唐 偉,肖應(yīng)輝,2*
(1.湖南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,湖南長(zhǎng)沙 410128;2.南方糧油作物協(xié)同創(chuàng)新中心,湖南長(zhǎng)沙 410128)
?
水稻鎘積累的生理學(xué)和分子生物學(xué)機(jī)理研究進(jìn)展
唐 偉1,肖應(yīng)輝1,2*
(1.湖南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,湖南長(zhǎng)沙 410128;2.南方糧油作物協(xié)同創(chuàng)新中心,湖南長(zhǎng)沙 410128)
深入了解水稻鎘積累的生理學(xué)和分子生物學(xué)機(jī)制,有助于為制訂稻米鎘污染防控技術(shù)提供理論參考。概述了水稻鎘吸收的影響因素及鎘在水稻中的分布特征,介紹了水稻根部和地上部不同部位鎘積累的生理學(xué)機(jī)制,綜述了水稻鎘積累有關(guān)的基因、數(shù)量性狀位點(diǎn)(QTL)和微小核糖核酸(miRNAs)的研究進(jìn)展。指出通過培育和推廣鎘低積累特性的水稻品種,是降低大米鎘含量最經(jīng)濟(jì)有效的方法;并就通過分子標(biāo)記輔助選擇技術(shù)培育鎘低積累特性的水稻兩用核不育系的途徑和技術(shù)展開了討論。
水稻;鎘積累;生理學(xué);分子生物學(xué)
水稻是我國(guó)甚至全世界主要的糧食作物。稻米中含鎘量的高低,直接影響人類攝取鎘量的多少。鎘在人體內(nèi)過量積累,會(huì)引起一系列健康問題,如引起免疫抑制、生殖障礙甚至造成癌變等病癥。深入了解水稻植株鎘積累規(guī)律及其生理遺傳機(jī)理,有助于通過采取有效措施抑制土壤中有效鎘向水稻植株轉(zhuǎn)運(yùn),并利用生物技術(shù)改造水稻鎘吸收積累遺傳特性進(jìn)而培育鎘低積累的水稻品種。近年來,關(guān)于水稻鎘吸收積累特性及其生理遺傳機(jī)理和調(diào)控措施方面的研究,已成為當(dāng)前研究的熱點(diǎn)。筆者綜述了水稻鎘吸收積累特性及分布規(guī)律、鎘積累的生理學(xué)和分子生物學(xué)機(jī)制,旨在為鎘低積累水稻品種的選育提供理論參考。
人類生活直接或間接地受重金屬鎘的影響。在第一個(gè)泛歐洲的人類生物監(jiān)測(cè)項(xiàng)目中,以來自16個(gè)國(guó)家的1 632名婦女和1 689名兒童為樣本,結(jié)果顯示約1%的母親和0.06%的孩子鎘攝入量超過歐洲食品安全管理局(EFSA)規(guī)定的每周耐受攝入量[1]。對(duì)不同國(guó)家膳食結(jié)構(gòu)的調(diào)查表明,食用稻米在人體鎘攝入量中起主要作用,不同地區(qū)居民因膳食結(jié)構(gòu)不同致使人體鎘攝入量差異較大[2]。
生活在斯里蘭卡、泰國(guó)達(dá)克省湄索地區(qū)的人們,由于長(zhǎng)期食用鎘含量超標(biāo)的稻米,其腎功能均出現(xiàn)了異常[3]。在我國(guó),人體鎘攝入量的26.8%~40.8%來自食用稻米及其制品[2]。據(jù)調(diào)查,湖南省石門、鳳凰、湘潭3個(gè)農(nóng)業(yè)區(qū)的稻米鎘含量分別為0.281、0.321和0.341 mg/kg,均超過了食品安全國(guó)家標(biāo)準(zhǔn)的0.2 mg/kg[4]。
水稻中積累的鎘,其主要來源于稻田土壤和灌溉水。稻田土壤中的鎘來源較多,主要有火山噴發(fā)、工業(yè)污染、水生動(dòng)物和植物富集、含鎘巖石的風(fēng)化、含鎘化肥的施用、化石燃料以及煤的燃燒等[5]。而灌溉水中的鎘主要來源于土壤中有效鎘和酸雨中溶解的有效態(tài)鎘。稻田土壤鎘含量超標(biāo)已成為稻米鎘污染的最主要因素,對(duì)攸縣8個(gè)鄉(xiāng)鎮(zhèn)稻田土壤的調(diào)查結(jié)果表明,平均鎘含量為0.228~1.910 mg/kg,90%的樣品超過了0.3 mg/kg的國(guó)家土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)[6]。
水稻植株和籽粒對(duì)鎘的吸收積累受水分管理和土壤pH的影響。研究指出,在曬田、淹水和濕潤(rùn)灌溉3種水分管理方式中,曬田管理的水稻鎘含量最高,其次為淹水,最低為濕潤(rùn)灌溉[7]。尤其是抽穗后排水處理能明顯促進(jìn)水稻對(duì)鎘的吸收與籽粒中鎘的積累[8],其原因可能是淹水條件下水稻根系具有較強(qiáng)的氧化能力,將土壤中的二價(jià)鐵離子和錳離子氧化,在根系形成強(qiáng)吸附能力的膠體,阻止鎘轉(zhuǎn)移至水稻體內(nèi)[9]。
研究表明,施用堿性含鈣磷肥、磷酸二氫銨、石膏和生石灰等,致使土壤pH上升,能降低土壤有效態(tài)鎘含量進(jìn)而限制土壤中的鎘向水稻轉(zhuǎn)移[10]。該結(jié)果可能由3個(gè)方面的原因引起:第一,pH提高有益于鎘的碳酸鹽或氫氧化物的沉淀以及表面絡(luò)合從而降低土壤中有效鎘含量;第二,土壤pH升高,土壤中膠體負(fù)電荷增加同時(shí)H+減少,原本和H+發(fā)生交換的鎘被土壤中膠體等物質(zhì)吸附,使得土壤中鎘含量降低[11];第三,pH升高還可促使鎘離子與土壤中硫離子反應(yīng)形成沉淀,進(jìn)而減少有效鎘含量[12]。
研究發(fā)現(xiàn),不同類型、不同品種以及同一品種不同部位的鎘積累能力均存在很大差異[13]。如華南秈稻品種鎘積累能力較粳稻強(qiáng)[13];常規(guī)秈稻根部鎘含量低于雜交秈稻,但籽粒鎘含量顯著高于后者[14]。水稻不同器官鎘吸收積累能力也存在很大差異[15],鎘在水稻各器官的分配規(guī)律為根>莖>鞘>葉>稻米[16],籽粒中鎘積累量則表現(xiàn)為皮層>胚>胚乳>穎殼的規(guī)律[17]。
3.1水稻根部鎘積累的生理學(xué)機(jī)制水稻根系對(duì)鎘的吸收與積累受根系內(nèi)部因素和根系周圍土壤環(huán)境的雙重影響[18]。鎘離子主要通過載體蛋白并借助代謝的能量轉(zhuǎn)運(yùn)到水稻根系細(xì)胞內(nèi)[19]。水稻根系內(nèi)皮層細(xì)胞形成的凱氏帶能阻止根表皮細(xì)胞中的鎘離子進(jìn)入中柱組織,進(jìn)而抑制鎘向地上部轉(zhuǎn)運(yùn)。此外,根系細(xì)胞壁中的硅和果膠可以與鎘發(fā)生絡(luò)合反應(yīng)產(chǎn)生沉淀,同樣可以抑制根系中的鎘向地上部運(yùn)輸[20]。
關(guān)于根系周圍土壤環(huán)境對(duì)水稻根系鎘的吸收和轉(zhuǎn)運(yùn)影響的研究較多。研究表明,發(fā)酵樹皮、聚合物包膜尿素、硫磺包膜肥料以及配合使用硫和H2O2能減少水稻根中有效鎘的積累量[12]。這是因?yàn)椋阂皇峭寥乐械牧蚧瘹錅p弱了水稻的氧化應(yīng)激性,提高了Eh值以及活性氧和丙酮醛解毒酶的活性[21],促進(jìn)了土壤鎘的固定從而減少水稻中的鎘積累;二是配合使用硫和H2O2能通過維持細(xì)胞內(nèi)硫醇含量和谷胱苷肽S-轉(zhuǎn)移酶活性,降低水稻中有效鎘含量[22]。
土壤中的生物炭、含果膠和黃酮的有機(jī)物,以及水稻根系表面形成的鐵、錳氧化物膠膜等物質(zhì)都能降低土壤中的有效鎘含量[23]。其主要原因是生物炭表層的羥基和羧基對(duì)二價(jià)鎘離子有吸附作用[24];生物炭和膠體中含有的大量氧官能團(tuán)和礦物質(zhì)對(duì)鎘離子有固定作用[25];果膠和黃酮類物質(zhì)能與有效鎘反應(yīng)形成穩(wěn)定低毒的絡(luò)合物[26]。
水稻根尖分泌的小分子有機(jī)酸能提高土壤有效鎘含量[27]。這是因?yàn)樾》肿佑袡C(jī)酸使根際周圍呈氧化狀態(tài),提高了土壤Eh值,此時(shí)呈還原態(tài)的含鎘物會(huì)被氧化重新釋放變?yōu)橛行B(tài)鎘[28]。土壤中的礦質(zhì)營(yíng)養(yǎng)物質(zhì)同樣會(huì)影響水稻對(duì)鎘的吸收與積累,F(xiàn)e和Mn礦質(zhì)營(yíng)養(yǎng)物質(zhì)可以降低根系中的鎘含量;而K、Mg和P可以增加水稻根的鎘積累量[29]。
3.2水稻地上部分鎘積累的生理學(xué)機(jī)制一般而言,鎘主要以離子和共軛復(fù)合物2種形式向上運(yùn)輸[30]。鎘經(jīng)過共質(zhì)體途徑穿過凱氏帶,再由木質(zhì)部裝載,借助根壓和蒸騰壓力提供的動(dòng)力經(jīng)導(dǎo)管向地上部運(yùn)輸和積累,該過程是影響水稻莖稈和籽粒鎘含量的關(guān)鍵因素[31]。
在水稻開花授粉后,營(yíng)養(yǎng)組織中的鎘由木質(zhì)部轉(zhuǎn)運(yùn)至韌皮部,再經(jīng)穗頸節(jié)和枝梗,最終被轉(zhuǎn)運(yùn)至籽粒[31-32]。整個(gè)過程中,韌皮部的調(diào)控至關(guān)重要[33]。據(jù)報(bào)道約90%的鎘由韌皮部輸送進(jìn)水稻籽粒,鎘在韌皮部的輸送速率決定籽粒中的鎘積累水平[34]。這可能是由于在水稻韌皮部中,存在影響鎘運(yùn)輸速率的物質(zhì)。研究表明大部分鎘離子都與含硫基的金屬配體結(jié)合[35],如金屬硫蛋白[36]。而在韌皮部的汁液中發(fā)現(xiàn)了金屬離子配體——煙草胺(NA)、谷胱甘肽(GSH)和植物螯合肽(PCs)[30],它們都能與鎘離子形成低毒的復(fù)合物[37],而這種有毒復(fù)合物會(huì)被轉(zhuǎn)運(yùn)進(jìn)液泡隔離[38],以此影響鎘的運(yùn)輸速率和運(yùn)輸量。
研究表明,水稻組織中鎘的吸收、轉(zhuǎn)運(yùn)和分配均受遺傳因素控制[39]。近年來,關(guān)于水稻鎘吸收、積累和分配的遺傳研究備受關(guān)注,大量研究已經(jīng)揭示了水稻中鎘積累基因的多樣性和控制鎘積累的數(shù)量性狀位點(diǎn)(QTLs)和微小核糖核酸(miRNAs)。
4.1與水稻鎘吸收積累相關(guān)的基因越來越多的有關(guān)水稻鎘吸收和積累的基因被報(bào)道(表1),其中有鎘的轉(zhuǎn)運(yùn)子基因、鎘的信號(hào)轉(zhuǎn)導(dǎo)基因和維持水稻植株體內(nèi)物質(zhì)平衡有關(guān)的基因等。根據(jù)土壤中的鎘轉(zhuǎn)運(yùn)到水稻籽粒的途徑,分水稻根部鎘積累、水稻根系中鎘向地上部分轉(zhuǎn)運(yùn)、水稻籽粒鎘轉(zhuǎn)運(yùn)3個(gè)相對(duì)獨(dú)立的過程逐一介紹與之相關(guān)的基因。
表1 已報(bào)道與水稻鎘吸收積累相關(guān)的基因
4.1.1與水稻根部鎘積累有關(guān)的基因。OsIRTs基因在水稻根部吸收鎘離子中發(fā)揮重要作用[62]。Nakanishi等[46]和Lee等[63]分別報(bào)道OsIRT1和OsIRT2參與調(diào)控根對(duì)鎘的吸收。OsIRT1基因過量表達(dá)會(huì)使水稻植株對(duì)Cd2+更敏感[63],OsIRT2基因編碼蛋白對(duì)Cd2+有較高的親和性,這2個(gè)基因均能增強(qiáng)水稻對(duì)Cd2+的吸收和轉(zhuǎn)運(yùn)[46]。
OsNramp1主要在水稻根部表達(dá)[55],其編碼的轉(zhuǎn)運(yùn)蛋白被定位于質(zhì)膜,參與中柱和木質(zhì)部中鎘的裝載轉(zhuǎn)運(yùn)。該基因的過量表達(dá)會(huì)相對(duì)減少Cd2+在根系中的積累。研究發(fā)現(xiàn),OsNramp1在水稻品種Sasanishiki和Habataki的根系中表達(dá)水平差異明顯,導(dǎo)致2個(gè)品種鎘積累量差異顯著[64]。此外,還有研究發(fā)現(xiàn)OsNramp1在秈稻中的表達(dá)水平明顯高于粳稻[65]。
OsNramp5是參與水稻根系對(duì)鎘吸收的另一重要基因[54],調(diào)控Cd2+穿過凱氏帶進(jìn)入木質(zhì)部維管束[66]。OsNramp5編碼的蛋白定位于細(xì)胞的外側(cè)質(zhì)膜上,主要在根表皮、外皮層、皮層外層以及木質(zhì)部周圍組織表達(dá)[54]。
OsPDR9編碼一種多向耐藥性(pleiotropic drug resistance,PDR)ABC結(jié)合框蛋白,據(jù)報(bào)道Cd2+能誘導(dǎo)其在水稻幼苗根系中表達(dá),暗示OsPDR9可能對(duì)水稻根部Cd2+的積累具有作用[58]。PEZ1(酚醛外排轉(zhuǎn)運(yùn)體)基因主要在根部表達(dá),編碼細(xì)胞膜上的一個(gè)蛋白轉(zhuǎn)運(yùn)子,調(diào)控木質(zhì)部汁液中主要成分的濃度和中柱細(xì)胞中鎘的沉積[60]。OsNAAT1(煙酰胺氨基轉(zhuǎn)移酶基因)在水稻根部表達(dá),具有調(diào)控水稻根對(duì)鎘吸收的功能[53]。OsMAPK2(水稻MAP激酶級(jí)聯(lián))負(fù)責(zé)水稻根系中鎘信號(hào)轉(zhuǎn)導(dǎo)[49]。
4.1.2與水稻根系中鎘向地上部分轉(zhuǎn)運(yùn)有關(guān)的基因。OsHMA3編碼的蛋白主要在液泡膜中表達(dá),通過將游離在細(xì)胞質(zhì)的鎘轉(zhuǎn)移到液泡中隔離[44],從而減少根系細(xì)胞中吸收的鎘向地上部分轉(zhuǎn)移[67]。OsHMA3功能缺失的突變體,鎘進(jìn)入液泡的通道被阻斷,從而導(dǎo)致地上部分組織鎘含量升高[44]。該基因在水稻品種日本晴表達(dá),能夠降低其籽粒中的鎘含量;而在OsHMA3等位基因突變的秈稻品種Cho-ko-koku[68]、AnjanaDhan[69]、Jarjan[70]和Habataki[31]中,其液泡喪失了隔離鎘的能力,進(jìn)而導(dǎo)致地上部分組織鎘積累量增加。
OsHMA2表達(dá)蛋白定位于質(zhì)膜,主要在根和葉的維管束中表達(dá),調(diào)控向木質(zhì)部的鎘裝載[71]。過量表達(dá)OsHMA2能降低水稻種子的鎘含量,而對(duì)鋅等其他元素的量無影響[19]。
OsHMA9編碼的跨膜轉(zhuǎn)移蛋白定位于細(xì)胞質(zhì)膜,在葉肉細(xì)胞和花藥中表達(dá),負(fù)責(zé)調(diào)控細(xì)胞中重金屬的流出,同時(shí)與木質(zhì)部鎘的裝卸有關(guān)[45]。當(dāng)水稻受到鎘誘導(dǎo)時(shí),OsHMA9轉(zhuǎn)運(yùn)子蛋白會(huì)在維管束大量表達(dá),水稻OsHMA9基因缺失突變體會(huì)積累更多的鎘[72]。
金屬離子轉(zhuǎn)運(yùn)子基因OsMTP1編碼的蛋白定位于細(xì)胞膜上,在葉片中有較強(qiáng)的表達(dá),能將重金屬離子外排到細(xì)胞間隙中[52]。當(dāng)OsMTP1基因表達(dá)量降低時(shí),會(huì)減少水稻對(duì)鎘的富集[73]。
4.1.3與水稻籽粒鎘轉(zhuǎn)運(yùn)有關(guān)的基因。水稻籽粒中的鎘主要由葉片和莖稈等部位轉(zhuǎn)運(yùn)而來。水稻開花后,莖葉等營(yíng)養(yǎng)器官中積累的鎘重新活化經(jīng)韌皮部進(jìn)入籽粒[74]。韌皮部的轉(zhuǎn)運(yùn)效率與水稻中特定基因編碼的載體蛋白密切相關(guān)[32]。
OsLCT1為小麥低親和性陽離子轉(zhuǎn)運(yùn)蛋白基因(low affinity cation transporter,LCT)的同源基因。該基因編碼的蛋白定位于質(zhì)膜,具有陽離子外排活性,主要在葉片和穗頸節(jié)中的大維管束和周邊維管束中表達(dá),調(diào)控鎘經(jīng)韌皮部向籽粒的運(yùn)輸進(jìn)而控制籽粒的鎘積累量[48]。
LCD編碼的韌皮部轉(zhuǎn)運(yùn)蛋白定位于細(xì)胞質(zhì)和細(xì)胞核中,主要在根部維管束和葉片韌皮部伴胞中表達(dá),參與植株中鎘的轉(zhuǎn)運(yùn)[47]。LCD基因正常表達(dá)的水稻品種籽粒鎘含量較功能缺失突變體降低了43%~55%[47]。
研究表明OsHMA9在葉肉細(xì)胞和花藥中也有表達(dá),暗示其可能參與了葉片重新活化的鎘向籽粒運(yùn)輸[75]。
4.2水稻鎘積累有關(guān)的QTLs盡管已有眾多與水稻根系從土壤吸收鎘以及水稻不同部位鎘運(yùn)轉(zhuǎn)有關(guān)基因的報(bào)道,然而亦有研究表明在不同水稻品種中存在與上述過程有關(guān)的微效QTLs[76-82](表2)。
表2 已報(bào)道與水稻鎘積累相關(guān)的QTLs
Sato等[79]利用Fukuhibiki和LAC23構(gòu)建的重組自交系群體(RILs),在第3和11染色體檢測(cè)到2個(gè)QTL,其作用均表現(xiàn)為降低籽粒鎘含量。Ishikawa等[76]利用水稻品種Kasalath和Koshihikari構(gòu)建的染色體片段代換系(CSSLs),分別在第3和8染色體定位到2個(gè)降低籽粒鎘含量的QTL。Ueno等[82]在一個(gè)鎘低積累的粳稻品種Shwe War中定位能降低水稻籽粒鎘含量的QTL,位于第11染色體的該QTL能解釋表型的16.1%,且發(fā)現(xiàn)該QTL的功能是阻止鎘從根系向莖稈中轉(zhuǎn)運(yùn)。
Ishikawa等[81]利用粳稻品種Sasanishiki和秈稻品種Habataki構(gòu)建的回交重組自交系(BILs),在第2和7染色體分別發(fā)現(xiàn)了2個(gè)增加籽粒鎘含量的QTL,其中主效的qGCd7對(duì)BIL群體鎘含量變異的解釋率達(dá)35.5%。Ishikawa等[76]在檢測(cè)到前述2個(gè)降低籽粒鎘含量QTL的同時(shí),發(fā)現(xiàn)第6染色體包含Kasalath遺傳背景的染色體片段代換系的籽粒鎘含量顯著增加。
4.3水稻鎘積累有關(guān)的miRNAsmiRNAs是一類內(nèi)源非編碼的單鏈小RNA,以序列特異性的方式在轉(zhuǎn)錄和轉(zhuǎn)錄后水平上對(duì)靶基因的表達(dá)進(jìn)行調(diào)控。有研究以粳稻中花11為材料,得到了19個(gè)與鎘脅迫應(yīng)答相關(guān)的miRNA,其中,miR528在鎘脅迫下表達(dá)顯著上調(diào),而miR166、miR171、miR168、miR162、miR396、miR390、miR156、miR1432和miR444b.1等的表達(dá)則受到顯著抑制,其中過表達(dá)的miR166減少了水稻植株地上部分鎘的積累[83]。在鎘脅迫下miR390過量表達(dá)的轉(zhuǎn)基因株系中,OsHMA2和OsNramp5的表達(dá)增強(qiáng)[84],促進(jìn)了水稻地上部分鎘積累量的增加。
稻田鎘污染導(dǎo)致稻米鎘含量超標(biāo),已經(jīng)嚴(yán)重危害到人類健康。降低水稻籽粒中的鎘含量,已引起了政府、學(xué)者及廣大民眾的高度重視。綜合近年來提出的水稻鎘污染防控方法,大體可分為3類:一是通過施用化學(xué)、生物制劑,改善稻田酸堿環(huán)境或者通過元素間相互拮抗從而抑制稻田鎘進(jìn)入水稻籽粒;二是通過改變現(xiàn)有的耕作制度,合理調(diào)控水肥,降低水稻籽粒對(duì)鎘的吸收積累。兩類方法對(duì)于緩解水稻的鎘積累都具有一定的作用,但均難以在生產(chǎn)實(shí)踐中大面積推廣應(yīng)用。稻田施用化學(xué)制劑,除提高生產(chǎn)成本和增加用工量等不利因素外,還有可能引發(fā)化學(xué)制品殘留污染以及稻米中其他重金屬含量超標(biāo)等。通過栽培措施和水肥調(diào)控,雖能有效減輕稻米鎘污染,但其可操作性難度較大,目前尚停留在研究層面。如水肥調(diào)控最關(guān)鍵的技術(shù),是在水稻生長(zhǎng)期間長(zhǎng)期保持田間有淺水層直至收割前7 d左右才自然落干,對(duì)于水源不足地區(qū)難以實(shí)現(xiàn),同時(shí)又增加用水成本,尤其是不利于后期機(jī)械化收割。針對(duì)上述方法存在的問題,近年來有學(xué)者提出了所謂的以“VIP”為核心的綜合降鎘技術(shù)體系,將鎘低積累型水稻品種放在該技術(shù)體系的首位[85]。培育和推廣鎘低積累特性的水稻品種,是降低大米鎘含量最經(jīng)濟(jì)有效的方法。
迄今已經(jīng)挖掘并克隆了眾多與水稻鎘吸收積累有關(guān)基因,并初步闡明了不同基因阻斷鎘從土壤進(jìn)入稻谷的作用途徑。如OsNramp1促進(jìn)水稻根系對(duì)鎘的吸收和積累,OsHMA3增加水稻地上部的鎘含量,OsLCT1降低籽粒鎘含量等。這些研究為通過分子標(biāo)記輔助選擇培育鎘低積累水稻品種提供了技術(shù)基礎(chǔ)。在鎘污染嚴(yán)重的南方稻區(qū),雜交稻是大面積推廣種植的主要形式,因此,培育具有鎘低積累特性的水稻兩用核不育系具有重要意義。在突出水稻鎘低積累特性的基礎(chǔ)上,水稻兩系不育系的選育既要兼顧稻瘟病、褐飛虱等當(dāng)前生產(chǎn)上主要病蟲害的抗性改良,也要考慮不育系的異交特性和育性安全性等農(nóng)藝性狀。
[1] BERGLUND M,LARSSON K,GRANDéR M,et al.Exposure determinants of cadmium in European mothers and their children[J].Environmental research,2014,141:69-76.
[2] CHUNHABUNDIT R.Cadmium exposure and potential health risk from foods in contaminated area,Thailand [J].Toxicological research,2016,32(1):65-72.
[3] SWADDIWUDHIPONG W,MAHASAKPAN P,JEEKEEREE W,et al.Renal and blood pressure effects from environmental cadmium exposure in Thai children[J].Environmental research,2015,136(3):82-87.
[4] ZENG F F,WEI W,LI M S,et al.Heavy metal contamination in rice-producing soils of Hunan Province,China and potential health risks[J].International journal of environmental research & public health,2015,12(9):16606-16612.
[5] SEBASTIAN A,PRASAD M N V.Cadmium minimization in rice:A review[J].Agronomy for sustainable development,2014,34(1):155-173.
[6] WANG M E,CHEN W P,PENG C.Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan,Southern China[J].Chemosphere,2015,144:346-351.
[7] 胡坤,喻華,馮文強(qiáng),等.不同水分管理方式下3種中微量元素肥料對(duì)水稻生長(zhǎng)和吸收鎘的影響[J].西南農(nóng)業(yè)學(xué)報(bào),2010(3):772-776.
[8] 徐燕玲,陳能場(chǎng),徐勝光,等.低鎘累積水稻品種的篩選方法研究:品種與類型[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009(7):1346-1352.
[9] 王小玲,劉騰云,幸學(xué)俊,等.水稻對(duì)土壤重金屬元素富集差異及農(nóng)藝調(diào)控措施研究進(jìn)展[J].江西科學(xué),2016(3):311-315,356.
[10] REHMAN Z U,RIZWAN M,GHAFOOR A,et al.Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation[J].Environmental science & pollution research,2015,22(21):16897-16906.
[11] GHORBAL M N.Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress[J].Journal of plant nutrition,1999,22(4):731-752.
[12] MORI M,KOTAKI K,GUNJI F,et al.Suppression of cadmium uptake in rice using fermented bark as a soil amendment[J].Chemosphere,2016,148:487-494.
[13] ZHAO F J,MA Y,ZHU Y G,et al.Soil contamination in China:Current status and mitigation strategies[J].Environmental science & technology,2014,49(2):750-759.
[14] 鄧剛,王剛,孫夢(mèng)飛,等.鎘脅迫下不同水稻品種鎘的累積與分布差異[J].浙江農(nóng)業(yè)科學(xué),2016,57(4):468-471.
[15] 莫爭(zhēng),王春霞,陳琴,等.重金屬Cu,Pb,Zn,Cr,Cd在水稻植株中的富集和分布[J].環(huán)境化學(xué),2002,21(2):110-116.
[16] 周金林,陳能,郭望模.大田雙季種植秈稻籽粒鎘積累差異研究[J].湖南農(nóng)業(yè)科學(xué),2013(11):26-28.
[17] 楊居榮,查燕,劉虹.污染稻、麥籽實(shí)中Cd、Cu、Pb的分布及其存在形態(tài)初探[J].中國(guó)環(huán)境科學(xué),1999,19(6):500-504.
[18] 王美娥,彭馳,陳衛(wèi)平.水稻品種及典型土壤改良措施對(duì)稻米吸收鎘的影響[J].環(huán)境科學(xué),2015,36(11):4283-4290.
[19] TAKAHASHI R,ISHIMARU Y,SHIMO H,et al.The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J].Plant cell & environment,2012,35(11):1948-1957.
[20] 朱智偉,陳銘學(xué),牟仁祥,等.水稻鎘代謝與控制研究進(jìn)展[J].中國(guó)農(nóng)業(yè)科學(xué),2014,47(18):3633-3640.
[21] MOSTOFA M G,RAHMAN A,ANSARY M M,et al.Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice[J].Scientific reports,2015,5:14078.
[22] WU Z Y,ZHANG C H,YAN J L,et al.Effects of sulfur supply and hydrogen peroxide pretreatment on the responses by rice under cadmium stress[J].Plant growth regulation,2015,77(3):299-306.
[23] 傅友強(qiáng),于智衛(wèi),蔡昆爭(zhēng),等.水稻根表鐵膜形成機(jī)制及其生態(tài)環(huán)境效應(yīng)[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2010,16(6):1527-1534.
[24] MOYO M,LINDIWE S T,SEBATA E,et al.Equilibrium,kinetic,and thermodynamic studies on biosorption of Cd(II)from aqueous solution by biochar[J].Research on chemical intermediates,2016,42(2):1349-1362.
[25] QIAN L B,ZHANG W Y,YAN J C,et al.Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures[J].Bioresource technology,2016,206:217-224.
[26] 王曉波,車海萍,陳海珍,等.榴蓮殼內(nèi)皮果膠多糖和黃酮對(duì)重金屬吸附作用的研究[J].食品工業(yè)科技,2011(12):129-131.
[27] 王會(huì)民,唐秀英,龍啟樟,等.水稻根系遺傳特征研究進(jìn)展[J].分子植物育種,2016(4):910-917.
[28] 陳京都,劉萌,顧海燕,等.不同土壤質(zhì)地條件下麥秸、鉛對(duì)鎘在水稻-土壤系統(tǒng)中遷移的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(7):1295-1299.
[29] SEBASTIAN A,PRASAD M N V.Modulatory role of mineral nutrients on cadmium accumulation and stress tolerance inOryzasativaL.seedlings[J].Environmental science & pollution research,2015,8(1):1-10.
[30] 鐘茜.鎘在水稻幼苗體內(nèi)的長(zhǎng)距離運(yùn)輸與毒性作用的研究[D].廣州:華南師范大學(xué),2014.
[31] URAGUCHI S,MORI S,KURAMATA M,et al.Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J].Journal of experimental botany,2009,60(9):2677-2688.
[32] RODDA M S,LI G,REID R J.The timing of grain Cd accumulation in rice plants:The relative importance of remobilisation within the plant and root Cd uptake post-flowering[J].Plant & soil,2011,347(1/2):105-114.
[33] KATO S,ISHIKAWA S,INAGAKI K,et al.Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants(OryzasativaL.)[J].Soil science & plant nutrition,2010,56(6):839-847.
[34] TANAKA K,F(xiàn)UJIMAKI S,F(xiàn)UJIWARA T,et al.Cadmium concentrations in the phloem sap of rice plants(OryzasativaL.)treated with a nutrient solution containing cadmium[J].Soil science & plant nutrition,2003,49(2):311-313.
[36] 王文君,呂娜,尹銳,等.金屬硫蛋白研究進(jìn)展[J].江蘇農(nóng)業(yè)科學(xué),2016,44(1):13-16.
[38] LIN Y F,AARTS M G M.The molecular mechanism of zinc and cadmium stress response in plants[J].Cellular & molecular life sciences,2012,69(19):3187-3206.
[39] 龍小林,向珣朝,徐艷芳,等.鎘脅迫下秈稻和粳稻對(duì)鎘的吸收、轉(zhuǎn)移和分配研究[J].中國(guó)水稻科學(xué),2014,28(2):177-184.
[40] SONG T,HAN H,LI P,et al.Over-expression of theMxIRT1 gene increases iron and zinc content in rice seeds[J].Transgenic research,2015,24(1):109-122.
[41] YU C L,SUN C D,SHEN C J,et al.The auxin transporter,OsAUX1,is involved in primary root and root hair elongation and in Cd stress responses in rice(OryzasativaL.)[J].Plant journal,2015,30(7):981-983.
[42] KURAMATA M,MASUYA S,TAKAHASHI Y,et al.Novel cysteine-rich peptides fromDigitariaciliarisandOryzasativaenhance tolerance to cadmium by limiting its cellular accumulation[J].Plant & cell physiology,2009,50(1):106-117.
[43] LIM S D,JIN G H,HAN A R,et al.Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes[J].Plant molecular biology,2014,85(4/5):365-379.
[44] MIYADATE H,ADACHI S,HIRAIZUMI A,et al.OsHMA3,a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J].New phytologist,2011,189(1):190-199.
[45] LEE S,KIM Y Y,LEE Y,et al.Rice P1B-type heavy-metal ATPase,OsHMA9,is a metal efflux protein[J].Plant physiology,2007,145(3):831-842.
[46] NAKANISHI H,OGAWA I,ISHIMARU Y,et al.Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+,transporters OsIRT1 and OsIRT2 in rice[J].Soil science & plant nutrition,2006,52(4):464-469.
[47] SHIMO H M.Lowcadmium(LCD),a novel gene related to cadmium tolerance and accumulation in rice seeds[C]//Proceedings of the international plant nutrition colloquium XVI.Davis:University of California, 2009.
[48] URAGUCHI S,KAMIYA T,SAKAMOTO T,et al.Low-affinity cation transporter(OsLCT1)regulates cadmium transport into rice grains[J].Proceedings of the national academy of sciences,2011,108(52):20959-20964.
[49] YEH C M,HSIAO L J,HUANG H J.Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice[J].Plant & cell physiology,2004,45(9):1306-1312.
[50] AGRAWAL G K,RAKWAL R,IWAHASHI H.Isolation of novel rice(OryzasativaL.)multiple stress responsive MAP kinase gene,OsMSRMK2,whose mRNA accumulates rapidly in response to environmental cues[J].Biochemical & biophysical research communications,2002,294(5):1009-1016.
[51] AGRAWAL G K,AGRAWAL S J,IWAHASHI H,et al.Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation[J].Biochemical & biophysical research communications,2003,300(3):775-783.
[52] 王齊紅.水稻金屬離子轉(zhuǎn)運(yùn)體基因OsMTP1的克隆與功能分析[D].南京:南京農(nóng)業(yè)大學(xué),2005.
[53] CHENG L J,WANG F,SHOU H X,et al.Mutation in nicotianamine aminotransferase stimulated the Fe(II)acquisition system and led to iron accumulation in rice[J].Plant physiology,2007,145(4):1647-1657.
[54] SASAKI A,YAMAJI N,YOKOSHO K,et al.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J].Plant cell,2012,24(5):2155-2167.
[55] TAKAHASHI R,ISHIMARU Y,SENOURA T,et al.Characterization of OsNramp1,a metal transporter from rice[C]//Proceedings of the international plant nutrition colloquium XVI.Davis:University of California,2009.
[56] WANG C H,GUO W L,YE S,et al.Reduction of Cd in rice through expression of OXS3-like gene fragments[J].Molecular plant,2016,9(2):301-304.
[57] WANG F J,WANG M,LIU Z P,et al.Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress[J].Plant physiology & biochemistry,2015,96:261-269.
[58] MOONS A.Ospdr9,which encodes a PDR-type ABC transporter,is induced by heavy metals,hypoxic stress and redox perturbations in rice roots[J].Febs Letters,2003,553(3):370-376.
[59] CHEN W R,F(xiàn)ENG Y,CHAO Y E.Genomic analysis and expression pattern of OsZIP1,OsZIP3,and OsZIP4,in two rice(OryzasativaL.)genotypes with different zinc efficiency[J].Russian journal of plant physiology,2008,55(3):400-409.
[60] ISHIMARU Y,BASHIR K,NAKANISHI H,et al.The role of rice phenolics efflux transporter in solubilizing apoplasmic iron[J].Plant signaling & behavior,2011,6(10):1624-1626.
[61] NAKAMURA T,YAMAGUCHI Y,SANO H.Four rice genes encoding cysteine synthase:Isolation and differential responses to sulfur,nitrogen and light[J].Gene,1999,229(1/2):155-161.
[62] URAGUCHI S,F(xiàn)UJIWARA T.Cadmium transport and tolerance in rice:Perspectives for reducing grain cadmium accumulation[J].Rice,2012,5(1):1-8.
[63] LEE S,GYNHEUNG A N.Over-expression of OsIRT1,leads to increased iron and zinc accumulations in rice[J].Plant cell & environment,2009,32(4):408-416.
[64] TAKAHASHI R,ISHIMARU Y,SENOURA T,et al.The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J].Journal of experimental botany,2011,62(14):4843-4850.
[65] TAKAHASHI R,ISHIMARU Y,NAKANISHI H,et al.Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J].Plant signaling & behavior,2011,6(11):1813-1816.
[66] URAGUCHI S,F(xiàn)UJIWARA T.Rice breaks ground for cadmium-free cereals[J].Current opinion in plant biology,2013,16(3):328-334.
[67] ISHIKAWA S,SUZUI N,ITO-TANABATA S,et al.Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars(Oryzasativa)using positron-emitting 107Cd tracer[J].BMC plant biology,2011,11(1):172.
[68] TEZUKA K,MIYADATE H,KATOU K,et al.A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku[J].Theoretical & applied genetics,2010,120(6):1175-1182.
[69] UENO D,YAMAJI N,KONO I,et al.Gene limiting cadmium accumulation in rice[J].Proceedings of the national academy of sciences,2010,107(38):16500-16505.
[70] UENO D,KOYAMA E,YAMAJI N,et al.Physiological,genetic,and molecular characterization of a high-Cd-accumulating rice cultivar,Jarjan[J].Journal of experimental botany,2011,62(7):2265-2272.
[71] SATOH-NAGASAWA N,MORI M,NAKAZAWA N,et al.Mutations in rice(Oryzasativa)heavy metal ATPase 2(OsHMA2)restrict the translocation of zinc and cadmium[J].Plant & cell physiology,2012,53(1):213-224.
[72] ZHAO F Y,HAN M M,ZHANG S Y,et al.Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress[J].Journal of integrative plant biology,2012,54(12):991-1006.
[73] HAN C D,CHOI Y D.OsMPT gene for modifying plant architecture and increasing yield,and uses thereof:20120284875[P].2012.
[74] 李正翔.不同基因型水稻劍葉中鎘向籽粒再分配差異性研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2014.
[75] 李兆偉,熊君,齊曉輝,等.水稻灌漿期葉片蛋白質(zhì)差異表達(dá)及其作用機(jī)理分析[J].作物學(xué)報(bào),2009,35(1):132-139.
[76] ISHIKAWA S,AE N,YANO M.Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice(Oryzasativa)[J].New phytologist,2005,168(2):345-350.
[77] JIN L,LU Y,XIAO P,et al.Genetic diversity and population structure of a diverse set of rice germplasm for association mapping[J].Theoretical & applied genetics,2010,121(3):475-487.
[78] ABE T,NONOUE Y,ONO N,et al.Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines[J].Breeding science,2013,63(3):284-291.
[79] SATO H,SHIRASAWA S,MAEDA H,et al.Analysis of QTL for lowering cadmium concentration in rice grains from ‘LAC23’[J].Breeding science,2011,61(2):196-200.
[80] HUANG Y,SUN C X,MIN J,et al.Association mapping of quantitative trait loci for mineral element contents in whole grain rice(OryzasativaL.)[J].Journal of agricultural & food chemistry,2015,63:10885-10892.
[81] ISHIKAWA S,ABE T,KURAMATA M,et al.A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7[J].Journal of experimental botany,2010,61(3):464-469.
[82] UENO D,KONO I,YOKOSHO K,et al.A major quantitative trait locus controlling cadmium translocation in rice(Oryzasativa)[J].New phytologist,2009,182(3):644-653.
[83] 丁艷菲.水稻鎘脅迫應(yīng)答相關(guān)microRNA的分離與功能研究[D].杭州:浙江大學(xué),2012.
[84] DING Y F,YE Y Y,JIANG Z H,et al.MicroRNA390 is involved in cadmium tolerance and accumulation in rice[J].Frontiers in plant science,2016,7:1-8.
[85] 王蜜安,尹麗輝,彭建祥,等.綜合降鎘(VIP)技術(shù)對(duì)降低糙米鎘含量的影響研究[J].中國(guó)稻米,2016,22(1):43-47.
Research Progress of Physiology and Molecular Mechanisms of Cadmium Accumulation in Rice
TANG Wei1, XIAO Ying-hui1,2*
(1. College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128; 2. Southern Regional Collaborative Innovation Center of Grain and Oil Crops in China, Changsha, Hunan 410128)
To understand the physiology and molecular mechanism of cadmium accumulation in rice is helpful to provide theoretical reference for the technology development of Cd pollution control of rice. The characteristics of Cd uptake by rice and its influence factors were outlined in this research. The physiological mechanism of cadmium accumulation both in rice roots and the ground-upper part was introduced. Research progress of genes, QTLs and miRNAs related to rice Cd accumulation were summarized. It was pointed out that to bred rice varieties with low Cd accumulation was the most economical and effective method to control rice cadmium pollution. The methods and technologies to bred dual-purpose genic male sterile rice with low Cd accumulation by molecular marker assisted selection were discussed.
Rice; Cadmium accumulation; Physiology; Molecular biology
國(guó)家863計(jì)劃資助項(xiàng)目(2012AA101103);教育部創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃項(xiàng)目(IRT1239)。
唐偉(1990- ),男,湖南懷化人,碩士研究生,研究方向:水稻遺傳育種。*通訊作者,研究員,博士,博士生導(dǎo)師,從事水稻遺傳育種研究。
2016-08-07
S 188
A
0517-6611(2016)27-0004-06