• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    理論研究BBPQ-PC61BM體系的光伏性質

    2016-11-22 09:48:55趙蔡斌葛紅光靳玲俠王文亮尹世偉
    物理化學學報 2016年10期
    關鍵詞:激子理工學院電荷

    趙蔡斌 葛紅光 張 強 靳玲俠 王文亮 尹世偉

    (1陜西理工學院化學與環(huán)境科學學院,陜西省催化基礎與應用重點實驗室,陜西漢中723000;2陜西師范大學化學化工學院,陜西省大分子科學重點實驗室,西安710062)

    理論研究BBPQ-PC61BM體系的光伏性質

    趙蔡斌1,*葛紅光1,*張強1靳玲俠1王文亮2尹世偉2

    (1陜西理工學院化學與環(huán)境科學學院,陜西省催化基礎與應用重點實驗室,陜西漢中723000;2陜西師范大學化學化工學院,陜西省大分子科學重點實驗室,西安710062)

    探索和制備具有高能量轉換效率(PCE)的有機太陽能電池體系是有機電子學的重要領域和研究熱點。本文利用量子化學和分子動力學計算結合Marcus-Hush電荷傳輸模型理論研究了BBPQ-PC61BM(BBPQ:7, 12-二((三異丙基甲硅烷基)乙炔基)苯并(g)吡啶并(2′,3′:5,6)吡嗪并(2,3-b)喹喔啉-2(1H)-酮;PC61BM:(6,6)苯基-C61-丁酸甲酯)體系的光伏性質。結果表明,BBPQ-PC61BM體系具有相當大的開路電壓(1.22 V)、高的填充因子(0.90)和高的光電轉換效率(9%-10%)。此外,本文研究還發(fā)現(xiàn)BBPQ-PC61BM體系擁有中等大小的激子結合能(0.607 eV),但相對較小的激子分離和電荷復合重組能(0.345和0.355 eV)。借助于一個簡單的分子復合物模型,本文預測BBPQ-PC61BM體系的激子解離速率常數(shù)kdis高達1.775×1013s-1,而預測的電荷復合速率常數(shù)krec相當小(<1.0 s-1),這表明在BBPQ-PC61BM相界面上,激子解離效率非常高??傊?,理論研究表明,BBPQ-PC61BM是一個非常有前途的有機太陽能電池候選體系,值得實驗上做出進一步研究。

    BBPQ;PC61BM;理論研究;光伏性質;密度泛函理論

    1 Introduction

    Organic solar cells(OSCs)have attracted continuous interest in the past several decades due to their numerous advantages compared to traditional silicon-based solar cells,such as lightweight,low cost,adjustable properties,and ease of solvent processing1-4.The power conversion efficiency(PCE)is one of most parameters that character the performance of OSC devices,which is directly related with the open-circuit voltage,Voc,short-circuit current density,Jsc,and fill factor,FF.Previous studies have shown that electron-donating materials in high PCE devices with(6,6)-phenyl-C61-butyric acid methyl ester(PC61BM)as acceptor,should possess(1)the strong optical absorption to harvest more sunlight, (2)high hole mobility to transport holes as efficient as possible, (3)low-lying lowest unoccupied molecular orbital(HOMO)level close to-4.0 eV,and(4)low highest occupied molecular orbital (HOMO)level to obtain large Voc5-7.

    Recently,Engelhart et al.8synthesized a series of novel nitrogendoped pentacene derivatives.Interestingly,most of these compounds exhibit the very strong optical response and low LUMO level of~4.0 eV,which makes them seem to be very suitable as an ideal electron donor material.In current work,taking the PC61BM as acceptor and 7,12-bis((triisopropylsilyl)-ethynyl)benzo(g)pyrido (2′,3′:5,6)pyrazino(2,3-b)quinoxalin-2(1H)-one(BBPQ)as donor, we carried out systematic quantum chemistry and molecular dynamics investigations for the photovoltaic properties of BBPQPC61BM system in order to verify our speculation.The main objectives of this work are to explore the feasibility of BBPQPC61BM system as a potential organic solar cell.Calculations show that BBPQ is an excellent electron donor material,and the PCE of BBPQ-PC61BM system can theoretically reach up to 9%or more.

    2 Computational methods

    As is well-known,the density functional theory(DFT)is an accurate formalism that simulates the molecular structures and electronic properties of organic compounds9-11.However,recent studies show that traditional hybrid density functionals,such as B3LYP,are unsuitable to estimate the excited-state properties for large π-conjugated molecules since their non-Coulomb term of exchange functionals dies off too rapidly12-14.Consequently,the long-range-corrected functional(CAM-B3LYP)15coupled with the 6-311G(d,p)basis set was used to calculate the properties of ground state and excited state in this work,which has been verified to be more reliable and accurate than the other hybrid density functionals16-20.For comparison,some results calculated with the B3LYP/6-311G(d,p)method were also provided.To explore the rational geometry of BBPQ-PC61BM complex,a detailed potentialsurface scan was performed between PC61BM and BBPQ with the CAM-B3LYP-D3(BJ)/6-311G(d,p)scheme.As seen in Fig.S1(in Supporting Information),the BBPQ-PC61BM complex is found to be most stable when the centroids distance of BBPQ and PC61BM is at 0.80 nm,which is in good agreement with the recent study21. Then,in subsequent calculations for the BBPQ-PC61BM complex, the centroid distance of BBPQ and PC61BM is invariably fixed at 0.80 nm.Moreover,the influence of molecular orientation was also considered.As shown in Fig.S2(in Supporting Information), the molecular orientation has a very weak influence on the total energy of BBPQ-PC61BMcomplex.Total density of states(TDOS) and partial density of states(PDOS)were visualized with the Multiwfn 3.37 software package22-24.In addition,the direct-coupling(DC)strategy under one-electron approximation and the PW91PW91/6-31G(d)method25,26was used to estimate the charge transfer integral(VDA)in Marcus-Hush model,which have been illustrated to provide the most accurate VDAvalue at the DFT level27,28.All quantum chemistry calculations were completed with the Gaussian 09 software29.

    Fig.1 Molecular structures of BBPQ and PC61BM

    3 Results and discussion

    3.1Electronic properties and open-circuit voltage

    The structures of BBPQ and PC61BM were depicted in Fig.1. Our optimization reveals that BBPQ core keeps an excellent planar geometry(Fig.S3,in Supporting Information),which indicates its good electronic delocalization.With the optimized ground-state geometries of PC61BM and BBPQ,the TDOS and PDOS were calculated and presented in Fig.2.With the PDOS,the contribution from each substituent to the frontier molecular orbital can be directly observed.As seen,for PC61BM most density of HOMOs and LUMOs concentrates on the C60spheroid in energyrange from-10.0 to 2.0 eV,and the contribution of substituent (methyl-4-phenylbutanoate)is very small.This result indicates that the substituent only enhances the C60solubility in organic solvents,and has hardly influence on its electronic properties, which is in good accord with the previously experimental result30,31.Furthermore,it is found that,as expected,the contribution to the HOMO and LUMO of BBPQ from the trimethylsilyl is very small,which indicates that the electronic structure of BBPQ is almost completely determined by its core skeleton.According to the previous study,the Vocof OSCs can be estimated with32

    Fig.2 Total and partial density-of-states of PC61BM and BBPQ

    where EHOMO(D)and ELUMO(A)are the HOMO level of donor and the LUMO level of PC61BM,respectively,e is the electronic charge,and the value of 0.3 V is an empirical factor.Then,based on the LUMO level(-4.3 eV)for PC61BM,as well as the HOMO level(-5.82 eV)of BBPQ,the Vocis estimated to be as large as 1.22 V for the BBPQ-PC61BM system.More interestingly,the PCE of BBPQ-PC61BM system is predicted to reach up 9%-10%or more(Fig.3)by means of the Scharber diagram32,which indicates the BBPQ-PC61BM system being a very promising OSC.

    3.2Short-circuit current density(JSC)and fill factor(FF)

    The Jscis another important factor that determines the PCE of OSC devices.Simply,the Jscis viewed as a function of the lightabsorbing efficiency(η(λ)),internal quantum efficiency(ηIQE(λ)), and the spectral irradiance of incident light(S(λ)),which can be expressed as33-35,

    Fig.3 Predicted PCE for BBPQ-PC61BM cell with the Scharber diagram

    where η(λ)is the light-absorption efficiency,ηIEQ(λ)is the internal quantum efficiency,S(λ)is the spectral irradiance of incident light, and f is the oscillator strength of molecular donor associated with a certain wavelength.From Eq.(2)and Eq.(3),it is clear that the wide and strong optical absorption can remarkably enlarge the Jsc. Here,the η(λ)values of the strongest absorption peak and the second-strongest one were estimated.Calculations show that the η(λ)is equal to 0.55/0.45 for the strongest/second-strongest absorption peak of BBPQ.For the FF calculation,an approximate scheme can be expressed as36,37,

    where νocis the dimensionless voltage,which can be estimated by the following equation38,39,

    where kB,T,and q are Boltzmann constant,temperature(here,we set T=300 K),and the elementary charge respectively,n is the ideality factor of the diode.According to estimated Voc(1.22 V)for the BBPQ-PC61BM system,the νocis estimated to be 46.42 at n= 1,then,the upper-limit of FF is calculated to be as high as 0.90.

    3.3Exciton binding energy

    Generally,the exciton dissociation concludes a two-step process,where excitons are firstly separated to less strongly bound polaron pairs and,finally,to free polarons40.In order to dissociate excitons into free polarons,the exciton binding energy(Eb)has to be overcome.In optoelectronic organic devices,the Ebis one of the most important parameters that govern many physical processes,which is directly related to the charge separation efficiency. Usually the exciton binding energy is taken as the difference between the transport gap(Et)and the optical band one(Eopt).The former is the difference between adiabatic ionization potential (EAIP)and adiabatic electron affinity(EAEA),while the latter is taken as the first-singlet excitation energy.According this scheme,the Ebcan be calculated as the following expression41,

    where EAIP(D)and EAEA(D)are the donor′s AIP and AEA in the solid state,and E0-0(D)is the lowest singlet-excited energy of donor.As is well-known,the solid stack can stabilize the ionic species,lower the IP,and increase the EA.Then,to calculate the Eb,the EAIPand the EAEAof solid donor firstly need to estimated. Here,the EAIPand the EAEAof BBPQ in the solid state were calculated via the scheme reported by Schwenn et al.42,which has been verified being an accurate method to estimate the IP and EA of organic materials in the solid state.Calculated EAIPand EAEAvalues as well as the Ebin the solid and gas states for BBPQ with different DFT methods were listed in Table 1.As seen,the EAIP/ EAEAin the gas phase is clearly larger/smaller than the one in the solid state,which indicates relatively large polarization energies (~0.8 eV)from gas phase to solid state.In addition,the estimated Ebis remarkably large regardless of the solid stacking compared to the measured Ebin numerous organic materials43.Thus,it is essential to consider the solid stacking effect for accurately estimating the Eb.The precious study showed that an exciton breaks free the Coulomb attraction and becomes two carriers with an opposite charge when Eb

    3.4Gibbs free energies of exciton dissociation and charge recombination

    The Gibbs free energy change(ΔG)of electron transfer process can be estimated as the energy difference of constituents in the final and initial states,accounting for the Coulombic attraction between the two charges in the charge-separated state.Thus,for the exciton-dissociation process,the ΔG(ΔGdis)is expressed as45,

    whereED*,ED+,EA,andEA-represent the total energies of the isolated donor in the equilibrium geometries of the lowest singletexcited state and of the cationic state and the total energies of the isolated acceptor in the equilibrium geometries of the ground state and of the anionic states,respectively.qDand qAare the atomic charges(obtained by Mulliken population analysis in this work) on donor and acceptor in their relevant state with a separation rDA, ε0is the vacuum permittivity,and εsis the relative permittivity of material.The ΔG(ΔGrec)in the charge recombination can also be estimated according to the similar expression to Eq.(7)and Eq.(8). For organic compounds,the εscan be accurately estimated by the following Clausius-Mossotti(CM)equation46

    where V is the Connolly molecular volume,=13∑αii,αiiis the diagonal matrix element of first-order polarizability tensors. Calculation shows that the εsvalue is 2.451 for the solid BBPQ, which is in good agreement with the measured ones(varying in the range from 2 to 547,48)in most organic photoelectric materials. Since the εsof solid PC61BM cannot be accurately computed with the Eq.(9)due to the so-called“tail effect”,the experimental εsof 3.949is used in current calculation.For the BBPQ-PC61BM complex,the total εsis taken as an average of BBPQ and PC61BM. Fig.4 showed the ΔGdis,ΔGrecas well as the ΔEcoulterm estimated in different BBPQ-PC61BM blends.As seen,in BBPQ-PC61BM complexes the ΔGdisand the ΔGrecvalues are calculated to be consistently negative,which indicates that the exciton-dissociation and charge-recombination processes are always favorable thermodynamically.Furthermore,compared to the ΔGdisandthe ΔGrec, it can be noted that the former is remarkably larger than the latter, which denotes that the driving force of charge-recombination is larger than that of exciton-dissociation for the BBPQ-PC61BM system.

    Table 1 Calculated EAIPand EAEAvalues as well as the Ebin gas and solid states for BBPQ with different DFT methods

    3.5Reorganization energies of exciton dissociation and charge recombination

    Generally,the total reorganization energy(λ)accompanying the charge transfer in organic materials can be divided into two sections,namely,the internal reorganization energy(λint)and external one(λext).The λintterm can be calculated with the classic adiabatic potential energy surface(PES)method50,51.For example, in the case of exciton dissociation,the λintis actually taken as the average of the following λ1and λ252,

    where QRand QPrefer to the equilibrium geometries of the reactants(R)and products(P),respectively.Our calculation shows that the λint(λdis)is 0.275 eVin the exciton-dissociation for PC61BMBBPQ complex,which slightly increases to 0.285 eV for the charge recombination.Relatively,the λextis very difficult to be accurately calculated.Here,the λextwas estimated by the classicaldielectric continuum model initially developed by Marcus for electron-transfer reactions between spherical ions in solution. According this model,the λextterm is given by53,

    Fig.4 ΔGdis,ΔGrec,and ΔEcoulvalues calculated in BBPQ and PC61BM blends with different proportions

    where εopis the optical dielectric constant of material,RD(=0.62 nm for BBPQ)and RA(=0.65 nm for PC61BM)are the effective radii of donor and acceptor estimated as the radius of the sphere having the same surface as the surface accessible area of molecule. The qDand qAterms denote the atomic charges on the ions.The εopcan be estimated with the Lorentz-Lorenz equation54,55,

    where n is refractive index,Vmis the molar volume(Vm=M/ρ,M is the molar mass,and ρ is the material density),R is the molar refraction.In this work,the ρ was estimated with the molecular dynamics simulation,and the simulated details were presented in the Supporting Information.Calculations show that the ρ and R of BBPQ solid are 1.066 g·cm-3and 127.4 cm3·mol-1,respectively, yielding the εopof 2.145 for BBPQ.The εopof PC61BM is estimated to be 3.482 with its experimental refractive index of 1.866.Based on the above parameters,the λextis estimated to be 0.060 eV in BBPQ-PC61BM complex(1:1).Summary,the total λ is 0.335 eV in the exciton-dissociation process for BBPQ-PC61BM complex. However,for the charge-recombination process,it further increases to 0.345 eV.According to the Marcus model,the large λ decreases the charge transfer rate;our results show that the exicton-dissociation rate is faster than the charge-recombination one without considering the VDA.

    3.6Exciton dissociation and charge recombination rates

    As is known to all,the charge transfer process occurring in organic solid materials under the high temperature approximation obeys the incoherent hopping mechanism56,57,and the rate constant, k,can be evaluated using the classical Marcus-Hush model58,59,

    where λ is the total reorganization energy,VDAis the effective charge transfer integration between donor and acceptor,ΔG is the Gibbs free energy difference between the initial and final states, kBis Boltzmann constant,h is Planck constant,and T is the temperature.In the exciton-dissociation and charge-recombination processes,ΔG=ΔGdisand ΔGrec,respectively.In terms of the DC scheme,the VDAin the charge transfer process can be calculated by the following expression60,

    where TD(i)A(j)is the charge transfer integral of the ith molecular orbital of donor and the jth molecular orbital of acceptor,SD(i)A(j)is the spatial overlap integral of the ith molecular orbital of donor and the jth molecular orbital of acceptor,and eD(i)/eA(j)is the site energy.The TD(i)A(j),SD(i)A(j),and eD(i)/eA(j)can be obtained from the TD(i)A(j)=<ψD(i)|FKS|ψA(j)>,SD(i)A(j)=<ψD(i)|ψA(j)>,and eD(i)/eA(j)=<ψD(i)/ψA(j)|FKS|ψD(i)/ψA(j)>.Among them,ψD(i)is the HOMO or LUMO of donor, ψA(j)is LUMO of acceptor,and FKSis the Kohn-Sham matrix of donor-acceptor system.The FKScan be estimated from

    where S is the intermolecular overlap matrix,C is the molecular orbital coefficient matrix from the isolated monomer,and ε is the orbital energy from one-step diagonalization without iteration. Consideration the LUMO+1 and LUMO+2 in PC61BM are degenerate in energy with its LUMO,the total VDAwere estimated as an average value of three VDAvalues between the LUMO of BBPQ and the LUMO/LUMO+1/LUMO+2 of PC61BM.Based on the calculated VDAand λ,the exciton-dissociation rate constant, kdis,is estimated to be as high as 1.775×1013s-1in BBPQ-PC61BM blend with a ratio of 1:1,but the charge recombination rate constant,krec,is predicted to be quite small(<1.0 s-1),which indicates very high exciton-dissociation efficiency in BBPQ-PC61BM interface.As observed in Eq.(14),the large kdisvalue can be attributed the large ΔGdis.According our calculations,the excitondissociation process,really occurs in the normal region of Marcus since|ΔG|<λ(0.245 eV versus 0.335 eV).As a result,the k will increase significantly if the|ΔG|and the λ are to converge toward a similar value.Unlike the exciton dissociation,the charge recombination process happens in the inverted region of Marcus due to the|ΔG|>>λ(1.803 eV versus 0.345 eV).Thus,the large|ΔG| remarkably decreases the krec.

    Table 2 Calculated λintfor BBPQ in solid and gas states with different DFT methods

    3.7Charge transport in BBPQ solid

    As is well known,the charge transport ability of donor also affects remarkably the solar cell performance.According to the previous investigation,for high-performance OSC devices,the hole carrier mobility should be as high as 10-3cm2·V-1·s-1at least32.Hence,we estimated the charge-transport performance by means of calculating the λ and VDAvalues with a simplified dimer model,which has been widely applied to evaluate the charge-transport performance of organic material61-63.Table 2 displayed the calculated λintvalues with the PES and normal mode(NM) analysis.As seen,the λintestimated with two approaches are quite close,which shows that the harmonic oscillator approximation can describe well for the charge transfer process of studied molecule64. In addition,it can be also noticed that the λintin the solid state are obviously smaller than that in the gas state,which indicates that the solid stack can limit the structural relaxation of BBPQ in charge transfer process to a certain extent.Considering the practical operating condition of OSC devices,the λintestimated in the solid state is more reasonable.

    Fig.5 Contribution of each vibration mode to the λintfor BBPQ calculated in gas(up)and solid(down)states

    To clarify the λintorigin,the contribution from each vibrational mode to the λintwas calculated with the DUSHIN program developed by Reimers et al.65,66.Fig.5 visualized the contribution from each vibrational mode to the λintestimated at the CAMB3LYP/6-311G(d,p)level in the solid and gas states.As seen, although numerous modes couple with the hole transport in BBPQ,the main contribution to the λintderives from the highfrequency region of 1200-1600 cm-1,which belongs to the stretching vibration of the C―C/C―N single and double bonds located in the molecular skeleton67.Relatively,the contribution from the middle-and low-frequency region is small.Interestingly, from gas state to solid phase,the contribution from the C―C stretching mode with the frequency of 896 cm-1is found to remarkably decrease(from 31 to 16 meV).In addition,the VDAis estimated to be 3.06 meV by means of the face-to-face dimer with the centroids distance of 0.65 nm(Fig.S4 and Fig.S5,in Supporting Information),and then yielding the hole mobility is as high as 1.180×10-3cm2·V·s-1according to the one-dimensional(1D) charge transfer model.

    4 Conclusions

    In summary,BBPQ-PC61BM as a promising OSC was investigated theoretically by means of quantum-chemical calculations. Results show that BBPQ-PC61BM system possesses a large opencircuit voltage(1.22 V),high fill factor(0.90),and high PCE (>9%).Also it has a middle-sized exciton binding energy(0.607 eV),relatively large Gibbs free-energy difference(-0.245 eV)in the exciton dissociation,but the very small one(-1.803 eV)in the charge recombination.Using the Marcus′s charge transfer model, the exciton-dissociation rate constant,kdis,is predicted to be as large as 1.775×1013s-1in BBPQ-PC61BM interface.However,the charge-recombination one,kdis,is estimated to be very small(<1.0 s-1)under the same condition.Furthermore,by means of the 1D model,the mobility of BBPQ solid is predicted to be as high as 1.180×10-3cm2·V·s-1,which can be attributed its small inner organization energy(0.261 eV)and relatively large VDA(3.06 meV).In a word,our calculation shows that BBPQ-PC61BM is a promising OSC system,and is worth studying further on the experimental aspect.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Boudreault,P.L.T.;Najari,A.;Leclerc,M.Chem.Mater.2011, 23,456.doi:10.1021/cm1021855

    (2)Cheng,Y.J.;Yang,S.H.;Hsu,C.S.Chem.Rev.2009,109, 5868.doi:10.1021/cr900182s

    (3) Günes,S.;Neugebauer,H.;Sariciftci,N.S.Chem.Rev.2007, 107,1324.doi:10.1021/cr050149z

    (4) Thompson,B.C.;Fréchet,J.M.J.Angew.Chem.Int.Ed.2007, 47,58.doi:10.1002/anie.200702506

    (5) Peet,J.;Senatore,M.L.;Heeger,A.J.;Bazan,G.C.Adv.Mater. 2009,21,1521.doi:10.1002/adma.200802559

    (6) Huo,L.;Hou,J.;Chen,H.Y.;Zhang,S.;Jiang,Y.;Chen,T.; Yang,Y.Macromolecules 2009,42,6564.doi:10.1021/ ma9012972

    (7) Sista,P.;Nguyen,H,;Murphy,J.W.;Hao,J.;Dei,D.K.; Palaniappan,K.;Servello,J.;Kularatne,R.S.;Gnade,B.E.; Xue,B.F.;Dastoor,P.C.;Biewer,M.C.;Stefan,M.C. Macromolecules 2010,43,8063.doi:10.1021/ma101709h

    (8) Engelhart,J.U.;Lindner,B.D.;Tverskoy,O.;Rominger,F.; Bunz,U.H.F.Org.Lett.2012,14,1008.doi:10.1021/ ol203334u

    (9) Fabiano,E.;Sala,F.D.;Cingoland,R.;Weimer,M.;G?rling,A. J.Phys.Chem.A 2005,109,3078.doi:10.1021/jp044974f

    (10) Tsai,F.C.;Chang,C.C.;Liu,C.L.;Chen,W.C.;Jenekhe,S.A. Macromolecules 2005,38,1958.doi:10.1021/ma048112o

    (11) Hutchison,G.R.;Ratner,M.A.;Marks,T.J.J.Am.Chem.Soc. 2005,127,2339.doi:10.1021/ja0461421

    (12)Wong,B.M.;Hsieh,T.H.J.Chem.Theory.Comput.2010,6, 3704.doi:10.1021/ct100529s

    (13) Grimme,S.;Parac,M.ChemPhysChem 2003,4,292. doi:10.1002/cphc.200390047

    (14) Song,J.W.;Hirao,K.Theor.Chem.Acc.2014,133,1438. doi:10.1007/s00214-013-1438-5

    (16) Vl?ek,A.;Záli?,S.Coordin.Chem.Rev.2007,251,258. doi:10.1016/j.ccr.2006.05.021

    (17) Zhang,S.;Qu,Z.;Tao,P.;Brooks,B.;Shao,Y.;Chen,X.;Liu, C.J.Phys.Chem.C 2012,116,12434.doi:10.1021/jp3027447

    (18) Jacquemin,D.;Perpète,E.A.;Vydrov,O.A.;Scuseria,G.E.; Carlo,A.J.J.Chem.Phys.2007,127,094102.doi:10.1063/ 1.2770700

    (19) Jacquemin,D.;Planchat,A.;Adamo,C.;Mennucci,B.J.Chem. Theory.Comput.2012,8,2359.doi:10.1021/ct300326f

    (20) Jorge,F.E.;Jorge,S.S.;Suave,R.N.Chirality 2015,27,23. doi:10.1002/chir.22384

    (21) Liu,T.;Troisi,A.J.Phys.Chem.C 2011,115,2406. doi:10.1021/jp109130y

    (23) Lu,T.;Chen,F.W.J.Mol.Graph.Model.2012,38,314. doi:10.1016/j.jmgm.2012.07.004

    (24) Lu,T.;Chen,F.W.Acta Chim.Sin.2011,69,2393.[盧天,陳飛武.化學學報,2011,69,2393.]

    (25) Troisi,A.;Orlandi,G.J.Phys.Chem.A 2006,110,4065. doi:10.1021/jp055432g

    (26)Yin,S.W.;Yi,Y.P.;Li,Q.X.;Yu,G.;Liu,Y.Q.;Shuai,Z.G. J.Phys.Chem.A 2006,110,7138.doi:10.1021/jp057291o

    (27) Song,Y.B.;Di,C.A.;Yang,X.D.;Li,S.P.;Xu,W.;Liu,Y.Q.; Yang,L.M.;Shuai,Z.G.;Zhang,D.Q.;Zhu,D.B.J.Am. Chem.Soc.2006,128,15940.doi:10.1021/ja064726s

    (28) Huang,J.S.;Kertesz,M.Chem.Phys.Lett.2004,390,110. doi:10.1016/j.cplett.2004.03.141

    (29) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09, Revision D.02;Gaussian Inc.:Wallingford,CT,2009.

    (30) Zheng,L.P.;Zhou,Q.M.;Deng,X.Y.;Yuan,M.;Yu,G.;Cao, Y.J.Phys.Chem.B 2004,108,11921.doi:10.1021/jp048890i

    (31)Wang,X.M.;Guo,Y.L.;Xiao,Y.;Zhang,L.;Yu,G.;Liu,Y.Q. J.Mater.Chem.2009,19,3258.doi:10.1039/B823336E

    (32) Scharber,M.C.;Mühlbacher,D.;Koppe,M.;Denk,P.; Waldauf,C.;Heeger,A.J.;Brabec,C.J.Adv.Mater.2006,18, 789.doi:10.1002/adma.200501717

    (33) Peumans,P.;Yakimov,A.;Forrest,S.R.J.Appl.Phys.2003,93, 3693.doi:10.1063/1.1646446

    (34) Bérubé,N.;Gosselin,V.;Gaudreau,J.;C?té,M.J.Phys.Chem. C 2013,117,7964.doi:10.1021/jp309800f

    (35) Liu,X.R.;Shen,W.;He,R.X.;Luo,Y.F.;Li,M.J.Phys. Chem.C 2014,118,17266.doi:10.1021/jp503248a

    (36) Guo,X.G.;Zhou,N.J.;Lou,S.J.;Smith,J.;Tice,D.B.; Hennek,J.W.;Ortiz,R.P.;Navarrete,J.T.L.;Li,S.Y.; Strzalka,J.;Chen,L.X.;Chang,R.P.H.;Facchetti,A.;Marks, T.J.Nat.Photonics 2013,7,825.doi:10.1038/ nphoton.2013.207

    (37) Gupta,D.;Mukhopadhyay,S.;Narayan,K.Sol.Energy Mater. Sol.Cells 2010,94,1309.doi:10.1016/j.solmat.2008.06.001

    (38) Zhou,Y.H.;Fuentes-Hernandez,C.;Shim,J.W.;Khan,T.M.; Kippelen,B.Energy Environ.Sci.2012,5,9827.doi:10.1039/ C6EE01428C

    (39) Liu,X.R.;Huang,C.Z.;Shen,W.;He,R.X.;Li,M.J.Mol. Model.2016,22,15.doi:10.1007/s00894-015-2885-9

    (40) Grage,M.M.L.;Zaushitsyn,Y.;Yartsev,A.;Chachisvilis, Sundstr?m,M.V.;Pullerits,T.Phys.Rev.B 2003,67,205207. doi:10.1103/PhysRevB.67.205207

    (41) Nayak,P.K.;Periasamy,N.Org.Electron.2009,10,1396. doi:10.1016/j.orgel.2009.06.011

    (42) Schwenn,P.E.;Burn,P.L.;Powell,B.J.Org.Electron.2011, 12,394.doi:10.1016/j.orgel.2010.11.025

    (43) Hill,I.G.;Kahn,A.;Soos,Z.G.;Pascal,R.A.Chem.Phys. Lett.2000,327,181.doi:10.1016/S0009-2614(00)00882-4

    (44) Li,Y.Z.;Pullerits,T.;Zhao,M.Y.;Sun,M.T.J.Phys.Chem.C 2011,115,21865.doi:10.1021/jp2040696

    (45) Lemaur,V.;Steel,M.;Beljonne,D.;Brédas,J.L.;Cornil,J.J.Am.Chem.Soc.2005,127,6077.doi:10.1021/ja042390l

    (46) Rysselberghe,P.V.J.Phys.Chem.1931,36,1152.doi:10.1021/ j150334a007

    (47) Zang,D.Y.;So,F.F.;Forrest,S.R.Appl.Phys.Lett.1991,59, 823.doi:10.1063/1.105274

    (48) Brocks,G.;van den Brink,J.;Morpurgo,A.F.Phys.Rev.Lett. 2004,93,146405.doi:10.1103/PhysRevLett.93.146405

    (49) Mihailetchi,V.;van Duren,J.;Blom,P.;Hummelen,J.;Janssen, R.;Kroon,J.;Rispens,M.;Verhees,W.;Wienk,M.Adv.Funct. Mater.2003,13,43.doi:10.1002/adfm.200390004

    (50) Malagoli,M.;Brédas,J.L.Chem.Phys.Lett.2000,327,13. doi:10.1016/S0009-2614(00)00757-0

    (51) Lemaur,V.;da Silva Filho,D.A.;Coropceanu,V.;Lehmann, M.;Geerts,Y.;Piris,J.;Debije,M.G.;van de Craats,A.M.; Senthilkumar,K.;Siebbeles,L.D.A.;Warman,J.M.;Brédas,J. L.;Cornil,J.J.Am.Chem.Soc.2004,126,3271.doi:10.1021/ ja0390956

    (52) Brédas,J.L.;Beljonne,D.;Coropceanu,V.;Cornil,J.Chem. Rev.2004,104,4971.doi:10.1021/cr040084k

    (56) Tauber,M.J.;Kelley,R.F.;Giaimo,J.M.;Rybtchinski,B.; Wasielewski,M.R.J.Am.Chem.Soc.2006,128,1782. doi:10.1021/ja057031k

    (57) Coropceanu,V.;Cornil,J.;da Silva Filho,D.A.;Olivier,Y.; Silbey,R.;Brédas,J.L.Chem.Rev.2007,107,926. doi:10.1021/cr050140x

    (60) Yin,S.W.;Li,L.L.;Yang,Y.M.;Reimers,J.R.J.Phys.Chem. C 2012,116,14826.doi:10.1021/jp303724r

    (61) Olivier,Y.;Lemaur,V.;Brédas,J.L.;Cornil,J.J.Phys.Chem.A 2006,110,6356.doi:10.1021/jp0571933

    (62) Liu,H.G.;Kang,S.;Lee,J.Y.J.Phys.Chem.B 2011,115, 5113.doi:10.1021/jp1045595

    (63) Chen,X.K.;Zou,L.Y.;Ren,A.M.;Fan,J.X.Phys.Chem. Chem.Phys.2011,13,19490.doi:10.1039/C1CP22227A

    (64) Li,H.X.;Zheng,R.H.;Shi,Q.J.Phys.Chem.C 2012,116, 11886.doi:10.1021/jp301536z

    (65) Weber,P.;Reimers,J.R.J.Phys.Chem.A 1999,103,9830. doi:10.1021/jp991404k

    (66) Cai,Z.L.;Reimers,J.R.J.Phys.Chem.A 2000,104,8389. doi:10.1021/jp000962s

    (67)Yang,X.D.;Wang,L.J.;Wang,C.L.;Long,W.;Shuai,Z.G. Chem.Mater.2008,20,3205.doi:10.1021/cm8002172

    Theoretical Investigation on Photovoltaic Properties of the BBPQ-PC61BM System

    ZHAO Cai-Bin1,*GE Hong-Guang1,*ZHANG Qiang1JIN Ling-Xia1WANG Wen-Liang2YIN Shi-Wei2
    (1Shaanxi Province Key Laboratory of Catalytic Fundamentals and Applications,School of Chemical and Environmental Science, Shaanxi University of Technology,Hanzhong 723000,Shaanxi Province,P.R.China;2Key Laboratory for Macromolecular Science of Shaanxi Province,School of Chemistry and Chemical Engineering, Shaanxi Normal University,Xi'an 710062,P.R.China)

    Exploring and fabricating organic solar cell devices with the high power conversion efficiency(PCE) has kept a major challenge and hot topic in organic electronics research.In this study,we have used quantum chemical and molecular dynamics calculations in conjunction with the Marcus-Hush charge transfer model to investigate the photovoltaic properties of BBPQ-PC61BM.The results revealed that the BBPQ-PC61BM(BBPQ: 7,12-bis((triisopropylsilyl)-ethynyl)benzo(g)pyrido(2′,3′:5,6)pyrazino(2,3-b)quinoxalin-2(1H)-one;PC61BM:(6, 6)-phenyl-C61-butyric acid methyl ester)system theoretically possesses a large open-circuit voltage(1.22 V), high fill factor(0.90),and high PCE of 9%-10%.The calculations also reveal that the BBPQ-PC61BM system has a medium-sized exciton binding energy(0.607 eV),with relatively small reorganization energies(0.345 and0.355 eV)for its exciton-dissociation and charge-recombination processes.Based on a simplified molecular complex,the exciton dissociation rate constant,kdis,was estimated to be as large as 1.775×1013s-1at the BBPQPC61BM interface.In contrast,the charge-recombination rate constant,krec,was very small under the same conditions(<1.0 s-1),which indicated a rapid and efficient exciton-dissociation process at the donor-acceptor interface.Overall,our calculations show that the BBPQ-PC61BM system is a very promising organic solar cell system that is worthy of further research.

    May 13,2016;Revised:July 4,2016;Published online:July 5,2016.

    s.ZHAO Cai-Bin,Email:zhaocb@snut.edu.cn;Tel:+86-916-2641660.GE Hong-Guang,Emai:gehg@snut.edu.cn;

    BBPQ;PC61BM;Theoretical investigation;Photovoltaic property;Density functional theory

    O641

    10.3866/PKU.WHXB201607051

    Tel:+86-916-2641660.

    The project was supported by the National Natural Science Foundation of China(21373132,21502109),Doctor Research Start Foundation of

    Shaanxi University of Technology,China(SLGKYQD2-13,SLGKYQD2-10,SLGQD14-10),and Education Department of Shaanxi Provincial

    Government Research Projects,China(16JK1142).

    國家自然科學基金(21373132,21502109),陜西理工學院博士科研啟動基金(SLGKYQD2-13,SLGKYQD2-10,SLGQD14-10)和陜西省教育廳專項科研計劃(16JK1142)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (15) Yanai,T.Chem.Phys.Lett.2004,393,51.10.1016/j. cplett.2004.06.011

    (22) Lu,T.;Chen,F.W.J.Comput.Chem.2012,33,580. 10.1002/jcc.22885

    (53) Marcus,R.A.J.Chem.Phys.1965,43,679.10.1063/ 1.1696792

    (54) Lorentz,H.A.Ann.Phys.1880,9,641.10.1002/ 18802450406

    (55) Lorenz,L.Ann.Phys.1880,11,70.10.1002/18802470905

    (58) Marcus,R.A.Rev.Mod.Phys.1993,65,599. RevModPhys.65.599

    (59) Hush,N.S.J.Chem.Phys.1958,28,962.10.1063/ 1.1744305

    猜你喜歡
    激子理工學院電荷
    連續(xù)分布電荷體系電荷元的自能問題*
    物理通報(2024年4期)2024-04-09 12:41:28
    電荷知識知多少
    江蘇理工學院
    電荷守恒在化學解題中的應用
    常熟理工學院
    理工學院簡介
    CdSeS合金結構量子點的多激子俄歇復合過程*
    物理學報(2019年10期)2019-06-04 05:31:52
    找到你了,激子素
    科學之謎(2018年3期)2018-04-09 06:37:46
    任意門
    長程電子關聯(lián)對聚合物中激子極化率的影響
    色哟哟·www| 美女xxoo啪啪120秒动态图| 大码成人一级视频| 欧美3d第一页| 久久久久网色| 免费在线观看成人毛片| 精品一区二区三区视频在线| 成年人午夜在线观看视频| 男人和女人高潮做爰伦理| 久久国内精品自在自线图片| 夜夜骑夜夜射夜夜干| 欧美xxxx黑人xx丫x性爽| 97热精品久久久久久| 成年人午夜在线观看视频| 国产乱来视频区| 亚洲av不卡在线观看| 国产精品久久久久久精品古装| 午夜福利视频精品| 看十八女毛片水多多多| 国产精品一区二区在线观看99| 久久热精品热| 菩萨蛮人人尽说江南好唐韦庄| 日本wwww免费看| 最新中文字幕久久久久| .国产精品久久| 日韩国内少妇激情av| 国产熟女欧美一区二区| 成人毛片a级毛片在线播放| 美女主播在线视频| 国产精品人妻久久久影院| 免费久久久久久久精品成人欧美视频 | 亚洲三级黄色毛片| 少妇的逼水好多| 亚洲av欧美aⅴ国产| 在线天堂最新版资源| a级毛色黄片| 18禁裸乳无遮挡动漫免费视频| 国产 一区 欧美 日韩| 国产精品国产三级专区第一集| 嫩草影院入口| 黄色日韩在线| 国产精品爽爽va在线观看网站| 嘟嘟电影网在线观看| 国产av精品麻豆| av线在线观看网站| 搡女人真爽免费视频火全软件| 高清欧美精品videossex| 老女人水多毛片| 国产高清有码在线观看视频| 乱码一卡2卡4卡精品| 国产高清有码在线观看视频| 国产亚洲最大av| 蜜桃久久精品国产亚洲av| 日本av免费视频播放| 水蜜桃什么品种好| 亚洲内射少妇av| 寂寞人妻少妇视频99o| 国产乱人偷精品视频| 麻豆国产97在线/欧美| 天堂中文最新版在线下载| 日韩大片免费观看网站| 久久久欧美国产精品| 少妇人妻一区二区三区视频| 纯流量卡能插随身wifi吗| 18禁裸乳无遮挡动漫免费视频| av在线老鸭窝| 有码 亚洲区| 日韩强制内射视频| 亚洲不卡免费看| 久久久欧美国产精品| 精品一区二区免费观看| 韩国av在线不卡| www.色视频.com| 欧美日韩亚洲高清精品| 日日撸夜夜添| av黄色大香蕉| 春色校园在线视频观看| 国产精品一区二区在线观看99| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品成人久久小说| 日韩欧美 国产精品| 亚洲欧美日韩东京热| 久久国产亚洲av麻豆专区| 国产精品麻豆人妻色哟哟久久| 国产精品女同一区二区软件| 黄色日韩在线| 欧美成人午夜免费资源| 六月丁香七月| 免费观看a级毛片全部| 91精品一卡2卡3卡4卡| 国产在线一区二区三区精| 欧美精品亚洲一区二区| 热99国产精品久久久久久7| 久久久久久久精品精品| 亚洲,一卡二卡三卡| 男男h啪啪无遮挡| 久久6这里有精品| 搡老乐熟女国产| 亚洲电影在线观看av| 成人二区视频| 久久午夜福利片| 精品人妻偷拍中文字幕| 乱系列少妇在线播放| 大陆偷拍与自拍| av国产久精品久网站免费入址| 身体一侧抽搐| 美女内射精品一级片tv| 性高湖久久久久久久久免费观看| 99九九线精品视频在线观看视频| 日本欧美视频一区| 亚洲美女视频黄频| 久久精品国产鲁丝片午夜精品| 欧美日韩在线观看h| a 毛片基地| 亚洲第一区二区三区不卡| 一本一本综合久久| 边亲边吃奶的免费视频| 久久午夜福利片| 日本免费在线观看一区| 春色校园在线视频观看| 男女啪啪激烈高潮av片| 亚洲国产精品国产精品| 亚洲成人手机| 精品国产乱码久久久久久小说| 国产伦理片在线播放av一区| 久久综合国产亚洲精品| 身体一侧抽搐| 久久精品熟女亚洲av麻豆精品| 午夜福利视频精品| 精品一区二区免费观看| 91狼人影院| 久热久热在线精品观看| 国产黄片美女视频| 久久99热这里只频精品6学生| 欧美国产精品一级二级三级 | 成人亚洲精品一区在线观看 | 国产欧美亚洲国产| 丝袜喷水一区| 亚洲国产精品成人久久小说| 黄色视频在线播放观看不卡| 久久午夜福利片| av卡一久久| 天天躁夜夜躁狠狠久久av| 亚洲精品一二三| 国产精品蜜桃在线观看| 久久久久久久大尺度免费视频| av在线app专区| 99久久精品一区二区三区| 91精品一卡2卡3卡4卡| 尤物成人国产欧美一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品国产成人久久av| 91精品国产国语对白视频| 久久人人爽人人爽人人片va| 国产黄色免费在线视频| 成人综合一区亚洲| 高清毛片免费看| 美女视频免费永久观看网站| 久久青草综合色| 少妇被粗大猛烈的视频| 你懂的网址亚洲精品在线观看| 熟女电影av网| 大香蕉久久网| 亚洲性久久影院| 中国美白少妇内射xxxbb| 国产有黄有色有爽视频| 制服丝袜香蕉在线| 亚洲熟女精品中文字幕| 中国三级夫妇交换| xxx大片免费视频| 亚洲内射少妇av| 亚洲精品色激情综合| 欧美少妇被猛烈插入视频| 久久99热这里只频精品6学生| 欧美一区二区亚洲| 卡戴珊不雅视频在线播放| 大片免费播放器 马上看| 亚洲成人手机| 精品一区二区三区视频在线| 亚洲人与动物交配视频| 国内精品宾馆在线| 韩国av在线不卡| 国产无遮挡羞羞视频在线观看| 超碰97精品在线观看| 高清在线视频一区二区三区| 最近最新中文字幕大全电影3| 中文字幕久久专区| 日本欧美视频一区| 精品少妇黑人巨大在线播放| 99精国产麻豆久久婷婷| 亚洲无线观看免费| 亚洲人成网站在线观看播放| 老司机影院毛片| 成人毛片60女人毛片免费| 观看av在线不卡| 久久国产亚洲av麻豆专区| 日韩欧美精品免费久久| 日本一二三区视频观看| 黄色视频在线播放观看不卡| 如何舔出高潮| 老师上课跳d突然被开到最大视频| 日日啪夜夜爽| 亚洲无线观看免费| 国产欧美日韩精品一区二区| av视频免费观看在线观看| 蜜桃亚洲精品一区二区三区| 晚上一个人看的免费电影| 99国产精品免费福利视频| 日韩一区二区视频免费看| 国产又色又爽无遮挡免| 午夜免费男女啪啪视频观看| 岛国毛片在线播放| 黄片无遮挡物在线观看| 哪个播放器可以免费观看大片| 十分钟在线观看高清视频www | 国产久久久一区二区三区| 国产深夜福利视频在线观看| 老熟女久久久| 伦精品一区二区三区| 国产爱豆传媒在线观看| 国产黄频视频在线观看| 免费久久久久久久精品成人欧美视频 | 我要看日韩黄色一级片| 色视频在线一区二区三区| 99久久精品国产国产毛片| 亚洲欧美中文字幕日韩二区| 日本黄色片子视频| 成年女人在线观看亚洲视频| 成人亚洲欧美一区二区av| 日本av免费视频播放| 国产成人免费观看mmmm| 我的女老师完整版在线观看| 一边亲一边摸免费视频| 成人影院久久| 男人和女人高潮做爰伦理| 亚洲精品国产av成人精品| 久久久久国产精品人妻一区二区| 亚洲美女搞黄在线观看| 亚洲精品中文字幕在线视频 | 秋霞在线观看毛片| 国产精品久久久久久精品电影小说 | 精品人妻一区二区三区麻豆| 精品视频人人做人人爽| 一个人看的www免费观看视频| 26uuu在线亚洲综合色| 日本午夜av视频| 十分钟在线观看高清视频www | 国产免费福利视频在线观看| 精品国产一区二区三区久久久樱花 | 一级av片app| 国产综合精华液| 卡戴珊不雅视频在线播放| 一区二区三区乱码不卡18| 女性被躁到高潮视频| 三级国产精品片| 国产亚洲一区二区精品| 高清在线视频一区二区三区| 亚洲精华国产精华液的使用体验| 成人免费观看视频高清| 1000部很黄的大片| 日本vs欧美在线观看视频 | 一个人看的www免费观看视频| 一级毛片黄色毛片免费观看视频| av在线蜜桃| 亚洲天堂av无毛| 日韩不卡一区二区三区视频在线| 2018国产大陆天天弄谢| 亚洲欧美日韩卡通动漫| 99久久综合免费| 97精品久久久久久久久久精品| 国产视频内射| 妹子高潮喷水视频| 麻豆精品久久久久久蜜桃| 久久久久国产精品人妻一区二区| 亚洲精品中文字幕在线视频 | 日本vs欧美在线观看视频 | 全区人妻精品视频| 日韩av在线免费看完整版不卡| 一级毛片 在线播放| 天堂8中文在线网| videossex国产| av线在线观看网站| 在线精品无人区一区二区三 | 少妇的逼好多水| 国产av国产精品国产| 熟女人妻精品中文字幕| 涩涩av久久男人的天堂| 久热这里只有精品99| 久久女婷五月综合色啪小说| 亚洲激情五月婷婷啪啪| 91午夜精品亚洲一区二区三区| 99久久中文字幕三级久久日本| 国产精品免费大片| 男人和女人高潮做爰伦理| 国产免费又黄又爽又色| 成人亚洲精品一区在线观看 | 久久久久视频综合| 国产亚洲午夜精品一区二区久久| 国产成人a∨麻豆精品| 亚洲av免费高清在线观看| 免费少妇av软件| 在线看a的网站| 七月丁香在线播放| 亚洲av免费高清在线观看| 中文字幕久久专区| 国产午夜精品久久久久久一区二区三区| 国产成人精品婷婷| 国产av国产精品国产| 中文字幕免费在线视频6| 十八禁网站网址无遮挡 | 国产精品99久久久久久久久| 一区在线观看完整版| 在线观看国产h片| 亚洲av免费高清在线观看| 亚洲国产精品国产精品| 另类亚洲欧美激情| 波野结衣二区三区在线| 国产 一区精品| 一级二级三级毛片免费看| 国产综合精华液| 免费黄色在线免费观看| 国产成人精品一,二区| 成人午夜精彩视频在线观看| 亚洲经典国产精华液单| 午夜福利在线观看免费完整高清在| av网站免费在线观看视频| 777米奇影视久久| 综合色丁香网| 老司机影院成人| 夜夜爽夜夜爽视频| 国产探花极品一区二区| 日日啪夜夜撸| 国产精品爽爽va在线观看网站| 久久久色成人| 亚洲第一av免费看| 欧美三级亚洲精品| 亚洲精品国产成人久久av| 热99国产精品久久久久久7| 久久久久久久亚洲中文字幕| 深爱激情五月婷婷| 性色avwww在线观看| 乱码一卡2卡4卡精品| 成人免费观看视频高清| 男女啪啪激烈高潮av片| 大码成人一级视频| 亚洲国产精品一区三区| xxx大片免费视频| 成人特级av手机在线观看| 男男h啪啪无遮挡| 国产无遮挡羞羞视频在线观看| 乱码一卡2卡4卡精品| 秋霞伦理黄片| 黄色一级大片看看| 五月伊人婷婷丁香| 亚洲欧洲日产国产| 国产精品久久久久久精品电影小说 | 久久韩国三级中文字幕| 一级av片app| 国产一区二区三区综合在线观看 | 欧美区成人在线视频| 一本—道久久a久久精品蜜桃钙片| 精品久久久久久久末码| 国产免费又黄又爽又色| 国产乱人视频| 美女福利国产在线 | 国产91av在线免费观看| 欧美老熟妇乱子伦牲交| 免费高清在线观看视频在线观看| 青青草视频在线视频观看| 久久久久国产精品人妻一区二区| 精品视频人人做人人爽| 天堂中文最新版在线下载| 99久久中文字幕三级久久日本| 亚洲四区av| 新久久久久国产一级毛片| 女人久久www免费人成看片| 26uuu在线亚洲综合色| 亚洲欧美日韩卡通动漫| 一级av片app| 一个人看视频在线观看www免费| 2022亚洲国产成人精品| 深爱激情五月婷婷| 日韩 亚洲 欧美在线| 亚洲精华国产精华液的使用体验| 网址你懂的国产日韩在线| 一区二区三区精品91| 久久综合国产亚洲精品| 美女高潮的动态| 内射极品少妇av片p| 汤姆久久久久久久影院中文字幕| 伦理电影免费视频| 久久久久性生活片| 人妻 亚洲 视频| 国产爱豆传媒在线观看| 亚洲国产欧美人成| 久久精品夜色国产| 少妇的逼水好多| 中文字幕av成人在线电影| 2018国产大陆天天弄谢| 成人漫画全彩无遮挡| 日本黄色片子视频| 成人高潮视频无遮挡免费网站| 深夜a级毛片| 久久6这里有精品| 女的被弄到高潮叫床怎么办| 网址你懂的国产日韩在线| 日韩大片免费观看网站| 女性被躁到高潮视频| 亚洲人成网站在线观看播放| 成人黄色视频免费在线看| 一区二区三区免费毛片| 国产 一区 欧美 日韩| 中文天堂在线官网| 久久人人爽av亚洲精品天堂 | 身体一侧抽搐| 亚洲内射少妇av| 国产无遮挡羞羞视频在线观看| av.在线天堂| 欧美成人a在线观看| 国产色爽女视频免费观看| 亚洲精品日韩在线中文字幕| 视频中文字幕在线观看| 国产爽快片一区二区三区| 国产熟女欧美一区二区| av又黄又爽大尺度在线免费看| 国产精品一二三区在线看| 亚洲最大成人中文| 美女国产视频在线观看| 下体分泌物呈黄色| 五月开心婷婷网| 九色成人免费人妻av| 成人二区视频| h日本视频在线播放| 少妇人妻久久综合中文| 日韩亚洲欧美综合| 精品少妇黑人巨大在线播放| 国内揄拍国产精品人妻在线| 色婷婷久久久亚洲欧美| 日韩一区二区视频免费看| av在线蜜桃| 国产高清有码在线观看视频| 亚洲人成网站高清观看| 日产精品乱码卡一卡2卡三| 18禁在线无遮挡免费观看视频| 国产淫语在线视频| 3wmmmm亚洲av在线观看| 国产精品一区www在线观看| av视频免费观看在线观看| 日韩精品有码人妻一区| 大香蕉97超碰在线| 亚洲最大成人中文| 十分钟在线观看高清视频www | 一级毛片 在线播放| 少妇 在线观看| 在线观看人妻少妇| 亚洲欧美一区二区三区黑人 | 亚洲国产毛片av蜜桃av| 高清黄色对白视频在线免费看 | 国产伦精品一区二区三区视频9| 亚洲精品日本国产第一区| 久久久久久久久久成人| 亚洲真实伦在线观看| 深爱激情五月婷婷| 高清在线视频一区二区三区| 亚洲av欧美aⅴ国产| 久久ye,这里只有精品| 亚洲精品乱码久久久v下载方式| 国产成人精品久久久久久| 成人18禁高潮啪啪吃奶动态图 | 成人影院久久| 亚洲国产精品一区三区| 国产淫片久久久久久久久| 成人综合一区亚洲| 欧美日韩在线观看h| 毛片女人毛片| 大又大粗又爽又黄少妇毛片口| 欧美日韩在线观看h| 大香蕉97超碰在线| 亚洲久久久国产精品| 亚洲欧洲日产国产| 伊人久久国产一区二区| 精品国产一区二区三区久久久樱花 | 成人亚洲精品一区在线观看 | 国产精品女同一区二区软件| 高清毛片免费看| 久久久久久九九精品二区国产| 精品少妇久久久久久888优播| 精品亚洲成国产av| 精品人妻偷拍中文字幕| 久久午夜福利片| 美女中出高潮动态图| 3wmmmm亚洲av在线观看| 久久久久网色| 亚洲av二区三区四区| 有码 亚洲区| 国产乱人偷精品视频| 亚洲成人中文字幕在线播放| 国产精品久久久久成人av| 亚洲经典国产精华液单| 免费大片18禁| 乱系列少妇在线播放| 亚洲性久久影院| 国产精品无大码| 精品久久久精品久久久| 久久这里有精品视频免费| 黄片无遮挡物在线观看| 一级a做视频免费观看| 亚洲婷婷狠狠爱综合网| 99久久人妻综合| 亚洲av欧美aⅴ国产| 国产在视频线精品| 欧美高清成人免费视频www| 亚洲av.av天堂| 久久久久久人妻| 国产永久视频网站| 国产精品久久久久久av不卡| 成年女人在线观看亚洲视频| 男女边摸边吃奶| 成人特级av手机在线观看| 色视频www国产| 黄色一级大片看看| 日韩伦理黄色片| 男人爽女人下面视频在线观看| 亚洲在久久综合| 国产精品人妻久久久影院| 如何舔出高潮| 中文字幕av成人在线电影| 美女内射精品一级片tv| 欧美97在线视频| 欧美亚洲 丝袜 人妻 在线| 久久精品夜色国产| 在线看a的网站| 亚洲精品色激情综合| 建设人人有责人人尽责人人享有的 | 91精品一卡2卡3卡4卡| 久久久午夜欧美精品| 美女xxoo啪啪120秒动态图| 干丝袜人妻中文字幕| 日韩电影二区| 久久久亚洲精品成人影院| 夫妻午夜视频| 国产精品国产三级国产专区5o| 人妻一区二区av| 五月伊人婷婷丁香| 毛片一级片免费看久久久久| 国产深夜福利视频在线观看| 你懂的网址亚洲精品在线观看| 大片电影免费在线观看免费| 免费黄色在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 狂野欧美激情性xxxx在线观看| 麻豆精品久久久久久蜜桃| 国产成人午夜福利电影在线观看| 亚洲精品久久久久久婷婷小说| 成人漫画全彩无遮挡| 婷婷色av中文字幕| 欧美老熟妇乱子伦牲交| 国产精品av视频在线免费观看| 免费黄色在线免费观看| 国产精品久久久久久久电影| 亚洲精品久久午夜乱码| 在线精品无人区一区二区三 | 欧美一级a爱片免费观看看| 高清日韩中文字幕在线| 嘟嘟电影网在线观看| 午夜日本视频在线| 男人爽女人下面视频在线观看| 人体艺术视频欧美日本| 日日摸夜夜添夜夜爱| 国产精品国产av在线观看| 亚洲av福利一区| 在线观看人妻少妇| 国产精品秋霞免费鲁丝片| 啦啦啦啦在线视频资源| 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久| 国产高潮美女av| 久久精品国产亚洲网站| av播播在线观看一区| 狠狠精品人妻久久久久久综合| 日本vs欧美在线观看视频 | 久热这里只有精品99| 国产精品一区二区在线不卡| 人妻一区二区av| 亚洲aⅴ乱码一区二区在线播放| 网址你懂的国产日韩在线| 日本一二三区视频观看| 国产永久视频网站| 超碰97精品在线观看| 国产伦精品一区二区三区视频9| 国产 一区 欧美 日韩| 色哟哟·www| 在线精品无人区一区二区三 | 黄色日韩在线| 最近手机中文字幕大全| 纵有疾风起免费观看全集完整版| 日韩 亚洲 欧美在线| 国产真实伦视频高清在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲av综合色区一区| 日本色播在线视频| 国产v大片淫在线免费观看| 精华霜和精华液先用哪个| 老熟女久久久| 久久久久精品久久久久真实原创| 极品教师在线视频| 少妇被粗大猛烈的视频| 国产精品久久久久久久久免| 久久国产乱子免费精品| 天堂俺去俺来也www色官网| 一区二区三区精品91| 欧美丝袜亚洲另类| 汤姆久久久久久久影院中文字幕| 国产亚洲一区二区精品| 26uuu在线亚洲综合色|