2014)). Using two idealizedexperiments, Li, Wang, and Wang (2012) showed that the covariant method signifcantly reduces the errors, compared to the classic method, in the computational space.

    Figure 1.The pressure feld (shading) and terrain (black curve). The pressure scale (color bar on the right) is in hPa.

    Many researchers have pointed out that the PGF errors of the classic method are related to terrain slope (Yan and Qian 1981; Zeng and Ren 1995; Steppeler et al. 2003; Weller and Shahrokhi 2014; Li, Li, and Wang 2016). But can the covariant method consistently reduce the PGF errors compared to the classic method as terrain slope increases?Moreover, although the calculation of a model is in the computational space, the fnal application of model results is in the physical space; can the covariant method reduce the PGF errors in the physical space?

    In this study, we frst carry out a set of sensitivity experiments of increasing terrain slope to compare the PGF errors of the classic method and those of the covariant method in the computational space. Then, we use a geometric schematic and associated idealized experiments to further investigate the PGF errors of these methods in the physical space. The results of the idealized experiments using various terrain in the computational space are presented in Section 2. The PGF errors in the physical space are compared in Section 3. Concluding remarks and a discussion are given in Section 4.

    2. Idealized experiments in the computational space

    Since the covariant method was shown to significantly reduce the PGF errors in the computational space,compared to the classic method, in the experiments using one kind of terrain implemented by Li, Wang, and Wang (2012), we further investigate the PGF errors of the covariant method and those of the classic method in the computational space over different kinds of terrain. We first introduce the basic parameters for all the experiments, and then compare the PGF errors of the covariant method and those of the classic method in the computational space in experiments of increasing terrain slope.

    2.1. Basic parameters

    For consistency, we use the same parameters as Li, Wang,and Wang (2012), except for the terrain slope. First, the defnition of σ, proposed by Gal-Chen and Somerville (1975) is adopted, where z represents the height, HTis the top of the model, and h represents terrain. We use a 2D bell-shaped terrain (black curve in Figure 1),

    where H = 4 km is the maximum height, a = 5 km is the half width, and h0= 50 km is the middle point of the terrain.

    Second, we use the centeral spatial discretization for the PGF in the horizontal and the forward scheme in the vertical for both methods. The expressions are given as follows:

    Finally, we use a pressure feld,

    as shown in Figure 1, where h(x) is defned by Equation (1), H is the maximum height of terrain, Hp= 300 km is a parameter to adjust the pressure gradient, p0= 1,015.0 hPa is surface pressure, and λ = 8 km is the typical height of the atmosphere. The domain of all the experiments is 0-100 km in the horizontal and 0-37 km in the vertical (Figure 1). The horizontal and vertical resolutions are 0.5 km and 3.7 km, respectively.

    Figure 2.RMS-REs of two methods in the computational space in experiments of increasing terrain slope. The slope is calculated by arctan (H/2a) and shown in (a). The RMS-REs of each method are shown in (b).

    2.2. Sensitivity experiments

    Through increasing the maximum height H of terrain in Equation (1) at 50-m intervals from 3 to 9 km, we carry out 121 sets of experiments (Figure 2(a)). Note that the maximum slope is almost three times the minimum in Figure 2(a).

    We calculate the root-mean-square of relative errors(RMS-REs) of the PGF of the covariant method and those of the classic method (Figure 2(b)). The RMS-REs of the covariant method are consistently reduced by one order of magnitude, compared to those of the classic method. Moreover, as the terrain slope increases, the RMS-REs of the classic method significantly increase (red line in Figure 2(b) relative to black line in Figure 2(a)); however,the RMS-REs of the covariant method remain approximately the same (blue line in Figure 2(b) relative to black line in Figure 2(a)). Therefore, the steeper the terrain, the greater the reduction of the ratio of PGF errors via the covariant method.

    3. Comparison of the PGF errors in the physical space

    In order to compare the PGF errors of the covariant method and those of the classic method in the physical space, we frst use a geometric schematic to further investigate the PGF errors in the physical space, and then carry out a set of associated idealized experiments to validate the results obtained by the geometric analysis.

    The geometric schematic of PGF is shown in Figure 3. The relationship between the lines with arrow heads in Figure 3 and the variables related to PGF are all listed below:

    Figure 3.Schematic of PGF vectors and their components in diferent methods.

    The vertical PGF of the z-coordinate,

    The horizontal PGF of the covariant method in the computational space,The vertical PGF of the covariant method in the computational space,

    In addition, through the geometric relationship in Figure 3,we obtain

    where φ is terrain slope, and

    First, the expressions of the PGF of the covariant method and the classic method in the physical space are respectively given by

    According to Equation (7), the PGF of the covariant method expressed in Equation (9) equals the PGF of the classic method shown in Equation (10); namely, the covariant method cannot reduce the PGF errors in the physical space compared to the classic method.

    Note that both the classic method and the covariant method are non-orthogonal methods (Li, Wang, and Wang 2011, 2012), namely, the PGF errors in the physical space cannot be reduced by the coordinate transformation in the non-orthogonal σ-coordinate. But can the orthogonal method proposed by Li et al. (2014) reduce the PGF errors in the physical space?

    Second, according to Figure 3, the horizontal and vertical PGFs of the orthogonal method in the computational space are respectively, where x′ is the horizontal coordinate of the orthogonal terrain-following coordinate. Then, the PGF of the orthogonal method in the physical space can be expressed by

    Using the geometric relationship in Figure 3, we obtain

    Substituting Equations (5) and (7) into Equations (14) and(15), we obtain

    Note that the PGF of the orthogonal method in the physical space is AJ-AH and that of the non-orthogonal method is AB-BE. According to Equation (16), the PGF errors in the physical space can be reduced by the orthogonal method when the terrain slope φ is large enough:

    (1) If is large enough to make the order of AH smaller than that of AJ, i.e. AH and AJ are no longer of the same order, the PGF errors in the physical space can be reduced by the orthogonal method;

    Figure 4.REs of three methods in the computational and physical spaces. The dashed contours are for negative values. The contour interval in (a), (b), (d), and (f) is 1.0, while that in (c) and (e) is 0.1. The diferences between (a) and (c) in this study and Li, Wang, and Wang(2012, Figure 6(c) and (d)) on the boundaryare due to the revised boundary condition used in this study. The revised boundary condition is directly from the defnition of pressure , to obtain the value on each boundary grid.

    Finally, we calculate the PGF errors of the three methods, i.e. the classic method, the covariant method and the orthogonal method. Substituting Equations (4), (5), (6), (8),(11), and (12) into Equations (9), (10), and (13), and using the discretization schemes given in Section 2.1, we can obtain the discrete expressions of the PGF of the three methods in the physical space as follows:Using Equations (17)-(19) and the parameters given in Section 2.1, we calculate the REs of the PGF of the three methods in the computational space as well as in the physical space (Figure 4). As obtained in the geometric analysis,the PGF errors of the covariant method are the same as those of the classic method in the physical space (Figure 4(b) and(d)), whereas the PGF errors of the orthogonal method are much reduced compared to those of the classic method in the physical space (Figure 4(b) and (f)). In addition, as with the covariant method, the orthogonal method can also reduce the PGF errors of the classic method in the computational space (Figure 4(a), (c), and (e)).

    4. Conclusion and discussion

    Through idealized experiments using increasing terrain slope in the computational space and a geometric analysis in the physical space, the present study investigates the validity of reducing the PGF errors via the covariant method proposed by Li, Wang, and Wang (2012), compared to the classic method. First, sensitivity experiments of increasing terrain slope in the computational space show that the RMS-REs of the covariant method are consistently one order of magnitude smaller than those of the classic method (Figure 2). More importantly, the steeper the terrain, the greater the reduction in the ratio of PGF errors via the covariant method, indicating that the covariant method may perform better near steep terrain.

    The geometric analysis (Figure 3) and associated idealized experiments then demonstrate that, compared to the classic method, the covariant method based on the non-orthogonal σ-coordinate can reduce the PGF errors in the computational space but not in the physical space(Figure 4(a)-(d)). However, the orthogonal method proposed by Li et al. (2014) can reduce the PGF errors in the computational space as well as in the physical space(Figure 4(a) and (b), (e) and (f)).

    In addition, since the covariant method cannot reduce the PGF errors in the physical space, but can signifcantly reduce the errors in the computational space, especially over steep terrain, the covariant method may not improve the simulation of pressure itself but could lead to improvement in the velocity (relevant to pressure, according to the momentum equations). For example, Weller and Shahrokhi(2014) used the curl-free PGF (the PGF of the covariant method is curl-free in the computational space) to obtain a better hydrostatic balance and better energy conservation.

    Besides, the patterns of PGF error of the orthogonal method are diferent from those of the other two methods based on the non-orthogonal σ-coordinate (Figure 4(a)-(d), (e) and (f)). This is related to the diference between computational grids in the orthogonal σ-coordinate and those in the non-orthogonal σ-coordinate used in this study. Further analyses are needed to investigate the relationship between computational grids and PGF errors. Plus, the true benefts of the covariant method and the orthogonal method need to be tested using primitive equations in more idealized experiments and realistic simulations.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Basic Research Program of China (973 Program) [grant number 2015CB954102];the National Natural Science Foundation of China [grant number 41305095], [grant number 41175064].

    Notes on contributors

    LI Jin-Xi is a PhD candidate at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. His main research interests focus on dynamical core of atmospheric models. Recent publications include papers in Atmospheric and Oceanic Science Letters, Geoscientifc Model Development, Atmospheric Science Letters, and Chinese Science Bulletin.

    LI Yi-Yuan is an associated researcher at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. Her main research interests are the numerical methods for the dynamical core of atmospheric models, especially the methods related with the vertical. Recent publications include papers in Geoscientifc Model Development, Communication in Computational Physics,and Atmospheric Science Letters.

    WANG Bin is a professor at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua University. His main research interests are the numerical methods and data assimilation for the atmospheric, oceanic, and coupled models. Recent publications include papers in Geoscientifc Model Development, Monthly Weather Review, and Tellus.

    References

    Berntsen, J. 2002. “Internal pressure errors in sigma-coordinate ocean models.” Journal of Atmospheric and Oceanic Technology 19: 1403-1414. doi:http://dx.doi.org/10.1175/1520-0426(2002)019<1403:IPE ISC>2.0.CO;2.

    Berntsen, J. 2011. “A perfectly balanced method for estimating the internal pressure gradients in sigma-coordinate ocean models.” Ocean Modelling 38: 85-95. doi:http://dx.doi. org/10.1016/j.ocemod.2011.02.006.

    Blumberg, A. F., and G. L. Mellor. 1987. “A description of a three-dimensional coastal ocean circulation model.”P(pán)aper presented at the annual meeting for the American Geophysical Union, Washington, DC, 1-16. doi:http://dx.doi. org/10.1029/CO004p0001.

    Chu, P. C., and C. Fan. 2003. “Hydrostatic correction for sigma coordinate ocean models.” Journal of Geophysical Research 108: 3206-3217. doi:http://dx.doi.org/10.1029/2002JC001668.

    Corby, G. A., A. Gilchrist, and R. L. Newson. 1972. “A general circulation model of the atmosphere suitable for long period integrations.” Quarterly Journal of the Royal Meteorological Society 98: 809-832. doi:http://dx.doi.org/10.1002/qj.49709841808.

    Fortunato, A. B., and A. M. Baptista. 1996. “Evaluation of horizontal gradients in sigma-coordinate shallow water models.” Atmosphere-Ocean 34: 489-514. doi:http://dx.doi.or g/10.1080/07055900.1996.9649574.

    Gal-Chen, T., and R. C. J. Somerville. 1975. “On the use of a coordinate transformation for the solution of the Navierstokes equations.” Journal of Computational Physics 17: 209-228. doi:http://dx.doi.org/10.1016/0021-9991(75)90037-6.

    Gary, J. M. 1973. “Estimate of truncation error in transformed coordinate, primitive equation atmospheric models.” Journal of the Atmospheric Sciences 30: 223-233. doi:http://dx.doi. org/10.1175/1520-0469(1973)030<0223:EOTEIT>2.0.CO;2.

    Haney, R. L. 1991. “On the pressure gradient force over steep topography in sigma coordinate ocean models.” Journal of Physical Oceanography 21: 610-619. doi:http://dx.doi. org/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.

    Hoinka, K. P., and G. Z?ngl. 2004. “The infuence of the vertical coordinate on simulations of a PV streamer crossing the Alps.”Monthly Weather Review 132: 1860-1867. doi:http://dx.doi. org/10.1175/1520-0493(2004)132h1860:TIOTVCi2.0.CO;2.

    Hu, J. L., and P. X. Wang. 2007. “The errors of pressure gradient force in high-resolution meso-scale model with terrainfollowing coordinate and its revised scheme.” Chinese Journal of Atmospheric Sciences 31: 109-118 (In Chinese). doi:http:// dx.doi.org/10.3878/j.issn.1006-9895.2007.01.11.

    Kasahara, A. 1974. “Various vertical coordinate systems used for numerical weather prediction.” Monthly Weather Review 102: 509-522. doi:http://dx.doi.org/10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2.

    Klemp, J. B. 2011. “A terrain-following coordinate with smoothed coordinate surfaces.” Monthly Weather Review 139: 2163-2169. doi:http://dx.doi.org/10.1175/MWR-D-10-05046.1.

    Li, X. L., D. H. Chen, and X. S. Shen. 2005. “Impact study on the calculation of vertical velocity in diferent vertical coordinate.”Journal of Tropical Meteorology 21: 265-276 (In Chinese).

    Li, Y. Y., B. Wang, and D. H. Wang. 2011. “Characteristics of a terrain-following sigma coordinate.” Atmospheric and Oceanic Science Letters 4: 157-161. doi:http://dx.doi.org/10.1080/167 42834.2011.11446922.

    Li, Chao, D. H. Chen, and X. L. Li. 2012. “A design of heightbased terrain-following coordinates in the atmospheric numerical model: theoretical analysis and idealized tests.”Acta Meteorologica Sinica 70 (6): 1247-1259 (In Chinese).

    Li, Y. Y., D. H. Wang, and B. Wang. 2012. “A new approach to implement sigma coordinate in a numerical model.”Communications in Computational Physics 12: 1033-1050. doi:http://dx.doi.org/10.4208/cicp.030311.230911a.

    Li, Y. Y., B. Wang, D. H. Wang, and J. X. Li, and L. Dong. 2014.“An orthogonal terrain-following coordinate and its preliminary tests using 2-D idealized advection experiments.”Geoscientifc Model Development 7: 1767-1778. doi:http:// dx.doi.org/10.5194/gmd-7-1-2014.

    Li, J. X., Y. Y. Li, and B. Wang. 2016. “Characteristics of Pressure Gradient Force Errors in a Terrain-Following Coordinate.” Atmospheric and Oceanic Science Letters 9(3): 211-218. doi:http://dx.doi.org/10.1080/16742834.2 016.1164570.

    Lin, S. J. 1997.“A fnite-volume integration method for computing pressure gradient force in general vertical coordinates.”Quarterly Journal of the Royal Meteorological Society 123: 1749-1762. doi:http://dx.doi.org/10.1002/qj.49712354214.

    Ly, L. N., and L. Jiang. 1999. “Horizontal pressure gradient errors of the Monterey bay sigma coordinate ocean model with various grids.” Journal of Oceanography 55: 87-97. doi:http:// dx.doi.org/10.1023/A:1007865223735.

    Mahrer, Y. 1984. “An improved numerical approximation of the horizontal gradients in a terrain-following coordinate system.” Monthly Weather Review 112 (5): 918-922. doi:http:// dx.doi.org/10.1175/1520-0493(1984)112<0918:AINAOT>2.0 .CO;2.

    Qian, Y. F., and Z. Zhong. 1986. “General forms of dynamic equations for atmosphere in numerical models with topography.” Advances in Atmospheric Sciences 3: 10-22. doi:http://dx.doi.org/10.1007/BF02680042.

    Qian, Y. F., and T. J. Zhou. 1994. “Error subtraction method in computing pressure gradient force for high and steep topographic areas.” Journal of Tropical Meteorology 10: 358-368.

    Shchepetkin, A. F., and J. C. McWilliams. 2003. “A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate.” Journal of Geophysical Research 108: 3090-3123. doi:http://dx.doi. org/10.1029/2001JC001047.

    Smagorinsky, J., R. F. Strickler, W. E. Sangster, S. Manabe,J. L. Halloway Jr., and G. D. Hembree. 1967. “Prediction experiments with a general circulation model.” Paper presented at Dynamics of Large Scale Atmospheric Processes,Moscow, USSR, 70-134.

    Steppeler, J., R. Hess, U. Sch?ttler, and L. Bonaventura. 2003.“Review of numerical methods for nonhydrostatic weather prediction models.” Meteorology and Atmospheric Physics 82: 287-301. doi:http://dx.doi.org/10.1007/s00703-001-0593-8.

    Weller, H., and A. Shahrokhi. 2014. “Curl-Free Pressure Gradients over Orography in a Solution of the Fully Compressible Euler Equations with Implicit Treatment of Acoustic and Gravity Waves.” Monthly Weather Review 142: 4439-4457. doi:http:// dx.doi.org/10.1175/MWR-D-14-00054.1.

    Yan, H., and Y. F. Qian. 1981. “On the problems in the coordinate transformation and the calculation of the pressure gradient force in the numerical models with topography.” Chinese Journal of Atmospheric Sciences 5: 175-187. doi:http://dx.doi. org/10.3878/j.issn.1006-9895.1981.02.07.

    Yu, R. C. 1989. “Design of the limited area numerical weather prediction model with steep mountains.” Chinese Journal of Atmospheric Sciences 13: 145-158 (In Chinese). doi:http:// dx.doi.org/10.3878/j.issn.1006-9895.1989.02.02.

    Z?ngl, G. 2012. “Extending the numerical stability limit of terrain following coordinate models over steep slopes.”Monthly Weather Review 140: 3722-3733. doi:http://dx.doi. org/10.1175/MWR-D-12-00049.1.

    Zeng, Q. C. 1979. “Basic equations and coordinate transformation.” Mathematical and physical fundamental theory for numerical weather prediction. vol. 1, 22-25. Beijing: Science Press.

    Zeng, X. P., and Z. H. Ren. 1995. “Quantitative analysis of the discretization errors of the horizontal pressure gradient force over sloping terrain.” Chinese Journal of Atmospheric Sciences 19: 722-732. doi:http://dx.doi.org/10.3878/j.issn.1006-9895.1995.06.09.

    氣壓梯度誤差;

    協(xié)變方案; 陡峭地形; 計(jì)算空間和物理空間; 幾何分析; 正交地形追隨坐標(biāo)

    9 November 2015

    CONTACT LI Yi-Yuan liyiyuan@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    氣壓梯度理想
    理想之光,照亮前行之路
    金橋(2022年7期)2022-07-22 08:32:10
    一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
    看不見(jiàn)的氣壓
    2021款理想ONE
    理想
    你是我的理想型
    花火彩版A(2021年11期)2021-02-08 12:42:52
    一種自適應(yīng)Dai-Liao共軛梯度法
    壓力容器氣壓端蓋注射模設(shè)計(jì)
    模具制造(2019年4期)2019-06-24 03:36:46
    一類(lèi)扭積形式的梯度近Ricci孤立子
    電滲—堆載聯(lián)合氣壓劈烈的室內(nèi)模型試驗(yàn)
    久久99热这里只频精品6学生| 久久久久久久大尺度免费视频| 亚洲欧美清纯卡通| 91在线精品国自产拍蜜月| 97精品久久久久久久久久精品| 久久精品国产亚洲av天美| 日韩在线高清观看一区二区三区| 亚洲欧美清纯卡通| 亚洲一区二区三区欧美精品| 亚洲国产av新网站| 欧美日韩一区二区视频在线观看视频在线| 久久精品国产a三级三级三级| 国产 精品1| 午夜激情av网站| 王馨瑶露胸无遮挡在线观看| 色婷婷久久久亚洲欧美| 久热久热在线精品观看| 国产精品二区激情视频| 婷婷色麻豆天堂久久| 久久久国产一区二区| 中文字幕精品免费在线观看视频| 久久久国产欧美日韩av| 免费高清在线观看日韩| 日韩大片免费观看网站| 久久国内精品自在自线图片| 国产精品香港三级国产av潘金莲 | 天堂俺去俺来也www色官网| 久热这里只有精品99| 成人毛片60女人毛片免费| 一级毛片 在线播放| 亚洲婷婷狠狠爱综合网| 十八禁高潮呻吟视频| 91精品三级在线观看| 超色免费av| 又粗又硬又长又爽又黄的视频| 国产精品久久久久成人av| 亚洲少妇的诱惑av| 国产免费福利视频在线观看| 夫妻午夜视频| 97精品久久久久久久久久精品| 久久久精品免费免费高清| 伊人亚洲综合成人网| 久久久国产一区二区| 亚洲精品日本国产第一区| 少妇精品久久久久久久| 伊人亚洲综合成人网| 有码 亚洲区| 中文乱码字字幕精品一区二区三区| 午夜福利视频在线观看免费| 成人毛片a级毛片在线播放| 一级片'在线观看视频| 国产精品嫩草影院av在线观看| 久久久国产欧美日韩av| 成人毛片a级毛片在线播放| 免费久久久久久久精品成人欧美视频| 在线免费观看不下载黄p国产| 久久这里有精品视频免费| 亚洲精品aⅴ在线观看| 777米奇影视久久| 性色avwww在线观看| av在线app专区| 久久国产精品大桥未久av| 亚洲av成人精品一二三区| 亚洲国产欧美网| av线在线观看网站| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码 | 亚洲伊人久久精品综合| 在线 av 中文字幕| 国产精品香港三级国产av潘金莲 | 日本免费在线观看一区| 有码 亚洲区| 亚洲欧美一区二区三区国产| 亚洲第一青青草原| 免费在线观看黄色视频的| 少妇猛男粗大的猛烈进出视频| 亚洲美女搞黄在线观看| 在线天堂最新版资源| 亚洲一级一片aⅴ在线观看| 夜夜骑夜夜射夜夜干| av在线老鸭窝| 日韩人妻精品一区2区三区| 国产亚洲午夜精品一区二区久久| 丰满饥渴人妻一区二区三| 国产成人一区二区在线| 亚洲美女黄色视频免费看| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 欧美日韩一区二区视频在线观看视频在线| 91久久精品国产一区二区三区| 亚洲欧美日韩另类电影网站| 日本黄色日本黄色录像| 久久久久视频综合| 久久人人爽人人片av| 亚洲国产精品999| 午夜av观看不卡| 日日爽夜夜爽网站| 久久久久久久亚洲中文字幕| 亚洲av欧美aⅴ国产| 伦理电影免费视频| 成年av动漫网址| 久久国产精品大桥未久av| 亚洲精品乱久久久久久| 麻豆乱淫一区二区| 久久久久久久久久人人人人人人| 国产亚洲欧美精品永久| 日韩一区二区三区影片| 人人妻人人澡人人爽人人夜夜| 日韩制服骚丝袜av| 亚洲欧美中文字幕日韩二区| 老汉色av国产亚洲站长工具| 爱豆传媒免费全集在线观看| 日韩一区二区三区影片| 大陆偷拍与自拍| 亚洲综合色网址| 黄色视频在线播放观看不卡| 国产在线视频一区二区| 亚洲综合色惰| 国产成人aa在线观看| 一区福利在线观看| 欧美人与性动交α欧美精品济南到 | 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美日韩在线播放| 香蕉丝袜av| 大码成人一级视频| 建设人人有责人人尽责人人享有的| 99国产精品免费福利视频| 精品国产乱码久久久久久小说| 丰满少妇做爰视频| 亚洲,欧美精品.| 最黄视频免费看| 国产免费一区二区三区四区乱码| 两个人免费观看高清视频| 久久久久久人妻| 国产一区二区三区综合在线观看| 亚洲精品乱久久久久久| 精品国产超薄肉色丝袜足j| 免费大片黄手机在线观看| 七月丁香在线播放| 少妇熟女欧美另类| 美女脱内裤让男人舔精品视频| 2018国产大陆天天弄谢| 亚洲精品国产av蜜桃| 叶爱在线成人免费视频播放| 精品第一国产精品| 国产在线一区二区三区精| 午夜福利在线观看免费完整高清在| 欧美日韩精品成人综合77777| 少妇人妻 视频| 国产日韩一区二区三区精品不卡| 黄色怎么调成土黄色| 中文字幕精品免费在线观看视频| 黄色 视频免费看| 欧美人与善性xxx| 国产熟女午夜一区二区三区| 亚洲精品国产色婷婷电影| 好男人视频免费观看在线| 美女视频免费永久观看网站| 一区二区日韩欧美中文字幕| 熟女电影av网| 2022亚洲国产成人精品| 精品午夜福利在线看| 青青草视频在线视频观看| 久久久久网色| 亚洲国产精品国产精品| 国产探花极品一区二区| 香蕉丝袜av| 亚洲欧美成人综合另类久久久| 在线观看美女被高潮喷水网站| av女优亚洲男人天堂| 国产野战对白在线观看| 午夜福利,免费看| 成人毛片a级毛片在线播放| 亚洲一级一片aⅴ在线观看| 午夜福利视频精品| 三上悠亚av全集在线观看| 亚洲,欧美,日韩| 日韩不卡一区二区三区视频在线| 亚洲精品第二区| av有码第一页| 免费久久久久久久精品成人欧美视频| av线在线观看网站| 香蕉国产在线看| 国语对白做爰xxxⅹ性视频网站| 精品人妻在线不人妻| 99香蕉大伊视频| 国产精品嫩草影院av在线观看| 国产一区有黄有色的免费视频| 亚洲欧洲国产日韩| 亚洲一码二码三码区别大吗| 街头女战士在线观看网站| 观看av在线不卡| av又黄又爽大尺度在线免费看| 日韩av免费高清视频| 建设人人有责人人尽责人人享有的| 国产男女超爽视频在线观看| 国产一区二区 视频在线| 精品人妻一区二区三区麻豆| 一级,二级,三级黄色视频| 国产av国产精品国产| 国产精品麻豆人妻色哟哟久久| 欧美亚洲 丝袜 人妻 在线| 热re99久久国产66热| h视频一区二区三区| 日本午夜av视频| 不卡av一区二区三区| 欧美黄色片欧美黄色片| av又黄又爽大尺度在线免费看| 国产无遮挡羞羞视频在线观看| 丝袜美腿诱惑在线| 亚洲av男天堂| 黄色怎么调成土黄色| 欧美精品人与动牲交sv欧美| 日韩精品有码人妻一区| 国产精品一区二区在线不卡| 好男人视频免费观看在线| 熟妇人妻不卡中文字幕| 亚洲精华国产精华液的使用体验| 香蕉丝袜av| 色吧在线观看| 日日摸夜夜添夜夜爱| 香蕉精品网在线| 老汉色av国产亚洲站长工具| 夫妻午夜视频| 新久久久久国产一级毛片| 汤姆久久久久久久影院中文字幕| 国产老妇伦熟女老妇高清| 国产在线免费精品| 欧美少妇被猛烈插入视频| 亚洲av在线观看美女高潮| 婷婷色麻豆天堂久久| 性色avwww在线观看| 免费在线观看完整版高清| 哪个播放器可以免费观看大片| 亚洲精品,欧美精品| 高清视频免费观看一区二区| 久久99精品国语久久久| 久久青草综合色| 青春草国产在线视频| 久久久国产欧美日韩av| 亚洲经典国产精华液单| av福利片在线| 青春草亚洲视频在线观看| 九色亚洲精品在线播放| 成年动漫av网址| 天天躁夜夜躁狠狠久久av| 亚洲精品国产一区二区精华液| 咕卡用的链子| 丝袜喷水一区| av网站免费在线观看视频| 99久久综合免费| 国产毛片在线视频| 亚洲精品久久久久久婷婷小说| 自拍欧美九色日韩亚洲蝌蚪91| 国产又色又爽无遮挡免| 91国产中文字幕| 啦啦啦视频在线资源免费观看| 少妇精品久久久久久久| 国产精品偷伦视频观看了| 一本久久精品| 18+在线观看网站| 国产精品秋霞免费鲁丝片| 美国免费a级毛片| 91在线精品国自产拍蜜月| 一个人免费看片子| 日产精品乱码卡一卡2卡三| 人人妻人人添人人爽欧美一区卜| 激情视频va一区二区三区| 精品少妇黑人巨大在线播放| 亚洲美女视频黄频| 丝袜脚勾引网站| 国产在线视频一区二区| 亚洲综合色网址| 欧美日韩亚洲高清精品| 亚洲一码二码三码区别大吗| 日本爱情动作片www.在线观看| www.自偷自拍.com| 亚洲欧美精品自产自拍| 亚洲av福利一区| 一级黄片播放器| 国产午夜精品一二区理论片| 欧美亚洲 丝袜 人妻 在线| 天堂8中文在线网| av线在线观看网站| 最近中文字幕2019免费版| 中文字幕色久视频| 欧美日韩av久久| 色网站视频免费| 一区二区三区四区激情视频| 国产成人午夜福利电影在线观看| 国产激情久久老熟女| 在线观看人妻少妇| 亚洲av.av天堂| 欧美 日韩 精品 国产| 汤姆久久久久久久影院中文字幕| av女优亚洲男人天堂| 中文字幕另类日韩欧美亚洲嫩草| 精品少妇内射三级| 日韩熟女老妇一区二区性免费视频| 黑人欧美特级aaaaaa片| 亚洲男人天堂网一区| 欧美少妇被猛烈插入视频| 久久国产精品男人的天堂亚洲| 亚洲国产av影院在线观看| 国产精品蜜桃在线观看| 日本色播在线视频| 国产精品久久久久久久久免| 成人黄色视频免费在线看| 少妇 在线观看| 亚洲精品aⅴ在线观看| 春色校园在线视频观看| 免费女性裸体啪啪无遮挡网站| 色播在线永久视频| 久久久久久久久久人人人人人人| videossex国产| 黄色配什么色好看| 国产免费视频播放在线视频| 美女高潮到喷水免费观看| 观看美女的网站| 国产精品国产av在线观看| 亚洲精品国产一区二区精华液| 久久久国产欧美日韩av| 少妇的丰满在线观看| 极品少妇高潮喷水抽搐| 国产97色在线日韩免费| 精品亚洲成a人片在线观看| 久久精品国产自在天天线| 久久精品久久久久久久性| 一级,二级,三级黄色视频| 男人爽女人下面视频在线观看| 精品国产一区二区三区久久久樱花| 久久韩国三级中文字幕| 国产成人精品在线电影| 咕卡用的链子| 狠狠婷婷综合久久久久久88av| 好男人视频免费观看在线| 女人久久www免费人成看片| 人人澡人人妻人| 国产精品国产av在线观看| 午夜久久久在线观看| 久久久久久久亚洲中文字幕| 国产男人的电影天堂91| 在线观看免费视频网站a站| 色吧在线观看| 日本欧美视频一区| 爱豆传媒免费全集在线观看| 国产xxxxx性猛交| 亚洲成国产人片在线观看| 极品少妇高潮喷水抽搐| 少妇的丰满在线观看| 久久久a久久爽久久v久久| av片东京热男人的天堂| 国产一区有黄有色的免费视频| 免费播放大片免费观看视频在线观看| av线在线观看网站| 搡女人真爽免费视频火全软件| 国产欧美日韩一区二区三区在线| 观看av在线不卡| 如何舔出高潮| 国产极品粉嫩免费观看在线| 国产深夜福利视频在线观看| 亚洲精品自拍成人| 日韩欧美精品免费久久| 久久这里只有精品19| 日本爱情动作片www.在线观看| 18禁观看日本| 亚洲精品视频女| 亚洲成人手机| 日韩在线高清观看一区二区三区| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 国产极品天堂在线| 91精品国产国语对白视频| 赤兔流量卡办理| xxx大片免费视频| 亚洲精品国产av蜜桃| 亚洲av中文av极速乱| av国产久精品久网站免费入址| 尾随美女入室| 熟女少妇亚洲综合色aaa.| 精品亚洲乱码少妇综合久久| 免费人妻精品一区二区三区视频| 在现免费观看毛片| av有码第一页| 国产人伦9x9x在线观看 | 欧美日本中文国产一区发布| 精品午夜福利在线看| 妹子高潮喷水视频| 免费观看av网站的网址| 国产成人av激情在线播放| 一区福利在线观看| 色婷婷av一区二区三区视频| 韩国高清视频一区二区三区| 99国产综合亚洲精品| 黑人欧美特级aaaaaa片| 精品亚洲乱码少妇综合久久| 国产精品成人在线| 国产在视频线精品| 欧美黄色片欧美黄色片| 欧美日韩视频精品一区| 一二三四中文在线观看免费高清| 亚洲国产欧美日韩在线播放| 国产一区二区三区综合在线观看| 欧美bdsm另类| 国产片特级美女逼逼视频| 人人妻人人澡人人爽人人夜夜| 又大又黄又爽视频免费| 一区二区三区乱码不卡18| 高清视频免费观看一区二区| 日韩一卡2卡3卡4卡2021年| 国产精品一二三区在线看| 在线看a的网站| 久久久久久久精品精品| 丁香六月天网| 丝袜美腿诱惑在线| 天美传媒精品一区二区| av线在线观看网站| 一级,二级,三级黄色视频| 丰满少妇做爰视频| 亚洲男人天堂网一区| 亚洲欧洲日产国产| 如何舔出高潮| 成人亚洲欧美一区二区av| 激情五月婷婷亚洲| 亚洲美女搞黄在线观看| 一级片免费观看大全| 久久人人爽av亚洲精品天堂| 另类精品久久| 免费观看av网站的网址| 亚洲精品久久午夜乱码| 街头女战士在线观看网站| 久久午夜福利片| 在线精品无人区一区二区三| 婷婷色综合大香蕉| 我要看黄色一级片免费的| 人妻一区二区av| 在线观看三级黄色| 狠狠精品人妻久久久久久综合| 亚洲精品自拍成人| 日本爱情动作片www.在线观看| 国产成人午夜福利电影在线观看| 国产激情久久老熟女| 亚洲国产毛片av蜜桃av| 少妇人妻 视频| 国产精品一二三区在线看| 久久99一区二区三区| 春色校园在线视频观看| 色网站视频免费| 国产激情久久老熟女| 国产成人欧美| 99国产综合亚洲精品| 精品一区在线观看国产| 老汉色∧v一级毛片| 丝袜美腿诱惑在线| 啦啦啦在线免费观看视频4| 亚洲男人天堂网一区| 亚洲内射少妇av| 亚洲少妇的诱惑av| 日本色播在线视频| 少妇人妻精品综合一区二区| 捣出白浆h1v1| 丰满乱子伦码专区| 免费黄频网站在线观看国产| 日本午夜av视频| 亚洲欧美日韩另类电影网站| 成人毛片60女人毛片免费| av卡一久久| 黄色一级大片看看| 精品一区在线观看国产| 18禁观看日本| 欧美日韩视频精品一区| 一级毛片我不卡| 一区二区日韩欧美中文字幕| 久久99蜜桃精品久久| 丝袜美足系列| 国产av一区二区精品久久| 日韩不卡一区二区三区视频在线| 最近手机中文字幕大全| 久久这里有精品视频免费| 99热国产这里只有精品6| 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 777久久人妻少妇嫩草av网站| 欧美xxⅹ黑人| 在线 av 中文字幕| 美女大奶头黄色视频| 国产黄色视频一区二区在线观看| 国产成人精品久久二区二区91 | 国产熟女午夜一区二区三区| 丝袜脚勾引网站| 91国产中文字幕| 伊人久久国产一区二区| 国产激情久久老熟女| 精品人妻熟女毛片av久久网站| 性色avwww在线观看| 一级,二级,三级黄色视频| 在线亚洲精品国产二区图片欧美| 欧美精品国产亚洲| 99re6热这里在线精品视频| 99九九在线精品视频| 国产女主播在线喷水免费视频网站| 超碰97精品在线观看| 日韩制服骚丝袜av| 另类亚洲欧美激情| 91在线精品国自产拍蜜月| 久久人妻熟女aⅴ| 激情视频va一区二区三区| 亚洲av.av天堂| 热99久久久久精品小说推荐| 国产精品久久久久久av不卡| 久久免费观看电影| 亚洲精品国产av蜜桃| 2018国产大陆天天弄谢| 九草在线视频观看| 久久久久精品性色| 26uuu在线亚洲综合色| 亚洲国产看品久久| 看免费av毛片| 成人毛片60女人毛片免费| 香蕉精品网在线| 777米奇影视久久| 国产探花极品一区二区| 五月天丁香电影| 国产熟女午夜一区二区三区| 精品一区二区三卡| 亚洲精品av麻豆狂野| 国产女主播在线喷水免费视频网站| 香蕉精品网在线| 国产成人精品婷婷| 欧美激情极品国产一区二区三区| 国产精品久久久久久精品电影小说| 五月伊人婷婷丁香| 日韩精品免费视频一区二区三区| 国产1区2区3区精品| 边亲边吃奶的免费视频| 九九爱精品视频在线观看| 免费av中文字幕在线| 国产成人精品在线电影| 秋霞在线观看毛片| 国产97色在线日韩免费| 欧美+日韩+精品| 高清欧美精品videossex| 国产精品无大码| 国产又爽黄色视频| av国产精品久久久久影院| 国产女主播在线喷水免费视频网站| 亚洲国产成人一精品久久久| 亚洲欧洲日产国产| 波野结衣二区三区在线| 国产日韩欧美视频二区| 亚洲成国产人片在线观看| 精品少妇黑人巨大在线播放| 亚洲一区中文字幕在线| 日韩精品有码人妻一区| 国产又色又爽无遮挡免| av电影中文网址| 如日韩欧美国产精品一区二区三区| 久久久久久久亚洲中文字幕| 啦啦啦中文免费视频观看日本| 永久免费av网站大全| 免费黄网站久久成人精品| 国产片内射在线| 国产熟女欧美一区二区| 国产成人欧美| 男女边吃奶边做爰视频| 最近中文字幕2019免费版| 激情视频va一区二区三区| 777米奇影视久久| 岛国毛片在线播放| 水蜜桃什么品种好| 亚洲综合色惰| 亚洲在久久综合| 欧美日韩精品网址| 色婷婷av一区二区三区视频| 人人妻人人爽人人添夜夜欢视频| 女性被躁到高潮视频| 人人妻人人澡人人看| 日韩在线高清观看一区二区三区| 99久久精品国产国产毛片| 欧美日韩精品成人综合77777| 久久久精品免费免费高清| 日韩欧美精品免费久久| 成人黄色视频免费在线看| 精品一品国产午夜福利视频| 久久午夜福利片| 两性夫妻黄色片| 成年女人在线观看亚洲视频| 99九九在线精品视频| 香蕉国产在线看| 在线观看免费视频网站a站| 亚洲欧美一区二区三区久久| 国产精品一国产av| 久热这里只有精品99| 一本久久精品| 中文字幕人妻熟女乱码| 国产av一区二区精品久久| 日韩免费高清中文字幕av| 最黄视频免费看| 国产不卡av网站在线观看| 不卡av一区二区三区| 少妇人妻 视频| 久久av网站| 下体分泌物呈黄色| 亚洲综合色惰| 久久久久精品人妻al黑| 97精品久久久久久久久久精品| 爱豆传媒免费全集在线观看| 美女高潮到喷水免费观看| 黄网站色视频无遮挡免费观看| 午夜激情久久久久久久| 久久久久久久久久人人人人人人| 蜜桃国产av成人99| 男女国产视频网站| 亚洲欧美一区二区三区黑人 | 亚洲精品国产一区二区精华液|