• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two different periods of high dust weather frequency in northern China

    2016-11-23 03:30:16FANKeXIEZhiMinganXUZhiQing
    關(guān)鍵詞:北大西洋經(jīng)向海溫

    FAN Ke, XIE Zhi-Mingan XU Zhi-Qing

    aNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing,China;cUniversity of the Chinese Academy of Sciences, Beijing, China;dClimate Change Research Center, Chinese Academy of Sciences, Beijing,China

    Two different periods of high dust weather frequency in northern China

    FAN Kea,b, XIE Zhi-Minga,cand XU Zhi-Qingd

    aNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing,China;cUniversity of the Chinese Academy of Sciences, Beijing, China;dClimate Change Research Center, Chinese Academy of Sciences, Beijing,China

    This study reveals that, during the period 1966-2014, dust weather frequency (DWF) in northern China (north of 30°N) features two high-DWF periods, in 1966-1979 (P1) and 2000-2014 (P2), when the linear trend of DWF is removed during the study period. Here, DWF denotes the number of days of dust weather events in the spring season (March-April-May), including dust haze, blowing dust,and dust storms, which occurred in northern China. The results show that the DWF is much higher in P1 than in P2, with increased DWF distributed over southern Xinjiang, the central part of northern China. The main cause is the SST diference in the Atlantic and Pacifc between the two periods. It is also found that a meridional teleconnection over East Asia in P1 and a zonal wave-like pattern over Eurasia in P2 at 200 hPa play a signifcant role in the interannual variability in the two periods,respectively. SST over the subtropical North Atlantic (extratropical SST between the Norwegian and Barents seas) may partly contribute to the upper-level meridional (zonal) teleconnection in P1 (P2).

    ARTICLE HISTORY

    Revised 17 March 2016

    Accepted 18 March 2016

    Dust weather frequency;

    northern China; meridional teleconnection; zonal wavelike pattern; North Atlantic SST

    近幾十年,我國北方春季沙塵的頻次的線性趨勢下降,但去掉線性趨勢后,發(fā)現(xiàn)我國北方春季沙塵頻次在1966-2014期間有兩段沙塵頻次的多發(fā)年,前一段是1966-1979(P1),后一段是2000-2014 (P2)。認(rèn)識(shí)這兩段高頻沙塵發(fā)生的主要特點(diǎn)和可能原因?qū)⑦M(jìn)一步理解不同年代際背景下沙塵年際變異機(jī)理,為沙塵的氣候預(yù)測提供依據(jù)。研究表明前一階段沙塵的強(qiáng)度是高于后一階段,沙塵中心分布在南疆和北方中部(華北、河套和內(nèi)蒙)。主要的原因是北大西洋和北太平洋海溫異常不同造成。前者主要受北大西洋副熱帶海溫異常的影響,后者受北大西洋高緯海溫異常的影響。前一階段200 hPa 高層環(huán)流出現(xiàn)經(jīng)向的大氣遙相關(guān),導(dǎo)致40-45°N東亞急流加強(qiáng)一方面有利于動(dòng)量下傳造成蒙古氣旋活躍,另一方面有利于新疆和蒙古的沙塵輸送到我國北方中部區(qū)域。后一階段從北大西洋高緯到東亞呈現(xiàn)緯向波列,導(dǎo)致蒙古氣旋南部西風(fēng)氣流加強(qiáng),沙塵從新疆輸送到我國北方。與后一階段比較,前一階段的兩極冷空氣更為活躍,沙塵發(fā)生動(dòng)力條件更強(qiáng),且春季蒙古和北方中部降水減少均有利于沙塵更強(qiáng)

    1. Introduction

    Dust weather in northern China, including dust haze,blowing dust, and dust storms, mainly occurs in spring(March-April-May), afecting human health, the environment, and climate change via its direct and indirect efects on radiation over the Asia-Pacifc region. Studies show that the long-term variation in dust weather frequency (DWF) in northern China features a decreasing trend during the past several decades, but increased after 1997, with a remarkable increase in DWF in 2000-2002(Qian, Quan, and Shi 2002; Zhang et al. 2002; Kurosaki and Mikami 2003; Fan and Wang 2004, 2006a; Zhou and Zhai 2004). The variability of DWF in northern China is infuenced by the surface wind and vegetation (Kurosaki and Mikami 2003; Zhou and Zhai 2004; Lee and Sohn 2009), northern cyclone frequency (Sun, Zhang, and Liu 2001; Qian, Quan, and Shi 2002), East Asian winter monsoon (Qian, Quan, and Shi 2002; Kang and Wang 2005; Fan and Wang 2006a, 2006b; Wu et al. 2010), and large-scale atmospheric teleconnection, including the Antarctic Oscillation (AAO) (Fan and Wang 2004, 2007),Arctic Oscillation (AO) (Kang and Wang 2005), and the Pacifc-North America pattern (Gong et al. 2007). Based on this knowledge, an efective dust climate prediction model containing the AAO, AO, and dust-related climate factors was developed to improve the ability to predict the dust climate in China (Lang 2008).

    In this study, considering the long-term decreasing trend of DWF in northern China is partly related to globalwarming (Zhu, Wang, and Qian 2008), we remove the linear trend of DWF during 1966-2014 and discover that the detrended-DWF in northern China exhibits two high-DWF periods, in 1966-1979 (P1) and 2000-2014 (P2). These features can be detected using the moving t-test and Lepage test statistical methods, with the statistical signifcance exceeding the 95% confdence level. We then present the characteristics of the two high-DWF periods and explore the underlying physical mechanisms involved. The overall purpose of this work is to further our understanding of DWF variability in northern China.

    Figure 1.(a) The frst spatial EOF mode of normalized DWF at 245 stations in northern China during 1966-2014 (dots denote stations).(b) The time series of the frst EOF mode of DWF, in which the red lines denote the average value of DWF for 1966-1979, 1980-1999,and 2000-2014. (c) The decadal change points of DWF variation as determined by a moving t-test, where the upper (lower) transverse lines denote signifcance at the 95% (90%) confdence level. (d) The diference in the spatial pattern of DWF between 1966-1979 and 2000-2014.

    2. Data and method

    The monthly data of the number of days of dust weather,including dust haze, blowing dust, and dust storms, at 245weather stations in China during 1966-2014 are from the National Climate Information Center, China. The DWF at a station in China denotes the number of days of dust haze,blowing dust, and dust storms in the spring (March-April-May) at that station. The monthly reanalysis data used, with a horizontal resolution of 2.5° × 2.5°, are from the NCPEPNCAR data-set (Kalnay et al. 1996). The monthly SST data used, with a horizontal resolution of 1.0° × 1.0°, are from the Characteristics of the Global Sea Surface Temperature data-set of the Japan Meteorological Agency, covering 1891-2015. EOF analysis is used to present the spatiotemporal structure of DWF in northern China. As the frst spatial EOF mode (EOF1) of DWF in northern China at 245 weather stations shows basically coherent change, accounting for 28.4% of the total variance of DWF, DWF PC1 is defned as the index of DWF in northern China (Figure 1(a)). All calculations are based on the detrended data.

    3. Results

    There are three decadal change points, 1970/1971, the mid-1980s, and 2000/2001, in the variation of PC1 DWF in northern China, all statistically signifcant at the 0.05 level (Figure 1(c)). This indicates that DWF in northern China increased both in 1966-1979 (P1) and in 2000-2014(P2), and decreased in 1980-1999. Moreover, the intensity of DWF in 1966-1979 (P1) is much larger than that in 2000-2014 (P2), accompanied by increased DWFs over the central part of northern China, including Inner Mongolia,the Hetao region, North China, and the southern part of Xinjiang (Figure 1(d)). But which climate factors likely infuenced the two high-DWF periods? To address this question, we investigate the decadal diferences in mean SLP and SST between them, as well as the dust-related interannual variation in these two periods.

    We begin by plotting the decadal diferences of mean SLP and SST between P1 and P2 (P1-P2). As shown in Figure 2(a), relative to P2 in March-April-May, negative phases of the North Atlantic Oscillation (NAO) and AAO are evident in P1, with increased SLP over the high latitudes of the North Atlantic and Antarctic and decreased SLP over the midlatitudes of the Eurasian continent and the SH. Previous research shows that the winter and spring NAO and AAO may impact upon the Siberian high and Aleutian low, upper-level polar jet, and subtropical east Asian jet via atmospheric teleconnection, further infuencing DWF variation in northern China (Wu and Wang 2002; Fan and Wang 2004, 2006a, 2006b, 2007; Kang and Wang 2005; Gong et al. 2007). Meanwhile, the Siberian high and Aleutian low are more robust in P1 compared with P2 and stronger northeasterly fow prevails along the eastern fank of the Siberian high and East Asian coast. These diferences of the above atmospheric circulation, particularly for the polar regions, show more active cold air over east Asia in P1, generating favorable dynamical conditions for increased DWF in northern China, which may explain why the intensity of DWF is stronger in P1 than in P2. As shown in Figure 2(b), while a greater portion of the SSTs (excluding those of the subtropical and tropical North Pacifc) are cooling in P1 than in P2 (Figure 2(b)),along with decreased surface air temperature over the Eurasian continent (fgure not shown), accordingly, the land-ocean thermal contrast over East Asia can increase,resulting in more robust northeasterly fow over East Asia in P1 than in P2 (Figure 2(c)). Therefore, the change in the SST pattern provides favorable dynamical conditions for a stronger intensity of DWF in P1. Additionally, compared with P2, spring precipitation over Mongolia and northern China decreases in P1, resulting in poorer vegetation coverage in these regions (Figure 2(d)) (Zhou and Zhai 2004;Kurosaki, Shinoda, and Mikami 2011).

    Next, we investigate the diferences in the interannual variability of DWF-related atmospheric circulation in the two periods. Figure 3 shows a regression of the spring wind feld at 200 and 850 hPa on the DWF index in northern China in P1 and P2, separately. Associated with the high DWF index in P1, a remarkable meridional atmospheric pattern at 200 hPa is apparent, consisting of an anomalous cyclone and an anomalous anticyclone over the north and south of 40°N over the area (15-60°N, 90-135°E), respectively. Accordingly, the upper westerly East Asian jet at 40°N can be strengthened, which facilitates not only lowlevel cyclogenesis but also the upper westerly momentum downward. Correspondingly, there is an anomalous cyclone centered over Northeast Asia (45°N, 135°E), causing strong northwesterly fow from its rear (Figures 3(a)and (b)). As a result, greater quantities of dust can be transported from Mongolia to the central part of northern China by the northwesterly, and that is why the increased DWFs are distributed over the central part of northern China (see Figures 3(a) and 1(c)). Note that cold air activity from the polar region can easily invade southward via a weakened polar jet over Eurasia. Therefore, the DWFs in P1 are stronger than in P2, with most dust transported via Mongolia (Figure 1(d)). Moreover, spring soil moisture decreases more over Mongolia and northern China in P1 than in P2, which is favorable for increased DWFs in the central part of northern China in P1 (fgure not shown).

    In contrast, a zonal wave-like atmospheric pattern at 200 hPa is prominent in P2, which is characterized by a diferent anomalous cyclone over the extratropical North Atlantic centered at 60°N, an anomalous anticyclone over the Caspian Sea at 40°N, and an anomalous cyclone spanning from Mongolia to northern China at 35°N where the Mongolian cyclogenesis occurs (Figures 3(c) and (d)). Consequently, greater quantities of dust from the desertsof Northwest China can be transported to northern China via the strong westerly fow of the southern part of the Mongolian cyclone. Therefore, a dust-related atmospheric pattern plays a key role in the northwesterly (westerly) dust pathways of P1 (P2).

    Figure 2.Diference in spring (a) SLP (units: millibars) and surface wind at 2 m (units: m s-1), (b) SST (units: °C), (c) surface air temperature(units: °C), and (d) precipitation (units: mm) between 1966-1979 and 2000-2014.

    Figure 3.Regression of spring wind on the DWF index in (a, c) 1966-1979, and (b, d) 2000-2014 at (a, b) 200 hPa and (c, d) 850 hPa.

    Figure 4.Regression of SST in (a) 1966-1979, and (b) 2000-2014.

    But what about the linkage between the interannual variation of SSTs and dust-related atmospheric circulation in the two periods? As shown in Figure 4, associated with the increased DWF in P1, a negative SST anomaly (SSTA)occurs in the subtropics of the North Atlantic, persisting from winter to spring, which is related to the negative phase of the NAO (e.g. Rodwell and Rowell 1999). A so-called ‘North Atlantic horseshoe pattern,' with warm SST southeast of Newfoundland and cold SST to the northeast and southeast, precedes a positive phase of the NAO. The predictability of the winter NAO partly derives from the SSTA over the subtropical North Atlantic (Fan, Tian, and Wang 2015; Tian and Fan 2015). Meanwhile, the SSTA pattern over the North Pacifc is characterized by a positive SSTA extending from the subtropical North Pacifc to the South China Sea and a negative SSTA surrounding the other regions, which favors a strengthened east Asian jet. However, the North Pacifc SSTA may mainly refect the results of atmospheric forcing (Yang, Lau, and Kim 2001). On the other hand, corresponding to increased DWF in P2, a positive SSTA over the Barents Sea and a negative SSTA over the Norwegian Sea are apparent. Thus, we next focus on how the SSTA over the North Atlantic and Barents-Norwegian Sea may infuence the DWF-related atmosphere in the two periods.

    We defne the NA1 index as the averaged SST in the subtropical North Atlantic (40-50°N, 25-45°W) in P1. NA2,meanwhile, is defned as the averaged SST over the Barents Sea (70-75°N, 30-40°E) minus the averaged SST over the Norwegian Sea (60-65°N, 0°-5°E) in P2, because an opposite change in SSTA between the two regions is prominentin the EOF SST between 50-80°N and 30°W-60°E (fgure not shown).

    Figure 5.Regression of spring wind at 200 hPa on the (a) - NA1 index in 1966-1979, and (b) NA2 in 2000-2014.

    In P1, the linear regression of the spring wind feld at 200 hPa on the - NA1 index shows a diferent anomalous anticyclone over Greenland and a cyclonic anomaly spanning from northern Russia to east of Lake Baikal (around 45-60°N, 0°-135°E), and the occurrence of a meridional wave-like pattern over East Asia (Figure 5(a)). When we calculate the linear regression of the spring 200-hPa geopotential height and wave activity fux (Plumb 1985) in the troposphere, it shows that anomalous adiabatic heating related to the subtropical North Atlantic excites a stationary Rossby wave propagating into Eurasia, forming the meridional teleconnection over East Asia (fgure not shown). In P2, by regression of the wind feld at 200 hPa on the NA2 index, a zonal wind pattern is seen to dominate from the high latitudes of Eurasia to East Asia, refecting the role of the extratropical ocean in the DWF in P2. However, the reasons for the change in the extratropical SST are highly complex, possibly being infuenced by the accelerated decrease in Arctic sea ice or sea-Arctic sea-ice interaction (Comiso et al. 2008; Liu et al. 2012; Li, Wang, and Gao 2015). Furthermore, according to the fndings of Liu et al. (2012), the atmospheric circulation related to the recent decline in Arctic sea ice shows much broader meridional meanders in the midlatitudes, possibly attributable to the occurrence of the meridional pattern in P2 and the zonal wave-like pattern in P2 (Figures 2(a), (b) and 3(a)).

    4. Summary

    This study reveals two high-DWF periods in northern China during the overall study period of 1966-2014, when the decreasing trend of DWF is removed; namely, 1966-1979(P1) and 2000-2014 (P2). Compared with P2, the intensity of DWF is much stronger in P1, together with the increased DWFs being mainly distributed in the central part of northern China and the south of Xinjiang. The results show a remarkable diference in mean atmospheric circulation and the global SST pattern between the two periods,including prominent changes in the polar regions. The magnitude of land-sea thermal contrast over East Asia can provide diferent dynamical conditions for the two high-DWF periods. Moreover, decreased spring precipitation over Mongolia and northern China in P1 may result in poor vegetation coverage over these regions. Actually,it was found that the sharp decrease of spring vegetation coverage over northern China in recent years was one of the major contributors to frequent spring dust storms over northern China during 2000 and 2001 (Zhou and Zhai 2004; Kurosaki, Shinoda, and Mikami 2011). In terms of the interannual variation of the two high-DWF periods, it is found that an upper-level meridional teleconnection in P1 is favorable for a strengthening of the East Asian westerly jet around 40-45°N, which can facilitate not only low-level cyclogenesis but also westerly momentum downward from the upper level (Uccellini 1986; Fan and Wang 2004). Thus, greater quantities of dust can be transported from Mongolia into northern China by the northwesterly fow. In P2, a zonal wave-like pattern at 200 hPa results in westerly fow from the southern part of the Mongolian cyclone,with most of the dust transported from the deserts of Xinjiang. The SSTA over the subtropical North Atlantic and extratropical ocean may induce, via sea-atmosphere interaction, the meridional and zonal wave-like patterns of P1 and P2, respectively, which is partly illustrated by the result of the regression of the wave activity fux in the troposphere on NA1 and NA2. However, the extratropical SST change in P2 might be the response of the rapidly declining Arctic Sea ice, and the atmospheric circulation related to the high-DWF in P2 might be related to change in the Pacifc Decadal Oscillation (Zhu et al. 2011). These questions will be explored in future work.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This research was supported by the National Natural Science Foundation of China [grant numbers 41325018, 41575079,41421004].

    Notes on contributors

    FAN Ke is a professor at IAP, NZC. Her main research interests are climate dynamics, climate prediction. She has published over 70 scientifc papers, over 40 of which are SCI-indexed.

    XIE Zhi-Ming is a masters student at IAP, NZC. His main research interests are dust climate and climate variability.

    XU Zhi-Qing is a PH at IAP, NZC. His main research interests are climate variability.

    References

    Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock. 2008. “Accelerated Decline in the Arctic Sea Ice Cover.”Geophysical Research Letters 35 (1): L01703. doi:http://dx.doi. org/10.1029/2007GL031972.

    Fan, K., and H. J. Wang. 2004. “Antarctic Oscillation and the Dust Weather Frequency in North China.” Geophysical Research Letters 31 (10): L10201. doi:http://dx.doi.org/10. 1029/2004GL019465.

    Fan, K., and H. J. Wang. 2006a. “The Interannual Variability of Dust Weather Frequency in Beijing and Its Global Atmospheric Circulation.” Chinese Journal of Geophysics 49: 890-897.

    Fan, K., and H. J. Wang. 2006b. “Interannual Variability of Antarctic Oscillation and Its Infuence on East Asian Climate during Boreal Winter and Spring.” Science in China Series D 49(5): 554-560.

    Fan, K., and H. J. Wang. 2007. “Dust Storms in North China in 2002: A Case Study of the Low Frequency Oscillation.”Advances in Atmospheric Sciences 24 (1): 15-23.

    Fan, K., B. Q. Tian, and H. J. Wang. 2016. “New Approaches for the Skillful Prediction of the Winter North Atlantic Oscillation Based on Coupled Dynamic Climate Models.” International Journal of Climatology 36 (1): 82-94. doi:http://dx.doi.org/10.1002/ joc.4330.

    Gong, D. Y., R. Mao, P. J. Shi, and Y. Fan. 2007. “Correlation between East Asian Dust Storm Frequency and PNA.”Geophysical Research Letters 34 (14): L14710. doi:http:// dx.doi.org/10.1029/2007GL029944.

    Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven,L. Gandin, M. Iredell et al. 1996. “The NCEP/NCAR 40-year Reanalysis Project.” Bulletin of the American Meteorological Society 77: 437-471.

    Kang, D. J., H. J. Wang, 2005: “Analysis on the Decadal Scale Variation of the Dust Storm in North China.” [In Chinese.]Science in China (Series D), 35 (11): 1096-1102.

    Kurosaki, Y., and M. Mikami. 2003. “Recent Frequent Dust Events and Their Relation to Surface Wind in East Asia.”Geophysical Research Letters 30 (14): 1736. doi:http://dx.doi. org/10.1029/2003GL017261.

    Kurosaki, Y., M. Shinoda, and M. Mikami. 2011. “What Caused a Recent Increase in Dust Outbreaks over East Asia?”Geophysical Research Letters 38 (11): L11702. doi:http:// dx.doi.org/10.1029/2011GL047494.

    Lang, X. M. 2008. “Prediction Model for Spring Dust Weather Frequency in North China.” Science in China Series D: Earth Sciences 51: 709-720.

    Lee, E. H., and B. J. Sohn. 2009.“Examining the Impact of Wind and Surface Vegetation on the Asian Dust Occurrence over Three Classifed Source Regions.” Journal of Geophysical Research 114(D6): D06205. doi:http://dx.doi.org/10.1029/2008JD010687.

    Li, F., H. J. Wang, and Y. G. Gao. 2015. “Extratropical Ocean Warming and Winter Arctic Sea Ice Cover since the 1990s.”Journal of Climate 28: 5510-5522.

    Liu, J. P., J. A. Curry, H. J. Wang, M. Song, and R. M. Horton. 2012.“Impact of Declining Arctic Sea Ice on Winter Snowfall.”Proceedings of the National Academy of Sciences 109: 4074-4079.

    Plumb, R. A. 1985. “On the Three-dimensional Propagation of Stationary Waves.” Journal of the Atmospheric Sciences 42: 217-229.

    Qian, W. H., L. S. Quan, and S. Y. Shi. 2002. “Variations of the Dust Storm in China and Its Climatic Control.” Journal of Climate 15: 1216-1229.

    Rodwell, M. J., and D. P. Rowell. 1999. “Oceanic Forcing of the Wintertime North Atlantic Oscillation and European Climate.”Nature 398: 320-323.

    Sun, J. M., M. Y. Zhang, and T. S. Liu. 2001. “Spatial and Temporal Characteristics of Dust Storms in China and Its Surrounding Regions, 1960-1999: Relations to Source Area and Climate.”Journal of Geophysical Research: Atmospheres 106: 10325-10333.

    Tian, B. Q., and K. Fan. 2015. “A Skillful Prediction Model for Winter NAO Based on Atlantic Sea Surface Temperature and Eurasian Snow Cover.” Weather and Forecasting 30 (1): 197-205. doi:http://dx.doi.org/10.1175/WAF-D-14-00100.1.

    Uccellini, L. W. 1986. “The Possible Infuence of Upstream Upperlevel Baroclinic Processes on the Development of the QE II Storm.” Monthly Weather Review 114: 1019-1027.

    Wu, B. Y., and J. Wang. 2002. “Winter Arctic Oscillation, Siberian High and East Asian Winter Monsoon.” Geophysical Research Letters 29(19): 1897. doi:http://dx.doi.org/10.1029/2002GL015373.

    Wu, Y. F., R. J. Zhang, Z. W. Han, and Z. M. Zeng. 2010. “Relationship between East Asian Monsoon and Dust Weather Frequency over Beijing.” Advances in Atmospheric Sciences 27: 1389-1398.

    Yang, S., and K.-M. Lau, K.-M. Kim. 2001. “Variation of the East Asian Jet Stream and Asian-Pacifc-American Winter Climate Anomalies.” Journal of Climate 15: 306-324.

    Zhang, R. J., Z. W. Han, M. X. Wang, and X. Y. Zhang. 2002. “Dust Storm Weather in China: New Characteristics and Origins.” [In Chinese.] Quaternary Sciences 22: 374-380.

    Zhou, X. K., and P. M. Zhai. 2004. “Relationship between Vegetation Coverage and Spring Dust Storms over Northern China.” Journal of Geophysical Research 109 (D3): D03104. doi:http://dx.doi.org/10.1029/2003JD003913.

    Zhu, C. W., B. Wang, and W. H. Qian. 2008. “Why Do Dust Storms Decrease in Northern China Concurrently with the Recent Global Warming?” Geophysical Research Letters 35 (18): L18702. doi:http://dx.doi.org/10.1029/2008GL034886.

    Zhu, Y., H. Wang, W. Zhou, and J. Ma. 2011. “Recent Changes in the Summer Precipitation Pattern in East China and the Background Circulation.” Climate Dynamics 36: 1463-1473.

    北方沙塵; 經(jīng)向遙相關(guān); 緯向波列; 北大西洋海溫

    29 February 2016

    CONTACT FAN Ke fanke@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    北大西洋經(jīng)向海溫
    浸膠帆布經(jīng)向剛度影響因素分析
    橡膠科技(2022年5期)2022-07-20 02:24:04
    基于深度學(xué)習(xí)的海溫觀測數(shù)據(jù)質(zhì)量控制應(yīng)用研究
    近60年華北春季干旱特征及其與北大西洋海表溫度的關(guān)系
    基于Argo、XBT數(shù)據(jù)的蘇拉威西海溫鹽特征分析
    與南亞高壓相聯(lián)的歐亞大陸-印度洋經(jīng)向環(huán)流
    2018年8月大氣環(huán)流中水汽經(jīng)向輸送特征
    南印度洋偶極型海溫與中國西南地區(qū)初秋降水的關(guān)系
    2016與1998年春季北大西洋海表溫度異常的差異及成因
    北大西洋海浪特征分析
    有關(guān)副熱帶太平洋對(duì)ENSO影響研究的綜述
    国产精品一区二区三区四区免费观看| 2018国产大陆天天弄谢| 国产免费一级a男人的天堂| 国产欧美亚洲国产| 亚洲国产精品999| 精品久久久噜噜| 国产色爽女视频免费观看| 黑人巨大精品欧美一区二区蜜桃 | 国产精品一区www在线观看| 亚洲欧美日韩另类电影网站| 一边摸一边做爽爽视频免费| 飞空精品影院首页| 午夜视频国产福利| 日韩人妻高清精品专区| 国产男人的电影天堂91| 老司机亚洲免费影院| 国产精品蜜桃在线观看| 亚洲国产日韩一区二区| 26uuu在线亚洲综合色| 久久午夜综合久久蜜桃| 99热全是精品| 久久这里有精品视频免费| 国产熟女欧美一区二区| 亚洲怡红院男人天堂| 人人澡人人妻人| 亚洲国产色片| 秋霞伦理黄片| 日韩人妻高清精品专区| 欧美少妇被猛烈插入视频| 丝袜美足系列| 中文字幕免费在线视频6| 欧美+日韩+精品| 91午夜精品亚洲一区二区三区| 日本色播在线视频| 色视频在线一区二区三区| 99热全是精品| 国产精品99久久久久久久久| 亚洲精品日韩av片在线观看| 午夜免费鲁丝| 美女视频免费永久观看网站| 亚洲在久久综合| 一区二区三区精品91| 色哟哟·www| 2021少妇久久久久久久久久久| 99热这里只有精品一区| 国产在线免费精品| 日韩伦理黄色片| 18禁在线播放成人免费| 成人二区视频| 成年人免费黄色播放视频| 日韩av不卡免费在线播放| 亚州av有码| 精品少妇久久久久久888优播| 天堂俺去俺来也www色官网| 80岁老熟妇乱子伦牲交| 久久久午夜欧美精品| 2018国产大陆天天弄谢| 秋霞在线观看毛片| 国产精品不卡视频一区二区| 国产精品成人在线| 国产精品女同一区二区软件| 欧美丝袜亚洲另类| 日韩,欧美,国产一区二区三区| 三级国产精品欧美在线观看| 亚洲一级一片aⅴ在线观看| 成人无遮挡网站| 欧美日韩一区二区视频在线观看视频在线| 亚洲av.av天堂| 亚洲国产最新在线播放| 久久久a久久爽久久v久久| 成年人免费黄色播放视频| 亚洲色图 男人天堂 中文字幕 | 国产综合精华液| 国产黄色视频一区二区在线观看| 精品一品国产午夜福利视频| 欧美亚洲 丝袜 人妻 在线| 欧美性感艳星| 91久久精品国产一区二区成人| 精品一区二区三区视频在线| av电影中文网址| 日韩精品有码人妻一区| 亚洲精品国产色婷婷电影| 国模一区二区三区四区视频| 亚洲国产欧美日韩在线播放| 成人午夜精彩视频在线观看| 国产男女超爽视频在线观看| 日本av免费视频播放| 啦啦啦在线观看免费高清www| 大片免费播放器 马上看| 亚洲av免费高清在线观看| 色婷婷久久久亚洲欧美| 超碰97精品在线观看| 日日啪夜夜爽| 免费大片黄手机在线观看| 男女免费视频国产| 精品久久久久久电影网| 中文字幕av电影在线播放| 国产一级毛片在线| 熟女av电影| 午夜日本视频在线| 国产一区二区在线观看av| 激情五月婷婷亚洲| 美女cb高潮喷水在线观看| 日本黄色片子视频| 久久狼人影院| 波野结衣二区三区在线| freevideosex欧美| 精品午夜福利在线看| 亚洲色图综合在线观看| 99久久精品国产国产毛片| 亚洲精品乱久久久久久| 99久国产av精品国产电影| 久久午夜综合久久蜜桃| 久久久久精品久久久久真实原创| 观看av在线不卡| 久久这里有精品视频免费| 欧美性感艳星| 色94色欧美一区二区| 中文字幕久久专区| 欧美丝袜亚洲另类| 成人国产麻豆网| 亚洲国产成人一精品久久久| 日本wwww免费看| 亚洲精品一区蜜桃| 久久国产精品大桥未久av| 91久久精品国产一区二区三区| 久久99一区二区三区| 寂寞人妻少妇视频99o| 国产精品.久久久| 99精国产麻豆久久婷婷| 日韩精品免费视频一区二区三区 | 亚洲国产精品一区三区| 男女国产视频网站| 精品久久久久久久久av| 久久99精品国语久久久| 只有这里有精品99| 成人手机av| 欧美精品人与动牲交sv欧美| 大话2 男鬼变身卡| 91午夜精品亚洲一区二区三区| 全区人妻精品视频| 中文字幕人妻丝袜制服| 欧美精品人与动牲交sv欧美| av在线观看视频网站免费| 一级,二级,三级黄色视频| 老司机亚洲免费影院| 一区二区三区四区激情视频| 午夜91福利影院| 中文字幕精品免费在线观看视频 | 久久97久久精品| 亚洲精品av麻豆狂野| 热99国产精品久久久久久7| 简卡轻食公司| 欧美成人精品欧美一级黄| 最近的中文字幕免费完整| 国产精品嫩草影院av在线观看| 日本爱情动作片www.在线观看| 黄色毛片三级朝国网站| 校园人妻丝袜中文字幕| 黄色毛片三级朝国网站| 狂野欧美白嫩少妇大欣赏| 亚洲av不卡在线观看| 精品亚洲成a人片在线观看| 成年女人在线观看亚洲视频| 18+在线观看网站| 日韩一区二区视频免费看| 人妻 亚洲 视频| 另类亚洲欧美激情| 国产伦理片在线播放av一区| 啦啦啦视频在线资源免费观看| 多毛熟女@视频| 91午夜精品亚洲一区二区三区| 欧美精品人与动牲交sv欧美| 欧美bdsm另类| 十分钟在线观看高清视频www| 七月丁香在线播放| 黑人猛操日本美女一级片| 青春草亚洲视频在线观看| 卡戴珊不雅视频在线播放| 插阴视频在线观看视频| 水蜜桃什么品种好| 美女视频免费永久观看网站| 极品少妇高潮喷水抽搐| 亚洲,欧美,日韩| 性高湖久久久久久久久免费观看| 制服丝袜香蕉在线| 成人毛片60女人毛片免费| 两个人的视频大全免费| 午夜日本视频在线| 3wmmmm亚洲av在线观看| 精品一区在线观看国产| 激情五月婷婷亚洲| 大片免费播放器 马上看| 天美传媒精品一区二区| 男女国产视频网站| 日本欧美国产在线视频| 妹子高潮喷水视频| 97超碰精品成人国产| 色网站视频免费| 欧美日韩精品成人综合77777| 久久久国产一区二区| av国产久精品久网站免费入址| 99热全是精品| 青春草视频在线免费观看| 国产不卡av网站在线观看| 老司机影院毛片| 高清黄色对白视频在线免费看| 又大又黄又爽视频免费| 9色porny在线观看| 国产精品久久久久成人av| 久久久久久久久久久丰满| 国产精品.久久久| 日本vs欧美在线观看视频| 亚洲av免费高清在线观看| 亚洲性久久影院| 亚洲av.av天堂| 麻豆乱淫一区二区| 少妇高潮的动态图| 精品久久国产蜜桃| 成年av动漫网址| 麻豆成人av视频| 亚洲国产精品专区欧美| 午夜福利视频精品| 99久久人妻综合| 男女啪啪激烈高潮av片| 亚洲成人手机| 在线精品无人区一区二区三| 日韩三级伦理在线观看| 欧美成人精品欧美一级黄| 寂寞人妻少妇视频99o| 日本av手机在线免费观看| 国产高清三级在线| 最黄视频免费看| 免费日韩欧美在线观看| 考比视频在线观看| 视频在线观看一区二区三区| 国产亚洲精品久久久com| 欧美+日韩+精品| 99热网站在线观看| 另类精品久久| 国产精品 国内视频| 免费观看无遮挡的男女| 国产毛片在线视频| 免费久久久久久久精品成人欧美视频 | 熟女电影av网| 啦啦啦中文免费视频观看日本| 中文字幕久久专区| 亚洲av.av天堂| 啦啦啦啦在线视频资源| 久久久久久久久久久久大奶| 亚洲综合色网址| 美女国产高潮福利片在线看| 国产视频内射| 精品国产国语对白av| 久久精品国产亚洲网站| av线在线观看网站| 亚洲成人av在线免费| 一本—道久久a久久精品蜜桃钙片| 91精品伊人久久大香线蕉| 九色亚洲精品在线播放| 考比视频在线观看| 欧美最新免费一区二区三区| 赤兔流量卡办理| 免费观看av网站的网址| 五月玫瑰六月丁香| 国产老妇伦熟女老妇高清| 精品视频人人做人人爽| 国产探花极品一区二区| 七月丁香在线播放| 久久久久网色| 热99久久久久精品小说推荐| 欧美bdsm另类| videossex国产| 久久精品熟女亚洲av麻豆精品| 在线看a的网站| 午夜久久久在线观看| 黄色视频在线播放观看不卡| 少妇精品久久久久久久| 满18在线观看网站| 精品国产一区二区久久| 人人妻人人添人人爽欧美一区卜| 亚洲av综合色区一区| 少妇被粗大的猛进出69影院 | 中文字幕人妻熟人妻熟丝袜美| 中国美白少妇内射xxxbb| 中文欧美无线码| 久久久久久久精品精品| 亚洲精品中文字幕在线视频| 欧美+日韩+精品| 哪个播放器可以免费观看大片| 日韩成人av中文字幕在线观看| 亚洲五月色婷婷综合| 日日摸夜夜添夜夜添av毛片| 最新的欧美精品一区二区| 高清av免费在线| 狂野欧美白嫩少妇大欣赏| 热99久久久久精品小说推荐| 久久99精品国语久久久| 色视频在线一区二区三区| 韩国av在线不卡| 欧美+日韩+精品| 极品人妻少妇av视频| 简卡轻食公司| 亚洲国产日韩一区二区| 亚洲精品乱久久久久久| 青春草国产在线视频| 国产成人精品在线电影| 有码 亚洲区| 午夜激情福利司机影院| 九草在线视频观看| 一本色道久久久久久精品综合| 美女国产高潮福利片在线看| 国产伦理片在线播放av一区| 国产精品 国内视频| 黑人欧美特级aaaaaa片| 香蕉精品网在线| 国产高清不卡午夜福利| 色吧在线观看| 国产成人aa在线观看| 午夜免费男女啪啪视频观看| 我的老师免费观看完整版| 夫妻午夜视频| 在线观看www视频免费| 日韩熟女老妇一区二区性免费视频| 一级毛片 在线播放| 最近的中文字幕免费完整| 七月丁香在线播放| 日韩 亚洲 欧美在线| 欧美人与善性xxx| 亚洲精品乱久久久久久| 亚洲精品成人av观看孕妇| 少妇高潮的动态图| 国产亚洲欧美精品永久| a 毛片基地| 一个人看视频在线观看www免费| 亚洲av.av天堂| a级毛片黄视频| 欧美老熟妇乱子伦牲交| 看非洲黑人一级黄片| 一本一本综合久久| 亚洲精华国产精华液的使用体验| 色婷婷av一区二区三区视频| 亚洲精品成人av观看孕妇| 成人免费观看视频高清| av天堂久久9| 国产亚洲av片在线观看秒播厂| 最新的欧美精品一区二区| 日韩成人av中文字幕在线观看| 乱人伦中国视频| 国产av码专区亚洲av| 97超视频在线观看视频| 一本一本综合久久| 久久久久久久久久成人| 爱豆传媒免费全集在线观看| 啦啦啦啦在线视频资源| 国产熟女欧美一区二区| 搡老乐熟女国产| 免费看av在线观看网站| 中文字幕人妻丝袜制服| 久久综合国产亚洲精品| 一个人免费看片子| 只有这里有精品99| 一本大道久久a久久精品| 黄色欧美视频在线观看| 国产一区二区在线观看日韩| 简卡轻食公司| 国产成人精品在线电影| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 亚洲美女黄色视频免费看| 丝袜脚勾引网站| av.在线天堂| 人人澡人人妻人| 午夜免费观看性视频| 视频区图区小说| 国内精品宾馆在线| 国产免费又黄又爽又色| 你懂的网址亚洲精品在线观看| av一本久久久久| 国产69精品久久久久777片| 女性生殖器流出的白浆| 成人影院久久| 欧美精品高潮呻吟av久久| 久久免费观看电影| 国产成人av激情在线播放 | 看免费成人av毛片| 亚洲精品色激情综合| 亚洲五月色婷婷综合| 黑丝袜美女国产一区| 欧美国产精品一级二级三级| 特大巨黑吊av在线直播| 久久99一区二区三区| 国产高清有码在线观看视频| 亚洲三级黄色毛片| 欧美bdsm另类| 日韩 亚洲 欧美在线| 夫妻性生交免费视频一级片| 日韩强制内射视频| 免费黄频网站在线观看国产| 哪个播放器可以免费观看大片| 精品一区二区三区视频在线| 这个男人来自地球电影免费观看 | 99热国产这里只有精品6| 高清毛片免费看| 久久久久久久久大av| 免费黄频网站在线观看国产| 九色成人免费人妻av| 午夜影院在线不卡| 99久久中文字幕三级久久日本| 亚洲av在线观看美女高潮| 99热国产这里只有精品6| 亚洲精品一区蜜桃| 国产成人精品婷婷| 日韩在线高清观看一区二区三区| 青青草视频在线视频观看| 亚洲无线观看免费| 久久青草综合色| 一个人看视频在线观看www免费| 免费观看无遮挡的男女| 人体艺术视频欧美日本| 热99国产精品久久久久久7| 肉色欧美久久久久久久蜜桃| 国产精品99久久99久久久不卡 | 国产欧美日韩一区二区三区在线 | 成人午夜精彩视频在线观看| 免费大片18禁| 国产在线免费精品| 夜夜骑夜夜射夜夜干| 亚洲精品aⅴ在线观看| 大香蕉97超碰在线| 视频在线观看一区二区三区| 欧美 日韩 精品 国产| 精品久久久久久电影网| 少妇精品久久久久久久| av一本久久久久| 亚洲在久久综合| 男男h啪啪无遮挡| 肉色欧美久久久久久久蜜桃| 少妇 在线观看| 两个人的视频大全免费| 韩国av在线不卡| 欧美日韩在线观看h| 九九爱精品视频在线观看| 我的女老师完整版在线观看| 中文字幕久久专区| 国产精品女同一区二区软件| 国产成人精品福利久久| 亚洲精品国产av成人精品| 边亲边吃奶的免费视频| 日本黄色片子视频| 亚洲国产av新网站| 一级毛片aaaaaa免费看小| 成人漫画全彩无遮挡| 黄色配什么色好看| 美女福利国产在线| 大话2 男鬼变身卡| 欧美丝袜亚洲另类| 亚洲国产av新网站| 一级毛片aaaaaa免费看小| 美女xxoo啪啪120秒动态图| av有码第一页| 日韩亚洲欧美综合| 欧美精品一区二区免费开放| 乱人伦中国视频| 2018国产大陆天天弄谢| 久久亚洲国产成人精品v| 免费观看无遮挡的男女| 久久人妻熟女aⅴ| 少妇 在线观看| av福利片在线| 五月伊人婷婷丁香| 久久精品国产a三级三级三级| 中文精品一卡2卡3卡4更新| kizo精华| 亚洲成人手机| 男的添女的下面高潮视频| 一级黄片播放器| freevideosex欧美| 好男人视频免费观看在线| 亚洲精品日本国产第一区| 国产有黄有色有爽视频| 亚洲国产精品一区三区| 人人妻人人爽人人添夜夜欢视频| 色视频在线一区二区三区| 久久这里有精品视频免费| 色哟哟·www| 国产成人精品一,二区| 国产一区亚洲一区在线观看| 欧美精品高潮呻吟av久久| 日韩中文字幕视频在线看片| 又黄又爽又刺激的免费视频.| 最近最新中文字幕免费大全7| 亚洲欧美色中文字幕在线| 爱豆传媒免费全集在线观看| 国产日韩欧美在线精品| 亚洲av福利一区| 黄色欧美视频在线观看| 午夜久久久在线观看| 男人添女人高潮全过程视频| 亚洲av福利一区| 丁香六月天网| 久久久久久久久大av| av黄色大香蕉| 五月伊人婷婷丁香| 丝瓜视频免费看黄片| 成人黄色视频免费在线看| 亚洲成人一二三区av| 欧美日韩在线观看h| 三级国产精品片| 如日韩欧美国产精品一区二区三区 | 黄色怎么调成土黄色| 99国产精品免费福利视频| 国产成人av激情在线播放 | 日本av免费视频播放| 在线观看www视频免费| av播播在线观看一区| 日本黄色片子视频| 亚洲美女黄色视频免费看| 亚洲精品中文字幕在线视频| 日本av免费视频播放| 国产精品久久久久久久久免| 国产熟女午夜一区二区三区 | 国产精品无大码| 热re99久久精品国产66热6| 日本av免费视频播放| 性色av一级| 黄片无遮挡物在线观看| 啦啦啦啦在线视频资源| 91aial.com中文字幕在线观看| 成人二区视频| 少妇被粗大猛烈的视频| av在线app专区| 成人国产av品久久久| 99久久综合免费| 女人久久www免费人成看片| 精品国产国语对白av| 永久网站在线| 亚洲欧美中文字幕日韩二区| 久久热精品热| 亚洲国产精品成人久久小说| 久久免费观看电影| 少妇熟女欧美另类| 免费高清在线观看视频在线观看| 97精品久久久久久久久久精品| 91午夜精品亚洲一区二区三区| 韩国高清视频一区二区三区| 欧美精品一区二区免费开放| 欧美成人精品欧美一级黄| 少妇丰满av| 亚洲精品中文字幕在线视频| 欧美日韩在线观看h| 嘟嘟电影网在线观看| 日韩中字成人| 亚洲不卡免费看| 日韩大片免费观看网站| 久久久久久久久久成人| 日日爽夜夜爽网站| 欧美日韩综合久久久久久| 国语对白做爰xxxⅹ性视频网站| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲精品久久久com| 亚洲第一区二区三区不卡| 简卡轻食公司| 日本与韩国留学比较| 国产视频内射| 最黄视频免费看| 内地一区二区视频在线| 99久久中文字幕三级久久日本| 青春草视频在线免费观看| 亚洲精品国产色婷婷电影| 国产成人freesex在线| videossex国产| 大话2 男鬼变身卡| 99热全是精品| 99热国产这里只有精品6| av在线老鸭窝| 亚洲国产精品一区三区| 伦理电影大哥的女人| 日本欧美国产在线视频| 这个男人来自地球电影免费观看 | 亚洲精品一区蜜桃| 亚洲av福利一区| 国产午夜精品一二区理论片| 校园人妻丝袜中文字幕| 夫妻性生交免费视频一级片| 亚洲综合精品二区| 91午夜精品亚洲一区二区三区| 久久久精品区二区三区| 又大又黄又爽视频免费| 久久久国产欧美日韩av| 大片电影免费在线观看免费| 欧美激情 高清一区二区三区| 精品少妇久久久久久888优播| 免费av不卡在线播放| 老司机亚洲免费影院| 国产黄色免费在线视频| 三上悠亚av全集在线观看| 美女国产视频在线观看| 在线观看免费视频网站a站| 国产精品女同一区二区软件| 国产精品.久久久| 五月天丁香电影| 国产精品偷伦视频观看了| 亚洲图色成人| 国产一区亚洲一区在线观看| 18+在线观看网站| 91久久精品国产一区二区成人| 夜夜看夜夜爽夜夜摸| 99热6这里只有精品| 日韩伦理黄色片| 国产免费又黄又爽又色| 成人18禁高潮啪啪吃奶动态图 | 日韩不卡一区二区三区视频在线| 午夜影院在线不卡| 免费大片18禁|