• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于硅過渡層納米金剛石膜/GaN復(fù)合膜系的制備

    2016-11-22 07:41:12劉金龍田寒梅陳良賢魏俊俊黑立富李成明
    新型炭材料 2016年5期
    關(guān)鍵詞:北京科技大學(xué)寒梅結(jié)合力

    劉金龍, 田寒梅, 陳良賢, 魏俊俊, 黑立富, 李成明

    (北京科技大學(xué) 新材料技術(shù)研究院,北京100083)

    ?

    基于硅過渡層納米金剛石膜/GaN復(fù)合膜系的制備

    劉金龍, 田寒梅, 陳良賢, 魏俊俊, 黑立富, 李成明

    (北京科技大學(xué) 新材料技術(shù)研究院,北京100083)

    本文研發(fā)了一種簡(jiǎn)便有效的在GaN半導(dǎo)體襯底上直接生長(zhǎng)納米金剛石膜的方法。研究發(fā)現(xiàn),直接將GaN襯底暴露于氫等離子體中5 min即發(fā)生分解,且隨著溫度從560 ℃升高至680 ℃,這種分解反應(yīng)愈加劇烈,很難在GaN襯底上直接形成結(jié)合力良好的納米金剛石膜。通過在GaN襯底上鍍制幾納米厚的硅過渡層,在富氫金剛石生長(zhǎng)環(huán)境下,抑制了GaN襯底的分解,同時(shí)在GaN襯底上沉積了約2 μm厚的納米金剛石膜。硅過渡層厚度是決定納米金剛石與GaN襯底結(jié)合力的主要因素。當(dāng)硅過渡層厚度為10 nm時(shí),納米金剛石膜與GaN襯底呈現(xiàn)出大于10 N的結(jié)合力,可能與硅過渡層在金剛石生長(zhǎng)過程中向SiC過渡層轉(zhuǎn)變有關(guān)。

    氮化鎵;硅過渡層;納米金剛石膜;直接生長(zhǎng);分解

    1 Introduction

    Gallium nitride (GaN) has been widely applied in electronic and optoelectronic devices, owing to their unique electrical properties such as large bandgap (3.4 eV), high breakdown electrical field (3×106V·cm-1) and extremely high saturation velocity (1.5×107cm·s-1), and high electron mobility in AlGaN/GaN heterostructures (2 019 cm2/V·s)[1-3]. However, the low thermal conductivity of GaN and the high thermal boundary resistances (TBRs) at interfaces between GaN and substrates such as Si and Al2O3in composites impede efficient heat dissipation from the heated regions in device[4,5]. It has been reported that the working temperature of AlGaN/GaN heterostructure field-effect transistors (HFETs) is currently on the order of 180 ℃, which may increase with growing current densities[6]. This self-heating severely limits the further development of GaN based high power devices. SiC is one of the most suitable heat sink materials for these devices with a high thermal conductivity of 400 W/m·K and a small lattice mismatch of 3%. Currently, a maximum output power density of 30 W/mm for AlGaN/GaN high electron mobility transistor (HEMT) on SiC was achieved[7,8].

    Diamond, with the highest thermal conductivity of 2 200 W/m·K, has been speculated to be the optimal substrate for GaN based devices[9-11]. It has been obtained that the maximum channel current of AlGaN/GaN HEMT on diamond is nearly twice as high as that on SiC, and the corresponding channel temperature is 100 ℃ lower based on the simulation than that on SiC[12]. However, whether GaN on the diamond, or diamond on GaN is hard to prepare, because there is a large thermal expansion coefficient difference and lattice mismatch between them. For the former, the GaN heteroepitaxy growth on a single crystalline or polycrystalline diamond is difficult to control[2,13], although GaN based devices on silicon-on-diamond (SOD) has been reported by SP3 company[14]. While for the latter, a high substrate temperature for the diamond film deposition (≈800 ℃) and H-rich environment may lead to a GaN degradation due to the hydrogen plasma etching and GaN decomposition[15,16]. Thus, some approaches have been explored to integrate diamond with GaN through some interlayers such as AlN and Si3N4dielectric adhesive layers[15,17,18]. However, the thick interlayer may become a thermal barrier to impede the heat dissipation.

    In this paper, we presented an approach to achieve a direct deposition of the nano-diamond film on GaN by incorporating a thin Si buffer layer. The buffer layer thickness was just several nanometers, which prevented the GaN substrate from hydrogen etching. The thickness of nano-diamond films deposited could be varied from several hundred nanometers to several micrometers, which will effectively improve the thermal conductivity of GaN based devices.

    2 Experimental

    A commercial GaN/sapphire composite with a GaN thickness of about 25 μm was used as the substrate. Before nano-diamond film deposition, the substrate was overgrown with a Si buffer layer with several nanometers-thick using the RF magnetron sputtering. In order to improve the adhesion of the Si layer on GaN, the GaN/sapphire composite was firstly bombarded by the Ar+ion with 1 250 eV energy for 15 min. And then the Si buffer layers with thickness of 5, 10, 20 and 40 nm were deposited on the GaN/sapphire substrates by controlling the deposition time. After the seeding treatment using a suspension of absolute alcohol mixed with 5 nm diamond powders, hydrogen rich plasma environment consisting of CH4/H2(6/94) was used to prepare the nano-diamond films in a 5 kW microwave (MW) reactor chamber. The deposition parameters are listed in Table 1. The substrate temperature was kept at 680 ℃ through adjusting the microwave power and pressure. At this temperature, it is considered that loss of nitrogen (N) from GaN won’t happen and hydrogen rich environment can’t result in the poor-quality of diamond. The nano-diamond films on GaN/sapphire composites were prepared after deposition for 3 h. The surface morphology of the GaN/sapphire with and without Si buffer layers after nano-diamond film deposition was observed by SEM (QUANTA FEG 450). The surface and cross section of diamond/GaN/sapphire composite was characterized by Raman spectroscopy using an excitation wavelength of 514 nm. The adhesion force between nano-diamond and GaN/sapphire substrate was evaluated by a micro scratch tester (WS-2005).

    Table 1 Deposition parameters of nano-diamond films on GaN by MWCVD.

    3 Results and discussion

    3.1 Surface morphology of GaN exposed to hydrogen plasma and after direct growth of diamond film

    Before nano-diamond growth on the GaN/sapphire composite, the surface morphology of GaN exposed to the hydrogen plasma for 5 min is firstly observed and shown in Fig.1. It can be seen that some pin holes appear on the GaN surface, which spread and connect with each other in the plane direction. Finally, the whole GaN film decomposes with a substrate temperature increase from 560 to 680 ℃. According to the model reported by Yeh et al[19], the etching reaction on GaN in the hydrogen-rich environment started from the dislocation sites, and at high temperature a formation of Ga droplet would accelerate the GaN decomposition, which can be obviously found in Fig.1(d) in our situation. It can be also seen that the GaN surface is almost unchanged after the exposure to hydrogen plasma at 560 ℃ in Fig.1(a). We have tried to deposit the nano-diamond films on the GaN/sapphire composites directly without the Si buffer layer at 560 and 680 ℃. However, it is hard to form diamond film at 560 ℃, while it shows a weak adhesion between nano-diamond film and the GaN/sapphire composite at 680 ℃, although the dense nano-diamond film can be formed in the latter case as shown in Fig.2. That’s because that GaN will decompose at 680 ℃ by hydrogen plasma etching due to the high deposition temperature at the early stage of nano-diamond film deposition, as shown in Fig.2(a).

    Fig. 1 Morphologies of GaN exposed to hydrogen plasma at (a) 560 ℃, (b) 600 ℃,(c) 640 ℃ and (d) 680 ℃ for 5 min.

    Fig. 2 Surface morphologies of (a) GaN and (b) nano-diamond film after diamond film deposition at 680 ℃.

    As the carbon source is added and chemical species containing carbon reaches the GaN surface, some amorphous carbon will form preferentially due to lack of favorable nucleation condition for the diamond, and diamond film is formed and grown by transformation of amorphous carbon layer, which is indicated in Fig.2(b). The loose amorphous carbon layer results in a weak adhesion between nano-diamond film and GaN substrate.

    3.2 Characterization of GaN with nano-diamond film by using the Si buffer layer

    Morphology of nano-diamond films on the GaN/sapphire substrates with different thicknesses of Si buffer layers is shown in Fig.3. It can be seen that the diamond films are composed of many clusters on the GaN substrate, which shows the typical feature of nano-diamond films. The sample with a 40 nm-thick Si layer is not shown here because the diamond film was peeled off immediately when the microwave generator was shut down. Correspondingly, Raman spectra of nano-diamond films on the GaN/sapphire substrates with different thicknesses of Si buffer layers are shown in Fig.3(d). For the sample with the 5 nm Si layer, it consists of peaks at 1 177, 1 334, 1 477 and 1 580 cm-1. As it is known that the peaks at 1 177 and 1 477 cm-1can be attributed to nano-diamond, which are contributed by the tans-polyacetylene on grain boundary or disordered sp3carbon. The peak at 1 334 cm-1is typical of diamond while that at 1 580 cm-1peak is excited by the G-mode vibration of sp2amorphous carbon. As the thickness of the Si buffer layer increases, the peak at 1 477 cm-1disappears and the intensity of the peak at 1 334 cm-1increases, which indicates that the diamond content with a sp3structure increases. We can’t find the obvious characteristic peaks of GaN for all three samples. This is because the diamond film is thick enough to exceed the detect limit in the depth direction (generally about 1 μm) for Raman spectroscopy.

    Fig. 3 Morphologies and Raman spectra of nano-diamond films on the GaN/sapphire substrates with different thicknesses of Si buffer layers. (a-c) Surface morphologies and (d) Raman spectra of samples with 5, 10 and 20 nm thick Si layers.

    In order to determine whether the GaN substrate was decomposed directly, the cross sectional morphology of nano-diamond films on the GaN/sapphire substrate with a 5 nm Si buffer layer was characterized, which is shown in Fig. 4. The GaN film with a thickness of 24.28 μm can be observed clearly, on top which there is a thin nano-diamond film with a thickness of about 2 μm. The edge of the top surface is neat, which suggests that the GaN doesn’t almost decompose under the H-rich plasma environment with a Si buffer layer. Further, the components of the cross section of GaN were detected by energy dispersive spectrum (EDS), as shown in Fig.4(b). It can be found that no other impurities can be observed besides the N and Ga elements. The atom ratio of Ga and N is near 1, which indicates that the GaN is intact under the shield of a thin Si layer during the H-rich plasma etching in the diamond growth process.

    Fig. 4 (a, b) Cross sectional morphology and (c) EDS of nano-diamond films on the GaN/sapphire substrate with the 5 nm Si buffer layer.

    3.3 Adhesion evaluation between nano-diamond film and the GaN substrate In order to evaluate the adhesion of nano-diamond film on GaN, micro scratch test was conducted. Fig.5 shows the typical scratch appearance of nano-diamond film on the GaN.

    As the pressure of diamond intender increases, just the trace rubbed between nano-diamond film and diamond intender is left on the nano-diamond film surface at the early stage, as shown in Fig.5(a), then the nano-diamond film is ground and peeled off as shown in Fig.5(b) and Fig.5(c), and finally the GaN is exposed as shown in Fig.5(d). It is noticed that it doesn’t show the GaN substrate directly in Fig.5(c) after the diamond film starts to spall, indicating that there is a transition layer between the nano-diamond film and the GaN substrate. We can evaluate the adhesion from the sound signal change for the brittle nano-diamond film on the GaN substrate as shown in Fig.6. From the sound signal, it can be found that nano-diamond film on the GaN has a low adhesion for the samples with the 5 and 20 nm thick Si buffer layers. While for the sample with the 10 nm-thick Si buffer layer, it shows a high adhesion beyond 10 N. It seems strange that a several nanometer thick difference of the Si interlayer leads to a large difference of adhesion. In fact, when the buffer layer thickness reaches 40 nm, the nano-diamond film is easy to be broken away from the GaN substrate. While for the sample with a thickness of 5 nm, no obvious zone of diamond grinding is observed.

    3.4 Discussion

    Decomposition of the GaN substrate during nano-diamond film growth has been effectively suppressed by using a thin Si layer as buffer deposited before the diamond growth. After nano-diamond film deposition, the thickness of GaN was almost unchangeable. More importantly, a good adhesive between the micrometer thick nano-diamond film and the GaN substrate was obtained. In general, nucleation of diamond only happens on carbide forming materials such as some refractory metals or Si (except for growth on Ir)[20], so there is no enough driving force for a direct nucleation of diamond films on the GaN substrate. A direct growth of diamond film on the GaN substrate is thermodynamically favorable by adding some carbide forming element material, such as W[11]or Si. However, due to a large mismatch stress (about 13%) and thermal expansion coefficient difference between diamond film (1.0×10-6/℃) and GaN (5.59×10-6/℃), a direct bonding between them seems impossible, especially as the thickness of diamond film increases, the mismatch stress becomes large enough to separate the diamond film from the GaN substrate. In our situation, the thin Si buffer layer several-nanometer thick may convert to SiC during the diamond nucleation although the lattice constant of Si is larger than diamond and GaN. It is known that there is a small lattice mismatch of 3% between SiC and GaN. Meanwhile, SiC and diamond film can form strong chemical bonding. Therefore, a tight adhesion is expected to be achieved between diamond film and the GaN substrate. It is worth noting that the thickness of Si buffer layer is an important factor that determines the adhesion between diamond film and the GaN substrate. If it is thicker than 20 nm, the Si layer can’t transform to SiC completely and the interface bonding between GaN and the Si buffer layer becomes weak. While if it is too thin like 5 nm, it may not relax the large stress between diamond film and the GaN substrate. Hence, a 10 nm-thick Si buffer layer is considered to be optimum to improve the adhesion between nano-diamond film and the GaN substrate owing to their strong bond. Meanwhile it can be speculated that a 2 μm-thick nano-diamond film could provide large heat sinking capacity for high power GaN based electronic devices according to the results reported in Ref.[11].

    Fig. 5 The typical scratch appearance of nano-diamond film on the GaN/sapphire with Si buffer layers.(a) The trace rubbed between nano-diamond film and diamond intender at the early stage; (b) the nano-diamond film begins to peel off;(c) the transition layer between nano-diamond film and GaN and (d) the exposed GaN substrate.

    Fig. 6 The sound signal and the corresponding scratch morphology of nano-diamond film on the GaN/sapphire with different thicknesses of the Si buffer layers after the scratch test.

    4 Conclusions

    When exposed to the hydrogen plasma for 5 min, the GaN substrate decomposed apparently with a substrate temperature increase from 560 to 680 ℃ and nano-diamond film cannot be grown on the GaN substrate adhesively without the aid of a Si buffer layer. A 2 μm-thick nano-diamond film was directly grown on the GaN/sapphire substrate by using a several nanometer thick Si buffer layer. The cross-sectional morphology and EDS of nano-diamond film on the GaN/sapphire substrate demonstrate that decomposition of GaN was significantly suppressed during diamond growth under the H-rich plasma environment in the presence of a Si buffer layer. It is found that the adhesion force between nano-diamond film and the GaN/sapphire substrate is larger than 10 N when a 10 nm-thick Si layer is present, which is attributed to a complete conversion of the Si layer to a silicon carbide (SiC) transition layer.

    [1] Gelmont B, Kim K, Shur M. Monte carlo simulation of electron transport in gallium nitride[J]. Journal of Applied Physics, 1993, 74(3): 1818-1821.

    [2] Zhang D, Bian J M, Qin F W, et al. Highly c-axis oriented GaN films grown on free-standing diamond substrates for high-power devices[J]. Materials Research Bulletin, 2011, 46(10): 1582-1585.

    [3] Gaska R, Yang J W, Osinsky A, et al. Electron transport in AlGaN heterostructures grown on 6H-SiC substrates[J]. Applied Physics Letters, 1998, 72(6): 707-709.

    [4] Sadi T, Kelsal R W, Pilgrim N J. Investigation of self-heating effects in submicrometer GaN/AlGaN HEMTs using an electrothermal Monte Carlo method[J]. IEEE Transactions on Electron Devices, 2006, 53(12): 2892-2900.

    [5] Trew R J, Green D S, Shealy J B. AlGaN/GaN HFET reliability[J]. IEEE Microwave Magazine, 2009, 10(4): 116-127.

    [6] Kuball M, Hayes J M, Uren M J, et al. Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy[J]. IEEE Eletron Device Letters, 2002, 23(1): 7-9.

    [7] Felbinger J G, Chandra M V S, Sun Y J, et al. Comparison of GaN HEMTs on diamond and SiC substrates[J]. IEEE Eletron Device Letters, 2007, 28(11): 948-950.

    [8] Wu Y F, Saxler A, Moore M, et al. 30W/mm GaN HEMTs by field plate optimization[J]. IEEE Electron Device Letters, 2004, 25(3): 117-119.

    [9] Govindaraju N, Singh R N. Processing of nanocrystalline diamond thin films for thermal manage-ment of wide-bandgap semiconductor power electronics[J]. Materials Science and Engineering: B, 2011, 176(14): 1058-1072.

    [10] Diduck Q, Felbinger J, Eastman L F, et al. Frequency performance enhancement of AlGaN/GaN HEMTs on diamond[J]. Electron Letters, 2009, 45(14): 758-759.

    [11] Goyal V, Sumant A V, Teweldebrhan D, et al. Direct low-temperature integration of nano- crystalline diamond with GaN substrates for improved thermal management of high-power electronics[J]. Advanced Functional Materials, 2012, 22(7): 1525-1530.

    [12] Joshi B C, Dhanavantri C, Kumar D. Sapphire, SiC, AlN, Si and diamond-substrate material for GaN HEMT and LED[J]. Journal of Optoelectronics and Advanced Materials, 2009, 11(8): 1111-1116.

    [13] Zhang D, Bai Y Z, Qin F W, et al. Preparation and characteristics of GaN films on freestanding CVD thick diamond films[J]. Chinese Physics Letters, 2010, 27(1): 018102-018102-4.

    [14] Zimmer J W, Chandler G. Advances in large diameter GaN on diamond substrates [C]. CS Mantech Conference, Chicago, USA, April 14-17, 2008.

    [15] Zou Y S, Yang Y, Chong Y M, et al. Chemical vapor deposition of diamond films on patterned GaN substrates via a thin silicon nitride protective layer[J]. Crystal Growth and Design, 2008, 8(5): 1770-1773.

    [16] May P W, Tsai H Y, Wang W N, et al. Deposition of CVD diamond onto GaN[J]. Diamond and Related Materials, 2006, 15(4-8): 526-530.

    [17] Francis D, Faili F, Babi D, et al. Formation and characterization of 4-inch GaN-on-diamond substrates[J]. Diamond and Related Materials, 2010, 19(2-3): 229-233.

    [18] Hageman P R, Schermer J J, Larsen P K. GaN growth on single-crystal diamond substrate by metalorganic chemical vapour deposition and hydride vapour deposition[J]. Thin Solid Film, 2003, 443(1-2): 9-13.

    [19] Yeh Y H, Chen K M, Wu Y H, et al. Hydrogen etching of GaN and its application to produce free-standing GaN thick films[J]. Journal of Crystal Growth, 2011, 333(1): 16-19.

    [20] Alomari M, Dipalo M, Rossi S, et al. Diamond overgrown InAlN/GaN HEMT [J]. Diamond and Related Materials, 2011, 20(4): 604-608.

    Preparation of nano-diamond films on GaN with a Si buffer layer

    LIU Jin-long, TIAN Han-mei, CHEN Liang-xian, WEI Jun-jun, HEI Li-fu, LI Cheng-ming

    (InstituteforAdvancedMaterialsandTechnology,UniversityofScienceandTechnologyBeijing,Beijing100083,China)

    Gallium nitride (GaN) has been widely used in electronic and optoelectronic devices because of its unique electrical properties. However, its low thermal conductivity and the high thermal boundary resistance at the interface between GaN and substrates such as Si and Al2O3prevent efficient heat dissipation from the heated regions, which limits the further development of GaN-based high power devices. Diamond, with the highest thermal conductivity, has been considered to be one of the most promising heat sink materials. However, it is hard to prepare a diamond film on a GaN substrate because there is a high thermal expansion coefficient difference and also a large lattice mismatch between them. An approach to prepare a nano-diamond film on a GaN substrate by incorporating a Si buffer layer has been proposed. A GaN substrate decomposes significantly from 560 to 680 ℃ when exposed to ahydrogen plasma for 5 min and no adhesive nano-diamond film can be directly grown on it. This decomposition is significantly suppressed by the presence of a Si buffer layer and a nano-diamond film about 2 μm thick can be deposited on a GaN substrate by microwave chemical vapor deposition using CH4as the carbon source. With an optimum Si layer of 10 nm, the adhesive force between the nano-diamond film and the GaN substrate reaches 10N, which is ascribed to the complete conversion of the Si layer to a silicon carbidetransition layer during the deposition.

    GaN; Si buffer layer; Nano-diamond film; Direct growth; Decomposition

    National Natural Science Foundation of China (51402013, 51272024); China Postdoctoral Science Foundation (2014M550022);Fundamental Research Funds for the Central Universities (FRF-TP-15-052A2).

    LI Cheng-ming, Professor. E-mail: chengmli@mater.ustb.edu.cn

    國(guó)家自然科學(xué)基金(51402013, 51272024); 中國(guó)博士后科學(xué)基金(2014M550022); 中央高?;究蒲袠I(yè)務(wù)經(jīng)費(fèi)(FRF-TP-15-052A2).

    李成明, 博士, 教授. E-mail: chengmli@mater.ustb.edu.cn

    劉金龍, 博士, 講師. E-mail: liujinlong@ustb.edu.cn.

    1007-8827(2016)05-0518-07

    TB333

    A

    Authorintroduction: LIU Jin-long, Lecturer. E-mail: liujinlong@ustb.edu.cn.

    10.1016/S1872-5805(16)60029-X

    Receiveddate: 2016-06-29;Reviseddate: 2016-10-12

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    北京科技大學(xué)寒梅結(jié)合力
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2024年1期)2024-01-11 07:56:12
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2022年6期)2022-12-06 04:27:50
    三種預(yù)處理工藝對(duì)汽輪發(fā)電機(jī)鋁合金部件表面結(jié)合力的影響
    《北京科技大學(xué)學(xué)報(bào)》(社會(huì)科學(xué)版)
    理論縱橫(2022年1期)2022-02-16 07:26:06
    藍(lán)莓采摘期結(jié)合力測(cè)試與變化趨勢(shì)的分析
    詠 松
    寒梅
    詩(shī)潮(2018年5期)2018-08-20 10:03:28
    如花綻放
    BOSS臻品(2017年5期)2017-09-12 04:06:17
    田永訴北京科技大學(xué)拒絕頒發(fā)畢業(yè)證、學(xué)位證案
    電鍍級(jí)ABS樹脂(Ⅱ)電鍍工藝對(duì)鍍層結(jié)合力的影響
    上海塑料(2015年3期)2015-02-28 14:52:08
    日韩精品青青久久久久久| 日本a在线网址| 99riav亚洲国产免费| 久久久国产成人精品二区| 亚洲av中文字字幕乱码综合| 99久久久亚洲精品蜜臀av| 久久精品久久久久久噜噜老黄 | 国产69精品久久久久777片| 免费观看精品视频网站| 精品一区二区三区人妻视频| 哪里可以看免费的av片| 国模一区二区三区四区视频| 级片在线观看| 婷婷精品国产亚洲av| av国产免费在线观看| 乱人视频在线观看| 欧美中文日本在线观看视频| 少妇熟女aⅴ在线视频| 日本与韩国留学比较| 久久久久久久午夜电影| 非洲黑人性xxxx精品又粗又长| 日日夜夜操网爽| 午夜福利在线观看免费完整高清在 | 成人精品一区二区免费| 黄色配什么色好看| 欧美日韩精品成人综合77777| 欧美性猛交╳xxx乱大交人| 日韩亚洲欧美综合| 波多野结衣巨乳人妻| 成人av一区二区三区在线看| 欧美日韩中文字幕国产精品一区二区三区| 99热6这里只有精品| 日韩一区二区视频免费看| 国产一级毛片七仙女欲春2| 91麻豆精品激情在线观看国产| 18禁在线播放成人免费| 人妻久久中文字幕网| 国产精品99久久久久久久久| 在线观看一区二区三区| 岛国在线免费视频观看| 久久久久久久久久久丰满 | 中文字幕熟女人妻在线| 久久久国产成人精品二区| 国产av麻豆久久久久久久| 国产一区二区三区视频了| 国产91精品成人一区二区三区| 亚洲精华国产精华精| 内地一区二区视频在线| 亚洲中文字幕日韩| 国产一区二区在线av高清观看| 真人一进一出gif抽搐免费| 久久久久久久亚洲中文字幕| 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 在线看三级毛片| 在线播放无遮挡| 男人舔奶头视频| 九九热线精品视视频播放| 精品人妻熟女av久视频| 亚洲国产日韩欧美精品在线观看| 亚洲精品成人久久久久久| 日本爱情动作片www.在线观看 | 又黄又爽又免费观看的视频| 午夜a级毛片| 毛片一级片免费看久久久久 | 少妇人妻一区二区三区视频| 欧美黑人巨大hd| 亚洲美女搞黄在线观看 | 国产蜜桃级精品一区二区三区| 中亚洲国语对白在线视频| 校园春色视频在线观看| 色综合色国产| 我的女老师完整版在线观看| 露出奶头的视频| 91麻豆精品激情在线观看国产| 亚洲成人精品中文字幕电影| 亚洲性久久影院| 午夜免费男女啪啪视频观看 | 三级男女做爰猛烈吃奶摸视频| 日本-黄色视频高清免费观看| 婷婷精品国产亚洲av在线| 最新中文字幕久久久久| 亚洲av成人av| 日韩av在线大香蕉| 国产欧美日韩一区二区精品| 极品教师在线视频| 久久精品国产自在天天线| 美女高潮的动态| 老女人水多毛片| 国产亚洲精品久久久久久毛片| 91久久精品电影网| АⅤ资源中文在线天堂| 久久久久性生活片| 欧美日韩国产亚洲二区| 日韩精品有码人妻一区| 给我免费播放毛片高清在线观看| 成人精品一区二区免费| 亚洲成人中文字幕在线播放| videossex国产| av黄色大香蕉| 国产高潮美女av| 欧美一区二区国产精品久久精品| 99热这里只有是精品在线观看| 欧美+日韩+精品| 国产精品98久久久久久宅男小说| 久久婷婷人人爽人人干人人爱| 亚洲久久久久久中文字幕| 欧美zozozo另类| 国产私拍福利视频在线观看| 婷婷色综合大香蕉| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕久久专区| netflix在线观看网站| 国产精品人妻久久久久久| 精品久久久久久成人av| 干丝袜人妻中文字幕| 亚洲欧美精品综合久久99| 欧美丝袜亚洲另类 | 一本精品99久久精品77| 极品教师在线免费播放| 一a级毛片在线观看| 欧美激情国产日韩精品一区| 淫妇啪啪啪对白视频| 色尼玛亚洲综合影院| 久久精品国产99精品国产亚洲性色| 久久精品国产亚洲网站| 在线免费观看不下载黄p国产 | 久久久久国产精品人妻aⅴ院| 国产探花极品一区二区| 国产探花极品一区二区| 欧美区成人在线视频| 一区二区三区高清视频在线| 国产av在哪里看| 久久精品国产自在天天线| 他把我摸到了高潮在线观看| 麻豆国产97在线/欧美| 国产精品爽爽va在线观看网站| 男女做爰动态图高潮gif福利片| 天堂影院成人在线观看| 亚洲欧美日韩高清在线视频| 午夜福利成人在线免费观看| av黄色大香蕉| 在线观看舔阴道视频| 国产成人av教育| 毛片女人毛片| av视频在线观看入口| 亚洲七黄色美女视频| 99国产精品一区二区蜜桃av| 亚洲欧美清纯卡通| 国产欧美日韩一区二区精品| 色视频www国产| 亚洲欧美日韩高清专用| 不卡视频在线观看欧美| 小说图片视频综合网站| 男人舔奶头视频| 午夜a级毛片| av中文乱码字幕在线| 国产熟女欧美一区二区| 全区人妻精品视频| 一级黄色大片毛片| 国产探花极品一区二区| 一个人看的www免费观看视频| 国产在线精品亚洲第一网站| 香蕉av资源在线| www.色视频.com| 神马国产精品三级电影在线观看| 国内少妇人妻偷人精品xxx网站| 国内少妇人妻偷人精品xxx网站| 午夜福利在线在线| www日本黄色视频网| 99久久精品热视频| 91麻豆精品激情在线观看国产| 99在线人妻在线中文字幕| a级毛片免费高清观看在线播放| 日本免费a在线| 久久久久久久精品吃奶| 精品人妻熟女av久视频| 亚洲,欧美,日韩| 精品国产三级普通话版| 俺也久久电影网| 国产av麻豆久久久久久久| 欧美日本亚洲视频在线播放| 国产亚洲精品久久久com| 日韩欧美在线乱码| 日日撸夜夜添| 啦啦啦啦在线视频资源| 日本黄大片高清| 国产精品自产拍在线观看55亚洲| 老女人水多毛片| 日日啪夜夜撸| 高清毛片免费观看视频网站| av在线亚洲专区| 搡女人真爽免费视频火全软件 | 成人午夜高清在线视频| 可以在线观看毛片的网站| 国产精品福利在线免费观看| 在现免费观看毛片| 日韩精品中文字幕看吧| 国产精品日韩av在线免费观看| 欧美中文日本在线观看视频| 色哟哟哟哟哟哟| 亚洲精品粉嫩美女一区| 国内久久婷婷六月综合欲色啪| 12—13女人毛片做爰片一| 天美传媒精品一区二区| 午夜精品一区二区三区免费看| 午夜免费成人在线视频| 免费观看的影片在线观看| 久久久久免费精品人妻一区二区| 国产精品国产三级国产av玫瑰| 51国产日韩欧美| 老司机深夜福利视频在线观看| 97超视频在线观看视频| 99久国产av精品| 夜夜看夜夜爽夜夜摸| 狂野欧美激情性xxxx在线观看| 又爽又黄无遮挡网站| 亚洲电影在线观看av| 国产精品精品国产色婷婷| 中文字幕人妻熟人妻熟丝袜美| 国产熟女欧美一区二区| 国产男人的电影天堂91| 成熟少妇高潮喷水视频| 九九在线视频观看精品| 波多野结衣高清作品| 麻豆av噜噜一区二区三区| 国产精品久久久久久久电影| 亚洲av熟女| 欧美一级a爱片免费观看看| 村上凉子中文字幕在线| 国产人妻一区二区三区在| 欧美不卡视频在线免费观看| 亚洲狠狠婷婷综合久久图片| 亚洲人成网站高清观看| 久久精品夜夜夜夜夜久久蜜豆| 最近在线观看免费完整版| 白带黄色成豆腐渣| 制服丝袜大香蕉在线| 国产精品一区二区免费欧美| 久久这里只有精品中国| 91精品国产九色| 两个人的视频大全免费| videossex国产| 亚洲成av人片在线播放无| 97超视频在线观看视频| 在线播放国产精品三级| 午夜影院日韩av| 精品一区二区三区视频在线| 女同久久另类99精品国产91| 日韩av在线大香蕉| 熟妇人妻久久中文字幕3abv| АⅤ资源中文在线天堂| 最近最新中文字幕大全电影3| 免费看a级黄色片| 午夜福利视频1000在线观看| 老司机深夜福利视频在线观看| 有码 亚洲区| 日韩欧美国产在线观看| 亚洲乱码一区二区免费版| 亚洲av免费高清在线观看| 亚洲国产精品合色在线| 国产精品爽爽va在线观看网站| 国产高清三级在线| 国产免费av片在线观看野外av| xxxwww97欧美| 亚洲一区二区三区色噜噜| 欧美激情在线99| 91在线观看av| 亚洲国产欧美人成| 国产aⅴ精品一区二区三区波| 日本色播在线视频| 国产亚洲欧美98| 身体一侧抽搐| 桃红色精品国产亚洲av| 亚洲av二区三区四区| 国产精品精品国产色婷婷| 联通29元200g的流量卡| 亚洲av美国av| 久久国产精品人妻蜜桃| 日韩精品有码人妻一区| 久久草成人影院| 国产女主播在线喷水免费视频网站 | 最新中文字幕久久久久| 成人鲁丝片一二三区免费| 国内少妇人妻偷人精品xxx网站| 女人十人毛片免费观看3o分钟| 99热这里只有是精品50| 18+在线观看网站| 成人精品一区二区免费| 在线观看免费视频日本深夜| 精品国产三级普通话版| 亚洲精品色激情综合| 亚州av有码| 日韩av在线大香蕉| 精品久久久久久成人av| 一个人看的www免费观看视频| 久久久久久久久中文| 此物有八面人人有两片| 日韩人妻高清精品专区| 国产美女午夜福利| 亚洲精品影视一区二区三区av| 亚洲av成人精品一区久久| 此物有八面人人有两片| 国产精品自产拍在线观看55亚洲| 午夜激情福利司机影院| 成人无遮挡网站| 日本撒尿小便嘘嘘汇集6| 麻豆一二三区av精品| 国产黄片美女视频| 国产伦精品一区二区三区视频9| а√天堂www在线а√下载| 午夜精品久久久久久毛片777| 熟妇人妻久久中文字幕3abv| 久久精品国产自在天天线| 在线观看午夜福利视频| 成人美女网站在线观看视频| 精品一区二区三区人妻视频| АⅤ资源中文在线天堂| bbb黄色大片| 国产激情偷乱视频一区二区| 精品久久国产蜜桃| 亚洲av中文字字幕乱码综合| a级毛片免费高清观看在线播放| 中文字幕久久专区| 床上黄色一级片| 天堂网av新在线| 免费av毛片视频| 中文字幕免费在线视频6| 精品久久久久久,| 久久精品国产亚洲网站| 亚洲精品一区av在线观看| 18禁黄网站禁片午夜丰满| 欧美三级亚洲精品| 日韩亚洲欧美综合| 精品一区二区三区人妻视频| 午夜精品久久久久久毛片777| 精品一区二区三区视频在线观看免费| 禁无遮挡网站| 亚洲中文字幕日韩| 夜夜爽天天搞| 亚洲经典国产精华液单| 毛片一级片免费看久久久久 | 国产伦精品一区二区三区视频9| 成人亚洲精品av一区二区| 国产真实伦视频高清在线观看 | 午夜福利欧美成人| 女的被弄到高潮叫床怎么办 | 国产综合懂色| 99热网站在线观看| 午夜久久久久精精品| 国产精品av视频在线免费观看| 欧美另类亚洲清纯唯美| 国产高清激情床上av| 99久国产av精品| 搡老岳熟女国产| 成年免费大片在线观看| 美女免费视频网站| 99热这里只有精品一区| 欧美bdsm另类| 内地一区二区视频在线| 久久婷婷人人爽人人干人人爱| 国产精品久久电影中文字幕| 国产精品久久久久久精品电影| 国产精品久久电影中文字幕| 久久久久久久久大av| 国产精品永久免费网站| 香蕉av资源在线| 级片在线观看| 国产高清视频在线观看网站| 免费在线观看日本一区| 丰满乱子伦码专区| 国产午夜精品论理片| 亚洲av一区综合| 久久久久久久久久成人| 日韩av在线大香蕉| 国产精品亚洲一级av第二区| 国产亚洲精品久久久com| 国产极品精品免费视频能看的| 国内精品宾馆在线| 91久久精品电影网| 美女 人体艺术 gogo| 男人舔奶头视频| aaaaa片日本免费| 日本五十路高清| 国产69精品久久久久777片| 日本五十路高清| 久久久国产成人精品二区| 日本与韩国留学比较| 国产日本99.免费观看| 最好的美女福利视频网| 色av中文字幕| 日韩欧美一区二区三区在线观看| 国产aⅴ精品一区二区三区波| 97超视频在线观看视频| 日日摸夜夜添夜夜添小说| 国产一区二区在线av高清观看| 国产在线男女| 午夜亚洲福利在线播放| 婷婷精品国产亚洲av| 久久天躁狠狠躁夜夜2o2o| 欧美最新免费一区二区三区| 99riav亚洲国产免费| 麻豆成人av在线观看| 国产成人影院久久av| 全区人妻精品视频| 午夜爱爱视频在线播放| av中文乱码字幕在线| 又爽又黄无遮挡网站| 少妇被粗大猛烈的视频| 日本在线视频免费播放| 亚洲av免费在线观看| 久久久精品大字幕| 国产一区二区亚洲精品在线观看| 亚洲午夜理论影院| 校园人妻丝袜中文字幕| 网址你懂的国产日韩在线| a在线观看视频网站| 国产一区二区三区视频了| 成人性生交大片免费视频hd| 日本五十路高清| 极品教师在线视频| 99久久精品热视频| 日韩大尺度精品在线看网址| 91久久精品国产一区二区三区| 国产伦在线观看视频一区| 搡老妇女老女人老熟妇| 亚洲精品一卡2卡三卡4卡5卡| 久久久久九九精品影院| 一区二区三区高清视频在线| 啦啦啦啦在线视频资源| 九九久久精品国产亚洲av麻豆| 老师上课跳d突然被开到最大视频| 五月玫瑰六月丁香| 日韩在线高清观看一区二区三区 | 亚洲av中文字字幕乱码综合| 欧美日韩乱码在线| 又紧又爽又黄一区二区| 真人一进一出gif抽搐免费| 亚洲专区中文字幕在线| 老司机午夜福利在线观看视频| 色噜噜av男人的天堂激情| 亚洲天堂国产精品一区在线| 国产精品98久久久久久宅男小说| 成人永久免费在线观看视频| 丰满的人妻完整版| 国内精品久久久久久久电影| 亚洲欧美日韩东京热| 欧美性猛交黑人性爽| 直男gayav资源| 日日啪夜夜撸| 国产人妻一区二区三区在| 成年女人看的毛片在线观看| 亚洲精品影视一区二区三区av| 熟妇人妻久久中文字幕3abv| 91久久精品国产一区二区三区| 99热精品在线国产| 色吧在线观看| 中文在线观看免费www的网站| 2021天堂中文幕一二区在线观| 无人区码免费观看不卡| 国内精品美女久久久久久| 久久天躁狠狠躁夜夜2o2o| 少妇高潮的动态图| 欧美日韩乱码在线| 免费av观看视频| 国产高清视频在线观看网站| 黄色丝袜av网址大全| 亚洲成人中文字幕在线播放| 欧美中文日本在线观看视频| 成人三级黄色视频| 一卡2卡三卡四卡精品乱码亚洲| 香蕉av资源在线| 性色avwww在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品乱码一区二三区的特点| 九色成人免费人妻av| 欧美极品一区二区三区四区| 日韩欧美 国产精品| 91久久精品国产一区二区成人| a级一级毛片免费在线观看| 97超视频在线观看视频| 亚洲久久久久久中文字幕| 无遮挡黄片免费观看| 狂野欧美白嫩少妇大欣赏| 两个人的视频大全免费| 一本一本综合久久| 夜夜看夜夜爽夜夜摸| 午夜老司机福利剧场| 两性午夜刺激爽爽歪歪视频在线观看| 国产国拍精品亚洲av在线观看| 亚洲人成网站高清观看| 亚洲av.av天堂| 91麻豆av在线| 午夜免费成人在线视频| 很黄的视频免费| 麻豆久久精品国产亚洲av| 1024手机看黄色片| 婷婷亚洲欧美| 观看美女的网站| 午夜日韩欧美国产| 国国产精品蜜臀av免费| 老司机福利观看| 欧美bdsm另类| 如何舔出高潮| 免费看a级黄色片| 男人狂女人下面高潮的视频| 日韩欧美精品v在线| 成人av在线播放网站| 成年女人看的毛片在线观看| 一区二区三区免费毛片| 免费av不卡在线播放| 天天躁日日操中文字幕| 欧美最新免费一区二区三区| 午夜精品在线福利| 亚洲乱码一区二区免费版| 国产又黄又爽又无遮挡在线| 欧美一区二区亚洲| 久久久久久久久久成人| 亚洲欧美清纯卡通| 亚洲精品一区av在线观看| av黄色大香蕉| 国产欧美日韩精品亚洲av| 国产精品亚洲美女久久久| 久久天躁狠狠躁夜夜2o2o| ponron亚洲| 如何舔出高潮| 变态另类丝袜制服| 天天一区二区日本电影三级| 麻豆国产av国片精品| 无遮挡黄片免费观看| 久久久久久久亚洲中文字幕| 免费看美女性在线毛片视频| 小说图片视频综合网站| 色视频www国产| 高清日韩中文字幕在线| 国产伦在线观看视频一区| 午夜福利视频1000在线观看| 日韩欧美精品v在线| 天堂网av新在线| 日日干狠狠操夜夜爽| 亚洲成人久久性| 校园春色视频在线观看| 成年女人永久免费观看视频| 少妇熟女aⅴ在线视频| 国产欧美日韩一区二区精品| 久久精品久久久久久噜噜老黄 | 亚洲av.av天堂| 尾随美女入室| www.www免费av| 欧美又色又爽又黄视频| 国产aⅴ精品一区二区三区波| or卡值多少钱| 夜夜看夜夜爽夜夜摸| 久久精品国产99精品国产亚洲性色| 日本精品一区二区三区蜜桃| 欧美激情国产日韩精品一区| 久久久色成人| 日韩精品有码人妻一区| 18+在线观看网站| 俺也久久电影网| 亚洲欧美日韩无卡精品| 成人综合一区亚洲| 一个人观看的视频www高清免费观看| 91午夜精品亚洲一区二区三区 | 91久久精品国产一区二区三区| av天堂中文字幕网| 美女高潮的动态| 国产欧美日韩精品亚洲av| 伦理电影大哥的女人| 熟女人妻精品中文字幕| 国产高清激情床上av| 91在线观看av| 国内精品宾馆在线| 男人舔女人下体高潮全视频| 99久久精品一区二区三区| 欧美成人一区二区免费高清观看| 国产av在哪里看| 精品久久久噜噜| 啪啪无遮挡十八禁网站| 久久欧美精品欧美久久欧美| 亚洲天堂国产精品一区在线| 精品免费久久久久久久清纯| 一进一出抽搐gif免费好疼| 亚洲国产精品久久男人天堂| av在线天堂中文字幕| 午夜福利在线观看免费完整高清在 | 极品教师在线免费播放| 不卡一级毛片| 九九爱精品视频在线观看| 极品教师在线免费播放| 人妻夜夜爽99麻豆av| 亚洲图色成人| 深爱激情五月婷婷| 免费在线观看影片大全网站| 欧美国产日韩亚洲一区| 欧美性感艳星| 成人毛片a级毛片在线播放| 欧美高清性xxxxhd video| 欧美性感艳星| 成人毛片a级毛片在线播放| 久久久久精品国产欧美久久久| 午夜亚洲福利在线播放| 男女啪啪激烈高潮av片| 久久久久久久亚洲中文字幕| 免费搜索国产男女视频| 亚洲真实伦在线观看| 淫妇啪啪啪对白视频| 毛片一级片免费看久久久久 | 18禁黄网站禁片午夜丰满| 久久中文看片网| 欧美日韩瑟瑟在线播放| 18禁黄网站禁片午夜丰满| 亚洲av美国av| 国产黄片美女视频| 成人鲁丝片一二三区免费|