• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PAN纖維炭化過程致密化機理研究

    2016-11-22 07:31:24馬全勝高愛君童元建張佐光
    新型炭材料 2016年5期
    關(guān)鍵詞:研究

    馬全勝, 高愛君, 童元建, 張佐光

    (1.北京航空航天大學(xué) 材料科學(xué)與工程學(xué)院,北京100191;2.北京化工大學(xué) 國家碳纖維工程技術(shù)研究中心,北京100029)

    ?

    PAN纖維炭化過程致密化機理研究

    馬全勝1, 高愛君2, 童元建2, 張佐光1

    (1.北京航空航天大學(xué) 材料科學(xué)與工程學(xué)院,北京100191;2.北京化工大學(xué) 國家碳纖維工程技術(shù)研究中心,北京100029)

    研究了PAN纖維在不同炭化溫度下(900~1 400 ℃)的致密性變化規(guī)律及機理。研究表明,隨炭化溫度升高,纖維密度出現(xiàn)增大-減小-增大-減小的變化規(guī)律,在炭化溫譜[900,T]與[T,0]下密度具有相同的變化規(guī)律,但出現(xiàn)極值的溫度不同,而兩種溫譜下密度隨元素含量的變化則完全一致。在炭化溫譜[900,T]下,1 050 ℃之前以縮聚反應(yīng)為主,小分子氣體快速逸出,密度快速增大;纖維在1 050 ℃左右出現(xiàn)最大失重速率,石墨微晶片層增長速度變緩,氮氣釋放量最大;1 050 ℃之后以裂解反應(yīng)為主,元素大量裂解逸出使纖維密度迅速下降;1 250 ℃之后纖維中只有氮氣逸出,石墨化轉(zhuǎn)變與氮元素快速逸出的競爭反應(yīng)使得密度先增后降,在1 350 ℃出現(xiàn)極大值。

    炭纖維; 致密化; 炭化; 縮聚; 裂解

    1 Introduction

    Polyacrylonitrile (PAN)-based carbon fibers are the most attractive as reinforcement for advanced composites[1-7], in the aerospace and national defense industry. Carbonization is a necessary step to convert PAN fibers to high-strength carbon fibers[8, 9]and its importance is the same as stabilization[10, 11]. Carbonization is typically carried out in an inert atmosphere at a high temperature (900-1 600 ℃). During this process, non-carbon elements are released from the high-molecular-weight polymers to enrich carbon and the density of the fibers increases. In carbonization, stabilized fibers are subjected to heat treatment with an increasing temperature profile within a total residence time of only a few minutes[12-16]. To avoid thermal shock, low-temperature heat treatment usually between 300 and 800 ℃ is applied prior to carbonization.

    Densification of carbon fibers is very important to obtain high performance product. In this work, we prepared PAN pre-carbonized fibers, which were then carbonized in a high temperature carbonization furnace in the temperature range of 900-1 400 ℃. Various techniques were used to analyze the densification mechanism in relation to the chemical compositions, structures, and the reaction types. The results of our studies can provide guidelines for choosing more reasonable temperature schemes of carbonization to get highly-densified carbon fibers.

    2 Experimental

    Each tow of PAN fibers used to prepare the fiber samples contained 12 000 strands of monofilament (QF0901, Jilin Qifeng Chemical Fiber Co., LTD, China). Before high temperature heat treatment, PAN fibers were pretreated by passing first through a stabilization furnace and then a pre-carbonization furnace s to get the “pre-carbonized” fibers. The stabilization furnace was divided into six zones (2 m per zone) set at different temperatures (200, 218, 223, 237, 254, and 257 ℃). The pre-carbonization furnace was divided into three zones (0.3 m per zone) set at 350, 450, and 680 ℃. The pre-carbonized fibers were then heat treated at a high temperature carbonization furnace with two zones (0.3 m per zone). Two temperature schemes denoted as [900, T] and [T, 0] for high-temperature carbonization were used. [900, T] means that the first zone was fixed at 900°C and the second zone with variable experimental temperatures. [T, 0] means that the temperature of the first zone was variable and the heating device of the second zone was switched off.

    Elemental analysis was carried out with an Elementar Vario MICRO CUBE (Germany) elemental analyzer. The carbon, hydrogen, and nitrogen contents were analyzed in the carbonization.

    TG-MS was carried out in an Ar atmosphere using a Netzsch STA449C system at a heating rate of 30 ℃/min from 30 to 1 400 ℃.

    Changes in crystal structure that occurred during heat treatment were determined by using a Philips X’Pert PRO MDP diffractometer (operated at 40 kV and 40 mA) with Ni-filtered CuKαradiation. Data were collected over the 2θrange from 10° to 90° at a scan rate of 1(°)/min. The apparent crystallite size was calculated from the fully corrected and resolved peak profiles. The crystallite size was calculated from the Scherrer equation (Eq.1) using the diffraction peak position and the full widths at half maximum (FWHM):

    L(n/k)=Kλ/Bcosθ

    (1)

    whereθis the diffraction peak position of the (nlk) plane,λ=0.154 06 nm is the wavelength of the X-rays,Bis the FWHM the peak in radians of andKis the Scherer geometric or shape factor. The crystallite correlation length (La) along the fiber axis was determined by the (110) diffraction peak of the meridian scan. The shape factorKis 1.84 forLa.

    Fiber tension was measured on-line during the high temperature carbonization by a tension meter (Schmidt DTMX-2000, German).

    The density was measured at 25 ℃ in a density-gradient column (LLORD, UK), prepared with a mixture of 1,2-dibromoethane and carbon tetrachloride, which gave a density gradient from about 1.65 to 1.85 g/cm3from the top to the bottom.

    3 Results and discussion

    3.1 TG curves of the pre-carbonized fibers in He atmosphere

    The TG curve of the pre-carbonized fibers at a heating rate of 30 ℃/min is shown in Fig. 1.

    Fig. 1 TG and DTG curves of the pre-carbonized fibers.

    The mass of the fibers decreases with temperature. Below 700 ℃, only a small amount of weight loss is observed because the fibers had been treated at 680 ℃ in the pre-carbonization. Between 700 ℃ and 1 050 ℃, the amount of weight loss increases appreciably, owing to the release of non-carbon elements from chemical reactions occurring at elevated temperature. Above 1 050 ℃, the weight loss in the TG curve begins to level off, which is indicative of a low content of non-carbon elements. The total weight loss of the fibers during heat treatment was 26.2%. In the derivative themogravimetric analysis (DTG) curve in Fig. 1, two peaks were detected, which represented two discrete weight-loss temperature regimes: 700-900 ℃ and 900-1 400 ℃, corresponding to weight losses of 6.2% and 14.9% respectively.

    3.2 Elemental analysis

    In the pre-carbonized fibers, there was a large amount of nitrogen, hydrogen, and oxygen, the content of which changed during the high-temperature carbonization, as shown in Fig. 2. Under the [900, T] and [T, 0] temperature schemes, the carbon and nitrogen contents varied in a similar manner, although their changing rate was faster under the [900, T] temperature scheme than the [T, 0] one mainly because the carbonization at low temperature was prolonged. As mentioned in the previous section, there was a mass loss at 700-900 ℃. For the [900, T] temperature scheme, there was a significant drop in nitrogen content above 900 ℃ with a maximum releasing rate occurring at around 1 050 ℃. Below 900 ℃, the increase in the relative carbon content was slow and the release of nitrogen was insignificant. However, above 900 ℃, the relative carbon content in the fibers increased markedly owing to the rapid release of nitrogen.

    Fig. 2 Relative contents of elemental (a) nitrogen and (b) carbon as a function of temperature.

    TG-MS tests were conducted from 30 to 1 400 ℃ with a rate of 30 ℃/min and the results are shown in Fig. 3. Mass number 2 corresponds to H2, 15 to CH4, 16 to CH4/NH3, 17 to NH3, 18 to H2O, 26 and 27 to HCN, 28 to N2/CO and 44 to CO2. With increasing temperature, nitrogen was released from the fibers in the form of NH3, HCN and N2. Below 900 ℃, nitrogen was released more slowly in the form of NH3and HCN. When the temperature reached 900 ℃, the maximum release corresponded to N2. The rate of N2release correlates with the decrease in the elemental nitrogen content in the fibers. At around 1 050 ℃, the release rate of N2(Fig.3) and rate of decrease in elemental nitrogen content (Fig.2) in the fibers both reached their peak, which corresponded to the maximum weight-loss rate of the fibers(Fig.1) .

    Fig. 3 Release of small gas molecules as a function of temperature by TG-MS test.

    3.3 X-ray diffraction

    The values ofLa increased as a function of heat-treatment temperature, as shown in Fig. 4.

    Fig. 4 La as a function of temperature.

    At low temperatures,La increased more rapidly because the molecules were cross-linked by condensation reaction and small graphite crystallites were transformed into largenes. At around 1 050 ℃, pyrolysis reactions begin to dominate while the influence of the condensation reaction was reduced, leading to a slow increasing rate ofLa with temperature between 1 050 and about 1 200 ℃. However, above 1 200 ℃, the high temperature facilitated graphitization andLa increased sharply.

    3.4 Fiber tension

    The fiber tension during high-temperature treatment is shown in Fig. 5. The fiber tension initially increased with increasing temperature, and then levelled off. For the temperature scheme [900, T], the fiber tension increased to a maximum value at 1 200 ℃, whereas for [T, 0], the maximum was detected at 1 300 ℃. The tension and fiber deformation capacity varied according to the type of reaction that was dominant. At low temperatures, the condensation reaction rate was progressively intensified with increasing temperature and significant fiber contraction resulted in the increase of tension rapidly. At a critical temperature, the tension stopped increasing because the condensation reaction was slowed and the fiber contraction in the pyrolysis reaction was small.

    Fig. 5 Fiber tension as a function of temperature.

    3.5 Density of fibers

    The bulk density of the pre-carbonized fibers was 1.63 g/cm3. The bulk density of the fibers after high-temperature carbonization is shown in Fig. 6. After the heat treatment between 900 and 1 400 ℃, the bulk density became much higher than that of the pre-carbonized fibers owing to mainly the condensation reactions. For [900, T], the bulk density rapidly increased with increasing temperature and reached a maximum value of 1.83 g/cm3at 1 000 ℃. It decreased to 1.78 g/cm3at 1 050 ℃, but then slowly increased again as the temperature increased, reaching another peak of 1.79 g/cm3at 1 250 ℃. The density for [T, 0] and [900, T] varied in the same manner, but the characteristic temperature corresponding to the density maximum was 100 ℃ higher in the former than that in the latter.

    Fig. 6 Fiber density as a function of temperature.

    3.6 Densification mechanism

    The variation of the fiber density with increasing the elemental contents of nitrogen and carbon is shown in Fig. 7.

    Fig. 7 Density as a function of elemental contents: (a) nitrogen and (b) carbon.

    The trends are similar for both temperature schemes. This indicates that the temperature influences the density by inducing chemical reactions that alter the elemental compositions. With the elevation of carbonization temperature, the concentrations of nitrogen, hydrogen, and oxygen, as well as the rate of condensation reactions between molecules are gradually reduced. The pyrolysis reactions become dominant in the fibers and then produce a large number of holes left by releasing of small molecules, causing the density to decrease with increasing carbonization temperature. Meanwhile, the graphitization in which amorphous carbon is transformed into graphitic carbon is activated, which increases the extent of ordering of graphene layers and thereby the density pf carbon fibers. With a further increase in carbonization temperature, a small amount of residual nitrogen undergoes a rapid pyrolysis[17], leading to a gradual reduction in density.

    4 Conclusions

    The density evolution of carbon fibers during high-temperature carbonization between 900 ℃ and 1 400 ℃ was investigated by compositional and structural analysis. Two maximum values of fiber density were observed at different temperatures, depending on the temperature schemes applied. For a carbonization temperature scheme of [900, T], a maximum rate of fiber weight loss occurred at around 1 050 ℃. Above 1 250 ℃, only N2escaped from the fibers. The influences of three major reactions were identified in the carbonization: condensation, pyrolysis and graphitization. At low temperatures, the condensation reactions were dominant because of the large amounts of heteroatoms of nitrogen, hydrogen, and oxygen in the fibers, leading to an increase of the fiber density. A further increase of the temperature caused the heteroatom content and rate of condensation to reduce, while pyrolysis reactions occurred, thereby reducing the fiber density. Graphitization and pyrolysis to release nitrogen were accelerated at high temperatures. Competition between these two reactions resulted in the maximum fiber density with increasing temperature.

    如我在《物體在水中的沉浮》一課的教學(xué)中,物體的沉浮和它們的大小、輕重有關(guān)嗎?這一問題的提出,我先引用猜一猜的方法,然后讓學(xué)生在推理的基礎(chǔ)上進(jìn)行實驗,最后學(xué)生通過親手實驗,將實驗的結(jié)果與猜測進(jìn)行比較,激發(fā)了學(xué)生的學(xué)習(xí)欲望。

    [1] REN Gui-zhi, CHEN Cong-jie, DENG Li-hui, et al. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy[J]. New Carbon Materials, 2015, 30(5): 476-480.

    [2] Li M, Gu Y Z, Liu Y N, et al. Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotuves on the fibers[J]. Carbon, 2013, 52: 109-121.

    [3] Li W, Long D H, Miyawaki J, et al. Structural feature of polyacrylonitrile-based carbon fibers[J]. Journal of Materials and Science, 2012, 47(2): 919-928.

    [4] ZHAO Yu-hua, LI Qi-feng, WANG Jun-wei, et al. Preparation and properties of carbon fiber/polyether polyurethane composites[J]. New Carbon Materials, 2014, 29(6): 454-453.

    [5] Tong Y J, Wang X Q, Su H, et al. Oxidation kinetics of polyacrylonitrile-based carbon fibers in air and the effect on their tensile properties[J]. Corrosion Science, 2011, 50(8): 2484-2488.

    [6] Wu G P, Li D H, Yang Y, et al. Microvoid evolution in carbon fibers during graphitization for the preparation of carbon/carbon composites[J]. New Carbon Materials, 2014, 29(1): 41-46.

    [7] Gao A J, Gu Y Z, Wu Q, et al. Influence of processing temperature on interfacial behavior of HKT800 carbon fiber with BMI and epoxy matrices[J]. Chinese Journal of Aeronautics, 2015, 28(4): 1255-1262.

    [8] Mittal J, Konno H, Inagaki M, et al. Denitrogenation behavior and tensile strength increase during carbonization of stabilized PAN fibers[J]. Carbon, 1998, 36: 1327-1330.

    [9] Ko T H, Li C H. The influence of pre-carbonization on the properties of pan-based carbon fibers developed by two-stage continuous carbonization and air oxidation[J]. Polymer Composites, 1995, 16: 224-232.

    [10] Kalashinik A T. The role of different factors in creation of the structure of stalilized acrylic fibers[J]. Fibre Chemistry, 2002, 34: 11-17.

    [11] Gupta A, Harrison I R. New aspects in the oxidative stabilization of PAN-base carbon fibers[J]. Carbon, 1996, 34: 1427-1445.

    [12] Liu J, Wang P H, Li R Y. Continuous carbonization of polyacrylonitrile based oxidized fibers: aspects on mechanical properties and morphological structure[J]. Journal of Applied Polymer Science, 1994, 52(7): 945-950.

    [13] Li L Y, Huang Q Z, Zhang H B. Study on the carbonization of polyacrylonitrile-based preoxidized fibres[J]. Materials Science and Engineering or Powder Metallargy, 2000, 5(1): 69-74.

    [14] Watt W. Nitrogen evolution during the pyrolysis of polyacrylonitrile[J]. Nature: Physical Science, 1972, 235: 10-11.

    [15] Ko T, Day T, Perng J. The characterization of PAN-based carbon fibers developed by two stage continuous carbonization[J]. Carbon, 1993, 31(5): 765-771.

    [16] Ko T. The influence of pyrolysison physical properties and microstructure of modified PAN fiber during carbonization[J]. Journal of Applied Polymer Science, 1991, 43(3): 589-600.

    [17] Gao A J, Su C J, Luo S, et al. Densification mechanism of polyacrylonitrile-based carbon fiber during heat treatment[J]. Journal of Physics and Chemistry of Solids, 2011, 72: 1159-1164.

    The densification mechanism of polyacrylonitrile carbon fibers during carbonization

    MA Quan-sheng1, GAO Ai-jun2, TONG Yuan-jian2, ZHANG Zuo-guang1

    (1.SchoolofMaterialsScienceandEngineering,BeihangUniversity,Beijing100191,China;2.NationalCarbonFiberEngineeringResearchCenter,BeijingUniversityofChemicalTechnology,Beijing100029,China)

    The densification mechanism of polyacrylonitrile carbon fibers during carbonization from 900 to 1 400 ℃ was investigated. The density, elemental composition, microstructure and weight loss of the fibers, as well as the gases released during the process were analyzed to reveal the mechanism. Results indicated that the density of the fibers was strongly dependent on the carbonization temperature and reactions involved indifferent temperature regimes. Condensation, pyrolysis and graphitization reactions were dominant at low (<1 050 ℃), medium (1 050-1 250 ℃) and high (>1 250 ℃) temperatures, respectively. The amount of small molecule gas released and the fiber density both increased rapidly with temperature when condensation reactions dominated. The fiber density decreased as a result of nitrogen release when pyrolysis reactions dominated above 1050 °C while the fiber density increased due to the growth and increase in order of the graphene layers during graphitization. The two fiber density maxima found with increasing carbonization temperature were attributed to the different reactions.

    Carbon fiber; Densification; Carbonization; Condensation; Pyrolysis

    National High Technology Research and Development Program of China(2015AA03A202).

    GAO Ai-jun, Ph.D, Lecturer. E-mail: bhgaoaijun@163.com

    國家863計劃(2015AA03A202).

    高愛君,講師.E-mail: bhgaoaijun@163.com

    馬全勝,博士研究生.E-mail: terrymark@163.com

    1007-8827(2016)05-0550-05

    TQ342+.74

    A

    Authorintroduction: MA Quan-sheng, Ph.D, Candidate. E-mail: terrymark@163.com

    10.1016/S1872-5805(16)60031-8

    Receiveddate: 2016-08-15;Reviseddate: 2016-10-12

    English edition available online ScienceDirect (http:www.sciencedirect.comsciencejournal18725805).

    猜你喜歡
    研究
    FMS與YBT相關(guān)性的實證研究
    2020年國內(nèi)翻譯研究述評
    遼代千人邑研究述論
    視錯覺在平面設(shè)計中的應(yīng)用與研究
    科技傳播(2019年22期)2020-01-14 03:06:54
    關(guān)于遼朝“一國兩制”研究的回顧與思考
    EMA伺服控制系統(tǒng)研究
    基于聲、光、磁、觸摸多功能控制的研究
    電子制作(2018年11期)2018-08-04 03:26:04
    新版C-NCAP側(cè)面碰撞假人損傷研究
    關(guān)于反傾銷會計研究的思考
    焊接膜層脫落的攻關(guān)研究
    電子制作(2017年23期)2017-02-02 07:17:19
    男女午夜视频在线观看| 国产野战对白在线观看| 91麻豆av在线| 99国产综合亚洲精品| av国产精品久久久久影院| 永久免费av网站大全| 成人国产一区最新在线观看 | 国产黄色视频一区二区在线观看| 欧美日韩视频高清一区二区三区二| 欧美xxⅹ黑人| 男人添女人高潮全过程视频| 99九九在线精品视频| 一本—道久久a久久精品蜜桃钙片| 亚洲av日韩在线播放| 亚洲精品美女久久久久99蜜臀 | av视频免费观看在线观看| 三上悠亚av全集在线观看| 国产精品一二三区在线看| 侵犯人妻中文字幕一二三四区| 亚洲午夜精品一区,二区,三区| 日本欧美国产在线视频| 又紧又爽又黄一区二区| a级毛片黄视频| 777久久人妻少妇嫩草av网站| 又紧又爽又黄一区二区| 女性被躁到高潮视频| 天天躁日日躁夜夜躁夜夜| av在线播放精品| 丰满迷人的少妇在线观看| 爱豆传媒免费全集在线观看| 后天国语完整版免费观看| 男女边摸边吃奶| 麻豆国产av国片精品| 亚洲国产av新网站| 91国产中文字幕| 最近最新中文字幕大全免费视频 | 熟女少妇亚洲综合色aaa.| 免费久久久久久久精品成人欧美视频| 99热网站在线观看| 视频区图区小说| 91国产中文字幕| 成人黄色视频免费在线看| 美女大奶头黄色视频| 国产有黄有色有爽视频| www.av在线官网国产| kizo精华| 日韩 欧美 亚洲 中文字幕| 久久久久久久大尺度免费视频| 亚洲综合色网址| 久久久久视频综合| 午夜老司机福利片| 一区二区av电影网| 狂野欧美激情性xxxx| 成年女人毛片免费观看观看9 | 男人舔女人的私密视频| 一边摸一边抽搐一进一出视频| 老司机影院成人| 丁香六月欧美| 日本猛色少妇xxxxx猛交久久| 18禁黄网站禁片午夜丰满| 欧美xxⅹ黑人| 在线精品无人区一区二区三| 午夜影院在线不卡| 国产亚洲一区二区精品| 精品卡一卡二卡四卡免费| 亚洲精品国产一区二区精华液| 一边亲一边摸免费视频| 91九色精品人成在线观看| 国产又色又爽无遮挡免| 国产高清视频在线播放一区 | 久久青草综合色| 中国国产av一级| 久久影院123| 亚洲一区二区三区欧美精品| 精品国产一区二区三区久久久樱花| 日韩制服丝袜自拍偷拍| 国产激情久久老熟女| 国产成人91sexporn| 久久九九热精品免费| 狠狠婷婷综合久久久久久88av| 交换朋友夫妻互换小说| 人成视频在线观看免费观看| 欧美激情极品国产一区二区三区| 欧美黄色片欧美黄色片| av有码第一页| 国产在线免费精品| 亚洲久久久国产精品| 老汉色av国产亚洲站长工具| 少妇被粗大的猛进出69影院| 成人国产一区最新在线观看 | 午夜福利一区二区在线看| avwww免费| 欧美av亚洲av综合av国产av| 亚洲三区欧美一区| 老司机影院成人| 美国免费a级毛片| 国产成人a∨麻豆精品| 高清不卡的av网站| 久久影院123| 免费久久久久久久精品成人欧美视频| 少妇人妻久久综合中文| 1024视频免费在线观看| 国产熟女欧美一区二区| 在线精品无人区一区二区三| 欧美黑人精品巨大| 日韩 欧美 亚洲 中文字幕| 亚洲av综合色区一区| 久热爱精品视频在线9| 最近手机中文字幕大全| 国精品久久久久久国模美| 男人舔女人的私密视频| 日韩免费高清中文字幕av| 中文字幕精品免费在线观看视频| 婷婷色综合www| 欧美人与性动交α欧美软件| 一级毛片我不卡| 亚洲国产最新在线播放| 大片免费播放器 马上看| av不卡在线播放| 亚洲欧美清纯卡通| 高清不卡的av网站| av国产精品久久久久影院| 日本猛色少妇xxxxx猛交久久| 一级毛片 在线播放| 精品一区二区三区四区五区乱码 | 久久免费观看电影| 超色免费av| 男的添女的下面高潮视频| 亚洲激情五月婷婷啪啪| 91精品三级在线观看| 国产不卡av网站在线观看| 国产主播在线观看一区二区 | 色精品久久人妻99蜜桃| 国产在线免费精品| 国产在线视频一区二区| 99re6热这里在线精品视频| 国产精品久久久人人做人人爽| 午夜福利乱码中文字幕| 免费少妇av软件| 妹子高潮喷水视频| 日韩一区二区三区影片| 精品福利观看| 999精品在线视频| 在线观看www视频免费| 久久久久国产精品人妻一区二区| 一二三四在线观看免费中文在| 无限看片的www在线观看| 久久久久精品国产欧美久久久 | 午夜福利视频在线观看免费| 亚洲精品中文字幕在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 中国美女看黄片| 亚洲国产精品一区二区三区在线| 肉色欧美久久久久久久蜜桃| 亚洲av国产av综合av卡| 久久精品成人免费网站| 人成视频在线观看免费观看| 男女下面插进去视频免费观看| 18在线观看网站| 99香蕉大伊视频| 视频在线观看一区二区三区| 大香蕉久久成人网| av网站免费在线观看视频| 久久精品国产亚洲av高清一级| 欧美精品一区二区大全| 亚洲精品自拍成人| 久久性视频一级片| 亚洲色图 男人天堂 中文字幕| 最近中文字幕2019免费版| 国产精品久久久人人做人人爽| 欧美变态另类bdsm刘玥| 精品一品国产午夜福利视频| 欧美激情 高清一区二区三区| 两个人免费观看高清视频| av视频免费观看在线观看| 久久av网站| 少妇被粗大的猛进出69影院| 精品人妻熟女毛片av久久网站| 啦啦啦 在线观看视频| 国产不卡av网站在线观看| kizo精华| 捣出白浆h1v1| 51午夜福利影视在线观看| 十八禁人妻一区二区| 在线观看免费午夜福利视频| 狂野欧美激情性xxxx| 久久久国产一区二区| 久久久久久久久免费视频了| 人人妻人人添人人爽欧美一区卜| 午夜福利视频精品| av不卡在线播放| 久久久久久免费高清国产稀缺| 久久人人97超碰香蕉20202| 午夜两性在线视频| 亚洲精品在线美女| 女人高潮潮喷娇喘18禁视频| 丝袜喷水一区| 久久狼人影院| 人妻一区二区av| 国产亚洲欧美在线一区二区| 国产成人精品久久久久久| 天天操日日干夜夜撸| 99精国产麻豆久久婷婷| 黑丝袜美女国产一区| 国产亚洲欧美在线一区二区| 国产成人精品久久久久久| 最近最新中文字幕大全免费视频 | 爱豆传媒免费全集在线观看| 国产激情久久老熟女| 国产成人a∨麻豆精品| 国产免费一区二区三区四区乱码| 久久精品久久久久久久性| 亚洲少妇的诱惑av| 91成人精品电影| 精品一品国产午夜福利视频| 99re6热这里在线精品视频| 老司机影院毛片| 51午夜福利影视在线观看| 后天国语完整版免费观看| 久久久久视频综合| 欧美少妇被猛烈插入视频| 国精品久久久久久国模美| netflix在线观看网站| 下体分泌物呈黄色| 精品国产超薄肉色丝袜足j| 中文字幕制服av| 91成人精品电影| 一二三四社区在线视频社区8| 成人亚洲欧美一区二区av| 成年人黄色毛片网站| 日韩av免费高清视频| 国产av国产精品国产| 麻豆乱淫一区二区| av天堂在线播放| 亚洲成色77777| 欧美成狂野欧美在线观看| 天天躁夜夜躁狠狠久久av| 日本午夜av视频| 国产片内射在线| 人妻人人澡人人爽人人| 久久久精品区二区三区| 涩涩av久久男人的天堂| 美女中出高潮动态图| 永久免费av网站大全| 亚洲精品国产色婷婷电影| 曰老女人黄片| 新久久久久国产一级毛片| 亚洲欧美色中文字幕在线| 女人久久www免费人成看片| 老汉色av国产亚洲站长工具| 性高湖久久久久久久久免费观看| 国产成人精品久久二区二区91| 欧美人与性动交α欧美精品济南到| 精品国产一区二区久久| 久久久久久久精品精品| 手机成人av网站| 国产在线观看jvid| 天天添夜夜摸| 国产黄色免费在线视频| 女人精品久久久久毛片| 一区二区三区乱码不卡18| 中文字幕制服av| 热99久久久久精品小说推荐| 成人亚洲欧美一区二区av| 成年人黄色毛片网站| 日本猛色少妇xxxxx猛交久久| 男男h啪啪无遮挡| 国产精品久久久久久精品电影小说| 免费在线观看影片大全网站 | 国产精品香港三级国产av潘金莲 | 成人国产av品久久久| 丁香六月欧美| 9热在线视频观看99| 91字幕亚洲| 人妻 亚洲 视频| 五月开心婷婷网| 色精品久久人妻99蜜桃| 十八禁人妻一区二区| 啦啦啦在线观看免费高清www| 久久99热这里只频精品6学生| a 毛片基地| 好男人电影高清在线观看| 久久天堂一区二区三区四区| 人体艺术视频欧美日本| 欧美日韩视频精品一区| 后天国语完整版免费观看| 狂野欧美激情性xxxx| 色综合欧美亚洲国产小说| 亚洲情色 制服丝袜| 老司机深夜福利视频在线观看 | 青春草亚洲视频在线观看| 亚洲欧美一区二区三区久久| 飞空精品影院首页| 精品一品国产午夜福利视频| 国产在线免费精品| 亚洲美女黄色视频免费看| 免费av中文字幕在线| a级毛片黄视频| 国产野战对白在线观看| 在线精品无人区一区二区三| 麻豆av在线久日| 女人精品久久久久毛片| 国产成人免费无遮挡视频| 韩国高清视频一区二区三区| 极品少妇高潮喷水抽搐| 欧美日韩综合久久久久久| 亚洲欧美成人综合另类久久久| 国产精品一区二区免费欧美 | 亚洲国产精品一区三区| 一本综合久久免费| 亚洲图色成人| 捣出白浆h1v1| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩高清在线视频 | 国产精品免费视频内射| 亚洲精品一区蜜桃| 看免费成人av毛片| 日本色播在线视频| 久久ye,这里只有精品| 下体分泌物呈黄色| 在线观看免费视频网站a站| 国产成人精品久久二区二区91| 黑人猛操日本美女一级片| 97精品久久久久久久久久精品| 国产精品香港三级国产av潘金莲 | 欧美少妇被猛烈插入视频| 日日爽夜夜爽网站| 国产精品一二三区在线看| 午夜福利乱码中文字幕| 国产精品国产三级专区第一集| 男女高潮啪啪啪动态图| 侵犯人妻中文字幕一二三四区| 成年动漫av网址| 男女下面插进去视频免费观看| 一级片'在线观看视频| 五月天丁香电影| 欧美在线黄色| 国产一卡二卡三卡精品| 免费观看av网站的网址| 大话2 男鬼变身卡| 亚洲欧美成人综合另类久久久| 人人妻人人添人人爽欧美一区卜| 韩国高清视频一区二区三区| 久久av网站| 欧美亚洲 丝袜 人妻 在线| 大码成人一级视频| 一本久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av在线免费看完整版不卡| 男女国产视频网站| 99热全是精品| 在线天堂中文资源库| 日韩伦理黄色片| 国精品久久久久久国模美| 日韩中文字幕欧美一区二区 | 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 久久久久久免费高清国产稀缺| 一二三四社区在线视频社区8| 色精品久久人妻99蜜桃| 一级毛片电影观看| 亚洲国产精品成人久久小说| 欧美老熟妇乱子伦牲交| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区在线观看av| av国产久精品久网站免费入址| 三上悠亚av全集在线观看| 久久中文字幕一级| av网站在线播放免费| 日韩 亚洲 欧美在线| 男人添女人高潮全过程视频| 日韩大码丰满熟妇| 亚洲欧美日韩高清在线视频 | 90打野战视频偷拍视频| 亚洲av成人精品一二三区| 午夜福利影视在线免费观看| 亚洲少妇的诱惑av| av有码第一页| 性少妇av在线| 精品少妇内射三级| 日本五十路高清| 成人免费观看视频高清| 欧美日韩视频精品一区| 日本av手机在线免费观看| 久久精品国产a三级三级三级| 亚洲五月婷婷丁香| 日本欧美国产在线视频| 一本一本久久a久久精品综合妖精| 操美女的视频在线观看| 精品国产超薄肉色丝袜足j| 成年美女黄网站色视频大全免费| 午夜91福利影院| 色网站视频免费| 一本久久精品| 免费观看av网站的网址| 97人妻天天添夜夜摸| 欧美精品人与动牲交sv欧美| 亚洲午夜精品一区,二区,三区| 亚洲成色77777| 亚洲av电影在线观看一区二区三区| 国产深夜福利视频在线观看| 亚洲七黄色美女视频| 人妻人人澡人人爽人人| 国产成人精品无人区| 欧美日韩精品网址| 十八禁人妻一区二区| 免费看av在线观看网站| 操出白浆在线播放| 日本91视频免费播放| 日韩伦理黄色片| 黄色视频在线播放观看不卡| 老汉色av国产亚洲站长工具| 欧美精品av麻豆av| 少妇精品久久久久久久| 一区二区三区精品91| 老司机影院成人| 国产精品一区二区在线观看99| 中文字幕最新亚洲高清| 波多野结衣av一区二区av| 只有这里有精品99| 一区二区三区乱码不卡18| 深夜精品福利| 成人国产av品久久久| 午夜福利,免费看| 又粗又硬又长又爽又黄的视频| 国产高清视频在线播放一区 | 视频在线观看一区二区三区| av国产精品久久久久影院| 精品亚洲成a人片在线观看| 久久99精品国语久久久| 欧美 亚洲 国产 日韩一| 国产成人精品在线电影| 日本av手机在线免费观看| 欧美激情 高清一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 欧美精品亚洲一区二区| 九草在线视频观看| 亚洲人成网站在线观看播放| 少妇被粗大的猛进出69影院| a级毛片在线看网站| 看免费av毛片| 一个人免费看片子| 在线观看免费午夜福利视频| 一级黄色大片毛片| 久久久国产精品麻豆| 中文字幕最新亚洲高清| h视频一区二区三区| 国产麻豆69| 一区二区三区激情视频| 黑丝袜美女国产一区| 亚洲欧美日韩高清在线视频 | 男女国产视频网站| 亚洲伊人色综图| 嫁个100分男人电影在线观看 | 欧美激情 高清一区二区三区| 少妇人妻久久综合中文| 9热在线视频观看99| 精品国产乱码久久久久久男人| 色婷婷av一区二区三区视频| 亚洲精品在线美女| 天堂中文最新版在线下载| 真人做人爱边吃奶动态| 欧美激情 高清一区二区三区| 狂野欧美激情性xxxx| 欧美性长视频在线观看| 一二三四社区在线视频社区8| 国产成人免费观看mmmm| 国产精品99久久99久久久不卡| 成年人免费黄色播放视频| 日韩制服骚丝袜av| 激情视频va一区二区三区| 99国产精品一区二区蜜桃av | 成人18禁高潮啪啪吃奶动态图| 91字幕亚洲| av网站免费在线观看视频| 亚洲精品久久午夜乱码| 男女无遮挡免费网站观看| 99精品久久久久人妻精品| 黄色视频在线播放观看不卡| 黄色一级大片看看| 久久久国产一区二区| 久久国产精品影院| 国产高清不卡午夜福利| 激情五月婷婷亚洲| av在线app专区| 国产精品成人在线| 丰满少妇做爰视频| 国产伦理片在线播放av一区| 少妇人妻久久综合中文| 一区二区三区激情视频| 国产有黄有色有爽视频| 国产精品一区二区免费欧美 | 妹子高潮喷水视频| 亚洲av日韩在线播放| 久久 成人 亚洲| 80岁老熟妇乱子伦牲交| 日韩制服骚丝袜av| 亚洲熟女毛片儿| 久久精品国产亚洲av高清一级| 久久久久久久久免费视频了| 亚洲欧美色中文字幕在线| 中文字幕人妻熟女乱码| 国产精品99久久99久久久不卡| 国产免费现黄频在线看| 男女边吃奶边做爰视频| 男女午夜视频在线观看| 日本av免费视频播放| 老司机亚洲免费影院| 欧美激情极品国产一区二区三区| 亚洲精品国产一区二区精华液| 女人高潮潮喷娇喘18禁视频| 国产精品偷伦视频观看了| 亚洲国产精品成人久久小说| 久久国产精品大桥未久av| 啦啦啦中文免费视频观看日本| 欧美在线黄色| 99久久精品国产亚洲精品| 精品少妇一区二区三区视频日本电影| 欧美激情高清一区二区三区| 黑人欧美特级aaaaaa片| av在线app专区| 日本wwww免费看| av线在线观看网站| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产区一区二| 日本av免费视频播放| 国产日韩欧美视频二区| 国产有黄有色有爽视频| 黄色怎么调成土黄色| 国产精品二区激情视频| 一级毛片女人18水好多 | 国产精品亚洲av一区麻豆| 人人妻,人人澡人人爽秒播 | 老司机亚洲免费影院| 美女脱内裤让男人舔精品视频| av国产精品久久久久影院| 精品人妻熟女毛片av久久网站| 各种免费的搞黄视频| 亚洲专区中文字幕在线| 观看av在线不卡| 婷婷成人精品国产| 大香蕉久久成人网| 久久人人爽人人片av| 男女免费视频国产| 真人做人爱边吃奶动态| 国产精品国产av在线观看| av又黄又爽大尺度在线免费看| 亚洲精品国产av蜜桃| 性色av乱码一区二区三区2| 水蜜桃什么品种好| 丝袜人妻中文字幕| 妹子高潮喷水视频| 极品人妻少妇av视频| 国产在线观看jvid| 久久免费观看电影| 中文乱码字字幕精品一区二区三区| 午夜福利在线免费观看网站| 男女边吃奶边做爰视频| 国产在线观看jvid| 99热网站在线观看| 亚洲图色成人| 麻豆国产av国片精品| 久久精品久久久久久久性| 男的添女的下面高潮视频| 9热在线视频观看99| 国产福利在线免费观看视频| 亚洲国产精品成人久久小说| 亚洲一码二码三码区别大吗| 中文字幕高清在线视频| 国产91精品成人一区二区三区 | 日本91视频免费播放| 人人妻人人澡人人看| 欧美日韩黄片免| 日韩大码丰满熟妇| a 毛片基地| cao死你这个sao货| 老司机影院成人| cao死你这个sao货| 水蜜桃什么品种好| 欧美激情高清一区二区三区| 无限看片的www在线观看| 亚洲国产精品一区二区三区在线| 91九色精品人成在线观看| 午夜福利免费观看在线| 国产成人精品久久二区二区免费| 捣出白浆h1v1| 青春草亚洲视频在线观看| 久久av网站| 校园人妻丝袜中文字幕| 黄色一级大片看看| 菩萨蛮人人尽说江南好唐韦庄| 91成人精品电影| 久久久久视频综合| 欧美黑人精品巨大| 亚洲欧洲精品一区二区精品久久久| 午夜免费男女啪啪视频观看| 国产精品一区二区在线不卡| 人妻一区二区av| 欧美日韩视频高清一区二区三区二| 免费看不卡的av| 搡老乐熟女国产| 亚洲精品一二三| 91老司机精品| 国产在线免费精品| 亚洲欧美清纯卡通| 国产伦人伦偷精品视频| 亚洲精品日本国产第一区| 久久免费观看电影| 亚洲精品国产区一区二| 久久九九热精品免费| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 精品人妻1区二区| 国产精品人妻久久久影院| 欧美黑人精品巨大|