• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于硅過渡層納米金剛石膜/GaN復(fù)合膜系的制備

    2016-11-22 07:41:12劉金龍田寒梅陳良賢魏俊俊黑立富李成明
    新型炭材料 2016年5期
    關(guān)鍵詞:北京科技大學(xué)寒梅結(jié)合力

    劉金龍, 田寒梅, 陳良賢, 魏俊俊, 黑立富, 李成明

    (北京科技大學(xué) 新材料技術(shù)研究院,北京100083)

    ?

    基于硅過渡層納米金剛石膜/GaN復(fù)合膜系的制備

    劉金龍, 田寒梅, 陳良賢, 魏俊俊, 黑立富, 李成明

    (北京科技大學(xué) 新材料技術(shù)研究院,北京100083)

    本文研發(fā)了一種簡(jiǎn)便有效的在GaN半導(dǎo)體襯底上直接生長(zhǎng)納米金剛石膜的方法。研究發(fā)現(xiàn),直接將GaN襯底暴露于氫等離子體中5 min即發(fā)生分解,且隨著溫度從560 ℃升高至680 ℃,這種分解反應(yīng)愈加劇烈,很難在GaN襯底上直接形成結(jié)合力良好的納米金剛石膜。通過在GaN襯底上鍍制幾納米厚的硅過渡層,在富氫金剛石生長(zhǎng)環(huán)境下,抑制了GaN襯底的分解,同時(shí)在GaN襯底上沉積了約2 μm厚的納米金剛石膜。硅過渡層厚度是決定納米金剛石與GaN襯底結(jié)合力的主要因素。當(dāng)硅過渡層厚度為10 nm時(shí),納米金剛石膜與GaN襯底呈現(xiàn)出大于10 N的結(jié)合力,可能與硅過渡層在金剛石生長(zhǎng)過程中向SiC過渡層轉(zhuǎn)變有關(guān)。

    氮化鎵;硅過渡層;納米金剛石膜;直接生長(zhǎng);分解

    1 Introduction

    Gallium nitride (GaN) has been widely applied in electronic and optoelectronic devices, owing to their unique electrical properties such as large bandgap (3.4 eV), high breakdown electrical field (3×106V·cm-1) and extremely high saturation velocity (1.5×107cm·s-1), and high electron mobility in AlGaN/GaN heterostructures (2 019 cm2/V·s)[1-3]. However, the low thermal conductivity of GaN and the high thermal boundary resistances (TBRs) at interfaces between GaN and substrates such as Si and Al2O3in composites impede efficient heat dissipation from the heated regions in device[4,5]. It has been reported that the working temperature of AlGaN/GaN heterostructure field-effect transistors (HFETs) is currently on the order of 180 ℃, which may increase with growing current densities[6]. This self-heating severely limits the further development of GaN based high power devices. SiC is one of the most suitable heat sink materials for these devices with a high thermal conductivity of 400 W/m·K and a small lattice mismatch of 3%. Currently, a maximum output power density of 30 W/mm for AlGaN/GaN high electron mobility transistor (HEMT) on SiC was achieved[7,8].

    Diamond, with the highest thermal conductivity of 2 200 W/m·K, has been speculated to be the optimal substrate for GaN based devices[9-11]. It has been obtained that the maximum channel current of AlGaN/GaN HEMT on diamond is nearly twice as high as that on SiC, and the corresponding channel temperature is 100 ℃ lower based on the simulation than that on SiC[12]. However, whether GaN on the diamond, or diamond on GaN is hard to prepare, because there is a large thermal expansion coefficient difference and lattice mismatch between them. For the former, the GaN heteroepitaxy growth on a single crystalline or polycrystalline diamond is difficult to control[2,13], although GaN based devices on silicon-on-diamond (SOD) has been reported by SP3 company[14]. While for the latter, a high substrate temperature for the diamond film deposition (≈800 ℃) and H-rich environment may lead to a GaN degradation due to the hydrogen plasma etching and GaN decomposition[15,16]. Thus, some approaches have been explored to integrate diamond with GaN through some interlayers such as AlN and Si3N4dielectric adhesive layers[15,17,18]. However, the thick interlayer may become a thermal barrier to impede the heat dissipation.

    In this paper, we presented an approach to achieve a direct deposition of the nano-diamond film on GaN by incorporating a thin Si buffer layer. The buffer layer thickness was just several nanometers, which prevented the GaN substrate from hydrogen etching. The thickness of nano-diamond films deposited could be varied from several hundred nanometers to several micrometers, which will effectively improve the thermal conductivity of GaN based devices.

    2 Experimental

    A commercial GaN/sapphire composite with a GaN thickness of about 25 μm was used as the substrate. Before nano-diamond film deposition, the substrate was overgrown with a Si buffer layer with several nanometers-thick using the RF magnetron sputtering. In order to improve the adhesion of the Si layer on GaN, the GaN/sapphire composite was firstly bombarded by the Ar+ion with 1 250 eV energy for 15 min. And then the Si buffer layers with thickness of 5, 10, 20 and 40 nm were deposited on the GaN/sapphire substrates by controlling the deposition time. After the seeding treatment using a suspension of absolute alcohol mixed with 5 nm diamond powders, hydrogen rich plasma environment consisting of CH4/H2(6/94) was used to prepare the nano-diamond films in a 5 kW microwave (MW) reactor chamber. The deposition parameters are listed in Table 1. The substrate temperature was kept at 680 ℃ through adjusting the microwave power and pressure. At this temperature, it is considered that loss of nitrogen (N) from GaN won’t happen and hydrogen rich environment can’t result in the poor-quality of diamond. The nano-diamond films on GaN/sapphire composites were prepared after deposition for 3 h. The surface morphology of the GaN/sapphire with and without Si buffer layers after nano-diamond film deposition was observed by SEM (QUANTA FEG 450). The surface and cross section of diamond/GaN/sapphire composite was characterized by Raman spectroscopy using an excitation wavelength of 514 nm. The adhesion force between nano-diamond and GaN/sapphire substrate was evaluated by a micro scratch tester (WS-2005).

    Table 1 Deposition parameters of nano-diamond films on GaN by MWCVD.

    3 Results and discussion

    3.1 Surface morphology of GaN exposed to hydrogen plasma and after direct growth of diamond film

    Before nano-diamond growth on the GaN/sapphire composite, the surface morphology of GaN exposed to the hydrogen plasma for 5 min is firstly observed and shown in Fig.1. It can be seen that some pin holes appear on the GaN surface, which spread and connect with each other in the plane direction. Finally, the whole GaN film decomposes with a substrate temperature increase from 560 to 680 ℃. According to the model reported by Yeh et al[19], the etching reaction on GaN in the hydrogen-rich environment started from the dislocation sites, and at high temperature a formation of Ga droplet would accelerate the GaN decomposition, which can be obviously found in Fig.1(d) in our situation. It can be also seen that the GaN surface is almost unchanged after the exposure to hydrogen plasma at 560 ℃ in Fig.1(a). We have tried to deposit the nano-diamond films on the GaN/sapphire composites directly without the Si buffer layer at 560 and 680 ℃. However, it is hard to form diamond film at 560 ℃, while it shows a weak adhesion between nano-diamond film and the GaN/sapphire composite at 680 ℃, although the dense nano-diamond film can be formed in the latter case as shown in Fig.2. That’s because that GaN will decompose at 680 ℃ by hydrogen plasma etching due to the high deposition temperature at the early stage of nano-diamond film deposition, as shown in Fig.2(a).

    Fig. 1 Morphologies of GaN exposed to hydrogen plasma at (a) 560 ℃, (b) 600 ℃,(c) 640 ℃ and (d) 680 ℃ for 5 min.

    Fig. 2 Surface morphologies of (a) GaN and (b) nano-diamond film after diamond film deposition at 680 ℃.

    As the carbon source is added and chemical species containing carbon reaches the GaN surface, some amorphous carbon will form preferentially due to lack of favorable nucleation condition for the diamond, and diamond film is formed and grown by transformation of amorphous carbon layer, which is indicated in Fig.2(b). The loose amorphous carbon layer results in a weak adhesion between nano-diamond film and GaN substrate.

    3.2 Characterization of GaN with nano-diamond film by using the Si buffer layer

    Morphology of nano-diamond films on the GaN/sapphire substrates with different thicknesses of Si buffer layers is shown in Fig.3. It can be seen that the diamond films are composed of many clusters on the GaN substrate, which shows the typical feature of nano-diamond films. The sample with a 40 nm-thick Si layer is not shown here because the diamond film was peeled off immediately when the microwave generator was shut down. Correspondingly, Raman spectra of nano-diamond films on the GaN/sapphire substrates with different thicknesses of Si buffer layers are shown in Fig.3(d). For the sample with the 5 nm Si layer, it consists of peaks at 1 177, 1 334, 1 477 and 1 580 cm-1. As it is known that the peaks at 1 177 and 1 477 cm-1can be attributed to nano-diamond, which are contributed by the tans-polyacetylene on grain boundary or disordered sp3carbon. The peak at 1 334 cm-1is typical of diamond while that at 1 580 cm-1peak is excited by the G-mode vibration of sp2amorphous carbon. As the thickness of the Si buffer layer increases, the peak at 1 477 cm-1disappears and the intensity of the peak at 1 334 cm-1increases, which indicates that the diamond content with a sp3structure increases. We can’t find the obvious characteristic peaks of GaN for all three samples. This is because the diamond film is thick enough to exceed the detect limit in the depth direction (generally about 1 μm) for Raman spectroscopy.

    Fig. 3 Morphologies and Raman spectra of nano-diamond films on the GaN/sapphire substrates with different thicknesses of Si buffer layers. (a-c) Surface morphologies and (d) Raman spectra of samples with 5, 10 and 20 nm thick Si layers.

    In order to determine whether the GaN substrate was decomposed directly, the cross sectional morphology of nano-diamond films on the GaN/sapphire substrate with a 5 nm Si buffer layer was characterized, which is shown in Fig. 4. The GaN film with a thickness of 24.28 μm can be observed clearly, on top which there is a thin nano-diamond film with a thickness of about 2 μm. The edge of the top surface is neat, which suggests that the GaN doesn’t almost decompose under the H-rich plasma environment with a Si buffer layer. Further, the components of the cross section of GaN were detected by energy dispersive spectrum (EDS), as shown in Fig.4(b). It can be found that no other impurities can be observed besides the N and Ga elements. The atom ratio of Ga and N is near 1, which indicates that the GaN is intact under the shield of a thin Si layer during the H-rich plasma etching in the diamond growth process.

    Fig. 4 (a, b) Cross sectional morphology and (c) EDS of nano-diamond films on the GaN/sapphire substrate with the 5 nm Si buffer layer.

    3.3 Adhesion evaluation between nano-diamond film and the GaN substrate In order to evaluate the adhesion of nano-diamond film on GaN, micro scratch test was conducted. Fig.5 shows the typical scratch appearance of nano-diamond film on the GaN.

    As the pressure of diamond intender increases, just the trace rubbed between nano-diamond film and diamond intender is left on the nano-diamond film surface at the early stage, as shown in Fig.5(a), then the nano-diamond film is ground and peeled off as shown in Fig.5(b) and Fig.5(c), and finally the GaN is exposed as shown in Fig.5(d). It is noticed that it doesn’t show the GaN substrate directly in Fig.5(c) after the diamond film starts to spall, indicating that there is a transition layer between the nano-diamond film and the GaN substrate. We can evaluate the adhesion from the sound signal change for the brittle nano-diamond film on the GaN substrate as shown in Fig.6. From the sound signal, it can be found that nano-diamond film on the GaN has a low adhesion for the samples with the 5 and 20 nm thick Si buffer layers. While for the sample with the 10 nm-thick Si buffer layer, it shows a high adhesion beyond 10 N. It seems strange that a several nanometer thick difference of the Si interlayer leads to a large difference of adhesion. In fact, when the buffer layer thickness reaches 40 nm, the nano-diamond film is easy to be broken away from the GaN substrate. While for the sample with a thickness of 5 nm, no obvious zone of diamond grinding is observed.

    3.4 Discussion

    Decomposition of the GaN substrate during nano-diamond film growth has been effectively suppressed by using a thin Si layer as buffer deposited before the diamond growth. After nano-diamond film deposition, the thickness of GaN was almost unchangeable. More importantly, a good adhesive between the micrometer thick nano-diamond film and the GaN substrate was obtained. In general, nucleation of diamond only happens on carbide forming materials such as some refractory metals or Si (except for growth on Ir)[20], so there is no enough driving force for a direct nucleation of diamond films on the GaN substrate. A direct growth of diamond film on the GaN substrate is thermodynamically favorable by adding some carbide forming element material, such as W[11]or Si. However, due to a large mismatch stress (about 13%) and thermal expansion coefficient difference between diamond film (1.0×10-6/℃) and GaN (5.59×10-6/℃), a direct bonding between them seems impossible, especially as the thickness of diamond film increases, the mismatch stress becomes large enough to separate the diamond film from the GaN substrate. In our situation, the thin Si buffer layer several-nanometer thick may convert to SiC during the diamond nucleation although the lattice constant of Si is larger than diamond and GaN. It is known that there is a small lattice mismatch of 3% between SiC and GaN. Meanwhile, SiC and diamond film can form strong chemical bonding. Therefore, a tight adhesion is expected to be achieved between diamond film and the GaN substrate. It is worth noting that the thickness of Si buffer layer is an important factor that determines the adhesion between diamond film and the GaN substrate. If it is thicker than 20 nm, the Si layer can’t transform to SiC completely and the interface bonding between GaN and the Si buffer layer becomes weak. While if it is too thin like 5 nm, it may not relax the large stress between diamond film and the GaN substrate. Hence, a 10 nm-thick Si buffer layer is considered to be optimum to improve the adhesion between nano-diamond film and the GaN substrate owing to their strong bond. Meanwhile it can be speculated that a 2 μm-thick nano-diamond film could provide large heat sinking capacity for high power GaN based electronic devices according to the results reported in Ref.[11].

    Fig. 5 The typical scratch appearance of nano-diamond film on the GaN/sapphire with Si buffer layers.(a) The trace rubbed between nano-diamond film and diamond intender at the early stage; (b) the nano-diamond film begins to peel off;(c) the transition layer between nano-diamond film and GaN and (d) the exposed GaN substrate.

    Fig. 6 The sound signal and the corresponding scratch morphology of nano-diamond film on the GaN/sapphire with different thicknesses of the Si buffer layers after the scratch test.

    4 Conclusions

    When exposed to the hydrogen plasma for 5 min, the GaN substrate decomposed apparently with a substrate temperature increase from 560 to 680 ℃ and nano-diamond film cannot be grown on the GaN substrate adhesively without the aid of a Si buffer layer. A 2 μm-thick nano-diamond film was directly grown on the GaN/sapphire substrate by using a several nanometer thick Si buffer layer. The cross-sectional morphology and EDS of nano-diamond film on the GaN/sapphire substrate demonstrate that decomposition of GaN was significantly suppressed during diamond growth under the H-rich plasma environment in the presence of a Si buffer layer. It is found that the adhesion force between nano-diamond film and the GaN/sapphire substrate is larger than 10 N when a 10 nm-thick Si layer is present, which is attributed to a complete conversion of the Si layer to a silicon carbide (SiC) transition layer.

    [1] Gelmont B, Kim K, Shur M. Monte carlo simulation of electron transport in gallium nitride[J]. Journal of Applied Physics, 1993, 74(3): 1818-1821.

    [2] Zhang D, Bian J M, Qin F W, et al. Highly c-axis oriented GaN films grown on free-standing diamond substrates for high-power devices[J]. Materials Research Bulletin, 2011, 46(10): 1582-1585.

    [3] Gaska R, Yang J W, Osinsky A, et al. Electron transport in AlGaN heterostructures grown on 6H-SiC substrates[J]. Applied Physics Letters, 1998, 72(6): 707-709.

    [4] Sadi T, Kelsal R W, Pilgrim N J. Investigation of self-heating effects in submicrometer GaN/AlGaN HEMTs using an electrothermal Monte Carlo method[J]. IEEE Transactions on Electron Devices, 2006, 53(12): 2892-2900.

    [5] Trew R J, Green D S, Shealy J B. AlGaN/GaN HFET reliability[J]. IEEE Microwave Magazine, 2009, 10(4): 116-127.

    [6] Kuball M, Hayes J M, Uren M J, et al. Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy[J]. IEEE Eletron Device Letters, 2002, 23(1): 7-9.

    [7] Felbinger J G, Chandra M V S, Sun Y J, et al. Comparison of GaN HEMTs on diamond and SiC substrates[J]. IEEE Eletron Device Letters, 2007, 28(11): 948-950.

    [8] Wu Y F, Saxler A, Moore M, et al. 30W/mm GaN HEMTs by field plate optimization[J]. IEEE Electron Device Letters, 2004, 25(3): 117-119.

    [9] Govindaraju N, Singh R N. Processing of nanocrystalline diamond thin films for thermal manage-ment of wide-bandgap semiconductor power electronics[J]. Materials Science and Engineering: B, 2011, 176(14): 1058-1072.

    [10] Diduck Q, Felbinger J, Eastman L F, et al. Frequency performance enhancement of AlGaN/GaN HEMTs on diamond[J]. Electron Letters, 2009, 45(14): 758-759.

    [11] Goyal V, Sumant A V, Teweldebrhan D, et al. Direct low-temperature integration of nano- crystalline diamond with GaN substrates for improved thermal management of high-power electronics[J]. Advanced Functional Materials, 2012, 22(7): 1525-1530.

    [12] Joshi B C, Dhanavantri C, Kumar D. Sapphire, SiC, AlN, Si and diamond-substrate material for GaN HEMT and LED[J]. Journal of Optoelectronics and Advanced Materials, 2009, 11(8): 1111-1116.

    [13] Zhang D, Bai Y Z, Qin F W, et al. Preparation and characteristics of GaN films on freestanding CVD thick diamond films[J]. Chinese Physics Letters, 2010, 27(1): 018102-018102-4.

    [14] Zimmer J W, Chandler G. Advances in large diameter GaN on diamond substrates [C]. CS Mantech Conference, Chicago, USA, April 14-17, 2008.

    [15] Zou Y S, Yang Y, Chong Y M, et al. Chemical vapor deposition of diamond films on patterned GaN substrates via a thin silicon nitride protective layer[J]. Crystal Growth and Design, 2008, 8(5): 1770-1773.

    [16] May P W, Tsai H Y, Wang W N, et al. Deposition of CVD diamond onto GaN[J]. Diamond and Related Materials, 2006, 15(4-8): 526-530.

    [17] Francis D, Faili F, Babi D, et al. Formation and characterization of 4-inch GaN-on-diamond substrates[J]. Diamond and Related Materials, 2010, 19(2-3): 229-233.

    [18] Hageman P R, Schermer J J, Larsen P K. GaN growth on single-crystal diamond substrate by metalorganic chemical vapour deposition and hydride vapour deposition[J]. Thin Solid Film, 2003, 443(1-2): 9-13.

    [19] Yeh Y H, Chen K M, Wu Y H, et al. Hydrogen etching of GaN and its application to produce free-standing GaN thick films[J]. Journal of Crystal Growth, 2011, 333(1): 16-19.

    [20] Alomari M, Dipalo M, Rossi S, et al. Diamond overgrown InAlN/GaN HEMT [J]. Diamond and Related Materials, 2011, 20(4): 604-608.

    Preparation of nano-diamond films on GaN with a Si buffer layer

    LIU Jin-long, TIAN Han-mei, CHEN Liang-xian, WEI Jun-jun, HEI Li-fu, LI Cheng-ming

    (InstituteforAdvancedMaterialsandTechnology,UniversityofScienceandTechnologyBeijing,Beijing100083,China)

    Gallium nitride (GaN) has been widely used in electronic and optoelectronic devices because of its unique electrical properties. However, its low thermal conductivity and the high thermal boundary resistance at the interface between GaN and substrates such as Si and Al2O3prevent efficient heat dissipation from the heated regions, which limits the further development of GaN-based high power devices. Diamond, with the highest thermal conductivity, has been considered to be one of the most promising heat sink materials. However, it is hard to prepare a diamond film on a GaN substrate because there is a high thermal expansion coefficient difference and also a large lattice mismatch between them. An approach to prepare a nano-diamond film on a GaN substrate by incorporating a Si buffer layer has been proposed. A GaN substrate decomposes significantly from 560 to 680 ℃ when exposed to ahydrogen plasma for 5 min and no adhesive nano-diamond film can be directly grown on it. This decomposition is significantly suppressed by the presence of a Si buffer layer and a nano-diamond film about 2 μm thick can be deposited on a GaN substrate by microwave chemical vapor deposition using CH4as the carbon source. With an optimum Si layer of 10 nm, the adhesive force between the nano-diamond film and the GaN substrate reaches 10N, which is ascribed to the complete conversion of the Si layer to a silicon carbidetransition layer during the deposition.

    GaN; Si buffer layer; Nano-diamond film; Direct growth; Decomposition

    National Natural Science Foundation of China (51402013, 51272024); China Postdoctoral Science Foundation (2014M550022);Fundamental Research Funds for the Central Universities (FRF-TP-15-052A2).

    LI Cheng-ming, Professor. E-mail: chengmli@mater.ustb.edu.cn

    國(guó)家自然科學(xué)基金(51402013, 51272024); 中國(guó)博士后科學(xué)基金(2014M550022); 中央高?;究蒲袠I(yè)務(wù)經(jīng)費(fèi)(FRF-TP-15-052A2).

    李成明, 博士, 教授. E-mail: chengmli@mater.ustb.edu.cn

    劉金龍, 博士, 講師. E-mail: liujinlong@ustb.edu.cn.

    1007-8827(2016)05-0518-07

    TB333

    A

    Authorintroduction: LIU Jin-long, Lecturer. E-mail: liujinlong@ustb.edu.cn.

    10.1016/S1872-5805(16)60029-X

    Receiveddate: 2016-06-29;Reviseddate: 2016-10-12

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    北京科技大學(xué)寒梅結(jié)合力
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2024年1期)2024-01-11 07:56:12
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2022年6期)2022-12-06 04:27:50
    三種預(yù)處理工藝對(duì)汽輪發(fā)電機(jī)鋁合金部件表面結(jié)合力的影響
    《北京科技大學(xué)學(xué)報(bào)》(社會(huì)科學(xué)版)
    理論縱橫(2022年1期)2022-02-16 07:26:06
    藍(lán)莓采摘期結(jié)合力測(cè)試與變化趨勢(shì)的分析
    詠 松
    寒梅
    詩(shī)潮(2018年5期)2018-08-20 10:03:28
    如花綻放
    BOSS臻品(2017年5期)2017-09-12 04:06:17
    田永訴北京科技大學(xué)拒絕頒發(fā)畢業(yè)證、學(xué)位證案
    電鍍級(jí)ABS樹脂(Ⅱ)電鍍工藝對(duì)鍍層結(jié)合力的影響
    上海塑料(2015年3期)2015-02-28 14:52:08
    亚洲第一区二区三区不卡| 舔av片在线| 看十八女毛片水多多多| 亚洲av中文字字幕乱码综合| 中文字幕免费在线视频6| 嫁个100分男人电影在线观看| 久久久精品欧美日韩精品| 人人妻人人澡欧美一区二区| 少妇熟女aⅴ在线视频| 蜜桃久久精品国产亚洲av| 在现免费观看毛片| 偷拍熟女少妇极品色| 亚洲精品色激情综合| 日韩欧美精品v在线| 欧美日韩黄片免| 久久香蕉精品热| 成人国产一区最新在线观看| 亚洲美女黄片视频| 午夜福利高清视频| 亚洲专区国产一区二区| 国产伦在线观看视频一区| 蜜桃久久精品国产亚洲av| 1024手机看黄色片| 免费大片18禁| 极品教师在线免费播放| 最近中文字幕高清免费大全6 | 波多野结衣高清作品| 亚洲av日韩精品久久久久久密| 亚洲av一区综合| 最近视频中文字幕2019在线8| 99久久中文字幕三级久久日本| 五月伊人婷婷丁香| 免费看a级黄色片| 亚洲成人久久性| 熟女电影av网| 国产伦一二天堂av在线观看| av专区在线播放| 在线播放无遮挡| 国产av麻豆久久久久久久| 国产探花在线观看一区二区| 女人被狂操c到高潮| 成年人黄色毛片网站| 18禁裸乳无遮挡免费网站照片| 99国产精品一区二区蜜桃av| av视频在线观看入口| 男女之事视频高清在线观看| 99在线人妻在线中文字幕| 精品乱码久久久久久99久播| 欧美又色又爽又黄视频| 22中文网久久字幕| 99久久久亚洲精品蜜臀av| 亚洲国产日韩欧美精品在线观看| 高清在线国产一区| 久久精品国产99精品国产亚洲性色| 俺也久久电影网| 好男人在线观看高清免费视频| 亚州av有码| 老熟妇仑乱视频hdxx| 国产一区二区三区视频了| 欧美+日韩+精品| 国产aⅴ精品一区二区三区波| 亚洲精品456在线播放app | 亚洲精华国产精华液的使用体验 | 久久精品久久久久久噜噜老黄 | 亚洲男人的天堂狠狠| 狂野欧美白嫩少妇大欣赏| 成人无遮挡网站| 天美传媒精品一区二区| 丝袜美腿在线中文| 国产精品女同一区二区软件 | 国内精品宾馆在线| 一个人观看的视频www高清免费观看| or卡值多少钱| 免费不卡的大黄色大毛片视频在线观看 | 又爽又黄a免费视频| 乱码一卡2卡4卡精品| av黄色大香蕉| 国产精品久久电影中文字幕| 国产淫片久久久久久久久| 欧美在线一区亚洲| 国产精品自产拍在线观看55亚洲| 亚洲熟妇中文字幕五十中出| 在线免费观看的www视频| 日本 av在线| 波多野结衣高清作品| 日韩精品有码人妻一区| 国产私拍福利视频在线观看| 美女高潮喷水抽搐中文字幕| 长腿黑丝高跟| 国产一区二区亚洲精品在线观看| 亚洲av日韩精品久久久久久密| 狂野欧美激情性xxxx在线观看| 欧美性感艳星| 日韩av在线大香蕉| 69人妻影院| 亚洲最大成人av| 床上黄色一级片| 美女高潮喷水抽搐中文字幕| 亚洲综合色惰| 亚洲av美国av| 国产免费av片在线观看野外av| 久久精品夜夜夜夜夜久久蜜豆| 九色成人免费人妻av| 欧美日韩乱码在线| 桃红色精品国产亚洲av| 欧美xxxx性猛交bbbb| 久久午夜福利片| 亚洲欧美清纯卡通| 久久午夜亚洲精品久久| 国内精品宾馆在线| 久久精品国产亚洲网站| 乱系列少妇在线播放| aaaaa片日本免费| 成人二区视频| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久成人av| 一级黄片播放器| 可以在线观看的亚洲视频| 久久久国产成人免费| 好男人在线观看高清免费视频| 色视频www国产| 精品无人区乱码1区二区| 久久精品国产99精品国产亚洲性色| 亚洲国产精品久久男人天堂| 久久人妻av系列| 99久久精品一区二区三区| 欧美日韩国产亚洲二区| 久久久久国产精品人妻aⅴ院| 亚洲中文字幕一区二区三区有码在线看| 老熟妇仑乱视频hdxx| 精品人妻视频免费看| 无遮挡黄片免费观看| 久久99热这里只有精品18| 91麻豆精品激情在线观看国产| 99在线人妻在线中文字幕| 免费观看人在逋| 91在线精品国自产拍蜜月| 日本a在线网址| 免费看美女性在线毛片视频| 国产一区二区激情短视频| 88av欧美| 国产黄a三级三级三级人| 色哟哟·www| 听说在线观看完整版免费高清| 亚洲av日韩精品久久久久久密| or卡值多少钱| 久久精品91蜜桃| 日韩国内少妇激情av| 色5月婷婷丁香| 欧美人与善性xxx| 一个人看的www免费观看视频| 亚洲成人久久性| 黄片wwwwww| 亚洲精品色激情综合| 偷拍熟女少妇极品色| 天天躁日日操中文字幕| 亚洲av免费高清在线观看| aaaaa片日本免费| 日韩欧美在线二视频| 午夜精品一区二区三区免费看| 久久久久久久久中文| 国语自产精品视频在线第100页| 精品一区二区三区人妻视频| 成人av一区二区三区在线看| av在线观看视频网站免费| 免费av毛片视频| 91麻豆精品激情在线观看国产| 国产黄a三级三级三级人| 观看美女的网站| videossex国产| 亚洲人成伊人成综合网2020| 高清在线国产一区| 日韩在线高清观看一区二区三区 | 亚洲中文日韩欧美视频| 亚洲va日本ⅴa欧美va伊人久久| 我的老师免费观看完整版| 神马国产精品三级电影在线观看| 亚洲美女视频黄频| 免费电影在线观看免费观看| 中文字幕熟女人妻在线| 一个人免费在线观看电影| 亚洲五月天丁香| 国产淫片久久久久久久久| 免费在线观看成人毛片| 成熟少妇高潮喷水视频| 中文字幕高清在线视频| 久久精品国产亚洲av涩爱 | 九色成人免费人妻av| 噜噜噜噜噜久久久久久91| 免费看美女性在线毛片视频| 夜夜爽天天搞| 在现免费观看毛片| 极品少妇高潮喷水抽搐| 久久婷婷青草| 精品少妇黑人巨大在线播放| 纵有疾风起免费观看全集完整版| 精品久久久久久久久亚洲| 精品久久国产蜜桃| 欧美xxxx黑人xx丫x性爽| 日韩亚洲欧美综合| 国产无遮挡羞羞视频在线观看| 久久久久久人妻| 男人添女人高潮全过程视频| 夜夜爽夜夜爽视频| 人妻制服诱惑在线中文字幕| av福利片在线观看| 男人舔奶头视频| 欧美日韩精品成人综合77777| 又粗又硬又长又爽又黄的视频| 亚洲欧美日韩卡通动漫| 国产淫片久久久久久久久| 国产中年淑女户外野战色| 国产69精品久久久久777片| 蜜桃久久精品国产亚洲av| 一级毛片aaaaaa免费看小| 熟女av电影| 人人妻人人澡人人爽人人夜夜| 永久网站在线| 在线观看一区二区三区| 久久久久视频综合| 舔av片在线| 天天躁日日操中文字幕| 日韩 亚洲 欧美在线| 国产精品伦人一区二区| 亚洲精品一区蜜桃| 久久久精品免费免费高清| 国产毛片在线视频| 夫妻性生交免费视频一级片| 国内少妇人妻偷人精品xxx网站| 亚洲精品色激情综合| 日韩强制内射视频| 国产精品久久久久成人av| 99久久人妻综合| 一个人看视频在线观看www免费| 亚洲av二区三区四区| 国产午夜精品久久久久久一区二区三区| 久久久久久久久大av| 日韩成人av中文字幕在线观看| 女性被躁到高潮视频| 伊人久久国产一区二区| 国产成人freesex在线| 亚洲精品aⅴ在线观看| 久久久久久久久大av| 男男h啪啪无遮挡| 午夜精品国产一区二区电影| 国产精品不卡视频一区二区| 美女脱内裤让男人舔精品视频| 亚洲精品日韩av片在线观看| 男女边吃奶边做爰视频| 日韩欧美精品免费久久| 下体分泌物呈黄色| av线在线观看网站| 久久精品国产亚洲av涩爱| 亚洲电影在线观看av| 亚洲成人中文字幕在线播放| 九九在线视频观看精品| 中文天堂在线官网| 看非洲黑人一级黄片| 国产国拍精品亚洲av在线观看| 亚洲精品乱久久久久久| 男男h啪啪无遮挡| 美女高潮的动态| 极品少妇高潮喷水抽搐| 黑丝袜美女国产一区| 3wmmmm亚洲av在线观看| 日韩成人av中文字幕在线观看| 国产精品嫩草影院av在线观看| 久久精品国产鲁丝片午夜精品| 久久久久久久久久成人| 国产精品一区二区性色av| 日本wwww免费看| 最近中文字幕高清免费大全6| 欧美精品亚洲一区二区| 亚洲国产成人一精品久久久| 国产精品不卡视频一区二区| 国产永久视频网站| av又黄又爽大尺度在线免费看| 久久国产亚洲av麻豆专区| 99热全是精品| 日韩视频在线欧美| 国产av码专区亚洲av| 免费观看a级毛片全部| 久久久久人妻精品一区果冻| 韩国av在线不卡| 久久精品熟女亚洲av麻豆精品| 人人妻人人澡人人爽人人夜夜| 亚洲美女黄色视频免费看| 激情五月婷婷亚洲| 插阴视频在线观看视频| 国产乱人偷精品视频| 日韩,欧美,国产一区二区三区| 久久99精品国语久久久| 国产精品三级大全| 日韩亚洲欧美综合| 国产v大片淫在线免费观看| 成人综合一区亚洲| h日本视频在线播放| 日韩一本色道免费dvd| 日韩中文字幕视频在线看片 | 如何舔出高潮| 欧美变态另类bdsm刘玥| 亚洲国产高清在线一区二区三| 深夜a级毛片| 激情五月婷婷亚洲| 毛片女人毛片| 丝瓜视频免费看黄片| 高清视频免费观看一区二区| 中文天堂在线官网| 18禁裸乳无遮挡动漫免费视频| 最近中文字幕高清免费大全6| 乱系列少妇在线播放| 涩涩av久久男人的天堂| av福利片在线观看| 十分钟在线观看高清视频www | 免费人妻精品一区二区三区视频| 丰满人妻一区二区三区视频av| videossex国产| 涩涩av久久男人的天堂| 最近中文字幕2019免费版| av免费观看日本| 天美传媒精品一区二区| 国产精品蜜桃在线观看| 一个人免费看片子| 黑丝袜美女国产一区| 亚洲激情五月婷婷啪啪| 国产男人的电影天堂91| 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 最近中文字幕2019免费版| 欧美日韩视频精品一区| 亚洲欧洲日产国产| 国产老妇伦熟女老妇高清| av在线app专区| 夫妻性生交免费视频一级片| 亚洲真实伦在线观看| 久久ye,这里只有精品| 青春草国产在线视频| 麻豆成人av视频| 深夜a级毛片| 午夜免费鲁丝| 久久精品夜色国产| 国产精品久久久久久久久免| 久久av网站| 久久99精品国语久久久| 久久人人爽人人爽人人片va| 亚洲欧美清纯卡通| 久久精品国产亚洲av天美| 女性生殖器流出的白浆| 国内揄拍国产精品人妻在线| 亚洲,一卡二卡三卡| 中文字幕亚洲精品专区| 免费观看av网站的网址| 久久ye,这里只有精品| 香蕉精品网在线| 一个人看视频在线观看www免费| 亚洲成人中文字幕在线播放| 91精品国产国语对白视频| 直男gayav资源| 身体一侧抽搐| 麻豆国产97在线/欧美| 少妇熟女欧美另类| 久久av网站| 久久久久久伊人网av| 欧美日韩国产mv在线观看视频 | 成年美女黄网站色视频大全免费 | 国产在线一区二区三区精| av福利片在线观看| 中文精品一卡2卡3卡4更新| 大香蕉97超碰在线| 老女人水多毛片| 成人亚洲精品一区在线观看 | 免费不卡的大黄色大毛片视频在线观看| av国产久精品久网站免费入址| 亚洲av成人精品一区久久| 夜夜看夜夜爽夜夜摸| 最新中文字幕久久久久| 好男人视频免费观看在线| 免费黄频网站在线观看国产| 男女啪啪激烈高潮av片| 亚洲精品国产成人久久av| 少妇熟女欧美另类| 亚洲性久久影院| 一区在线观看完整版| 91久久精品国产一区二区成人| 老熟女久久久| 日本免费在线观看一区| 亚洲国产欧美在线一区| 精品人妻熟女av久视频| 欧美变态另类bdsm刘玥| 国产极品天堂在线| 久久 成人 亚洲| 国产在线一区二区三区精| 久久国产精品大桥未久av | 国产黄频视频在线观看| 深爱激情五月婷婷| 香蕉精品网在线| 精品酒店卫生间| 七月丁香在线播放| 超碰97精品在线观看| 永久免费av网站大全| 国产高清国产精品国产三级 | 久久久久久九九精品二区国产| 成人18禁高潮啪啪吃奶动态图 | 欧美区成人在线视频| 97在线视频观看| 国产一级毛片在线| 亚洲电影在线观看av| 日韩av免费高清视频| 韩国高清视频一区二区三区| 国产探花极品一区二区| 日韩精品有码人妻一区| 丰满少妇做爰视频| 80岁老熟妇乱子伦牲交| 蜜臀久久99精品久久宅男| 91在线精品国自产拍蜜月| 亚洲精品一区蜜桃| 我的老师免费观看完整版| 搡老乐熟女国产| 成年av动漫网址| 欧美日韩在线观看h| 97精品久久久久久久久久精品| 少妇高潮的动态图| 成人影院久久| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久久电影| 亚洲国产精品一区三区| 精品亚洲乱码少妇综合久久| 亚洲精品日韩在线中文字幕| 美女福利国产在线 | 国产精品.久久久| 国产男女内射视频| 蜜桃亚洲精品一区二区三区| 国产有黄有色有爽视频| 亚洲国产精品一区三区| 精品亚洲成国产av| 国产有黄有色有爽视频| 国产国拍精品亚洲av在线观看| 成年免费大片在线观看| av天堂中文字幕网| 2018国产大陆天天弄谢| 干丝袜人妻中文字幕| 99精国产麻豆久久婷婷| 国产亚洲欧美精品永久| 99热这里只有精品一区| 身体一侧抽搐| 校园人妻丝袜中文字幕| av在线app专区| 日韩av在线免费看完整版不卡| 亚洲,一卡二卡三卡| 在线观看一区二区三区激情| av在线观看视频网站免费| 国产成人a∨麻豆精品| 日本欧美视频一区| 精品人妻视频免费看| 一级毛片我不卡| 秋霞伦理黄片| 最黄视频免费看| 日韩亚洲欧美综合| 国产探花极品一区二区| 99久久中文字幕三级久久日本| 简卡轻食公司| 免费大片黄手机在线观看| 亚洲av福利一区| 欧美3d第一页| 亚洲av日韩在线播放| 国产综合精华液| 久久久a久久爽久久v久久| 国产成人91sexporn| 亚洲av不卡在线观看| 亚洲av欧美aⅴ国产| 国精品久久久久久国模美| 天堂8中文在线网| av免费观看日本| 99久国产av精品国产电影| 免费看光身美女| 九色成人免费人妻av| 欧美成人午夜免费资源| 中文字幕av成人在线电影| 天天躁日日操中文字幕| 人人妻人人看人人澡| 18禁裸乳无遮挡动漫免费视频| 欧美丝袜亚洲另类| 性高湖久久久久久久久免费观看| 搡老乐熟女国产| 男人添女人高潮全过程视频| 精品午夜福利在线看| av在线老鸭窝| 日韩大片免费观看网站| 97在线人人人人妻| 国产精品一及| 国产色爽女视频免费观看| 国产精品秋霞免费鲁丝片| 国产视频内射| av在线蜜桃| 天天躁日日操中文字幕| 中文资源天堂在线| 免费不卡的大黄色大毛片视频在线观看| 久久99热6这里只有精品| 高清黄色对白视频在线免费看 | 激情 狠狠 欧美| 大香蕉久久网| 黄色怎么调成土黄色| 伦精品一区二区三区| 超碰av人人做人人爽久久| 亚洲无线观看免费| 亚洲av电影在线观看一区二区三区| 80岁老熟妇乱子伦牲交| 久久久精品94久久精品| 国产av一区二区精品久久 | 国产中年淑女户外野战色| 久久久久久九九精品二区国产| 国产精品久久久久久精品电影小说 | 天堂中文最新版在线下载| 大香蕉97超碰在线| 国产精品一区二区性色av| 热99国产精品久久久久久7| 成年美女黄网站色视频大全免费 | 久久热精品热| 黄色视频在线播放观看不卡| 国产女主播在线喷水免费视频网站| 成年人午夜在线观看视频| 成人毛片a级毛片在线播放| 熟女人妻精品中文字幕| 日韩人妻高清精品专区| 少妇人妻精品综合一区二区| 蜜臀久久99精品久久宅男| 干丝袜人妻中文字幕| 哪个播放器可以免费观看大片| 久久久久久久国产电影| 亚洲美女视频黄频| 国产亚洲av片在线观看秒播厂| 亚洲精品乱久久久久久| 老女人水多毛片| 免费久久久久久久精品成人欧美视频 | 成年女人在线观看亚洲视频| 黑人猛操日本美女一级片| h日本视频在线播放| 亚洲欧美一区二区三区国产| 搡女人真爽免费视频火全软件| 久热这里只有精品99| 男男h啪啪无遮挡| 男女啪啪激烈高潮av片| 亚洲精品一区蜜桃| 舔av片在线| 九九在线视频观看精品| 韩国av在线不卡| 七月丁香在线播放| 麻豆成人av视频| 色婷婷久久久亚洲欧美| 欧美日韩在线观看h| 成人美女网站在线观看视频| 国产av国产精品国产| 91久久精品电影网| 国产深夜福利视频在线观看| 我要看日韩黄色一级片| 亚洲电影在线观看av| 亚洲精品456在线播放app| 各种免费的搞黄视频| 国产精品99久久久久久久久| 免费观看的影片在线观看| 亚洲精品日韩av片在线观看| 日韩电影二区| 亚洲成人手机| 欧美亚洲 丝袜 人妻 在线| 日日啪夜夜爽| 在线观看美女被高潮喷水网站| 男女免费视频国产| 熟妇人妻不卡中文字幕| 伦理电影免费视频| 最近中文字幕2019免费版| 妹子高潮喷水视频| 国产精品人妻久久久影院| 免费大片黄手机在线观看| 日韩 亚洲 欧美在线| 美女国产视频在线观看| 麻豆成人av视频| 久久久久网色| 精品久久久久久电影网| 欧美高清性xxxxhd video| 日韩中文字幕视频在线看片 | 卡戴珊不雅视频在线播放| 国产成人精品久久久久久| 中文字幕制服av| 国产精品爽爽va在线观看网站| 欧美三级亚洲精品| 中文字幕亚洲精品专区| 在线观看av片永久免费下载| 啦啦啦啦在线视频资源| 亚洲内射少妇av| 黄色日韩在线| 国产亚洲一区二区精品| 日韩精品有码人妻一区| 中国美白少妇内射xxxbb| 高清欧美精品videossex| 黄片wwwwww| 国产成人午夜福利电影在线观看| 美女cb高潮喷水在线观看| 久久精品国产自在天天线| 小蜜桃在线观看免费完整版高清| 午夜福利影视在线免费观看| 国产一区二区在线观看日韩| 人妻 亚洲 视频| 亚洲综合精品二区| 最黄视频免费看| 欧美高清成人免费视频www| 日本欧美国产在线视频| 黄片无遮挡物在线观看| 亚洲不卡免费看| 天堂8中文在线网| 身体一侧抽搐| 亚洲不卡免费看| 免费大片18禁| 边亲边吃奶的免费视频| 精品亚洲成a人片在线观看 | 精品国产露脸久久av麻豆|