• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PAN纖維炭化過程致密化機(jī)理研究

    2016-11-22 07:31:24馬全勝高愛君童元建張佐光
    新型炭材料 2016年5期
    關(guān)鍵詞:研究

    馬全勝, 高愛君, 童元建, 張佐光

    (1.北京航空航天大學(xué) 材料科學(xué)與工程學(xué)院,北京100191;2.北京化工大學(xué) 國(guó)家碳纖維工程技術(shù)研究中心,北京100029)

    ?

    PAN纖維炭化過程致密化機(jī)理研究

    馬全勝1, 高愛君2, 童元建2, 張佐光1

    (1.北京航空航天大學(xué) 材料科學(xué)與工程學(xué)院,北京100191;2.北京化工大學(xué) 國(guó)家碳纖維工程技術(shù)研究中心,北京100029)

    研究了PAN纖維在不同炭化溫度下(900~1 400 ℃)的致密性變化規(guī)律及機(jī)理。研究表明,隨炭化溫度升高,纖維密度出現(xiàn)增大-減小-增大-減小的變化規(guī)律,在炭化溫譜[900,T]與[T,0]下密度具有相同的變化規(guī)律,但出現(xiàn)極值的溫度不同,而兩種溫譜下密度隨元素含量的變化則完全一致。在炭化溫譜[900,T]下,1 050 ℃之前以縮聚反應(yīng)為主,小分子氣體快速逸出,密度快速增大;纖維在1 050 ℃左右出現(xiàn)最大失重速率,石墨微晶片層增長(zhǎng)速度變緩,氮?dú)忉尫帕孔畲螅? 050 ℃之后以裂解反應(yīng)為主,元素大量裂解逸出使纖維密度迅速下降;1 250 ℃之后纖維中只有氮?dú)庖莩?,石墨化轉(zhuǎn)變與氮元素快速逸出的競(jìng)爭(zhēng)反應(yīng)使得密度先增后降,在1 350 ℃出現(xiàn)極大值。

    炭纖維; 致密化; 炭化; 縮聚; 裂解

    1 Introduction

    Polyacrylonitrile (PAN)-based carbon fibers are the most attractive as reinforcement for advanced composites[1-7], in the aerospace and national defense industry. Carbonization is a necessary step to convert PAN fibers to high-strength carbon fibers[8, 9]and its importance is the same as stabilization[10, 11]. Carbonization is typically carried out in an inert atmosphere at a high temperature (900-1 600 ℃). During this process, non-carbon elements are released from the high-molecular-weight polymers to enrich carbon and the density of the fibers increases. In carbonization, stabilized fibers are subjected to heat treatment with an increasing temperature profile within a total residence time of only a few minutes[12-16]. To avoid thermal shock, low-temperature heat treatment usually between 300 and 800 ℃ is applied prior to carbonization.

    Densification of carbon fibers is very important to obtain high performance product. In this work, we prepared PAN pre-carbonized fibers, which were then carbonized in a high temperature carbonization furnace in the temperature range of 900-1 400 ℃. Various techniques were used to analyze the densification mechanism in relation to the chemical compositions, structures, and the reaction types. The results of our studies can provide guidelines for choosing more reasonable temperature schemes of carbonization to get highly-densified carbon fibers.

    2 Experimental

    Each tow of PAN fibers used to prepare the fiber samples contained 12 000 strands of monofilament (QF0901, Jilin Qifeng Chemical Fiber Co., LTD, China). Before high temperature heat treatment, PAN fibers were pretreated by passing first through a stabilization furnace and then a pre-carbonization furnace s to get the “pre-carbonized” fibers. The stabilization furnace was divided into six zones (2 m per zone) set at different temperatures (200, 218, 223, 237, 254, and 257 ℃). The pre-carbonization furnace was divided into three zones (0.3 m per zone) set at 350, 450, and 680 ℃. The pre-carbonized fibers were then heat treated at a high temperature carbonization furnace with two zones (0.3 m per zone). Two temperature schemes denoted as [900, T] and [T, 0] for high-temperature carbonization were used. [900, T] means that the first zone was fixed at 900°C and the second zone with variable experimental temperatures. [T, 0] means that the temperature of the first zone was variable and the heating device of the second zone was switched off.

    Elemental analysis was carried out with an Elementar Vario MICRO CUBE (Germany) elemental analyzer. The carbon, hydrogen, and nitrogen contents were analyzed in the carbonization.

    TG-MS was carried out in an Ar atmosphere using a Netzsch STA449C system at a heating rate of 30 ℃/min from 30 to 1 400 ℃.

    Changes in crystal structure that occurred during heat treatment were determined by using a Philips X’Pert PRO MDP diffractometer (operated at 40 kV and 40 mA) with Ni-filtered CuKαradiation. Data were collected over the 2θrange from 10° to 90° at a scan rate of 1(°)/min. The apparent crystallite size was calculated from the fully corrected and resolved peak profiles. The crystallite size was calculated from the Scherrer equation (Eq.1) using the diffraction peak position and the full widths at half maximum (FWHM):

    L(n/k)=Kλ/Bcosθ

    (1)

    whereθis the diffraction peak position of the (nlk) plane,λ=0.154 06 nm is the wavelength of the X-rays,Bis the FWHM the peak in radians of andKis the Scherer geometric or shape factor. The crystallite correlation length (La) along the fiber axis was determined by the (110) diffraction peak of the meridian scan. The shape factorKis 1.84 forLa.

    Fiber tension was measured on-line during the high temperature carbonization by a tension meter (Schmidt DTMX-2000, German).

    The density was measured at 25 ℃ in a density-gradient column (LLORD, UK), prepared with a mixture of 1,2-dibromoethane and carbon tetrachloride, which gave a density gradient from about 1.65 to 1.85 g/cm3from the top to the bottom.

    3 Results and discussion

    3.1 TG curves of the pre-carbonized fibers in He atmosphere

    The TG curve of the pre-carbonized fibers at a heating rate of 30 ℃/min is shown in Fig. 1.

    Fig. 1 TG and DTG curves of the pre-carbonized fibers.

    The mass of the fibers decreases with temperature. Below 700 ℃, only a small amount of weight loss is observed because the fibers had been treated at 680 ℃ in the pre-carbonization. Between 700 ℃ and 1 050 ℃, the amount of weight loss increases appreciably, owing to the release of non-carbon elements from chemical reactions occurring at elevated temperature. Above 1 050 ℃, the weight loss in the TG curve begins to level off, which is indicative of a low content of non-carbon elements. The total weight loss of the fibers during heat treatment was 26.2%. In the derivative themogravimetric analysis (DTG) curve in Fig. 1, two peaks were detected, which represented two discrete weight-loss temperature regimes: 700-900 ℃ and 900-1 400 ℃, corresponding to weight losses of 6.2% and 14.9% respectively.

    3.2 Elemental analysis

    In the pre-carbonized fibers, there was a large amount of nitrogen, hydrogen, and oxygen, the content of which changed during the high-temperature carbonization, as shown in Fig. 2. Under the [900, T] and [T, 0] temperature schemes, the carbon and nitrogen contents varied in a similar manner, although their changing rate was faster under the [900, T] temperature scheme than the [T, 0] one mainly because the carbonization at low temperature was prolonged. As mentioned in the previous section, there was a mass loss at 700-900 ℃. For the [900, T] temperature scheme, there was a significant drop in nitrogen content above 900 ℃ with a maximum releasing rate occurring at around 1 050 ℃. Below 900 ℃, the increase in the relative carbon content was slow and the release of nitrogen was insignificant. However, above 900 ℃, the relative carbon content in the fibers increased markedly owing to the rapid release of nitrogen.

    Fig. 2 Relative contents of elemental (a) nitrogen and (b) carbon as a function of temperature.

    TG-MS tests were conducted from 30 to 1 400 ℃ with a rate of 30 ℃/min and the results are shown in Fig. 3. Mass number 2 corresponds to H2, 15 to CH4, 16 to CH4/NH3, 17 to NH3, 18 to H2O, 26 and 27 to HCN, 28 to N2/CO and 44 to CO2. With increasing temperature, nitrogen was released from the fibers in the form of NH3, HCN and N2. Below 900 ℃, nitrogen was released more slowly in the form of NH3and HCN. When the temperature reached 900 ℃, the maximum release corresponded to N2. The rate of N2release correlates with the decrease in the elemental nitrogen content in the fibers. At around 1 050 ℃, the release rate of N2(Fig.3) and rate of decrease in elemental nitrogen content (Fig.2) in the fibers both reached their peak, which corresponded to the maximum weight-loss rate of the fibers(Fig.1) .

    Fig. 3 Release of small gas molecules as a function of temperature by TG-MS test.

    3.3 X-ray diffraction

    The values ofLa increased as a function of heat-treatment temperature, as shown in Fig. 4.

    Fig. 4 La as a function of temperature.

    At low temperatures,La increased more rapidly because the molecules were cross-linked by condensation reaction and small graphite crystallites were transformed into largenes. At around 1 050 ℃, pyrolysis reactions begin to dominate while the influence of the condensation reaction was reduced, leading to a slow increasing rate ofLa with temperature between 1 050 and about 1 200 ℃. However, above 1 200 ℃, the high temperature facilitated graphitization andLa increased sharply.

    3.4 Fiber tension

    The fiber tension during high-temperature treatment is shown in Fig. 5. The fiber tension initially increased with increasing temperature, and then levelled off. For the temperature scheme [900, T], the fiber tension increased to a maximum value at 1 200 ℃, whereas for [T, 0], the maximum was detected at 1 300 ℃. The tension and fiber deformation capacity varied according to the type of reaction that was dominant. At low temperatures, the condensation reaction rate was progressively intensified with increasing temperature and significant fiber contraction resulted in the increase of tension rapidly. At a critical temperature, the tension stopped increasing because the condensation reaction was slowed and the fiber contraction in the pyrolysis reaction was small.

    Fig. 5 Fiber tension as a function of temperature.

    3.5 Density of fibers

    The bulk density of the pre-carbonized fibers was 1.63 g/cm3. The bulk density of the fibers after high-temperature carbonization is shown in Fig. 6. After the heat treatment between 900 and 1 400 ℃, the bulk density became much higher than that of the pre-carbonized fibers owing to mainly the condensation reactions. For [900, T], the bulk density rapidly increased with increasing temperature and reached a maximum value of 1.83 g/cm3at 1 000 ℃. It decreased to 1.78 g/cm3at 1 050 ℃, but then slowly increased again as the temperature increased, reaching another peak of 1.79 g/cm3at 1 250 ℃. The density for [T, 0] and [900, T] varied in the same manner, but the characteristic temperature corresponding to the density maximum was 100 ℃ higher in the former than that in the latter.

    Fig. 6 Fiber density as a function of temperature.

    3.6 Densification mechanism

    The variation of the fiber density with increasing the elemental contents of nitrogen and carbon is shown in Fig. 7.

    Fig. 7 Density as a function of elemental contents: (a) nitrogen and (b) carbon.

    The trends are similar for both temperature schemes. This indicates that the temperature influences the density by inducing chemical reactions that alter the elemental compositions. With the elevation of carbonization temperature, the concentrations of nitrogen, hydrogen, and oxygen, as well as the rate of condensation reactions between molecules are gradually reduced. The pyrolysis reactions become dominant in the fibers and then produce a large number of holes left by releasing of small molecules, causing the density to decrease with increasing carbonization temperature. Meanwhile, the graphitization in which amorphous carbon is transformed into graphitic carbon is activated, which increases the extent of ordering of graphene layers and thereby the density pf carbon fibers. With a further increase in carbonization temperature, a small amount of residual nitrogen undergoes a rapid pyrolysis[17], leading to a gradual reduction in density.

    4 Conclusions

    The density evolution of carbon fibers during high-temperature carbonization between 900 ℃ and 1 400 ℃ was investigated by compositional and structural analysis. Two maximum values of fiber density were observed at different temperatures, depending on the temperature schemes applied. For a carbonization temperature scheme of [900, T], a maximum rate of fiber weight loss occurred at around 1 050 ℃. Above 1 250 ℃, only N2escaped from the fibers. The influences of three major reactions were identified in the carbonization: condensation, pyrolysis and graphitization. At low temperatures, the condensation reactions were dominant because of the large amounts of heteroatoms of nitrogen, hydrogen, and oxygen in the fibers, leading to an increase of the fiber density. A further increase of the temperature caused the heteroatom content and rate of condensation to reduce, while pyrolysis reactions occurred, thereby reducing the fiber density. Graphitization and pyrolysis to release nitrogen were accelerated at high temperatures. Competition between these two reactions resulted in the maximum fiber density with increasing temperature.

    如我在《物體在水中的沉浮》一課的教學(xué)中,物體的沉浮和它們的大小、輕重有關(guān)嗎?這一問題的提出,我先引用猜一猜的方法,然后讓學(xué)生在推理的基礎(chǔ)上進(jìn)行實(shí)驗(yàn),最后學(xué)生通過親手實(shí)驗(yàn),將實(shí)驗(yàn)的結(jié)果與猜測(cè)進(jìn)行比較,激發(fā)了學(xué)生的學(xué)習(xí)欲望。

    [1] REN Gui-zhi, CHEN Cong-jie, DENG Li-hui, et al. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy[J]. New Carbon Materials, 2015, 30(5): 476-480.

    [2] Li M, Gu Y Z, Liu Y N, et al. Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotuves on the fibers[J]. Carbon, 2013, 52: 109-121.

    [3] Li W, Long D H, Miyawaki J, et al. Structural feature of polyacrylonitrile-based carbon fibers[J]. Journal of Materials and Science, 2012, 47(2): 919-928.

    [4] ZHAO Yu-hua, LI Qi-feng, WANG Jun-wei, et al. Preparation and properties of carbon fiber/polyether polyurethane composites[J]. New Carbon Materials, 2014, 29(6): 454-453.

    [5] Tong Y J, Wang X Q, Su H, et al. Oxidation kinetics of polyacrylonitrile-based carbon fibers in air and the effect on their tensile properties[J]. Corrosion Science, 2011, 50(8): 2484-2488.

    [6] Wu G P, Li D H, Yang Y, et al. Microvoid evolution in carbon fibers during graphitization for the preparation of carbon/carbon composites[J]. New Carbon Materials, 2014, 29(1): 41-46.

    [7] Gao A J, Gu Y Z, Wu Q, et al. Influence of processing temperature on interfacial behavior of HKT800 carbon fiber with BMI and epoxy matrices[J]. Chinese Journal of Aeronautics, 2015, 28(4): 1255-1262.

    [8] Mittal J, Konno H, Inagaki M, et al. Denitrogenation behavior and tensile strength increase during carbonization of stabilized PAN fibers[J]. Carbon, 1998, 36: 1327-1330.

    [9] Ko T H, Li C H. The influence of pre-carbonization on the properties of pan-based carbon fibers developed by two-stage continuous carbonization and air oxidation[J]. Polymer Composites, 1995, 16: 224-232.

    [10] Kalashinik A T. The role of different factors in creation of the structure of stalilized acrylic fibers[J]. Fibre Chemistry, 2002, 34: 11-17.

    [11] Gupta A, Harrison I R. New aspects in the oxidative stabilization of PAN-base carbon fibers[J]. Carbon, 1996, 34: 1427-1445.

    [12] Liu J, Wang P H, Li R Y. Continuous carbonization of polyacrylonitrile based oxidized fibers: aspects on mechanical properties and morphological structure[J]. Journal of Applied Polymer Science, 1994, 52(7): 945-950.

    [13] Li L Y, Huang Q Z, Zhang H B. Study on the carbonization of polyacrylonitrile-based preoxidized fibres[J]. Materials Science and Engineering or Powder Metallargy, 2000, 5(1): 69-74.

    [14] Watt W. Nitrogen evolution during the pyrolysis of polyacrylonitrile[J]. Nature: Physical Science, 1972, 235: 10-11.

    [15] Ko T, Day T, Perng J. The characterization of PAN-based carbon fibers developed by two stage continuous carbonization[J]. Carbon, 1993, 31(5): 765-771.

    [16] Ko T. The influence of pyrolysison physical properties and microstructure of modified PAN fiber during carbonization[J]. Journal of Applied Polymer Science, 1991, 43(3): 589-600.

    [17] Gao A J, Su C J, Luo S, et al. Densification mechanism of polyacrylonitrile-based carbon fiber during heat treatment[J]. Journal of Physics and Chemistry of Solids, 2011, 72: 1159-1164.

    The densification mechanism of polyacrylonitrile carbon fibers during carbonization

    MA Quan-sheng1, GAO Ai-jun2, TONG Yuan-jian2, ZHANG Zuo-guang1

    (1.SchoolofMaterialsScienceandEngineering,BeihangUniversity,Beijing100191,China;2.NationalCarbonFiberEngineeringResearchCenter,BeijingUniversityofChemicalTechnology,Beijing100029,China)

    The densification mechanism of polyacrylonitrile carbon fibers during carbonization from 900 to 1 400 ℃ was investigated. The density, elemental composition, microstructure and weight loss of the fibers, as well as the gases released during the process were analyzed to reveal the mechanism. Results indicated that the density of the fibers was strongly dependent on the carbonization temperature and reactions involved indifferent temperature regimes. Condensation, pyrolysis and graphitization reactions were dominant at low (<1 050 ℃), medium (1 050-1 250 ℃) and high (>1 250 ℃) temperatures, respectively. The amount of small molecule gas released and the fiber density both increased rapidly with temperature when condensation reactions dominated. The fiber density decreased as a result of nitrogen release when pyrolysis reactions dominated above 1050 °C while the fiber density increased due to the growth and increase in order of the graphene layers during graphitization. The two fiber density maxima found with increasing carbonization temperature were attributed to the different reactions.

    Carbon fiber; Densification; Carbonization; Condensation; Pyrolysis

    National High Technology Research and Development Program of China(2015AA03A202).

    GAO Ai-jun, Ph.D, Lecturer. E-mail: bhgaoaijun@163.com

    國(guó)家863計(jì)劃(2015AA03A202).

    高愛君,講師.E-mail: bhgaoaijun@163.com

    馬全勝,博士研究生.E-mail: terrymark@163.com

    1007-8827(2016)05-0550-05

    TQ342+.74

    A

    Authorintroduction: MA Quan-sheng, Ph.D, Candidate. E-mail: terrymark@163.com

    10.1016/S1872-5805(16)60031-8

    Receiveddate: 2016-08-15;Reviseddate: 2016-10-12

    English edition available online ScienceDirect (http:www.sciencedirect.comsciencejournal18725805).

    猜你喜歡
    研究
    FMS與YBT相關(guān)性的實(shí)證研究
    2020年國(guó)內(nèi)翻譯研究述評(píng)
    遼代千人邑研究述論
    視錯(cuò)覺在平面設(shè)計(jì)中的應(yīng)用與研究
    科技傳播(2019年22期)2020-01-14 03:06:54
    關(guān)于遼朝“一國(guó)兩制”研究的回顧與思考
    EMA伺服控制系統(tǒng)研究
    基于聲、光、磁、觸摸多功能控制的研究
    電子制作(2018年11期)2018-08-04 03:26:04
    新版C-NCAP側(cè)面碰撞假人損傷研究
    關(guān)于反傾銷會(huì)計(jì)研究的思考
    焊接膜層脫落的攻關(guān)研究
    電子制作(2017年23期)2017-02-02 07:17:19
    亚洲中文日韩欧美视频| 久久久国产一区二区| 国产精品秋霞免费鲁丝片| 热99re8久久精品国产| 精品午夜福利视频在线观看一区 | av不卡在线播放| 精品国产超薄肉色丝袜足j| 午夜视频精品福利| av欧美777| 午夜福利一区二区在线看| 波多野结衣av一区二区av| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜喷水一区| av欧美777| 亚洲第一青青草原| 人妻 亚洲 视频| 在线永久观看黄色视频| 在线永久观看黄色视频| 亚洲久久久国产精品| 宅男免费午夜| 视频区欧美日本亚洲| 极品教师在线免费播放| 狠狠狠狠99中文字幕| 电影成人av| 欧美精品一区二区免费开放| 99香蕉大伊视频| 日韩视频一区二区在线观看| 精品久久久精品久久久| 淫妇啪啪啪对白视频| 午夜成年电影在线免费观看| 午夜成年电影在线免费观看| 淫妇啪啪啪对白视频| 人人妻人人添人人爽欧美一区卜| 精品国内亚洲2022精品成人 | 国产精品 国内视频| 国产精品成人在线| 成年人黄色毛片网站| 成年女人毛片免费观看观看9 | 成人国产av品久久久| 亚洲精品久久成人aⅴ小说| 视频区欧美日本亚洲| 一进一出抽搐动态| 欧美乱码精品一区二区三区| 日本欧美视频一区| 国产成人精品久久二区二区91| 亚洲成国产人片在线观看| 久久精品国产综合久久久| 国产在线一区二区三区精| 五月开心婷婷网| 一进一出抽搐动态| 亚洲自偷自拍图片 自拍| 国产野战对白在线观看| 国产伦人伦偷精品视频| 久久久精品94久久精品| 色老头精品视频在线观看| 国产xxxxx性猛交| 在线看a的网站| 大码成人一级视频| 99国产精品一区二区三区| 国产精品久久久av美女十八| 亚洲国产精品一区二区三区在线| www.熟女人妻精品国产| 午夜视频精品福利| 免费观看人在逋| 久久久久视频综合| 一级黄色大片毛片| 捣出白浆h1v1| av片东京热男人的天堂| 免费在线观看视频国产中文字幕亚洲| av视频免费观看在线观看| 最近最新免费中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲 国产 在线| 欧美日韩中文字幕国产精品一区二区三区 | 成人黄色视频免费在线看| 50天的宝宝边吃奶边哭怎么回事| 老熟女久久久| 久久人妻熟女aⅴ| 精品欧美一区二区三区在线| 中文亚洲av片在线观看爽 | 国产精品偷伦视频观看了| 我的亚洲天堂| 久久久久久久国产电影| 最近最新中文字幕大全免费视频| 久久久久精品国产欧美久久久| 亚洲五月色婷婷综合| 亚洲,欧美精品.| 久久精品亚洲av国产电影网| 看免费av毛片| videos熟女内射| 少妇裸体淫交视频免费看高清 | 久久99一区二区三区| www.精华液| 九色亚洲精品在线播放| 日韩欧美一区二区三区在线观看 | 国产av又大| 亚洲 欧美一区二区三区| 久久久久久久国产电影| 满18在线观看网站| av一本久久久久| bbb黄色大片| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 99精品欧美一区二区三区四区| 男人操女人黄网站| 香蕉久久夜色| av视频免费观看在线观看| 久久精品亚洲av国产电影网| 国产免费视频播放在线视频| 精品一区二区三卡| 中文欧美无线码| 窝窝影院91人妻| 99久久人妻综合| 欧美激情高清一区二区三区| 国产片内射在线| 国产精品亚洲一级av第二区| 欧美激情极品国产一区二区三区| 日韩一卡2卡3卡4卡2021年| 不卡av一区二区三区| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| 在线观看免费高清a一片| 午夜免费成人在线视频| 最近最新免费中文字幕在线| 真人做人爱边吃奶动态| 成年动漫av网址| 在线观看免费日韩欧美大片| 亚洲午夜理论影院| a级片在线免费高清观看视频| 中亚洲国语对白在线视频| 亚洲欧洲精品一区二区精品久久久| 久久久精品区二区三区| 国内毛片毛片毛片毛片毛片| 丰满迷人的少妇在线观看| 纯流量卡能插随身wifi吗| 国产在线免费精品| 亚洲av国产av综合av卡| 亚洲一码二码三码区别大吗| 亚洲av欧美aⅴ国产| 日本撒尿小便嘘嘘汇集6| 亚洲国产欧美在线一区| 黄色怎么调成土黄色| 欧美国产精品va在线观看不卡| 999精品在线视频| 精品一区二区三卡| 欧美日韩中文字幕国产精品一区二区三区 | 人妻 亚洲 视频| 日韩欧美三级三区| 黄频高清免费视频| 一区二区av电影网| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久久久久久久大奶| 亚洲精品国产一区二区精华液| 国产精品98久久久久久宅男小说| 天堂动漫精品| 少妇的丰满在线观看| 侵犯人妻中文字幕一二三四区| 十八禁网站网址无遮挡| 日韩大片免费观看网站| 国产亚洲av高清不卡| 亚洲精品粉嫩美女一区| 2018国产大陆天天弄谢| 嫩草影视91久久| 国产亚洲精品久久久久5区| 黄色丝袜av网址大全| 日韩免费av在线播放| 日本a在线网址| 久久ye,这里只有精品| 少妇粗大呻吟视频| 亚洲av欧美aⅴ国产| 50天的宝宝边吃奶边哭怎么回事| 久久精品熟女亚洲av麻豆精品| 大香蕉久久成人网| 夜夜骑夜夜射夜夜干| 在线永久观看黄色视频| 18禁裸乳无遮挡动漫免费视频| 国产精品一区二区精品视频观看| 90打野战视频偷拍视频| 9色porny在线观看| 国产不卡一卡二| 久久精品亚洲av国产电影网| 757午夜福利合集在线观看| 欧美激情 高清一区二区三区| 18禁黄网站禁片午夜丰满| 757午夜福利合集在线观看| 欧美黑人欧美精品刺激| 午夜激情久久久久久久| 自线自在国产av| 亚洲一码二码三码区别大吗| 丝袜美足系列| 欧美激情 高清一区二区三区| 国产一区二区在线观看av| 一级a爱视频在线免费观看| 成年人免费黄色播放视频| av又黄又爽大尺度在线免费看| 午夜两性在线视频| 大型av网站在线播放| 看免费av毛片| 一进一出好大好爽视频| 成人国语在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产福利在线免费观看视频| 中文字幕高清在线视频| 亚洲久久久国产精品| 成年女人毛片免费观看观看9 | 涩涩av久久男人的天堂| 18在线观看网站| 精品久久久精品久久久| 黄色视频不卡| 色综合欧美亚洲国产小说| 老汉色∧v一级毛片| 少妇裸体淫交视频免费看高清 | 欧美日韩福利视频一区二区| 国产日韩欧美视频二区| 国产av精品麻豆| 黄色丝袜av网址大全| 午夜免费成人在线视频| 99精品久久久久人妻精品| 岛国在线观看网站| 精品久久久久久久毛片微露脸| 中文字幕最新亚洲高清| 亚洲第一av免费看| 久久久精品国产亚洲av高清涩受| 亚洲精品在线美女| 最近最新免费中文字幕在线| 欧美性长视频在线观看| www.999成人在线观看| 欧美成人免费av一区二区三区 | 亚洲欧美色中文字幕在线| 后天国语完整版免费观看| 欧美精品啪啪一区二区三区| 久久国产精品大桥未久av| 国产高清videossex| 久久精品国产a三级三级三级| 久久天躁狠狠躁夜夜2o2o| 亚洲中文日韩欧美视频| 中文字幕人妻熟女乱码| 午夜激情av网站| 91成年电影在线观看| 国产片内射在线| 亚洲成人免费av在线播放| 黄片大片在线免费观看| 手机成人av网站| 欧美日韩中文字幕国产精品一区二区三区 | 精品高清国产在线一区| 精品乱码久久久久久99久播| 欧美一级毛片孕妇| 成人av一区二区三区在线看| 中国美女看黄片| 天天躁日日躁夜夜躁夜夜| 深夜精品福利| 国产精品一区二区在线不卡| 国产日韩欧美亚洲二区| 一个人免费在线观看的高清视频| 欧美老熟妇乱子伦牲交| 久久久精品免费免费高清| 91av网站免费观看| 色婷婷av一区二区三区视频| 搡老乐熟女国产| 久久精品国产综合久久久| 999久久久精品免费观看国产| 日韩制服丝袜自拍偷拍| 考比视频在线观看| 精品人妻熟女毛片av久久网站| 啪啪无遮挡十八禁网站| 成人国语在线视频| 久久ye,这里只有精品| 女性被躁到高潮视频| 黑人巨大精品欧美一区二区蜜桃| 一二三四社区在线视频社区8| a在线观看视频网站| 高清av免费在线| 欧美性长视频在线观看| 免费在线观看影片大全网站| 午夜福利乱码中文字幕| 久久亚洲真实| 操美女的视频在线观看| 久久精品国产99精品国产亚洲性色 | 又紧又爽又黄一区二区| 午夜视频精品福利| 久久精品aⅴ一区二区三区四区| 免费高清在线观看日韩| 黄片大片在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 下体分泌物呈黄色| 精品视频人人做人人爽| 精品福利永久在线观看| 成人国语在线视频| 丝袜美足系列| 好男人电影高清在线观看| 99国产精品免费福利视频| 狠狠狠狠99中文字幕| 日本av手机在线免费观看| 欧美在线黄色| 国产国语露脸激情在线看| 97人妻天天添夜夜摸| 黄色视频不卡| 国产精品久久电影中文字幕 | 国产精品亚洲一级av第二区| 亚洲一码二码三码区别大吗| 一区二区三区国产精品乱码| 在线天堂中文资源库| 欧美精品av麻豆av| 一进一出好大好爽视频| 国产人伦9x9x在线观看| 在线永久观看黄色视频| 欧美精品av麻豆av| 亚洲成人国产一区在线观看| 最近最新中文字幕大全电影3 | 精品人妻熟女毛片av久久网站| 黄色丝袜av网址大全| 日韩精品免费视频一区二区三区| 最新在线观看一区二区三区| 日韩制服丝袜自拍偷拍| 精品一区二区三区四区五区乱码| 国产在线一区二区三区精| 免费在线观看黄色视频的| 精品国产亚洲在线| 免费人妻精品一区二区三区视频| 国产日韩欧美视频二区| 桃红色精品国产亚洲av| 午夜两性在线视频| 国产精品成人在线| 国产一区二区三区视频了| 99riav亚洲国产免费| 国产精品1区2区在线观看. | 女警被强在线播放| 18禁观看日本| 亚洲国产av影院在线观看| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久小说| 国产无遮挡羞羞视频在线观看| 这个男人来自地球电影免费观看| 一级a爱视频在线免费观看| 亚洲av第一区精品v没综合| netflix在线观看网站| 国产午夜精品久久久久久| 久久热在线av| 亚洲成av片中文字幕在线观看| 伦理电影免费视频| 久久中文看片网| 国产精品久久电影中文字幕 | 黄色成人免费大全| 中文字幕另类日韩欧美亚洲嫩草| av电影中文网址| 一个人免费在线观看的高清视频| 午夜91福利影院| 91成年电影在线观看| 少妇猛男粗大的猛烈进出视频| 91精品三级在线观看| 黄片播放在线免费| 亚洲男人天堂网一区| 国产高清国产精品国产三级| 日韩欧美一区视频在线观看| 色尼玛亚洲综合影院| 两个人免费观看高清视频| 欧美中文综合在线视频| 精品人妻在线不人妻| 午夜久久久在线观看| 一区福利在线观看| 国产精品一区二区在线不卡| 中文字幕人妻丝袜一区二区| 一级毛片精品| 国产一区二区三区在线臀色熟女 | 亚洲国产中文字幕在线视频| 久久毛片免费看一区二区三区| 多毛熟女@视频| av视频免费观看在线观看| av一本久久久久| 久久天堂一区二区三区四区| 黄色a级毛片大全视频| 99国产精品免费福利视频| 精品少妇久久久久久888优播| 精品少妇黑人巨大在线播放| 国精品久久久久久国模美| 国产三级黄色录像| 91九色精品人成在线观看| 天天添夜夜摸| 欧美性长视频在线观看| 99热国产这里只有精品6| 国产精品免费视频内射| 汤姆久久久久久久影院中文字幕| 丰满饥渴人妻一区二区三| 欧美精品一区二区免费开放| 久久久久久久国产电影| av片东京热男人的天堂| 99re在线观看精品视频| 国产高清videossex| 欧美老熟妇乱子伦牲交| 久久青草综合色| 99在线人妻在线中文字幕 | 自线自在国产av| 极品人妻少妇av视频| 免费看a级黄色片| 亚洲精品乱久久久久久| 欧美黑人精品巨大| 国产人伦9x9x在线观看| 亚洲精品美女久久av网站| 久久 成人 亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 老熟妇仑乱视频hdxx| 别揉我奶头~嗯~啊~动态视频| 狠狠精品人妻久久久久久综合| 国产国语露脸激情在线看| 精品亚洲乱码少妇综合久久| 亚洲成国产人片在线观看| 国产真人三级小视频在线观看| www.精华液| 1024香蕉在线观看| 国产av国产精品国产| 91成年电影在线观看| 美国免费a级毛片| 狠狠狠狠99中文字幕| 777久久人妻少妇嫩草av网站| 中亚洲国语对白在线视频| 黄网站色视频无遮挡免费观看| 波多野结衣一区麻豆| 好男人电影高清在线观看| 两人在一起打扑克的视频| 欧美精品高潮呻吟av久久| 成人三级做爰电影| 精品乱码久久久久久99久播| 国产免费视频播放在线视频| 性色av乱码一区二区三区2| 下体分泌物呈黄色| 两性夫妻黄色片| 午夜精品国产一区二区电影| 一本色道久久久久久精品综合| 巨乳人妻的诱惑在线观看| 欧美国产精品一级二级三级| 欧美黄色片欧美黄色片| 亚洲综合色网址| 老熟女久久久| 成年人黄色毛片网站| 无限看片的www在线观看| 一本一本久久a久久精品综合妖精| 一本—道久久a久久精品蜜桃钙片| 国产成人欧美| 午夜福利在线观看吧| 大陆偷拍与自拍| 最新美女视频免费是黄的| av在线播放免费不卡| 成人国产av品久久久| 国产av又大| 大型黄色视频在线免费观看| 最新在线观看一区二区三区| 80岁老熟妇乱子伦牲交| 脱女人内裤的视频| 极品教师在线免费播放| 国产精品98久久久久久宅男小说| 波多野结衣一区麻豆| 亚洲精品在线观看二区| 老司机福利观看| 91麻豆精品激情在线观看国产 | 男女高潮啪啪啪动态图| 十八禁网站免费在线| 大片免费播放器 马上看| 日本a在线网址| 在线观看免费视频日本深夜| 别揉我奶头~嗯~啊~动态视频| 国产日韩欧美亚洲二区| 丰满人妻熟妇乱又伦精品不卡| 91精品三级在线观看| 久久精品国产综合久久久| 久久久久久久精品吃奶| 亚洲精品一卡2卡三卡4卡5卡| 久久午夜亚洲精品久久| 精品亚洲成国产av| 亚洲欧洲日产国产| 午夜福利,免费看| 一级毛片精品| 亚洲av日韩在线播放| 亚洲五月色婷婷综合| 欧美日韩一级在线毛片| 丝袜喷水一区| 成人18禁高潮啪啪吃奶动态图| 国产午夜精品久久久久久| 亚洲专区字幕在线| 1024视频免费在线观看| 18禁观看日本| 高清av免费在线| 亚洲成av片中文字幕在线观看| 中文字幕高清在线视频| 亚洲av日韩在线播放| 久久久精品区二区三区| 色婷婷av一区二区三区视频| 国产免费av片在线观看野外av| 啦啦啦在线免费观看视频4| 老司机影院毛片| 欧美激情久久久久久爽电影 | 国产男靠女视频免费网站| 法律面前人人平等表现在哪些方面| 久久av网站| 99九九在线精品视频| 日韩人妻精品一区2区三区| 每晚都被弄得嗷嗷叫到高潮| av又黄又爽大尺度在线免费看| 宅男免费午夜| 欧美乱码精品一区二区三区| 一边摸一边抽搐一进一小说 | 成在线人永久免费视频| 黄色成人免费大全| 国产成人av教育| 欧美在线黄色| 久久99热这里只频精品6学生| 中文字幕另类日韩欧美亚洲嫩草| 成人特级黄色片久久久久久久 | 午夜视频精品福利| 午夜激情久久久久久久| 亚洲熟妇熟女久久| 热99国产精品久久久久久7| 亚洲人成电影观看| 久久精品国产a三级三级三级| 亚洲欧洲日产国产| 性高湖久久久久久久久免费观看| 97人妻天天添夜夜摸| 操出白浆在线播放| 午夜福利乱码中文字幕| 黄色怎么调成土黄色| 天堂中文最新版在线下载| 午夜两性在线视频| 久久久久久亚洲精品国产蜜桃av| 宅男免费午夜| 成人永久免费在线观看视频 | 18禁观看日本| 亚洲国产中文字幕在线视频| 亚洲中文av在线| 老熟妇乱子伦视频在线观看| 久久久国产成人免费| 啦啦啦免费观看视频1| 久久热在线av| 久久人妻熟女aⅴ| 超碰97精品在线观看| 亚洲第一欧美日韩一区二区三区 | 国产精品久久电影中文字幕 | 露出奶头的视频| 欧美人与性动交α欧美软件| 18在线观看网站| 女人高潮潮喷娇喘18禁视频| 亚洲精品国产色婷婷电影| 亚洲精品国产精品久久久不卡| 曰老女人黄片| 热99re8久久精品国产| 国产精品久久久人人做人人爽| 一区二区三区国产精品乱码| 电影成人av| 99久久人妻综合| 丰满人妻熟妇乱又伦精品不卡| 成年人免费黄色播放视频| 曰老女人黄片| 国产极品粉嫩免费观看在线| 国产免费av片在线观看野外av| 成人精品一区二区免费| 国产精品 国内视频| 国产深夜福利视频在线观看| 18禁裸乳无遮挡动漫免费视频| 另类亚洲欧美激情| 丝袜美足系列| 黄片大片在线免费观看| 亚洲欧美色中文字幕在线| 久久99热这里只频精品6学生| 69av精品久久久久久 | 91麻豆av在线| 国产精品九九99| 老司机在亚洲福利影院| 老司机午夜十八禁免费视频| 国产精品免费一区二区三区在线 | 国产精品亚洲一级av第二区| 十分钟在线观看高清视频www| 中文字幕人妻丝袜一区二区| 欧美 亚洲 国产 日韩一| a在线观看视频网站| 少妇精品久久久久久久| av一本久久久久| 欧美激情极品国产一区二区三区| 欧美日韩精品网址| 极品人妻少妇av视频| 色老头精品视频在线观看| 麻豆国产av国片精品| 欧美av亚洲av综合av国产av| 国产av国产精品国产| 性高湖久久久久久久久免费观看| 老熟妇乱子伦视频在线观看| 极品人妻少妇av视频| 美女高潮喷水抽搐中文字幕| 国产精品熟女久久久久浪| 日本一区二区免费在线视频| 亚洲精品一二三| 老司机深夜福利视频在线观看| 欧美日韩一级在线毛片| 久久狼人影院| 丁香六月欧美| 汤姆久久久久久久影院中文字幕| av天堂在线播放| 国产高清国产精品国产三级| 香蕉丝袜av| 又紧又爽又黄一区二区| 国产单亲对白刺激| 欧美日本中文国产一区发布| 国产精品99久久99久久久不卡| 国产国语露脸激情在线看| 久久久欧美国产精品| 中文字幕高清在线视频| 成人手机av| 日韩精品免费视频一区二区三区| 亚洲欧美一区二区三区久久| 男人操女人黄网站| 80岁老熟妇乱子伦牲交| 中文字幕精品免费在线观看视频| 在线观看免费午夜福利视频| 欧美变态另类bdsm刘玥| 一本综合久久免费| 久久香蕉激情| 国产一卡二卡三卡精品| 99国产精品一区二区三区|