• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    理論研究BBPQ-PC61BM體系的光伏性質

    2016-11-22 09:48:55趙蔡斌葛紅光靳玲俠王文亮尹世偉
    物理化學學報 2016年10期
    關鍵詞:激子理工學院電荷

    趙蔡斌 葛紅光 張 強 靳玲俠 王文亮 尹世偉

    (1陜西理工學院化學與環(huán)境科學學院,陜西省催化基礎與應用重點實驗室,陜西漢中723000;2陜西師范大學化學化工學院,陜西省大分子科學重點實驗室,西安710062)

    理論研究BBPQ-PC61BM體系的光伏性質

    趙蔡斌1,*葛紅光1,*張強1靳玲俠1王文亮2尹世偉2

    (1陜西理工學院化學與環(huán)境科學學院,陜西省催化基礎與應用重點實驗室,陜西漢中723000;2陜西師范大學化學化工學院,陜西省大分子科學重點實驗室,西安710062)

    探索和制備具有高能量轉換效率(PCE)的有機太陽能電池體系是有機電子學的重要領域和研究熱點。本文利用量子化學和分子動力學計算結合Marcus-Hush電荷傳輸模型理論研究了BBPQ-PC61BM(BBPQ:7, 12-二((三異丙基甲硅烷基)乙炔基)苯并(g)吡啶并(2′,3′:5,6)吡嗪并(2,3-b)喹喔啉-2(1H)-酮;PC61BM:(6,6)苯基-C61-丁酸甲酯)體系的光伏性質。結果表明,BBPQ-PC61BM體系具有相當大的開路電壓(1.22 V)、高的填充因子(0.90)和高的光電轉換效率(9%-10%)。此外,本文研究還發(fā)現(xiàn)BBPQ-PC61BM體系擁有中等大小的激子結合能(0.607 eV),但相對較小的激子分離和電荷復合重組能(0.345和0.355 eV)。借助于一個簡單的分子復合物模型,本文預測BBPQ-PC61BM體系的激子解離速率常數(shù)kdis高達1.775×1013s-1,而預測的電荷復合速率常數(shù)krec相當小(<1.0 s-1),這表明在BBPQ-PC61BM相界面上,激子解離效率非常高??傊?,理論研究表明,BBPQ-PC61BM是一個非常有前途的有機太陽能電池候選體系,值得實驗上做出進一步研究。

    BBPQ;PC61BM;理論研究;光伏性質;密度泛函理論

    1 Introduction

    Organic solar cells(OSCs)have attracted continuous interest in the past several decades due to their numerous advantages compared to traditional silicon-based solar cells,such as lightweight,low cost,adjustable properties,and ease of solvent processing1-4.The power conversion efficiency(PCE)is one of most parameters that character the performance of OSC devices,which is directly related with the open-circuit voltage,Voc,short-circuit current density,Jsc,and fill factor,FF.Previous studies have shown that electron-donating materials in high PCE devices with(6,6)-phenyl-C61-butyric acid methyl ester(PC61BM)as acceptor,should possess(1)the strong optical absorption to harvest more sunlight, (2)high hole mobility to transport holes as efficient as possible, (3)low-lying lowest unoccupied molecular orbital(HOMO)level close to-4.0 eV,and(4)low highest occupied molecular orbital (HOMO)level to obtain large Voc5-7.

    Recently,Engelhart et al.8synthesized a series of novel nitrogendoped pentacene derivatives.Interestingly,most of these compounds exhibit the very strong optical response and low LUMO level of~4.0 eV,which makes them seem to be very suitable as an ideal electron donor material.In current work,taking the PC61BM as acceptor and 7,12-bis((triisopropylsilyl)-ethynyl)benzo(g)pyrido (2′,3′:5,6)pyrazino(2,3-b)quinoxalin-2(1H)-one(BBPQ)as donor, we carried out systematic quantum chemistry and molecular dynamics investigations for the photovoltaic properties of BBPQPC61BM system in order to verify our speculation.The main objectives of this work are to explore the feasibility of BBPQPC61BM system as a potential organic solar cell.Calculations show that BBPQ is an excellent electron donor material,and the PCE of BBPQ-PC61BM system can theoretically reach up to 9%or more.

    2 Computational methods

    As is well-known,the density functional theory(DFT)is an accurate formalism that simulates the molecular structures and electronic properties of organic compounds9-11.However,recent studies show that traditional hybrid density functionals,such as B3LYP,are unsuitable to estimate the excited-state properties for large π-conjugated molecules since their non-Coulomb term of exchange functionals dies off too rapidly12-14.Consequently,the long-range-corrected functional(CAM-B3LYP)15coupled with the 6-311G(d,p)basis set was used to calculate the properties of ground state and excited state in this work,which has been verified to be more reliable and accurate than the other hybrid density functionals16-20.For comparison,some results calculated with the B3LYP/6-311G(d,p)method were also provided.To explore the rational geometry of BBPQ-PC61BM complex,a detailed potentialsurface scan was performed between PC61BM and BBPQ with the CAM-B3LYP-D3(BJ)/6-311G(d,p)scheme.As seen in Fig.S1(in Supporting Information),the BBPQ-PC61BM complex is found to be most stable when the centroids distance of BBPQ and PC61BM is at 0.80 nm,which is in good agreement with the recent study21. Then,in subsequent calculations for the BBPQ-PC61BM complex, the centroid distance of BBPQ and PC61BM is invariably fixed at 0.80 nm.Moreover,the influence of molecular orientation was also considered.As shown in Fig.S2(in Supporting Information), the molecular orientation has a very weak influence on the total energy of BBPQ-PC61BMcomplex.Total density of states(TDOS) and partial density of states(PDOS)were visualized with the Multiwfn 3.37 software package22-24.In addition,the direct-coupling(DC)strategy under one-electron approximation and the PW91PW91/6-31G(d)method25,26was used to estimate the charge transfer integral(VDA)in Marcus-Hush model,which have been illustrated to provide the most accurate VDAvalue at the DFT level27,28.All quantum chemistry calculations were completed with the Gaussian 09 software29.

    Fig.1 Molecular structures of BBPQ and PC61BM

    3 Results and discussion

    3.1Electronic properties and open-circuit voltage

    The structures of BBPQ and PC61BM were depicted in Fig.1. Our optimization reveals that BBPQ core keeps an excellent planar geometry(Fig.S3,in Supporting Information),which indicates its good electronic delocalization.With the optimized ground-state geometries of PC61BM and BBPQ,the TDOS and PDOS were calculated and presented in Fig.2.With the PDOS,the contribution from each substituent to the frontier molecular orbital can be directly observed.As seen,for PC61BM most density of HOMOs and LUMOs concentrates on the C60spheroid in energyrange from-10.0 to 2.0 eV,and the contribution of substituent (methyl-4-phenylbutanoate)is very small.This result indicates that the substituent only enhances the C60solubility in organic solvents,and has hardly influence on its electronic properties, which is in good accord with the previously experimental result30,31.Furthermore,it is found that,as expected,the contribution to the HOMO and LUMO of BBPQ from the trimethylsilyl is very small,which indicates that the electronic structure of BBPQ is almost completely determined by its core skeleton.According to the previous study,the Vocof OSCs can be estimated with32

    Fig.2 Total and partial density-of-states of PC61BM and BBPQ

    where EHOMO(D)and ELUMO(A)are the HOMO level of donor and the LUMO level of PC61BM,respectively,e is the electronic charge,and the value of 0.3 V is an empirical factor.Then,based on the LUMO level(-4.3 eV)for PC61BM,as well as the HOMO level(-5.82 eV)of BBPQ,the Vocis estimated to be as large as 1.22 V for the BBPQ-PC61BM system.More interestingly,the PCE of BBPQ-PC61BM system is predicted to reach up 9%-10%or more(Fig.3)by means of the Scharber diagram32,which indicates the BBPQ-PC61BM system being a very promising OSC.

    3.2Short-circuit current density(JSC)and fill factor(FF)

    The Jscis another important factor that determines the PCE of OSC devices.Simply,the Jscis viewed as a function of the lightabsorbing efficiency(η(λ)),internal quantum efficiency(ηIQE(λ)), and the spectral irradiance of incident light(S(λ)),which can be expressed as33-35,

    Fig.3 Predicted PCE for BBPQ-PC61BM cell with the Scharber diagram

    where η(λ)is the light-absorption efficiency,ηIEQ(λ)is the internal quantum efficiency,S(λ)is the spectral irradiance of incident light, and f is the oscillator strength of molecular donor associated with a certain wavelength.From Eq.(2)and Eq.(3),it is clear that the wide and strong optical absorption can remarkably enlarge the Jsc. Here,the η(λ)values of the strongest absorption peak and the second-strongest one were estimated.Calculations show that the η(λ)is equal to 0.55/0.45 for the strongest/second-strongest absorption peak of BBPQ.For the FF calculation,an approximate scheme can be expressed as36,37,

    where νocis the dimensionless voltage,which can be estimated by the following equation38,39,

    where kB,T,and q are Boltzmann constant,temperature(here,we set T=300 K),and the elementary charge respectively,n is the ideality factor of the diode.According to estimated Voc(1.22 V)for the BBPQ-PC61BM system,the νocis estimated to be 46.42 at n= 1,then,the upper-limit of FF is calculated to be as high as 0.90.

    3.3Exciton binding energy

    Generally,the exciton dissociation concludes a two-step process,where excitons are firstly separated to less strongly bound polaron pairs and,finally,to free polarons40.In order to dissociate excitons into free polarons,the exciton binding energy(Eb)has to be overcome.In optoelectronic organic devices,the Ebis one of the most important parameters that govern many physical processes,which is directly related to the charge separation efficiency. Usually the exciton binding energy is taken as the difference between the transport gap(Et)and the optical band one(Eopt).The former is the difference between adiabatic ionization potential (EAIP)and adiabatic electron affinity(EAEA),while the latter is taken as the first-singlet excitation energy.According this scheme,the Ebcan be calculated as the following expression41,

    where EAIP(D)and EAEA(D)are the donor′s AIP and AEA in the solid state,and E0-0(D)is the lowest singlet-excited energy of donor.As is well-known,the solid stack can stabilize the ionic species,lower the IP,and increase the EA.Then,to calculate the Eb,the EAIPand the EAEAof solid donor firstly need to estimated. Here,the EAIPand the EAEAof BBPQ in the solid state were calculated via the scheme reported by Schwenn et al.42,which has been verified being an accurate method to estimate the IP and EA of organic materials in the solid state.Calculated EAIPand EAEAvalues as well as the Ebin the solid and gas states for BBPQ with different DFT methods were listed in Table 1.As seen,the EAIP/ EAEAin the gas phase is clearly larger/smaller than the one in the solid state,which indicates relatively large polarization energies (~0.8 eV)from gas phase to solid state.In addition,the estimated Ebis remarkably large regardless of the solid stacking compared to the measured Ebin numerous organic materials43.Thus,it is essential to consider the solid stacking effect for accurately estimating the Eb.The precious study showed that an exciton breaks free the Coulomb attraction and becomes two carriers with an opposite charge when Eb

    3.4Gibbs free energies of exciton dissociation and charge recombination

    The Gibbs free energy change(ΔG)of electron transfer process can be estimated as the energy difference of constituents in the final and initial states,accounting for the Coulombic attraction between the two charges in the charge-separated state.Thus,for the exciton-dissociation process,the ΔG(ΔGdis)is expressed as45,

    whereED*,ED+,EA,andEA-represent the total energies of the isolated donor in the equilibrium geometries of the lowest singletexcited state and of the cationic state and the total energies of the isolated acceptor in the equilibrium geometries of the ground state and of the anionic states,respectively.qDand qAare the atomic charges(obtained by Mulliken population analysis in this work) on donor and acceptor in their relevant state with a separation rDA, ε0is the vacuum permittivity,and εsis the relative permittivity of material.The ΔG(ΔGrec)in the charge recombination can also be estimated according to the similar expression to Eq.(7)and Eq.(8). For organic compounds,the εscan be accurately estimated by the following Clausius-Mossotti(CM)equation46

    where V is the Connolly molecular volume,=13∑αii,αiiis the diagonal matrix element of first-order polarizability tensors. Calculation shows that the εsvalue is 2.451 for the solid BBPQ, which is in good agreement with the measured ones(varying in the range from 2 to 547,48)in most organic photoelectric materials. Since the εsof solid PC61BM cannot be accurately computed with the Eq.(9)due to the so-called“tail effect”,the experimental εsof 3.949is used in current calculation.For the BBPQ-PC61BM complex,the total εsis taken as an average of BBPQ and PC61BM. Fig.4 showed the ΔGdis,ΔGrecas well as the ΔEcoulterm estimated in different BBPQ-PC61BM blends.As seen,in BBPQ-PC61BM complexes the ΔGdisand the ΔGrecvalues are calculated to be consistently negative,which indicates that the exciton-dissociation and charge-recombination processes are always favorable thermodynamically.Furthermore,compared to the ΔGdisandthe ΔGrec, it can be noted that the former is remarkably larger than the latter, which denotes that the driving force of charge-recombination is larger than that of exciton-dissociation for the BBPQ-PC61BM system.

    Table 1 Calculated EAIPand EAEAvalues as well as the Ebin gas and solid states for BBPQ with different DFT methods

    3.5Reorganization energies of exciton dissociation and charge recombination

    Generally,the total reorganization energy(λ)accompanying the charge transfer in organic materials can be divided into two sections,namely,the internal reorganization energy(λint)and external one(λext).The λintterm can be calculated with the classic adiabatic potential energy surface(PES)method50,51.For example, in the case of exciton dissociation,the λintis actually taken as the average of the following λ1and λ252,

    where QRand QPrefer to the equilibrium geometries of the reactants(R)and products(P),respectively.Our calculation shows that the λint(λdis)is 0.275 eVin the exciton-dissociation for PC61BMBBPQ complex,which slightly increases to 0.285 eV for the charge recombination.Relatively,the λextis very difficult to be accurately calculated.Here,the λextwas estimated by the classicaldielectric continuum model initially developed by Marcus for electron-transfer reactions between spherical ions in solution. According this model,the λextterm is given by53,

    Fig.4 ΔGdis,ΔGrec,and ΔEcoulvalues calculated in BBPQ and PC61BM blends with different proportions

    where εopis the optical dielectric constant of material,RD(=0.62 nm for BBPQ)and RA(=0.65 nm for PC61BM)are the effective radii of donor and acceptor estimated as the radius of the sphere having the same surface as the surface accessible area of molecule. The qDand qAterms denote the atomic charges on the ions.The εopcan be estimated with the Lorentz-Lorenz equation54,55,

    where n is refractive index,Vmis the molar volume(Vm=M/ρ,M is the molar mass,and ρ is the material density),R is the molar refraction.In this work,the ρ was estimated with the molecular dynamics simulation,and the simulated details were presented in the Supporting Information.Calculations show that the ρ and R of BBPQ solid are 1.066 g·cm-3and 127.4 cm3·mol-1,respectively, yielding the εopof 2.145 for BBPQ.The εopof PC61BM is estimated to be 3.482 with its experimental refractive index of 1.866.Based on the above parameters,the λextis estimated to be 0.060 eV in BBPQ-PC61BM complex(1:1).Summary,the total λ is 0.335 eV in the exciton-dissociation process for BBPQ-PC61BM complex. However,for the charge-recombination process,it further increases to 0.345 eV.According to the Marcus model,the large λ decreases the charge transfer rate;our results show that the exicton-dissociation rate is faster than the charge-recombination one without considering the VDA.

    3.6Exciton dissociation and charge recombination rates

    As is known to all,the charge transfer process occurring in organic solid materials under the high temperature approximation obeys the incoherent hopping mechanism56,57,and the rate constant, k,can be evaluated using the classical Marcus-Hush model58,59,

    where λ is the total reorganization energy,VDAis the effective charge transfer integration between donor and acceptor,ΔG is the Gibbs free energy difference between the initial and final states, kBis Boltzmann constant,h is Planck constant,and T is the temperature.In the exciton-dissociation and charge-recombination processes,ΔG=ΔGdisand ΔGrec,respectively.In terms of the DC scheme,the VDAin the charge transfer process can be calculated by the following expression60,

    where TD(i)A(j)is the charge transfer integral of the ith molecular orbital of donor and the jth molecular orbital of acceptor,SD(i)A(j)is the spatial overlap integral of the ith molecular orbital of donor and the jth molecular orbital of acceptor,and eD(i)/eA(j)is the site energy.The TD(i)A(j),SD(i)A(j),and eD(i)/eA(j)can be obtained from the TD(i)A(j)=<ψD(i)|FKS|ψA(j)>,SD(i)A(j)=<ψD(i)|ψA(j)>,and eD(i)/eA(j)=<ψD(i)/ψA(j)|FKS|ψD(i)/ψA(j)>.Among them,ψD(i)is the HOMO or LUMO of donor, ψA(j)is LUMO of acceptor,and FKSis the Kohn-Sham matrix of donor-acceptor system.The FKScan be estimated from

    where S is the intermolecular overlap matrix,C is the molecular orbital coefficient matrix from the isolated monomer,and ε is the orbital energy from one-step diagonalization without iteration. Consideration the LUMO+1 and LUMO+2 in PC61BM are degenerate in energy with its LUMO,the total VDAwere estimated as an average value of three VDAvalues between the LUMO of BBPQ and the LUMO/LUMO+1/LUMO+2 of PC61BM.Based on the calculated VDAand λ,the exciton-dissociation rate constant, kdis,is estimated to be as high as 1.775×1013s-1in BBPQ-PC61BM blend with a ratio of 1:1,but the charge recombination rate constant,krec,is predicted to be quite small(<1.0 s-1),which indicates very high exciton-dissociation efficiency in BBPQ-PC61BM interface.As observed in Eq.(14),the large kdisvalue can be attributed the large ΔGdis.According our calculations,the excitondissociation process,really occurs in the normal region of Marcus since|ΔG|<λ(0.245 eV versus 0.335 eV).As a result,the k will increase significantly if the|ΔG|and the λ are to converge toward a similar value.Unlike the exciton dissociation,the charge recombination process happens in the inverted region of Marcus due to the|ΔG|>>λ(1.803 eV versus 0.345 eV).Thus,the large|ΔG| remarkably decreases the krec.

    Table 2 Calculated λintfor BBPQ in solid and gas states with different DFT methods

    3.7Charge transport in BBPQ solid

    As is well known,the charge transport ability of donor also affects remarkably the solar cell performance.According to the previous investigation,for high-performance OSC devices,the hole carrier mobility should be as high as 10-3cm2·V-1·s-1at least32.Hence,we estimated the charge-transport performance by means of calculating the λ and VDAvalues with a simplified dimer model,which has been widely applied to evaluate the charge-transport performance of organic material61-63.Table 2 displayed the calculated λintvalues with the PES and normal mode(NM) analysis.As seen,the λintestimated with two approaches are quite close,which shows that the harmonic oscillator approximation can describe well for the charge transfer process of studied molecule64. In addition,it can be also noticed that the λintin the solid state are obviously smaller than that in the gas state,which indicates that the solid stack can limit the structural relaxation of BBPQ in charge transfer process to a certain extent.Considering the practical operating condition of OSC devices,the λintestimated in the solid state is more reasonable.

    Fig.5 Contribution of each vibration mode to the λintfor BBPQ calculated in gas(up)and solid(down)states

    To clarify the λintorigin,the contribution from each vibrational mode to the λintwas calculated with the DUSHIN program developed by Reimers et al.65,66.Fig.5 visualized the contribution from each vibrational mode to the λintestimated at the CAMB3LYP/6-311G(d,p)level in the solid and gas states.As seen, although numerous modes couple with the hole transport in BBPQ,the main contribution to the λintderives from the highfrequency region of 1200-1600 cm-1,which belongs to the stretching vibration of the C―C/C―N single and double bonds located in the molecular skeleton67.Relatively,the contribution from the middle-and low-frequency region is small.Interestingly, from gas state to solid phase,the contribution from the C―C stretching mode with the frequency of 896 cm-1is found to remarkably decrease(from 31 to 16 meV).In addition,the VDAis estimated to be 3.06 meV by means of the face-to-face dimer with the centroids distance of 0.65 nm(Fig.S4 and Fig.S5,in Supporting Information),and then yielding the hole mobility is as high as 1.180×10-3cm2·V·s-1according to the one-dimensional(1D) charge transfer model.

    4 Conclusions

    In summary,BBPQ-PC61BM as a promising OSC was investigated theoretically by means of quantum-chemical calculations. Results show that BBPQ-PC61BM system possesses a large opencircuit voltage(1.22 V),high fill factor(0.90),and high PCE (>9%).Also it has a middle-sized exciton binding energy(0.607 eV),relatively large Gibbs free-energy difference(-0.245 eV)in the exciton dissociation,but the very small one(-1.803 eV)in the charge recombination.Using the Marcus′s charge transfer model, the exciton-dissociation rate constant,kdis,is predicted to be as large as 1.775×1013s-1in BBPQ-PC61BM interface.However,the charge-recombination one,kdis,is estimated to be very small(<1.0 s-1)under the same condition.Furthermore,by means of the 1D model,the mobility of BBPQ solid is predicted to be as high as 1.180×10-3cm2·V·s-1,which can be attributed its small inner organization energy(0.261 eV)and relatively large VDA(3.06 meV).In a word,our calculation shows that BBPQ-PC61BM is a promising OSC system,and is worth studying further on the experimental aspect.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Boudreault,P.L.T.;Najari,A.;Leclerc,M.Chem.Mater.2011, 23,456.doi:10.1021/cm1021855

    (2)Cheng,Y.J.;Yang,S.H.;Hsu,C.S.Chem.Rev.2009,109, 5868.doi:10.1021/cr900182s

    (3) Günes,S.;Neugebauer,H.;Sariciftci,N.S.Chem.Rev.2007, 107,1324.doi:10.1021/cr050149z

    (4) Thompson,B.C.;Fréchet,J.M.J.Angew.Chem.Int.Ed.2007, 47,58.doi:10.1002/anie.200702506

    (5) Peet,J.;Senatore,M.L.;Heeger,A.J.;Bazan,G.C.Adv.Mater. 2009,21,1521.doi:10.1002/adma.200802559

    (6) Huo,L.;Hou,J.;Chen,H.Y.;Zhang,S.;Jiang,Y.;Chen,T.; Yang,Y.Macromolecules 2009,42,6564.doi:10.1021/ ma9012972

    (7) Sista,P.;Nguyen,H,;Murphy,J.W.;Hao,J.;Dei,D.K.; Palaniappan,K.;Servello,J.;Kularatne,R.S.;Gnade,B.E.; Xue,B.F.;Dastoor,P.C.;Biewer,M.C.;Stefan,M.C. Macromolecules 2010,43,8063.doi:10.1021/ma101709h

    (8) Engelhart,J.U.;Lindner,B.D.;Tverskoy,O.;Rominger,F.; Bunz,U.H.F.Org.Lett.2012,14,1008.doi:10.1021/ ol203334u

    (9) Fabiano,E.;Sala,F.D.;Cingoland,R.;Weimer,M.;G?rling,A. J.Phys.Chem.A 2005,109,3078.doi:10.1021/jp044974f

    (10) Tsai,F.C.;Chang,C.C.;Liu,C.L.;Chen,W.C.;Jenekhe,S.A. Macromolecules 2005,38,1958.doi:10.1021/ma048112o

    (11) Hutchison,G.R.;Ratner,M.A.;Marks,T.J.J.Am.Chem.Soc. 2005,127,2339.doi:10.1021/ja0461421

    (12)Wong,B.M.;Hsieh,T.H.J.Chem.Theory.Comput.2010,6, 3704.doi:10.1021/ct100529s

    (13) Grimme,S.;Parac,M.ChemPhysChem 2003,4,292. doi:10.1002/cphc.200390047

    (14) Song,J.W.;Hirao,K.Theor.Chem.Acc.2014,133,1438. doi:10.1007/s00214-013-1438-5

    (16) Vl?ek,A.;Záli?,S.Coordin.Chem.Rev.2007,251,258. doi:10.1016/j.ccr.2006.05.021

    (17) Zhang,S.;Qu,Z.;Tao,P.;Brooks,B.;Shao,Y.;Chen,X.;Liu, C.J.Phys.Chem.C 2012,116,12434.doi:10.1021/jp3027447

    (18) Jacquemin,D.;Perpète,E.A.;Vydrov,O.A.;Scuseria,G.E.; Carlo,A.J.J.Chem.Phys.2007,127,094102.doi:10.1063/ 1.2770700

    (19) Jacquemin,D.;Planchat,A.;Adamo,C.;Mennucci,B.J.Chem. Theory.Comput.2012,8,2359.doi:10.1021/ct300326f

    (20) Jorge,F.E.;Jorge,S.S.;Suave,R.N.Chirality 2015,27,23. doi:10.1002/chir.22384

    (21) Liu,T.;Troisi,A.J.Phys.Chem.C 2011,115,2406. doi:10.1021/jp109130y

    (23) Lu,T.;Chen,F.W.J.Mol.Graph.Model.2012,38,314. doi:10.1016/j.jmgm.2012.07.004

    (24) Lu,T.;Chen,F.W.Acta Chim.Sin.2011,69,2393.[盧天,陳飛武.化學學報,2011,69,2393.]

    (25) Troisi,A.;Orlandi,G.J.Phys.Chem.A 2006,110,4065. doi:10.1021/jp055432g

    (26)Yin,S.W.;Yi,Y.P.;Li,Q.X.;Yu,G.;Liu,Y.Q.;Shuai,Z.G. J.Phys.Chem.A 2006,110,7138.doi:10.1021/jp057291o

    (27) Song,Y.B.;Di,C.A.;Yang,X.D.;Li,S.P.;Xu,W.;Liu,Y.Q.; Yang,L.M.;Shuai,Z.G.;Zhang,D.Q.;Zhu,D.B.J.Am. Chem.Soc.2006,128,15940.doi:10.1021/ja064726s

    (28) Huang,J.S.;Kertesz,M.Chem.Phys.Lett.2004,390,110. doi:10.1016/j.cplett.2004.03.141

    (29) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09, Revision D.02;Gaussian Inc.:Wallingford,CT,2009.

    (30) Zheng,L.P.;Zhou,Q.M.;Deng,X.Y.;Yuan,M.;Yu,G.;Cao, Y.J.Phys.Chem.B 2004,108,11921.doi:10.1021/jp048890i

    (31)Wang,X.M.;Guo,Y.L.;Xiao,Y.;Zhang,L.;Yu,G.;Liu,Y.Q. J.Mater.Chem.2009,19,3258.doi:10.1039/B823336E

    (32) Scharber,M.C.;Mühlbacher,D.;Koppe,M.;Denk,P.; Waldauf,C.;Heeger,A.J.;Brabec,C.J.Adv.Mater.2006,18, 789.doi:10.1002/adma.200501717

    (33) Peumans,P.;Yakimov,A.;Forrest,S.R.J.Appl.Phys.2003,93, 3693.doi:10.1063/1.1646446

    (34) Bérubé,N.;Gosselin,V.;Gaudreau,J.;C?té,M.J.Phys.Chem. C 2013,117,7964.doi:10.1021/jp309800f

    (35) Liu,X.R.;Shen,W.;He,R.X.;Luo,Y.F.;Li,M.J.Phys. Chem.C 2014,118,17266.doi:10.1021/jp503248a

    (36) Guo,X.G.;Zhou,N.J.;Lou,S.J.;Smith,J.;Tice,D.B.; Hennek,J.W.;Ortiz,R.P.;Navarrete,J.T.L.;Li,S.Y.; Strzalka,J.;Chen,L.X.;Chang,R.P.H.;Facchetti,A.;Marks, T.J.Nat.Photonics 2013,7,825.doi:10.1038/ nphoton.2013.207

    (37) Gupta,D.;Mukhopadhyay,S.;Narayan,K.Sol.Energy Mater. Sol.Cells 2010,94,1309.doi:10.1016/j.solmat.2008.06.001

    (38) Zhou,Y.H.;Fuentes-Hernandez,C.;Shim,J.W.;Khan,T.M.; Kippelen,B.Energy Environ.Sci.2012,5,9827.doi:10.1039/ C6EE01428C

    (39) Liu,X.R.;Huang,C.Z.;Shen,W.;He,R.X.;Li,M.J.Mol. Model.2016,22,15.doi:10.1007/s00894-015-2885-9

    (40) Grage,M.M.L.;Zaushitsyn,Y.;Yartsev,A.;Chachisvilis, Sundstr?m,M.V.;Pullerits,T.Phys.Rev.B 2003,67,205207. doi:10.1103/PhysRevB.67.205207

    (41) Nayak,P.K.;Periasamy,N.Org.Electron.2009,10,1396. doi:10.1016/j.orgel.2009.06.011

    (42) Schwenn,P.E.;Burn,P.L.;Powell,B.J.Org.Electron.2011, 12,394.doi:10.1016/j.orgel.2010.11.025

    (43) Hill,I.G.;Kahn,A.;Soos,Z.G.;Pascal,R.A.Chem.Phys. Lett.2000,327,181.doi:10.1016/S0009-2614(00)00882-4

    (44) Li,Y.Z.;Pullerits,T.;Zhao,M.Y.;Sun,M.T.J.Phys.Chem.C 2011,115,21865.doi:10.1021/jp2040696

    (45) Lemaur,V.;Steel,M.;Beljonne,D.;Brédas,J.L.;Cornil,J.J.Am.Chem.Soc.2005,127,6077.doi:10.1021/ja042390l

    (46) Rysselberghe,P.V.J.Phys.Chem.1931,36,1152.doi:10.1021/ j150334a007

    (47) Zang,D.Y.;So,F.F.;Forrest,S.R.Appl.Phys.Lett.1991,59, 823.doi:10.1063/1.105274

    (48) Brocks,G.;van den Brink,J.;Morpurgo,A.F.Phys.Rev.Lett. 2004,93,146405.doi:10.1103/PhysRevLett.93.146405

    (49) Mihailetchi,V.;van Duren,J.;Blom,P.;Hummelen,J.;Janssen, R.;Kroon,J.;Rispens,M.;Verhees,W.;Wienk,M.Adv.Funct. Mater.2003,13,43.doi:10.1002/adfm.200390004

    (50) Malagoli,M.;Brédas,J.L.Chem.Phys.Lett.2000,327,13. doi:10.1016/S0009-2614(00)00757-0

    (51) Lemaur,V.;da Silva Filho,D.A.;Coropceanu,V.;Lehmann, M.;Geerts,Y.;Piris,J.;Debije,M.G.;van de Craats,A.M.; Senthilkumar,K.;Siebbeles,L.D.A.;Warman,J.M.;Brédas,J. L.;Cornil,J.J.Am.Chem.Soc.2004,126,3271.doi:10.1021/ ja0390956

    (52) Brédas,J.L.;Beljonne,D.;Coropceanu,V.;Cornil,J.Chem. Rev.2004,104,4971.doi:10.1021/cr040084k

    (56) Tauber,M.J.;Kelley,R.F.;Giaimo,J.M.;Rybtchinski,B.; Wasielewski,M.R.J.Am.Chem.Soc.2006,128,1782. doi:10.1021/ja057031k

    (57) Coropceanu,V.;Cornil,J.;da Silva Filho,D.A.;Olivier,Y.; Silbey,R.;Brédas,J.L.Chem.Rev.2007,107,926. doi:10.1021/cr050140x

    (60) Yin,S.W.;Li,L.L.;Yang,Y.M.;Reimers,J.R.J.Phys.Chem. C 2012,116,14826.doi:10.1021/jp303724r

    (61) Olivier,Y.;Lemaur,V.;Brédas,J.L.;Cornil,J.J.Phys.Chem.A 2006,110,6356.doi:10.1021/jp0571933

    (62) Liu,H.G.;Kang,S.;Lee,J.Y.J.Phys.Chem.B 2011,115, 5113.doi:10.1021/jp1045595

    (63) Chen,X.K.;Zou,L.Y.;Ren,A.M.;Fan,J.X.Phys.Chem. Chem.Phys.2011,13,19490.doi:10.1039/C1CP22227A

    (64) Li,H.X.;Zheng,R.H.;Shi,Q.J.Phys.Chem.C 2012,116, 11886.doi:10.1021/jp301536z

    (65) Weber,P.;Reimers,J.R.J.Phys.Chem.A 1999,103,9830. doi:10.1021/jp991404k

    (66) Cai,Z.L.;Reimers,J.R.J.Phys.Chem.A 2000,104,8389. doi:10.1021/jp000962s

    (67)Yang,X.D.;Wang,L.J.;Wang,C.L.;Long,W.;Shuai,Z.G. Chem.Mater.2008,20,3205.doi:10.1021/cm8002172

    Theoretical Investigation on Photovoltaic Properties of the BBPQ-PC61BM System

    ZHAO Cai-Bin1,*GE Hong-Guang1,*ZHANG Qiang1JIN Ling-Xia1WANG Wen-Liang2YIN Shi-Wei2
    (1Shaanxi Province Key Laboratory of Catalytic Fundamentals and Applications,School of Chemical and Environmental Science, Shaanxi University of Technology,Hanzhong 723000,Shaanxi Province,P.R.China;2Key Laboratory for Macromolecular Science of Shaanxi Province,School of Chemistry and Chemical Engineering, Shaanxi Normal University,Xi'an 710062,P.R.China)

    Exploring and fabricating organic solar cell devices with the high power conversion efficiency(PCE) has kept a major challenge and hot topic in organic electronics research.In this study,we have used quantum chemical and molecular dynamics calculations in conjunction with the Marcus-Hush charge transfer model to investigate the photovoltaic properties of BBPQ-PC61BM.The results revealed that the BBPQ-PC61BM(BBPQ: 7,12-bis((triisopropylsilyl)-ethynyl)benzo(g)pyrido(2′,3′:5,6)pyrazino(2,3-b)quinoxalin-2(1H)-one;PC61BM:(6, 6)-phenyl-C61-butyric acid methyl ester)system theoretically possesses a large open-circuit voltage(1.22 V), high fill factor(0.90),and high PCE of 9%-10%.The calculations also reveal that the BBPQ-PC61BM system has a medium-sized exciton binding energy(0.607 eV),with relatively small reorganization energies(0.345 and0.355 eV)for its exciton-dissociation and charge-recombination processes.Based on a simplified molecular complex,the exciton dissociation rate constant,kdis,was estimated to be as large as 1.775×1013s-1at the BBPQPC61BM interface.In contrast,the charge-recombination rate constant,krec,was very small under the same conditions(<1.0 s-1),which indicated a rapid and efficient exciton-dissociation process at the donor-acceptor interface.Overall,our calculations show that the BBPQ-PC61BM system is a very promising organic solar cell system that is worthy of further research.

    May 13,2016;Revised:July 4,2016;Published online:July 5,2016.

    s.ZHAO Cai-Bin,Email:zhaocb@snut.edu.cn;Tel:+86-916-2641660.GE Hong-Guang,Emai:gehg@snut.edu.cn;

    BBPQ;PC61BM;Theoretical investigation;Photovoltaic property;Density functional theory

    O641

    10.3866/PKU.WHXB201607051

    Tel:+86-916-2641660.

    The project was supported by the National Natural Science Foundation of China(21373132,21502109),Doctor Research Start Foundation of

    Shaanxi University of Technology,China(SLGKYQD2-13,SLGKYQD2-10,SLGQD14-10),and Education Department of Shaanxi Provincial

    Government Research Projects,China(16JK1142).

    國家自然科學基金(21373132,21502109),陜西理工學院博士科研啟動基金(SLGKYQD2-13,SLGKYQD2-10,SLGQD14-10)和陜西省教育廳專項科研計劃(16JK1142)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (15) Yanai,T.Chem.Phys.Lett.2004,393,51.10.1016/j. cplett.2004.06.011

    (22) Lu,T.;Chen,F.W.J.Comput.Chem.2012,33,580. 10.1002/jcc.22885

    (53) Marcus,R.A.J.Chem.Phys.1965,43,679.10.1063/ 1.1696792

    (54) Lorentz,H.A.Ann.Phys.1880,9,641.10.1002/ 18802450406

    (55) Lorenz,L.Ann.Phys.1880,11,70.10.1002/18802470905

    (58) Marcus,R.A.Rev.Mod.Phys.1993,65,599. RevModPhys.65.599

    (59) Hush,N.S.J.Chem.Phys.1958,28,962.10.1063/ 1.1744305

    猜你喜歡
    激子理工學院電荷
    連續(xù)分布電荷體系電荷元的自能問題*
    物理通報(2024年4期)2024-04-09 12:41:28
    電荷知識知多少
    江蘇理工學院
    電荷守恒在化學解題中的應用
    常熟理工學院
    理工學院簡介
    CdSeS合金結構量子點的多激子俄歇復合過程*
    物理學報(2019年10期)2019-06-04 05:31:52
    找到你了,激子素
    科學之謎(2018年3期)2018-04-09 06:37:46
    任意門
    長程電子關聯(lián)對聚合物中激子極化率的影響
    99久久精品一区二区三区| 午夜久久久久精精品| 成熟少妇高潮喷水视频| 欧美激情国产日韩精品一区| 男的添女的下面高潮视频| 日韩欧美三级三区| 亚洲国产精品成人综合色| 51国产日韩欧美| 国产亚洲av片在线观看秒播厂 | 欧美zozozo另类| 久久精品夜色国产| 99久久精品一区二区三区| 三级国产精品欧美在线观看| 99热网站在线观看| 中国美女看黄片| 欧美3d第一页| 国产午夜精品一二区理论片| 成人特级黄色片久久久久久久| 亚洲国产精品sss在线观看| 淫秽高清视频在线观看| 亚洲成人久久性| 成人毛片a级毛片在线播放| 美女黄网站色视频| 久久国内精品自在自线图片| 真实男女啪啪啪动态图| 国产老妇女一区| 少妇丰满av| 黄色视频,在线免费观看| 午夜激情福利司机影院| 亚洲无线观看免费| 村上凉子中文字幕在线| 乱人视频在线观看| 美女高潮的动态| 国产成人午夜福利电影在线观看| 欧美日韩在线观看h| 舔av片在线| 中文字幕精品亚洲无线码一区| 免费一级毛片在线播放高清视频| 国产精品久久久久久亚洲av鲁大| 噜噜噜噜噜久久久久久91| 最近2019中文字幕mv第一页| 尾随美女入室| 村上凉子中文字幕在线| 久久韩国三级中文字幕| 国产精品一区www在线观看| 少妇熟女欧美另类| 欧美成人一区二区免费高清观看| 能在线免费看毛片的网站| 日本av手机在线免费观看| 欧美xxxx性猛交bbbb| 国产v大片淫在线免费观看| 精品久久久久久久久久免费视频| 亚洲精品乱码久久久v下载方式| 尾随美女入室| 在线观看av片永久免费下载| 久久久成人免费电影| 69人妻影院| 国产精品一区www在线观看| 如何舔出高潮| 欧美潮喷喷水| 国产伦精品一区二区三区四那| 中文资源天堂在线| 黄色配什么色好看| 成年版毛片免费区| 欧美精品一区二区大全| 2022亚洲国产成人精品| 深夜a级毛片| 欧美一区二区国产精品久久精品| 女人被狂操c到高潮| 一个人看视频在线观看www免费| 久久人人精品亚洲av| 一级毛片久久久久久久久女| 高清毛片免费看| 国语自产精品视频在线第100页| 草草在线视频免费看| 好男人视频免费观看在线| 尤物成人国产欧美一区二区三区| 边亲边吃奶的免费视频| 超碰av人人做人人爽久久| 国产精品伦人一区二区| 波野结衣二区三区在线| 国产国拍精品亚洲av在线观看| 国内精品宾馆在线| 桃色一区二区三区在线观看| 91午夜精品亚洲一区二区三区| 国产探花在线观看一区二区| 老女人水多毛片| 国内精品久久久久精免费| 国产av麻豆久久久久久久| 国产色爽女视频免费观看| 亚洲图色成人| 女的被弄到高潮叫床怎么办| 天堂影院成人在线观看| 大又大粗又爽又黄少妇毛片口| 伊人久久精品亚洲午夜| 搡女人真爽免费视频火全软件| 毛片一级片免费看久久久久| 又爽又黄a免费视频| 熟女电影av网| 有码 亚洲区| 51国产日韩欧美| 日日摸夜夜添夜夜添av毛片| 亚洲欧美精品专区久久| 国产高清有码在线观看视频| 丝袜喷水一区| 91午夜精品亚洲一区二区三区| 黄色视频,在线免费观看| 极品教师在线视频| 国产精品久久久久久久电影| 少妇的逼好多水| 1024手机看黄色片| 国产激情偷乱视频一区二区| 少妇人妻一区二区三区视频| 日日干狠狠操夜夜爽| 国产久久久一区二区三区| 国产老妇女一区| 亚洲国产欧美在线一区| 成人鲁丝片一二三区免费| 久久鲁丝午夜福利片| 草草在线视频免费看| 国产亚洲精品久久久com| av专区在线播放| 午夜福利在线在线| 欧美成人a在线观看| 乱码一卡2卡4卡精品| 免费观看在线日韩| 乱人视频在线观看| 中文在线观看免费www的网站| 三级国产精品欧美在线观看| 一夜夜www| 校园春色视频在线观看| 欧美变态另类bdsm刘玥| 最新中文字幕久久久久| 国模一区二区三区四区视频| 男女那种视频在线观看| 村上凉子中文字幕在线| 国产亚洲精品久久久com| 麻豆一二三区av精品| 亚洲真实伦在线观看| 校园人妻丝袜中文字幕| 久久人妻av系列| 久久热精品热| 成人午夜高清在线视频| 国产色婷婷99| 亚洲av免费在线观看| 精品久久久久久久末码| 成人美女网站在线观看视频| 国产精品久久久久久亚洲av鲁大| av卡一久久| 老师上课跳d突然被开到最大视频| 插逼视频在线观看| 国产一区二区在线av高清观看| 人妻系列 视频| 国产精品99久久久久久久久| 天堂中文最新版在线下载 | 色吧在线观看| 男人舔女人下体高潮全视频| 黄色视频,在线免费观看| 一边亲一边摸免费视频| 黄片无遮挡物在线观看| 97人妻精品一区二区三区麻豆| 国产男人的电影天堂91| 嫩草影院新地址| 午夜福利视频1000在线观看| 国产乱人偷精品视频| 日本黄大片高清| 最近视频中文字幕2019在线8| 成熟少妇高潮喷水视频| 国产乱人视频| 日韩av在线大香蕉| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 成人性生交大片免费视频hd| 波野结衣二区三区在线| 国产精品女同一区二区软件| 国产色爽女视频免费观看| 神马国产精品三级电影在线观看| 日韩高清综合在线| 搞女人的毛片| 有码 亚洲区| 精品日产1卡2卡| 久久精品91蜜桃| 少妇高潮的动态图| 久久人人精品亚洲av| 欧美成人一区二区免费高清观看| 中文资源天堂在线| 亚洲熟妇中文字幕五十中出| 中文字幕免费在线视频6| 欧美三级亚洲精品| 成人午夜高清在线视频| 人人妻人人看人人澡| 成人国产麻豆网| 国产亚洲av嫩草精品影院| av在线亚洲专区| 国产精品久久久久久精品电影| 简卡轻食公司| 白带黄色成豆腐渣| 国产精品精品国产色婷婷| 99久久人妻综合| 亚洲精品亚洲一区二区| 六月丁香七月| 久久精品国产亚洲av涩爱 | 久久这里有精品视频免费| 精品久久久久久久久亚洲| 国产亚洲精品久久久com| 国产成人一区二区在线| 国产一区二区在线av高清观看| 午夜福利成人在线免费观看| 久久热精品热| 男人的好看免费观看在线视频| 亚洲欧美成人精品一区二区| 亚洲18禁久久av| 国产精品久久久久久久久免| 99久久久亚洲精品蜜臀av| 我要看日韩黄色一级片| 99精品在免费线老司机午夜| 26uuu在线亚洲综合色| 亚洲国产精品成人久久小说 | 一个人观看的视频www高清免费观看| 久久久久久久久久久丰满| 大型黄色视频在线免费观看| 亚洲最大成人手机在线| 夫妻性生交免费视频一级片| 国产精品爽爽va在线观看网站| 久久精品国产亚洲av天美| 12—13女人毛片做爰片一| 色播亚洲综合网| 小蜜桃在线观看免费完整版高清| 日韩制服骚丝袜av| 国产精品久久久久久久久免| 99国产极品粉嫩在线观看| 一本久久中文字幕| 久久久久久久久久久免费av| 超碰av人人做人人爽久久| 精品久久久久久久久久免费视频| 精华霜和精华液先用哪个| 久久久国产成人免费| 国产激情偷乱视频一区二区| 卡戴珊不雅视频在线播放| 天天躁夜夜躁狠狠久久av| 色吧在线观看| 日本欧美国产在线视频| a级一级毛片免费在线观看| 又粗又爽又猛毛片免费看| 九九热线精品视视频播放| 久99久视频精品免费| 国产色婷婷99| 日韩精品青青久久久久久| 丝袜美腿在线中文| 一级毛片aaaaaa免费看小| 美女大奶头视频| 日本欧美国产在线视频| 国产免费男女视频| 国产精品人妻久久久影院| 国产精品一二三区在线看| 内射极品少妇av片p| 久久欧美精品欧美久久欧美| 少妇的逼好多水| 非洲黑人性xxxx精品又粗又长| 欧美日本视频| 欧美一区二区精品小视频在线| 嫩草影院入口| 亚洲国产精品合色在线| 午夜亚洲福利在线播放| kizo精华| 哪里可以看免费的av片| 观看免费一级毛片| 26uuu在线亚洲综合色| 能在线免费观看的黄片| 不卡一级毛片| 久久久久九九精品影院| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 联通29元200g的流量卡| 婷婷六月久久综合丁香| 精品久久久久久成人av| 欧美日韩精品成人综合77777| 三级毛片av免费| 久久精品91蜜桃| 免费搜索国产男女视频| 亚洲欧美日韩东京热| a级毛片a级免费在线| 国产日韩欧美在线精品| 国产精品免费一区二区三区在线| 直男gayav资源| av在线观看视频网站免费| 1024手机看黄色片| 身体一侧抽搐| 在线观看午夜福利视频| 亚洲av二区三区四区| 激情 狠狠 欧美| 十八禁国产超污无遮挡网站| 久久婷婷人人爽人人干人人爱| 成人鲁丝片一二三区免费| 国产精品综合久久久久久久免费| 最后的刺客免费高清国语| 亚洲国产精品合色在线| 国产高清有码在线观看视频| 伦精品一区二区三区| 男女边吃奶边做爰视频| 中文字幕人妻熟人妻熟丝袜美| 日韩中字成人| 美女高潮的动态| 此物有八面人人有两片| 99热6这里只有精品| 亚洲中文字幕一区二区三区有码在线看| 女人十人毛片免费观看3o分钟| 日韩成人伦理影院| 97在线视频观看| 观看免费一级毛片| 久久久久久久久久黄片| 丝袜喷水一区| 免费电影在线观看免费观看| 国产 一区 欧美 日韩| 婷婷六月久久综合丁香| 亚洲图色成人| 丰满的人妻完整版| 直男gayav资源| 少妇被粗大猛烈的视频| 老司机影院成人| 亚洲欧美日韩卡通动漫| 国产免费一级a男人的天堂| 精品久久国产蜜桃| 亚洲精品456在线播放app| 欧美日韩综合久久久久久| 国产精品精品国产色婷婷| 好男人在线观看高清免费视频| 中文在线观看免费www的网站| 国内少妇人妻偷人精品xxx网站| av免费在线看不卡| 久久久色成人| 少妇的逼水好多| 在线观看av片永久免费下载| 一夜夜www| 日本在线视频免费播放| 欧美一区二区精品小视频在线| 舔av片在线| 成人亚洲精品av一区二区| 国产老妇女一区| 乱人视频在线观看| 99久国产av精品| 九九在线视频观看精品| 国产精品人妻久久久影院| 久久99热6这里只有精品| 伦理电影大哥的女人| 色吧在线观看| 色视频www国产| 波野结衣二区三区在线| 国产av不卡久久| 久久精品国产99精品国产亚洲性色| 日韩人妻高清精品专区| 熟女人妻精品中文字幕| 22中文网久久字幕| 欧美xxxx性猛交bbbb| 国产爱豆传媒在线观看| 国产黄色视频一区二区在线观看 | 亚洲成人精品中文字幕电影| 国产69精品久久久久777片| 国产亚洲5aaaaa淫片| 欧美xxxx性猛交bbbb| 天天躁夜夜躁狠狠久久av| 在线免费十八禁| 边亲边吃奶的免费视频| 久久精品夜色国产| 自拍偷自拍亚洲精品老妇| 日本撒尿小便嘘嘘汇集6| 波多野结衣高清无吗| 久久人人爽人人片av| 亚洲精品久久久久久婷婷小说 | 中出人妻视频一区二区| 看非洲黑人一级黄片| 中出人妻视频一区二区| 成人国产麻豆网| 别揉我奶头 嗯啊视频| 久久99热这里只有精品18| 亚洲第一电影网av| 97超视频在线观看视频| 亚洲三级黄色毛片| 91久久精品国产一区二区三区| 国产精品电影一区二区三区| 久久久久久大精品| 伦精品一区二区三区| 午夜亚洲福利在线播放| 免费无遮挡裸体视频| 欧美在线一区亚洲| 99视频精品全部免费 在线| 一边摸一边抽搐一进一小说| av.在线天堂| 亚洲四区av| 99久久久亚洲精品蜜臀av| 亚洲成人久久爱视频| 国产三级中文精品| 久久精品国产99精品国产亚洲性色| 亚洲成人中文字幕在线播放| 亚洲不卡免费看| 日韩制服骚丝袜av| 午夜精品一区二区三区免费看| 亚洲18禁久久av| 欧美最黄视频在线播放免费| 日韩强制内射视频| 一个人看视频在线观看www免费| 成人午夜高清在线视频| 欧美日韩综合久久久久久| 亚洲欧美中文字幕日韩二区| av在线蜜桃| 男人的好看免费观看在线视频| 成年女人看的毛片在线观看| 国产美女午夜福利| 黄片无遮挡物在线观看| 成年av动漫网址| 国产精品久久久久久精品电影| 国产 一区 欧美 日韩| 五月玫瑰六月丁香| 在线国产一区二区在线| 日韩成人av中文字幕在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 性插视频无遮挡在线免费观看| 在线观看免费视频日本深夜| 欧美色视频一区免费| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 国产精品av视频在线免费观看| 天堂影院成人在线观看| 亚洲国产欧美在线一区| 免费av观看视频| 校园人妻丝袜中文字幕| 三级男女做爰猛烈吃奶摸视频| 春色校园在线视频观看| 国产爱豆传媒在线观看| 干丝袜人妻中文字幕| 黄片wwwwww| 色尼玛亚洲综合影院| 日韩三级伦理在线观看| 亚洲av中文字字幕乱码综合| 国产黄色小视频在线观看| 欧美不卡视频在线免费观看| 国产亚洲av嫩草精品影院| 久久久久久九九精品二区国产| 国产日本99.免费观看| 亚洲欧美日韩无卡精品| 国产乱人偷精品视频| 亚洲国产欧洲综合997久久,| 国产精品不卡视频一区二区| 91久久精品国产一区二区成人| 美女脱内裤让男人舔精品视频 | 女同久久另类99精品国产91| 精品一区二区三区视频在线| 亚洲乱码一区二区免费版| 欧美极品一区二区三区四区| 日韩三级伦理在线观看| 免费av观看视频| 岛国在线免费视频观看| 免费观看在线日韩| 免费在线观看成人毛片| 午夜a级毛片| 日本一本二区三区精品| 岛国毛片在线播放| 丝袜美腿在线中文| 国产极品精品免费视频能看的| 欧美xxxx性猛交bbbb| 国产 一区精品| 精品日产1卡2卡| 久久精品国产清高在天天线| 赤兔流量卡办理| 综合色丁香网| 国产老妇女一区| 国产人妻一区二区三区在| 2021天堂中文幕一二区在线观| 久久草成人影院| 色综合亚洲欧美另类图片| 精品久久久噜噜| 欧美性猛交黑人性爽| 免费看光身美女| 一边摸一边抽搐一进一小说| 又粗又爽又猛毛片免费看| 如何舔出高潮| 亚洲精品色激情综合| kizo精华| 亚洲婷婷狠狠爱综合网| 日韩人妻高清精品专区| 欧美极品一区二区三区四区| 亚洲国产欧洲综合997久久,| 国产精品99久久久久久久久| 久久久久九九精品影院| 99国产极品粉嫩在线观看| 免费黄网站久久成人精品| 五月玫瑰六月丁香| 欧美+日韩+精品| 最后的刺客免费高清国语| 中文字幕av成人在线电影| 91精品国产九色| 在线免费观看的www视频| 欧美潮喷喷水| 成人午夜高清在线视频| 三级国产精品欧美在线观看| 一级av片app| 亚洲av男天堂| 18+在线观看网站| 天天躁日日操中文字幕| 国产高潮美女av| 蜜桃亚洲精品一区二区三区| 日韩欧美三级三区| 国产伦在线观看视频一区| videossex国产| 大型黄色视频在线免费观看| 国产精品久久电影中文字幕| 国产精品三级大全| 九草在线视频观看| 国产老妇伦熟女老妇高清| 亚洲自拍偷在线| 最近最新中文字幕大全电影3| 国产一区二区激情短视频| 久久鲁丝午夜福利片| 一本一本综合久久| 免费观看a级毛片全部| 亚洲人成网站高清观看| 麻豆国产97在线/欧美| 国产午夜精品一二区理论片| 超碰av人人做人人爽久久| 特级一级黄色大片| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 男女视频在线观看网站免费| 欧美区成人在线视频| 春色校园在线视频观看| 免费无遮挡裸体视频| 69人妻影院| 国产在线精品亚洲第一网站| 国产私拍福利视频在线观看| 国产色爽女视频免费观看| 久久精品国产亚洲av香蕉五月| 亚洲第一电影网av| 国产男人的电影天堂91| 中文字幕久久专区| 99在线人妻在线中文字幕| 天堂网av新在线| 日韩欧美一区二区三区在线观看| 内地一区二区视频在线| 国产蜜桃级精品一区二区三区| 欧美成人精品欧美一级黄| 国产三级在线视频| 国产中年淑女户外野战色| 2022亚洲国产成人精品| 夜夜夜夜夜久久久久| 欧美日韩在线观看h| 嘟嘟电影网在线观看| 少妇人妻一区二区三区视频| 极品教师在线视频| 26uuu在线亚洲综合色| 九九爱精品视频在线观看| 婷婷六月久久综合丁香| 成熟少妇高潮喷水视频| 久久这里只有精品中国| 一本精品99久久精品77| 久久久久久久久大av| 午夜精品一区二区三区免费看| 一边亲一边摸免费视频| 国产精品人妻久久久久久| 日本免费a在线| 网址你懂的国产日韩在线| 一本久久精品| 日韩欧美精品v在线| 国产日韩欧美在线精品| 女人十人毛片免费观看3o分钟| 午夜福利高清视频| 高清在线视频一区二区三区 | 少妇猛男粗大的猛烈进出视频 | 99久久人妻综合| 丰满乱子伦码专区| 九九在线视频观看精品| 婷婷色av中文字幕| 国产黄a三级三级三级人| 免费无遮挡裸体视频| 99热6这里只有精品| 免费电影在线观看免费观看| 久久精品国产亚洲av涩爱 | 婷婷色综合大香蕉| 成人午夜精彩视频在线观看| 日韩欧美精品免费久久| 成人三级黄色视频| 99久久精品一区二区三区| 亚洲精品久久国产高清桃花| 国产真实伦视频高清在线观看| 联通29元200g的流量卡| 性插视频无遮挡在线免费观看| 日本五十路高清| 精品久久久噜噜| 少妇猛男粗大的猛烈进出视频 | 精品久久久久久久久久久久久| 免费看美女性在线毛片视频| 99久久久亚洲精品蜜臀av| 色尼玛亚洲综合影院| 免费看美女性在线毛片视频| 国产高潮美女av| 国产av一区在线观看免费| 青青草视频在线视频观看| 日韩欧美 国产精品| 亚洲精品乱码久久久v下载方式| 黄色视频,在线免费观看| 不卡一级毛片| 别揉我奶头 嗯啊视频| 免费大片18禁| 99久久久亚洲精品蜜臀av| 国产av一区在线观看免费| 校园人妻丝袜中文字幕| 日韩人妻高清精品专区| 久久久a久久爽久久v久久| av在线播放精品| 亚洲精品日韩在线中文字幕 | 超碰av人人做人人爽久久| 12—13女人毛片做爰片一| 日本欧美国产在线视频| 久久这里只有精品中国| 欧美+日韩+精品| 亚洲人与动物交配视频|