• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    理論研究BBPQ-PC61BM體系的光伏性質

    2016-11-22 09:48:55趙蔡斌葛紅光靳玲俠王文亮尹世偉
    物理化學學報 2016年10期
    關鍵詞:激子理工學院電荷

    趙蔡斌 葛紅光 張 強 靳玲俠 王文亮 尹世偉

    (1陜西理工學院化學與環(huán)境科學學院,陜西省催化基礎與應用重點實驗室,陜西漢中723000;2陜西師范大學化學化工學院,陜西省大分子科學重點實驗室,西安710062)

    理論研究BBPQ-PC61BM體系的光伏性質

    趙蔡斌1,*葛紅光1,*張強1靳玲俠1王文亮2尹世偉2

    (1陜西理工學院化學與環(huán)境科學學院,陜西省催化基礎與應用重點實驗室,陜西漢中723000;2陜西師范大學化學化工學院,陜西省大分子科學重點實驗室,西安710062)

    探索和制備具有高能量轉換效率(PCE)的有機太陽能電池體系是有機電子學的重要領域和研究熱點。本文利用量子化學和分子動力學計算結合Marcus-Hush電荷傳輸模型理論研究了BBPQ-PC61BM(BBPQ:7, 12-二((三異丙基甲硅烷基)乙炔基)苯并(g)吡啶并(2′,3′:5,6)吡嗪并(2,3-b)喹喔啉-2(1H)-酮;PC61BM:(6,6)苯基-C61-丁酸甲酯)體系的光伏性質。結果表明,BBPQ-PC61BM體系具有相當大的開路電壓(1.22 V)、高的填充因子(0.90)和高的光電轉換效率(9%-10%)。此外,本文研究還發(fā)現(xiàn)BBPQ-PC61BM體系擁有中等大小的激子結合能(0.607 eV),但相對較小的激子分離和電荷復合重組能(0.345和0.355 eV)。借助于一個簡單的分子復合物模型,本文預測BBPQ-PC61BM體系的激子解離速率常數(shù)kdis高達1.775×1013s-1,而預測的電荷復合速率常數(shù)krec相當小(<1.0 s-1),這表明在BBPQ-PC61BM相界面上,激子解離效率非常高??傊?,理論研究表明,BBPQ-PC61BM是一個非常有前途的有機太陽能電池候選體系,值得實驗上做出進一步研究。

    BBPQ;PC61BM;理論研究;光伏性質;密度泛函理論

    1 Introduction

    Organic solar cells(OSCs)have attracted continuous interest in the past several decades due to their numerous advantages compared to traditional silicon-based solar cells,such as lightweight,low cost,adjustable properties,and ease of solvent processing1-4.The power conversion efficiency(PCE)is one of most parameters that character the performance of OSC devices,which is directly related with the open-circuit voltage,Voc,short-circuit current density,Jsc,and fill factor,FF.Previous studies have shown that electron-donating materials in high PCE devices with(6,6)-phenyl-C61-butyric acid methyl ester(PC61BM)as acceptor,should possess(1)the strong optical absorption to harvest more sunlight, (2)high hole mobility to transport holes as efficient as possible, (3)low-lying lowest unoccupied molecular orbital(HOMO)level close to-4.0 eV,and(4)low highest occupied molecular orbital (HOMO)level to obtain large Voc5-7.

    Recently,Engelhart et al.8synthesized a series of novel nitrogendoped pentacene derivatives.Interestingly,most of these compounds exhibit the very strong optical response and low LUMO level of~4.0 eV,which makes them seem to be very suitable as an ideal electron donor material.In current work,taking the PC61BM as acceptor and 7,12-bis((triisopropylsilyl)-ethynyl)benzo(g)pyrido (2′,3′:5,6)pyrazino(2,3-b)quinoxalin-2(1H)-one(BBPQ)as donor, we carried out systematic quantum chemistry and molecular dynamics investigations for the photovoltaic properties of BBPQPC61BM system in order to verify our speculation.The main objectives of this work are to explore the feasibility of BBPQPC61BM system as a potential organic solar cell.Calculations show that BBPQ is an excellent electron donor material,and the PCE of BBPQ-PC61BM system can theoretically reach up to 9%or more.

    2 Computational methods

    As is well-known,the density functional theory(DFT)is an accurate formalism that simulates the molecular structures and electronic properties of organic compounds9-11.However,recent studies show that traditional hybrid density functionals,such as B3LYP,are unsuitable to estimate the excited-state properties for large π-conjugated molecules since their non-Coulomb term of exchange functionals dies off too rapidly12-14.Consequently,the long-range-corrected functional(CAM-B3LYP)15coupled with the 6-311G(d,p)basis set was used to calculate the properties of ground state and excited state in this work,which has been verified to be more reliable and accurate than the other hybrid density functionals16-20.For comparison,some results calculated with the B3LYP/6-311G(d,p)method were also provided.To explore the rational geometry of BBPQ-PC61BM complex,a detailed potentialsurface scan was performed between PC61BM and BBPQ with the CAM-B3LYP-D3(BJ)/6-311G(d,p)scheme.As seen in Fig.S1(in Supporting Information),the BBPQ-PC61BM complex is found to be most stable when the centroids distance of BBPQ and PC61BM is at 0.80 nm,which is in good agreement with the recent study21. Then,in subsequent calculations for the BBPQ-PC61BM complex, the centroid distance of BBPQ and PC61BM is invariably fixed at 0.80 nm.Moreover,the influence of molecular orientation was also considered.As shown in Fig.S2(in Supporting Information), the molecular orientation has a very weak influence on the total energy of BBPQ-PC61BMcomplex.Total density of states(TDOS) and partial density of states(PDOS)were visualized with the Multiwfn 3.37 software package22-24.In addition,the direct-coupling(DC)strategy under one-electron approximation and the PW91PW91/6-31G(d)method25,26was used to estimate the charge transfer integral(VDA)in Marcus-Hush model,which have been illustrated to provide the most accurate VDAvalue at the DFT level27,28.All quantum chemistry calculations were completed with the Gaussian 09 software29.

    Fig.1 Molecular structures of BBPQ and PC61BM

    3 Results and discussion

    3.1Electronic properties and open-circuit voltage

    The structures of BBPQ and PC61BM were depicted in Fig.1. Our optimization reveals that BBPQ core keeps an excellent planar geometry(Fig.S3,in Supporting Information),which indicates its good electronic delocalization.With the optimized ground-state geometries of PC61BM and BBPQ,the TDOS and PDOS were calculated and presented in Fig.2.With the PDOS,the contribution from each substituent to the frontier molecular orbital can be directly observed.As seen,for PC61BM most density of HOMOs and LUMOs concentrates on the C60spheroid in energyrange from-10.0 to 2.0 eV,and the contribution of substituent (methyl-4-phenylbutanoate)is very small.This result indicates that the substituent only enhances the C60solubility in organic solvents,and has hardly influence on its electronic properties, which is in good accord with the previously experimental result30,31.Furthermore,it is found that,as expected,the contribution to the HOMO and LUMO of BBPQ from the trimethylsilyl is very small,which indicates that the electronic structure of BBPQ is almost completely determined by its core skeleton.According to the previous study,the Vocof OSCs can be estimated with32

    Fig.2 Total and partial density-of-states of PC61BM and BBPQ

    where EHOMO(D)and ELUMO(A)are the HOMO level of donor and the LUMO level of PC61BM,respectively,e is the electronic charge,and the value of 0.3 V is an empirical factor.Then,based on the LUMO level(-4.3 eV)for PC61BM,as well as the HOMO level(-5.82 eV)of BBPQ,the Vocis estimated to be as large as 1.22 V for the BBPQ-PC61BM system.More interestingly,the PCE of BBPQ-PC61BM system is predicted to reach up 9%-10%or more(Fig.3)by means of the Scharber diagram32,which indicates the BBPQ-PC61BM system being a very promising OSC.

    3.2Short-circuit current density(JSC)and fill factor(FF)

    The Jscis another important factor that determines the PCE of OSC devices.Simply,the Jscis viewed as a function of the lightabsorbing efficiency(η(λ)),internal quantum efficiency(ηIQE(λ)), and the spectral irradiance of incident light(S(λ)),which can be expressed as33-35,

    Fig.3 Predicted PCE for BBPQ-PC61BM cell with the Scharber diagram

    where η(λ)is the light-absorption efficiency,ηIEQ(λ)is the internal quantum efficiency,S(λ)is the spectral irradiance of incident light, and f is the oscillator strength of molecular donor associated with a certain wavelength.From Eq.(2)and Eq.(3),it is clear that the wide and strong optical absorption can remarkably enlarge the Jsc. Here,the η(λ)values of the strongest absorption peak and the second-strongest one were estimated.Calculations show that the η(λ)is equal to 0.55/0.45 for the strongest/second-strongest absorption peak of BBPQ.For the FF calculation,an approximate scheme can be expressed as36,37,

    where νocis the dimensionless voltage,which can be estimated by the following equation38,39,

    where kB,T,and q are Boltzmann constant,temperature(here,we set T=300 K),and the elementary charge respectively,n is the ideality factor of the diode.According to estimated Voc(1.22 V)for the BBPQ-PC61BM system,the νocis estimated to be 46.42 at n= 1,then,the upper-limit of FF is calculated to be as high as 0.90.

    3.3Exciton binding energy

    Generally,the exciton dissociation concludes a two-step process,where excitons are firstly separated to less strongly bound polaron pairs and,finally,to free polarons40.In order to dissociate excitons into free polarons,the exciton binding energy(Eb)has to be overcome.In optoelectronic organic devices,the Ebis one of the most important parameters that govern many physical processes,which is directly related to the charge separation efficiency. Usually the exciton binding energy is taken as the difference between the transport gap(Et)and the optical band one(Eopt).The former is the difference between adiabatic ionization potential (EAIP)and adiabatic electron affinity(EAEA),while the latter is taken as the first-singlet excitation energy.According this scheme,the Ebcan be calculated as the following expression41,

    where EAIP(D)and EAEA(D)are the donor′s AIP and AEA in the solid state,and E0-0(D)is the lowest singlet-excited energy of donor.As is well-known,the solid stack can stabilize the ionic species,lower the IP,and increase the EA.Then,to calculate the Eb,the EAIPand the EAEAof solid donor firstly need to estimated. Here,the EAIPand the EAEAof BBPQ in the solid state were calculated via the scheme reported by Schwenn et al.42,which has been verified being an accurate method to estimate the IP and EA of organic materials in the solid state.Calculated EAIPand EAEAvalues as well as the Ebin the solid and gas states for BBPQ with different DFT methods were listed in Table 1.As seen,the EAIP/ EAEAin the gas phase is clearly larger/smaller than the one in the solid state,which indicates relatively large polarization energies (~0.8 eV)from gas phase to solid state.In addition,the estimated Ebis remarkably large regardless of the solid stacking compared to the measured Ebin numerous organic materials43.Thus,it is essential to consider the solid stacking effect for accurately estimating the Eb.The precious study showed that an exciton breaks free the Coulomb attraction and becomes two carriers with an opposite charge when Eb

    3.4Gibbs free energies of exciton dissociation and charge recombination

    The Gibbs free energy change(ΔG)of electron transfer process can be estimated as the energy difference of constituents in the final and initial states,accounting for the Coulombic attraction between the two charges in the charge-separated state.Thus,for the exciton-dissociation process,the ΔG(ΔGdis)is expressed as45,

    whereED*,ED+,EA,andEA-represent the total energies of the isolated donor in the equilibrium geometries of the lowest singletexcited state and of the cationic state and the total energies of the isolated acceptor in the equilibrium geometries of the ground state and of the anionic states,respectively.qDand qAare the atomic charges(obtained by Mulliken population analysis in this work) on donor and acceptor in their relevant state with a separation rDA, ε0is the vacuum permittivity,and εsis the relative permittivity of material.The ΔG(ΔGrec)in the charge recombination can also be estimated according to the similar expression to Eq.(7)and Eq.(8). For organic compounds,the εscan be accurately estimated by the following Clausius-Mossotti(CM)equation46

    where V is the Connolly molecular volume,=13∑αii,αiiis the diagonal matrix element of first-order polarizability tensors. Calculation shows that the εsvalue is 2.451 for the solid BBPQ, which is in good agreement with the measured ones(varying in the range from 2 to 547,48)in most organic photoelectric materials. Since the εsof solid PC61BM cannot be accurately computed with the Eq.(9)due to the so-called“tail effect”,the experimental εsof 3.949is used in current calculation.For the BBPQ-PC61BM complex,the total εsis taken as an average of BBPQ and PC61BM. Fig.4 showed the ΔGdis,ΔGrecas well as the ΔEcoulterm estimated in different BBPQ-PC61BM blends.As seen,in BBPQ-PC61BM complexes the ΔGdisand the ΔGrecvalues are calculated to be consistently negative,which indicates that the exciton-dissociation and charge-recombination processes are always favorable thermodynamically.Furthermore,compared to the ΔGdisandthe ΔGrec, it can be noted that the former is remarkably larger than the latter, which denotes that the driving force of charge-recombination is larger than that of exciton-dissociation for the BBPQ-PC61BM system.

    Table 1 Calculated EAIPand EAEAvalues as well as the Ebin gas and solid states for BBPQ with different DFT methods

    3.5Reorganization energies of exciton dissociation and charge recombination

    Generally,the total reorganization energy(λ)accompanying the charge transfer in organic materials can be divided into two sections,namely,the internal reorganization energy(λint)and external one(λext).The λintterm can be calculated with the classic adiabatic potential energy surface(PES)method50,51.For example, in the case of exciton dissociation,the λintis actually taken as the average of the following λ1and λ252,

    where QRand QPrefer to the equilibrium geometries of the reactants(R)and products(P),respectively.Our calculation shows that the λint(λdis)is 0.275 eVin the exciton-dissociation for PC61BMBBPQ complex,which slightly increases to 0.285 eV for the charge recombination.Relatively,the λextis very difficult to be accurately calculated.Here,the λextwas estimated by the classicaldielectric continuum model initially developed by Marcus for electron-transfer reactions between spherical ions in solution. According this model,the λextterm is given by53,

    Fig.4 ΔGdis,ΔGrec,and ΔEcoulvalues calculated in BBPQ and PC61BM blends with different proportions

    where εopis the optical dielectric constant of material,RD(=0.62 nm for BBPQ)and RA(=0.65 nm for PC61BM)are the effective radii of donor and acceptor estimated as the radius of the sphere having the same surface as the surface accessible area of molecule. The qDand qAterms denote the atomic charges on the ions.The εopcan be estimated with the Lorentz-Lorenz equation54,55,

    where n is refractive index,Vmis the molar volume(Vm=M/ρ,M is the molar mass,and ρ is the material density),R is the molar refraction.In this work,the ρ was estimated with the molecular dynamics simulation,and the simulated details were presented in the Supporting Information.Calculations show that the ρ and R of BBPQ solid are 1.066 g·cm-3and 127.4 cm3·mol-1,respectively, yielding the εopof 2.145 for BBPQ.The εopof PC61BM is estimated to be 3.482 with its experimental refractive index of 1.866.Based on the above parameters,the λextis estimated to be 0.060 eV in BBPQ-PC61BM complex(1:1).Summary,the total λ is 0.335 eV in the exciton-dissociation process for BBPQ-PC61BM complex. However,for the charge-recombination process,it further increases to 0.345 eV.According to the Marcus model,the large λ decreases the charge transfer rate;our results show that the exicton-dissociation rate is faster than the charge-recombination one without considering the VDA.

    3.6Exciton dissociation and charge recombination rates

    As is known to all,the charge transfer process occurring in organic solid materials under the high temperature approximation obeys the incoherent hopping mechanism56,57,and the rate constant, k,can be evaluated using the classical Marcus-Hush model58,59,

    where λ is the total reorganization energy,VDAis the effective charge transfer integration between donor and acceptor,ΔG is the Gibbs free energy difference between the initial and final states, kBis Boltzmann constant,h is Planck constant,and T is the temperature.In the exciton-dissociation and charge-recombination processes,ΔG=ΔGdisand ΔGrec,respectively.In terms of the DC scheme,the VDAin the charge transfer process can be calculated by the following expression60,

    where TD(i)A(j)is the charge transfer integral of the ith molecular orbital of donor and the jth molecular orbital of acceptor,SD(i)A(j)is the spatial overlap integral of the ith molecular orbital of donor and the jth molecular orbital of acceptor,and eD(i)/eA(j)is the site energy.The TD(i)A(j),SD(i)A(j),and eD(i)/eA(j)can be obtained from the TD(i)A(j)=<ψD(i)|FKS|ψA(j)>,SD(i)A(j)=<ψD(i)|ψA(j)>,and eD(i)/eA(j)=<ψD(i)/ψA(j)|FKS|ψD(i)/ψA(j)>.Among them,ψD(i)is the HOMO or LUMO of donor, ψA(j)is LUMO of acceptor,and FKSis the Kohn-Sham matrix of donor-acceptor system.The FKScan be estimated from

    where S is the intermolecular overlap matrix,C is the molecular orbital coefficient matrix from the isolated monomer,and ε is the orbital energy from one-step diagonalization without iteration. Consideration the LUMO+1 and LUMO+2 in PC61BM are degenerate in energy with its LUMO,the total VDAwere estimated as an average value of three VDAvalues between the LUMO of BBPQ and the LUMO/LUMO+1/LUMO+2 of PC61BM.Based on the calculated VDAand λ,the exciton-dissociation rate constant, kdis,is estimated to be as high as 1.775×1013s-1in BBPQ-PC61BM blend with a ratio of 1:1,but the charge recombination rate constant,krec,is predicted to be quite small(<1.0 s-1),which indicates very high exciton-dissociation efficiency in BBPQ-PC61BM interface.As observed in Eq.(14),the large kdisvalue can be attributed the large ΔGdis.According our calculations,the excitondissociation process,really occurs in the normal region of Marcus since|ΔG|<λ(0.245 eV versus 0.335 eV).As a result,the k will increase significantly if the|ΔG|and the λ are to converge toward a similar value.Unlike the exciton dissociation,the charge recombination process happens in the inverted region of Marcus due to the|ΔG|>>λ(1.803 eV versus 0.345 eV).Thus,the large|ΔG| remarkably decreases the krec.

    Table 2 Calculated λintfor BBPQ in solid and gas states with different DFT methods

    3.7Charge transport in BBPQ solid

    As is well known,the charge transport ability of donor also affects remarkably the solar cell performance.According to the previous investigation,for high-performance OSC devices,the hole carrier mobility should be as high as 10-3cm2·V-1·s-1at least32.Hence,we estimated the charge-transport performance by means of calculating the λ and VDAvalues with a simplified dimer model,which has been widely applied to evaluate the charge-transport performance of organic material61-63.Table 2 displayed the calculated λintvalues with the PES and normal mode(NM) analysis.As seen,the λintestimated with two approaches are quite close,which shows that the harmonic oscillator approximation can describe well for the charge transfer process of studied molecule64. In addition,it can be also noticed that the λintin the solid state are obviously smaller than that in the gas state,which indicates that the solid stack can limit the structural relaxation of BBPQ in charge transfer process to a certain extent.Considering the practical operating condition of OSC devices,the λintestimated in the solid state is more reasonable.

    Fig.5 Contribution of each vibration mode to the λintfor BBPQ calculated in gas(up)and solid(down)states

    To clarify the λintorigin,the contribution from each vibrational mode to the λintwas calculated with the DUSHIN program developed by Reimers et al.65,66.Fig.5 visualized the contribution from each vibrational mode to the λintestimated at the CAMB3LYP/6-311G(d,p)level in the solid and gas states.As seen, although numerous modes couple with the hole transport in BBPQ,the main contribution to the λintderives from the highfrequency region of 1200-1600 cm-1,which belongs to the stretching vibration of the C―C/C―N single and double bonds located in the molecular skeleton67.Relatively,the contribution from the middle-and low-frequency region is small.Interestingly, from gas state to solid phase,the contribution from the C―C stretching mode with the frequency of 896 cm-1is found to remarkably decrease(from 31 to 16 meV).In addition,the VDAis estimated to be 3.06 meV by means of the face-to-face dimer with the centroids distance of 0.65 nm(Fig.S4 and Fig.S5,in Supporting Information),and then yielding the hole mobility is as high as 1.180×10-3cm2·V·s-1according to the one-dimensional(1D) charge transfer model.

    4 Conclusions

    In summary,BBPQ-PC61BM as a promising OSC was investigated theoretically by means of quantum-chemical calculations. Results show that BBPQ-PC61BM system possesses a large opencircuit voltage(1.22 V),high fill factor(0.90),and high PCE (>9%).Also it has a middle-sized exciton binding energy(0.607 eV),relatively large Gibbs free-energy difference(-0.245 eV)in the exciton dissociation,but the very small one(-1.803 eV)in the charge recombination.Using the Marcus′s charge transfer model, the exciton-dissociation rate constant,kdis,is predicted to be as large as 1.775×1013s-1in BBPQ-PC61BM interface.However,the charge-recombination one,kdis,is estimated to be very small(<1.0 s-1)under the same condition.Furthermore,by means of the 1D model,the mobility of BBPQ solid is predicted to be as high as 1.180×10-3cm2·V·s-1,which can be attributed its small inner organization energy(0.261 eV)and relatively large VDA(3.06 meV).In a word,our calculation shows that BBPQ-PC61BM is a promising OSC system,and is worth studying further on the experimental aspect.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Boudreault,P.L.T.;Najari,A.;Leclerc,M.Chem.Mater.2011, 23,456.doi:10.1021/cm1021855

    (2)Cheng,Y.J.;Yang,S.H.;Hsu,C.S.Chem.Rev.2009,109, 5868.doi:10.1021/cr900182s

    (3) Günes,S.;Neugebauer,H.;Sariciftci,N.S.Chem.Rev.2007, 107,1324.doi:10.1021/cr050149z

    (4) Thompson,B.C.;Fréchet,J.M.J.Angew.Chem.Int.Ed.2007, 47,58.doi:10.1002/anie.200702506

    (5) Peet,J.;Senatore,M.L.;Heeger,A.J.;Bazan,G.C.Adv.Mater. 2009,21,1521.doi:10.1002/adma.200802559

    (6) Huo,L.;Hou,J.;Chen,H.Y.;Zhang,S.;Jiang,Y.;Chen,T.; Yang,Y.Macromolecules 2009,42,6564.doi:10.1021/ ma9012972

    (7) Sista,P.;Nguyen,H,;Murphy,J.W.;Hao,J.;Dei,D.K.; Palaniappan,K.;Servello,J.;Kularatne,R.S.;Gnade,B.E.; Xue,B.F.;Dastoor,P.C.;Biewer,M.C.;Stefan,M.C. Macromolecules 2010,43,8063.doi:10.1021/ma101709h

    (8) Engelhart,J.U.;Lindner,B.D.;Tverskoy,O.;Rominger,F.; Bunz,U.H.F.Org.Lett.2012,14,1008.doi:10.1021/ ol203334u

    (9) Fabiano,E.;Sala,F.D.;Cingoland,R.;Weimer,M.;G?rling,A. J.Phys.Chem.A 2005,109,3078.doi:10.1021/jp044974f

    (10) Tsai,F.C.;Chang,C.C.;Liu,C.L.;Chen,W.C.;Jenekhe,S.A. Macromolecules 2005,38,1958.doi:10.1021/ma048112o

    (11) Hutchison,G.R.;Ratner,M.A.;Marks,T.J.J.Am.Chem.Soc. 2005,127,2339.doi:10.1021/ja0461421

    (12)Wong,B.M.;Hsieh,T.H.J.Chem.Theory.Comput.2010,6, 3704.doi:10.1021/ct100529s

    (13) Grimme,S.;Parac,M.ChemPhysChem 2003,4,292. doi:10.1002/cphc.200390047

    (14) Song,J.W.;Hirao,K.Theor.Chem.Acc.2014,133,1438. doi:10.1007/s00214-013-1438-5

    (16) Vl?ek,A.;Záli?,S.Coordin.Chem.Rev.2007,251,258. doi:10.1016/j.ccr.2006.05.021

    (17) Zhang,S.;Qu,Z.;Tao,P.;Brooks,B.;Shao,Y.;Chen,X.;Liu, C.J.Phys.Chem.C 2012,116,12434.doi:10.1021/jp3027447

    (18) Jacquemin,D.;Perpète,E.A.;Vydrov,O.A.;Scuseria,G.E.; Carlo,A.J.J.Chem.Phys.2007,127,094102.doi:10.1063/ 1.2770700

    (19) Jacquemin,D.;Planchat,A.;Adamo,C.;Mennucci,B.J.Chem. Theory.Comput.2012,8,2359.doi:10.1021/ct300326f

    (20) Jorge,F.E.;Jorge,S.S.;Suave,R.N.Chirality 2015,27,23. doi:10.1002/chir.22384

    (21) Liu,T.;Troisi,A.J.Phys.Chem.C 2011,115,2406. doi:10.1021/jp109130y

    (23) Lu,T.;Chen,F.W.J.Mol.Graph.Model.2012,38,314. doi:10.1016/j.jmgm.2012.07.004

    (24) Lu,T.;Chen,F.W.Acta Chim.Sin.2011,69,2393.[盧天,陳飛武.化學學報,2011,69,2393.]

    (25) Troisi,A.;Orlandi,G.J.Phys.Chem.A 2006,110,4065. doi:10.1021/jp055432g

    (26)Yin,S.W.;Yi,Y.P.;Li,Q.X.;Yu,G.;Liu,Y.Q.;Shuai,Z.G. J.Phys.Chem.A 2006,110,7138.doi:10.1021/jp057291o

    (27) Song,Y.B.;Di,C.A.;Yang,X.D.;Li,S.P.;Xu,W.;Liu,Y.Q.; Yang,L.M.;Shuai,Z.G.;Zhang,D.Q.;Zhu,D.B.J.Am. Chem.Soc.2006,128,15940.doi:10.1021/ja064726s

    (28) Huang,J.S.;Kertesz,M.Chem.Phys.Lett.2004,390,110. doi:10.1016/j.cplett.2004.03.141

    (29) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09, Revision D.02;Gaussian Inc.:Wallingford,CT,2009.

    (30) Zheng,L.P.;Zhou,Q.M.;Deng,X.Y.;Yuan,M.;Yu,G.;Cao, Y.J.Phys.Chem.B 2004,108,11921.doi:10.1021/jp048890i

    (31)Wang,X.M.;Guo,Y.L.;Xiao,Y.;Zhang,L.;Yu,G.;Liu,Y.Q. J.Mater.Chem.2009,19,3258.doi:10.1039/B823336E

    (32) Scharber,M.C.;Mühlbacher,D.;Koppe,M.;Denk,P.; Waldauf,C.;Heeger,A.J.;Brabec,C.J.Adv.Mater.2006,18, 789.doi:10.1002/adma.200501717

    (33) Peumans,P.;Yakimov,A.;Forrest,S.R.J.Appl.Phys.2003,93, 3693.doi:10.1063/1.1646446

    (34) Bérubé,N.;Gosselin,V.;Gaudreau,J.;C?té,M.J.Phys.Chem. C 2013,117,7964.doi:10.1021/jp309800f

    (35) Liu,X.R.;Shen,W.;He,R.X.;Luo,Y.F.;Li,M.J.Phys. Chem.C 2014,118,17266.doi:10.1021/jp503248a

    (36) Guo,X.G.;Zhou,N.J.;Lou,S.J.;Smith,J.;Tice,D.B.; Hennek,J.W.;Ortiz,R.P.;Navarrete,J.T.L.;Li,S.Y.; Strzalka,J.;Chen,L.X.;Chang,R.P.H.;Facchetti,A.;Marks, T.J.Nat.Photonics 2013,7,825.doi:10.1038/ nphoton.2013.207

    (37) Gupta,D.;Mukhopadhyay,S.;Narayan,K.Sol.Energy Mater. Sol.Cells 2010,94,1309.doi:10.1016/j.solmat.2008.06.001

    (38) Zhou,Y.H.;Fuentes-Hernandez,C.;Shim,J.W.;Khan,T.M.; Kippelen,B.Energy Environ.Sci.2012,5,9827.doi:10.1039/ C6EE01428C

    (39) Liu,X.R.;Huang,C.Z.;Shen,W.;He,R.X.;Li,M.J.Mol. Model.2016,22,15.doi:10.1007/s00894-015-2885-9

    (40) Grage,M.M.L.;Zaushitsyn,Y.;Yartsev,A.;Chachisvilis, Sundstr?m,M.V.;Pullerits,T.Phys.Rev.B 2003,67,205207. doi:10.1103/PhysRevB.67.205207

    (41) Nayak,P.K.;Periasamy,N.Org.Electron.2009,10,1396. doi:10.1016/j.orgel.2009.06.011

    (42) Schwenn,P.E.;Burn,P.L.;Powell,B.J.Org.Electron.2011, 12,394.doi:10.1016/j.orgel.2010.11.025

    (43) Hill,I.G.;Kahn,A.;Soos,Z.G.;Pascal,R.A.Chem.Phys. Lett.2000,327,181.doi:10.1016/S0009-2614(00)00882-4

    (44) Li,Y.Z.;Pullerits,T.;Zhao,M.Y.;Sun,M.T.J.Phys.Chem.C 2011,115,21865.doi:10.1021/jp2040696

    (45) Lemaur,V.;Steel,M.;Beljonne,D.;Brédas,J.L.;Cornil,J.J.Am.Chem.Soc.2005,127,6077.doi:10.1021/ja042390l

    (46) Rysselberghe,P.V.J.Phys.Chem.1931,36,1152.doi:10.1021/ j150334a007

    (47) Zang,D.Y.;So,F.F.;Forrest,S.R.Appl.Phys.Lett.1991,59, 823.doi:10.1063/1.105274

    (48) Brocks,G.;van den Brink,J.;Morpurgo,A.F.Phys.Rev.Lett. 2004,93,146405.doi:10.1103/PhysRevLett.93.146405

    (49) Mihailetchi,V.;van Duren,J.;Blom,P.;Hummelen,J.;Janssen, R.;Kroon,J.;Rispens,M.;Verhees,W.;Wienk,M.Adv.Funct. Mater.2003,13,43.doi:10.1002/adfm.200390004

    (50) Malagoli,M.;Brédas,J.L.Chem.Phys.Lett.2000,327,13. doi:10.1016/S0009-2614(00)00757-0

    (51) Lemaur,V.;da Silva Filho,D.A.;Coropceanu,V.;Lehmann, M.;Geerts,Y.;Piris,J.;Debije,M.G.;van de Craats,A.M.; Senthilkumar,K.;Siebbeles,L.D.A.;Warman,J.M.;Brédas,J. L.;Cornil,J.J.Am.Chem.Soc.2004,126,3271.doi:10.1021/ ja0390956

    (52) Brédas,J.L.;Beljonne,D.;Coropceanu,V.;Cornil,J.Chem. Rev.2004,104,4971.doi:10.1021/cr040084k

    (56) Tauber,M.J.;Kelley,R.F.;Giaimo,J.M.;Rybtchinski,B.; Wasielewski,M.R.J.Am.Chem.Soc.2006,128,1782. doi:10.1021/ja057031k

    (57) Coropceanu,V.;Cornil,J.;da Silva Filho,D.A.;Olivier,Y.; Silbey,R.;Brédas,J.L.Chem.Rev.2007,107,926. doi:10.1021/cr050140x

    (60) Yin,S.W.;Li,L.L.;Yang,Y.M.;Reimers,J.R.J.Phys.Chem. C 2012,116,14826.doi:10.1021/jp303724r

    (61) Olivier,Y.;Lemaur,V.;Brédas,J.L.;Cornil,J.J.Phys.Chem.A 2006,110,6356.doi:10.1021/jp0571933

    (62) Liu,H.G.;Kang,S.;Lee,J.Y.J.Phys.Chem.B 2011,115, 5113.doi:10.1021/jp1045595

    (63) Chen,X.K.;Zou,L.Y.;Ren,A.M.;Fan,J.X.Phys.Chem. Chem.Phys.2011,13,19490.doi:10.1039/C1CP22227A

    (64) Li,H.X.;Zheng,R.H.;Shi,Q.J.Phys.Chem.C 2012,116, 11886.doi:10.1021/jp301536z

    (65) Weber,P.;Reimers,J.R.J.Phys.Chem.A 1999,103,9830. doi:10.1021/jp991404k

    (66) Cai,Z.L.;Reimers,J.R.J.Phys.Chem.A 2000,104,8389. doi:10.1021/jp000962s

    (67)Yang,X.D.;Wang,L.J.;Wang,C.L.;Long,W.;Shuai,Z.G. Chem.Mater.2008,20,3205.doi:10.1021/cm8002172

    Theoretical Investigation on Photovoltaic Properties of the BBPQ-PC61BM System

    ZHAO Cai-Bin1,*GE Hong-Guang1,*ZHANG Qiang1JIN Ling-Xia1WANG Wen-Liang2YIN Shi-Wei2
    (1Shaanxi Province Key Laboratory of Catalytic Fundamentals and Applications,School of Chemical and Environmental Science, Shaanxi University of Technology,Hanzhong 723000,Shaanxi Province,P.R.China;2Key Laboratory for Macromolecular Science of Shaanxi Province,School of Chemistry and Chemical Engineering, Shaanxi Normal University,Xi'an 710062,P.R.China)

    Exploring and fabricating organic solar cell devices with the high power conversion efficiency(PCE) has kept a major challenge and hot topic in organic electronics research.In this study,we have used quantum chemical and molecular dynamics calculations in conjunction with the Marcus-Hush charge transfer model to investigate the photovoltaic properties of BBPQ-PC61BM.The results revealed that the BBPQ-PC61BM(BBPQ: 7,12-bis((triisopropylsilyl)-ethynyl)benzo(g)pyrido(2′,3′:5,6)pyrazino(2,3-b)quinoxalin-2(1H)-one;PC61BM:(6, 6)-phenyl-C61-butyric acid methyl ester)system theoretically possesses a large open-circuit voltage(1.22 V), high fill factor(0.90),and high PCE of 9%-10%.The calculations also reveal that the BBPQ-PC61BM system has a medium-sized exciton binding energy(0.607 eV),with relatively small reorganization energies(0.345 and0.355 eV)for its exciton-dissociation and charge-recombination processes.Based on a simplified molecular complex,the exciton dissociation rate constant,kdis,was estimated to be as large as 1.775×1013s-1at the BBPQPC61BM interface.In contrast,the charge-recombination rate constant,krec,was very small under the same conditions(<1.0 s-1),which indicated a rapid and efficient exciton-dissociation process at the donor-acceptor interface.Overall,our calculations show that the BBPQ-PC61BM system is a very promising organic solar cell system that is worthy of further research.

    May 13,2016;Revised:July 4,2016;Published online:July 5,2016.

    s.ZHAO Cai-Bin,Email:zhaocb@snut.edu.cn;Tel:+86-916-2641660.GE Hong-Guang,Emai:gehg@snut.edu.cn;

    BBPQ;PC61BM;Theoretical investigation;Photovoltaic property;Density functional theory

    O641

    10.3866/PKU.WHXB201607051

    Tel:+86-916-2641660.

    The project was supported by the National Natural Science Foundation of China(21373132,21502109),Doctor Research Start Foundation of

    Shaanxi University of Technology,China(SLGKYQD2-13,SLGKYQD2-10,SLGQD14-10),and Education Department of Shaanxi Provincial

    Government Research Projects,China(16JK1142).

    國家自然科學基金(21373132,21502109),陜西理工學院博士科研啟動基金(SLGKYQD2-13,SLGKYQD2-10,SLGQD14-10)和陜西省教育廳專項科研計劃(16JK1142)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (15) Yanai,T.Chem.Phys.Lett.2004,393,51.10.1016/j. cplett.2004.06.011

    (22) Lu,T.;Chen,F.W.J.Comput.Chem.2012,33,580. 10.1002/jcc.22885

    (53) Marcus,R.A.J.Chem.Phys.1965,43,679.10.1063/ 1.1696792

    (54) Lorentz,H.A.Ann.Phys.1880,9,641.10.1002/ 18802450406

    (55) Lorenz,L.Ann.Phys.1880,11,70.10.1002/18802470905

    (58) Marcus,R.A.Rev.Mod.Phys.1993,65,599. RevModPhys.65.599

    (59) Hush,N.S.J.Chem.Phys.1958,28,962.10.1063/ 1.1744305

    猜你喜歡
    激子理工學院電荷
    連續(xù)分布電荷體系電荷元的自能問題*
    物理通報(2024年4期)2024-04-09 12:41:28
    電荷知識知多少
    江蘇理工學院
    電荷守恒在化學解題中的應用
    常熟理工學院
    理工學院簡介
    CdSeS合金結構量子點的多激子俄歇復合過程*
    物理學報(2019年10期)2019-06-04 05:31:52
    找到你了,激子素
    科學之謎(2018年3期)2018-04-09 06:37:46
    任意門
    長程電子關聯(lián)對聚合物中激子極化率的影響
    亚洲人成网站在线观看播放| 日韩精品有码人妻一区| 国产精品一及| 欧美成人a在线观看| 亚洲精品456在线播放app| 青春草视频在线免费观看| 精品酒店卫生间| 久久久午夜欧美精品| 少妇的逼好多水| 日韩免费高清中文字幕av| 亚洲精品乱码久久久v下载方式| 久久精品国产亚洲av涩爱| 午夜福利网站1000一区二区三区| 丰满人妻一区二区三区视频av| 日本爱情动作片www.在线观看| 久久久久性生活片| 亚洲无线观看免费| 日韩欧美精品v在线| 一级毛片电影观看| 最近的中文字幕免费完整| 大又大粗又爽又黄少妇毛片口| 欧美日韩一区二区视频在线观看视频在线 | 国产真实伦视频高清在线观看| 欧美另类一区| 99热全是精品| 亚洲丝袜综合中文字幕| 日韩av不卡免费在线播放| 爱豆传媒免费全集在线观看| 成年人午夜在线观看视频| 国产大屁股一区二区在线视频| 久久久久久久久久久免费av| 国产伦精品一区二区三区视频9| 亚洲,一卡二卡三卡| 国产一级毛片在线| 白带黄色成豆腐渣| 我的女老师完整版在线观看| 好男人在线观看高清免费视频| 日本一本二区三区精品| 纵有疾风起免费观看全集完整版| 午夜激情久久久久久久| 水蜜桃什么品种好| 中文资源天堂在线| 日本午夜av视频| 少妇裸体淫交视频免费看高清| 韩国av在线不卡| 日韩欧美一区视频在线观看 | 岛国毛片在线播放| 国产精品av视频在线免费观看| 免费观看无遮挡的男女| 久久久a久久爽久久v久久| 成人亚洲欧美一区二区av| 亚洲美女视频黄频| 久久国内精品自在自线图片| 成人一区二区视频在线观看| 九九久久精品国产亚洲av麻豆| 免费电影在线观看免费观看| 下体分泌物呈黄色| 亚洲无线观看免费| 亚洲欧美成人综合另类久久久| 丝袜美腿在线中文| 又黄又爽又刺激的免费视频.| 亚洲色图av天堂| 日韩精品有码人妻一区| 2021少妇久久久久久久久久久| 老女人水多毛片| 色网站视频免费| 国产成人91sexporn| 国模一区二区三区四区视频| 成人综合一区亚洲| 日日啪夜夜撸| 日日摸夜夜添夜夜爱| 天堂俺去俺来也www色官网| 另类亚洲欧美激情| 亚洲精品日韩av片在线观看| 丝袜美腿在线中文| 国产日韩欧美在线精品| 中文天堂在线官网| 欧美性感艳星| 免费黄网站久久成人精品| 成年版毛片免费区| 亚洲国产欧美在线一区| 秋霞在线观看毛片| 不卡视频在线观看欧美| 国产成人91sexporn| 最近手机中文字幕大全| 免费人成在线观看视频色| 午夜福利高清视频| 色视频在线一区二区三区| 国产精品久久久久久久久免| 熟女电影av网| 一级片'在线观看视频| 成年人午夜在线观看视频| 国产伦精品一区二区三区四那| 亚洲精品日韩在线中文字幕| 亚洲aⅴ乱码一区二区在线播放| 日本三级黄在线观看| 最近中文字幕2019免费版| 中国三级夫妇交换| 韩国av在线不卡| 99re6热这里在线精品视频| 美女主播在线视频| 国产亚洲av嫩草精品影院| 一级爰片在线观看| 亚洲欧美精品专区久久| 美女内射精品一级片tv| 可以在线观看毛片的网站| 日韩av不卡免费在线播放| 久久影院123| 女人被狂操c到高潮| www.av在线官网国产| 成人国产麻豆网| 丰满少妇做爰视频| 免费av观看视频| 国产 一区精品| 69av精品久久久久久| 亚洲国产精品国产精品| 日本-黄色视频高清免费观看| 少妇的逼好多水| 免费在线观看成人毛片| 99久久九九国产精品国产免费| 精品久久久久久久久亚洲| 亚洲欧洲日产国产| 视频中文字幕在线观看| 深爱激情五月婷婷| 六月丁香七月| 亚洲四区av| 精品久久久精品久久久| 亚洲欧美一区二区三区黑人 | 啦啦啦在线观看免费高清www| 亚洲国产欧美在线一区| 日韩成人av中文字幕在线观看| 五月天丁香电影| 香蕉精品网在线| 日韩一区二区视频免费看| 亚洲av二区三区四区| 汤姆久久久久久久影院中文字幕| 高清日韩中文字幕在线| 搡老乐熟女国产| 婷婷色综合www| 91精品国产九色| 80岁老熟妇乱子伦牲交| 亚洲成人av在线免费| 神马国产精品三级电影在线观看| 国产午夜精品久久久久久一区二区三区| 欧美潮喷喷水| 日韩一区二区视频免费看| 99久久九九国产精品国产免费| 国产乱人视频| 亚洲天堂av无毛| 99热网站在线观看| 欧美人与善性xxx| 天堂中文最新版在线下载 | 亚洲精品自拍成人| 日韩精品有码人妻一区| 男女国产视频网站| 视频中文字幕在线观看| 亚洲高清免费不卡视频| 狂野欧美激情性bbbbbb| 国产亚洲av片在线观看秒播厂| 亚洲欧美日韩东京热| 我的老师免费观看完整版| 九九久久精品国产亚洲av麻豆| 久久综合国产亚洲精品| 2021少妇久久久久久久久久久| 熟妇人妻不卡中文字幕| 免费av观看视频| 我的老师免费观看完整版| 久久久久久伊人网av| 欧美zozozo另类| 午夜精品国产一区二区电影 | 视频中文字幕在线观看| 国产色爽女视频免费观看| 午夜日本视频在线| 亚洲欧美清纯卡通| 91精品一卡2卡3卡4卡| 日韩不卡一区二区三区视频在线| 99热全是精品| 国产成人精品久久久久久| 99热网站在线观看| 精品国产一区二区三区久久久樱花 | 蜜臀久久99精品久久宅男| 3wmmmm亚洲av在线观看| 亚洲av电影在线观看一区二区三区 | av黄色大香蕉| 黄色一级大片看看| av在线观看视频网站免费| 高清av免费在线| 欧美日韩国产mv在线观看视频 | 国产av国产精品国产| 春色校园在线视频观看| 日日啪夜夜爽| 白带黄色成豆腐渣| 国产乱人视频| 欧美日韩在线观看h| 日韩三级伦理在线观看| 日本爱情动作片www.在线观看| 国产亚洲一区二区精品| 国产在线男女| 欧美xxⅹ黑人| 18禁裸乳无遮挡动漫免费视频 | 国产成人午夜福利电影在线观看| 大话2 男鬼变身卡| av免费在线看不卡| 国产免费视频播放在线视频| 免费看日本二区| 亚洲国产精品999| 亚洲真实伦在线观看| 欧美日韩视频高清一区二区三区二| 亚洲图色成人| 婷婷色麻豆天堂久久| 国产精品一及| 简卡轻食公司| 少妇的逼水好多| 久久鲁丝午夜福利片| 少妇被粗大猛烈的视频| 日日摸夜夜添夜夜爱| 亚洲av在线观看美女高潮| 五月开心婷婷网| 国产 一区精品| 18禁在线播放成人免费| 韩国av在线不卡| 久久久欧美国产精品| 纵有疾风起免费观看全集完整版| 大码成人一级视频| 美女cb高潮喷水在线观看| 免费黄频网站在线观看国产| 国产高清不卡午夜福利| 国产精品av视频在线免费观看| 国精品久久久久久国模美| 欧美成人精品欧美一级黄| 伦精品一区二区三区| 成人黄色视频免费在线看| 最近手机中文字幕大全| 一个人看的www免费观看视频| 国产一区二区亚洲精品在线观看| 亚洲精品一区蜜桃| 国产精品福利在线免费观看| 午夜爱爱视频在线播放| av天堂中文字幕网| 欧美zozozo另类| 人人妻人人看人人澡| 我的女老师完整版在线观看| 高清毛片免费看| 午夜日本视频在线| 简卡轻食公司| 日本黄大片高清| 国产av国产精品国产| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影| 久久精品久久久久久久性| 欧美xxⅹ黑人| 18禁裸乳无遮挡免费网站照片| 高清视频免费观看一区二区| 精品一区在线观看国产| 日韩电影二区| 日韩大片免费观看网站| 在线亚洲精品国产二区图片欧美 | 日韩精品有码人妻一区| 久久人人爽av亚洲精品天堂 | 熟女人妻精品中文字幕| 精品熟女少妇av免费看| 精品久久久久久久末码| 99久久九九国产精品国产免费| 亚洲最大成人av| 国产色爽女视频免费观看| 看非洲黑人一级黄片| 狂野欧美激情性bbbbbb| 欧美精品一区二区大全| 老司机影院成人| 精品酒店卫生间| 在线观看国产h片| 欧美97在线视频| 免费播放大片免费观看视频在线观看| 精品久久久精品久久久| av黄色大香蕉| 国产白丝娇喘喷水9色精品| 国产精品成人在线| 欧美日韩视频高清一区二区三区二| 久久精品久久久久久久性| 国产毛片a区久久久久| 免费av毛片视频| 国产在视频线精品| 日日啪夜夜爽| 亚洲av日韩在线播放| 一级a做视频免费观看| 免费在线观看成人毛片| 国产精品99久久久久久久久| 国产精品福利在线免费观看| 久久ye,这里只有精品| 熟妇人妻不卡中文字幕| 精品国产露脸久久av麻豆| 亚洲av成人精品一二三区| 少妇猛男粗大的猛烈进出视频 | av网站免费在线观看视频| 日本猛色少妇xxxxx猛交久久| 色视频www国产| 精品酒店卫生间| 欧美日韩精品成人综合77777| 禁无遮挡网站| 日日摸夜夜添夜夜添av毛片| 国产伦精品一区二区三区视频9| 成年人午夜在线观看视频| 人人妻人人看人人澡| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 免费av观看视频| 亚洲欧美成人综合另类久久久| 91在线精品国自产拍蜜月| 蜜桃亚洲精品一区二区三区| 三级经典国产精品| 大码成人一级视频| 在线亚洲精品国产二区图片欧美 | 久久综合国产亚洲精品| 国产在线一区二区三区精| 亚洲精品亚洲一区二区| 在线观看免费高清a一片| 高清在线视频一区二区三区| 亚洲精品aⅴ在线观看| 国产亚洲最大av| 女人被狂操c到高潮| 精品少妇黑人巨大在线播放| 免费观看a级毛片全部| 美女内射精品一级片tv| 国产精品不卡视频一区二区| 亚洲美女视频黄频| tube8黄色片| 九草在线视频观看| 亚洲欧洲国产日韩| 毛片女人毛片| 久热这里只有精品99| 日本色播在线视频| 亚洲最大成人手机在线| 欧美激情久久久久久爽电影| 国产男人的电影天堂91| 少妇 在线观看| 成人高潮视频无遮挡免费网站| 亚洲国产av新网站| 最后的刺客免费高清国语| 免费人成在线观看视频色| 欧美日韩视频精品一区| 一级毛片我不卡| kizo精华| 精品国产三级普通话版| 男人爽女人下面视频在线观看| 久久精品国产亚洲av涩爱| 各种免费的搞黄视频| 免费在线观看成人毛片| 夫妻性生交免费视频一级片| 欧美少妇被猛烈插入视频| 欧美高清性xxxxhd video| 在线观看av片永久免费下载| 日韩成人av中文字幕在线观看| 高清在线视频一区二区三区| 久久热精品热| 一级二级三级毛片免费看| 九九爱精品视频在线观看| 自拍偷自拍亚洲精品老妇| 18禁在线无遮挡免费观看视频| 婷婷色av中文字幕| 亚洲欧美日韩东京热| 国产亚洲午夜精品一区二区久久 | 国产精品99久久久久久久久| 亚洲av.av天堂| 亚洲欧美一区二区三区国产| 国产淫语在线视频| 亚洲精品乱码久久久久久按摩| 丝袜美腿在线中文| videos熟女内射| 男的添女的下面高潮视频| 色视频在线一区二区三区| 男女那种视频在线观看| 日韩不卡一区二区三区视频在线| 日韩 亚洲 欧美在线| 亚洲经典国产精华液单| 国产精品爽爽va在线观看网站| 97在线人人人人妻| 黄片无遮挡物在线观看| 国产精品熟女久久久久浪| 熟女av电影| 草草在线视频免费看| 黄色视频在线播放观看不卡| 大香蕉久久网| 久久精品综合一区二区三区| 99久久人妻综合| 亚洲av中文av极速乱| 美女内射精品一级片tv| 91狼人影院| 大码成人一级视频| 国产黄色视频一区二区在线观看| 不卡视频在线观看欧美| 一边亲一边摸免费视频| 天堂俺去俺来也www色官网| 天堂中文最新版在线下载 | 国产精品嫩草影院av在线观看| 亚洲国产精品999| 各种免费的搞黄视频| 秋霞在线观看毛片| 亚洲欧美一区二区三区黑人 | 在线 av 中文字幕| 高清视频免费观看一区二区| 免费播放大片免费观看视频在线观看| 少妇人妻精品综合一区二区| 国产免费福利视频在线观看| 国产免费一区二区三区四区乱码| 亚洲无线观看免费| 各种免费的搞黄视频| 日本三级黄在线观看| 日韩人妻高清精品专区| 国产精品久久久久久av不卡| av在线亚洲专区| 高清av免费在线| 观看免费一级毛片| 精品国产乱码久久久久久小说| 久久精品夜色国产| 国产免费福利视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 日韩成人伦理影院| 欧美日韩在线观看h| 日韩亚洲欧美综合| 国产欧美亚洲国产| 九色成人免费人妻av| 如何舔出高潮| av在线蜜桃| av在线播放精品| 天堂网av新在线| 亚洲伊人久久精品综合| 天堂俺去俺来也www色官网| 国产午夜福利久久久久久| 一级a做视频免费观看| 晚上一个人看的免费电影| 精品国产露脸久久av麻豆| av在线播放精品| 国产又色又爽无遮挡免| 日韩大片免费观看网站| 又爽又黄a免费视频| 婷婷色综合大香蕉| 少妇 在线观看| 成人亚洲欧美一区二区av| 少妇裸体淫交视频免费看高清| 久久久欧美国产精品| 免费av毛片视频| 免费黄色在线免费观看| 国产毛片在线视频| 黑人高潮一二区| 成人亚洲精品av一区二区| 男女边摸边吃奶| 欧美日韩国产mv在线观看视频 | 欧美高清性xxxxhd video| 精品国产露脸久久av麻豆| 麻豆国产97在线/欧美| 一个人观看的视频www高清免费观看| 免费人成在线观看视频色| 国产精品av视频在线免费观看| 99热这里只有是精品在线观看| 91午夜精品亚洲一区二区三区| 男插女下体视频免费在线播放| 三级经典国产精品| 久久97久久精品| 国产成人一区二区在线| 久久久久久九九精品二区国产| 一个人观看的视频www高清免费观看| 国产精品人妻久久久久久| 最新中文字幕久久久久| 简卡轻食公司| 麻豆久久精品国产亚洲av| 精品久久久精品久久久| 国产毛片a区久久久久| 91久久精品电影网| av在线蜜桃| 午夜爱爱视频在线播放| 少妇高潮的动态图| 女人十人毛片免费观看3o分钟| 中文资源天堂在线| 国产一区二区亚洲精品在线观看| 久久精品熟女亚洲av麻豆精品| 亚州av有码| 内地一区二区视频在线| 国内揄拍国产精品人妻在线| 成人亚洲精品av一区二区| 成人国产麻豆网| 极品教师在线视频| 免费观看a级毛片全部| 国产精品伦人一区二区| 久久99蜜桃精品久久| 日韩一区二区三区影片| 欧美精品一区二区大全| 亚洲国产色片| 久久久亚洲精品成人影院| 在线免费十八禁| 亚洲精品自拍成人| 秋霞在线观看毛片| 午夜福利视频1000在线观看| 在线观看人妻少妇| 搡女人真爽免费视频火全软件| 毛片女人毛片| 国产有黄有色有爽视频| 亚洲aⅴ乱码一区二区在线播放| 女人久久www免费人成看片| 亚洲国产精品成人综合色| 日本熟妇午夜| 丰满乱子伦码专区| 丝袜喷水一区| 国产精品一及| 国产大屁股一区二区在线视频| 久久99热这里只有精品18| 亚洲不卡免费看| 国产成人91sexporn| 精品亚洲乱码少妇综合久久| av国产免费在线观看| 女的被弄到高潮叫床怎么办| 日本午夜av视频| 成人二区视频| 国产av码专区亚洲av| 狂野欧美激情性xxxx在线观看| 国产伦精品一区二区三区四那| 欧美精品国产亚洲| 免费少妇av软件| 在线观看三级黄色| 别揉我奶头 嗯啊视频| 欧美日韩在线观看h| 免费看av在线观看网站| 亚洲精品日韩av片在线观看| 性色avwww在线观看| 99re6热这里在线精品视频| 亚洲,一卡二卡三卡| 白带黄色成豆腐渣| 91精品伊人久久大香线蕉| 网址你懂的国产日韩在线| 最近手机中文字幕大全| 日本黄大片高清| 老司机影院成人| 国产女主播在线喷水免费视频网站| 亚洲国产色片| 午夜日本视频在线| 蜜桃亚洲精品一区二区三区| 日本wwww免费看| 夜夜爽夜夜爽视频| 嫩草影院精品99| www.av在线官网国产| 亚洲国产最新在线播放| 永久免费av网站大全| 天堂俺去俺来也www色官网| 久久久久精品久久久久真实原创| 熟妇人妻不卡中文字幕| 精品一区二区免费观看| 超碰97精品在线观看| 日本wwww免费看| 在线观看一区二区三区激情| 亚洲综合色惰| 乱码一卡2卡4卡精品| 有码 亚洲区| 午夜视频国产福利| 精品一区二区免费观看| 久久久久久久亚洲中文字幕| 亚洲自偷自拍三级| 成年女人在线观看亚洲视频 | 如何舔出高潮| 男女下面进入的视频免费午夜| 国产日韩欧美亚洲二区| 久久久久精品久久久久真实原创| 亚洲av在线观看美女高潮| 丰满人妻一区二区三区视频av| 在线观看一区二区三区激情| 亚洲内射少妇av| 日韩在线高清观看一区二区三区| 日本av手机在线免费观看| 日韩国内少妇激情av| 亚洲精品久久午夜乱码| av福利片在线观看| 亚洲国产精品成人久久小说| 中文字幕av成人在线电影| 黄色视频在线播放观看不卡| 久久久午夜欧美精品| 蜜桃亚洲精品一区二区三区| 视频区图区小说| videos熟女内射| 久久精品综合一区二区三区| 伊人久久精品亚洲午夜| 国产高清有码在线观看视频| 白带黄色成豆腐渣| 热99国产精品久久久久久7| 亚洲精品自拍成人| 极品教师在线视频| 日本wwww免费看| 最近最新中文字幕大全电影3| 久久久久久久午夜电影| 欧美老熟妇乱子伦牲交| 超碰av人人做人人爽久久| 久久久久国产网址| 国产免费一区二区三区四区乱码| 国产爱豆传媒在线观看| 国产精品蜜桃在线观看| 亚洲综合色惰| 一级毛片aaaaaa免费看小| 偷拍熟女少妇极品色| 欧美区成人在线视频| 97精品久久久久久久久久精品| 亚洲精品日韩av片在线观看| 别揉我奶头 嗯啊视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦理片在线播放av一区| 久久综合国产亚洲精品| 亚洲色图av天堂| 国产亚洲av嫩草精品影院| 久久久午夜欧美精品| 久久精品国产a三级三级三级| 久久久国产一区二区| 国产精品不卡视频一区二区| 女人十人毛片免费观看3o分钟| 国产精品久久久久久久电影| 熟女人妻精品中文字幕| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全电影3| 99九九线精品视频在线观看视频| 看十八女毛片水多多多|