王明坤,太優(yōu)一,崔彤,李曉葦,李玲
(1.河北大學(xué) 物理科學(xué)與技術(shù)學(xué)院,河北 保定 071002;2.四川大學(xué) 材料科學(xué)與工程學(xué)院,四川 成都 610064)
?
硫摻雜納米TiO2透明溶膠的制備及性能
王明坤,太優(yōu)一,崔彤,李曉葦,李玲
(1.河北大學(xué) 物理科學(xué)與技術(shù)學(xué)院,河北 保定071002;2.四川大學(xué) 材料科學(xué)與工程學(xué)院,四川 成都610064)
以四氯化鈦、硫脲、有機(jī)羧酸、氨水、D-山梨醇等為主要實(shí)驗(yàn)原料,常溫常壓條件下采用新型絡(luò)合-控制水解法制備S摻雜納米TiO2透明溶膠,該溶膠的平均粒徑為4.1 nm.使用XRD、納米激光粒度分析儀、UV-Vis表征樣品的物相、粒徑、吸收光譜和光催化性能.此外,還對(duì)合成過(guò)程中反應(yīng)條件對(duì)結(jié)果的影響進(jìn)行了研究.結(jié)果表明,S摻雜質(zhì)量分?jǐn)?shù)為0.5%,回流時(shí)間為15 min時(shí),S摻雜納米TiO2透明溶膠的光催化性能達(dá)到最優(yōu).
納米TiO2透明溶膠;S摻雜;最小粒子直徑;光催化
在半導(dǎo)體光催化材料中,TiO2具有優(yōu)異的光催化活性、化學(xué)惰性、無(wú)污染的優(yōu)點(diǎn),在環(huán)境保護(hù)和廢水處理中發(fā)揮重要作用[1-7],但TiO2是一種寬帶隙材料,只對(duì)紫外光敏感,這在一定程度上限制了它的商業(yè)應(yīng)用.為了擴(kuò)大TiO2光譜響應(yīng)范圍和提高其太陽(yáng)能利用率,研究者通過(guò)摻雜稀土金屬和半導(dǎo)體溶膠-凝膠法摻雜半導(dǎo)體對(duì)TiO2染料進(jìn)行改性[8-14].在這些方法中,離子摻雜廣泛應(yīng)用于調(diào)整TiO2的導(dǎo)帶或價(jià)帶,這可以使電子在可見(jiàn)光照射下激發(fā)產(chǎn)生電子-空穴對(duì)[15-20].大多數(shù)情況下,非金屬離子摻雜比金屬離子摻雜更有利,因?yàn)榻饘匐x子摻雜會(huì)引入不良缺陷阻礙光電子-空穴對(duì)的復(fù)合,從而降低了污染物的降解效率[21-27].本文研究的樣品是在室溫下采用一種新型絡(luò)合-控制水解法制備的S摻雜TiO2透明溶膠,它有效提高了太陽(yáng)光的利用率,具有較好的光催化活性.
1.1儀器和藥品
實(shí)驗(yàn)所用儀器為賽多利斯BSA323S(德國(guó));納米激光粒度分析儀(美國(guó));U4100紫外-近紅外光譜儀(日本);D8 ADVANCE型X線衍射儀(德國(guó));DHG-9075A電烤箱(中國(guó));SX2-4-10馬弗爐(中國(guó)).
TiCl4、硫脲、有機(jī)羧酸、D-山梨醇和表面活化劑均為分析純?cè)噭?;酸性紅3R為商用工業(yè)品;所有實(shí)驗(yàn)用水為去離子水.
1.2樣品合成
將TiCl4以1滴/s的速度緩慢滴入到雙蒸餾水中,然后靜置到液體澄清.將適當(dāng)?shù)牧螂寮尤氲皆撊芤褐兄镣耆芙鉃橹?,然后進(jìn)行過(guò)濾.再用氨水調(diào)pH至7~8,形成白糊狀溶液.白糊狀溶液經(jīng)過(guò)濾、洗滌后得到清澈透明的溶液,再加入適當(dāng)?shù)慕j(luò)合劑.在樣品pH為5~6后,控制其水解即可得到S摻雜納米TiO2透明溶膠.
1.3樣品表征
納米激光粒度分析儀測(cè)定納米TiO2粒子的大小和分布,將得到的溶膠在室溫下干燥,再在400℃下煅燒,所得到的樣品利用D8 ADVANCE型X線衍射儀(U=40 kV,I=40 mA)進(jìn)行XRD物相分析.以U4100紫外-近紅外光譜儀測(cè)定樣品的紫外-可見(jiàn)吸收,測(cè)量波長(zhǎng)為200 nm到800 nm.計(jì)算其降解率,降解效果以降解率(D)表示
其中A1為染料溶液初始吸光度;A2為染料溶液的最終吸光度.
2.1樣品的粒度分析
圖1 樣品粒徑尺度分布Fig.1 Particle diameter scatter diagram of sample
影響納米TiO2光催化能力強(qiáng)弱的直接影響因素之一是其粒徑的大小[28-29].利用納米激光粒度分析儀對(duì)S摻雜納米TiO2乳液與純TiO2乳液進(jìn)行粒徑分析,結(jié)果如圖1所示.由圖1可知樣品的平均粒徑約為4.1 nm,粒度大小均勻,且粒徑分布范圍較窄.有利于增加納米TiO2單位體積內(nèi)光催化劑的分子數(shù)目,進(jìn)而提高其光催化效率.
2.2樣品的XRD分析
圖2是利用D8 ADVANCE型X線衍射儀對(duì)樣品的XRD圖譜.純TiO2的衍射峰如圖2a所示,其主峰在25.5°處左右,與標(biāo)準(zhǔn)卡對(duì)照后可得,純TiO2峰型呈銳鈦礦型.將上述所得S摻雜納米TiO2透明溶膠室溫下干燥后,在400℃中煅燒2 h.所得樣品的XRD如圖2b所示,其衍射峰位置幾乎與純TiO2一致,沒(méi)有出現(xiàn)S元素的特征衍射峰,說(shuō)明S元素?fù)诫s到了TiO2的晶格中,并沒(méi)有改變其銳鈦礦型結(jié)構(gòu),且摻雜后的峰型更加尖銳,表明S元素的摻雜使TiO2的晶格更加完美.
2.3樣品的UV-Vis分析
圖3為利用U4100紫外-近紅外光譜儀對(duì)樣品的UV-Vis吸收光譜進(jìn)行分析.圖3中曲線a和b分別表示純納米TiO2和S摻雜納米TiO2的UV-Vis曲線.從圖3中可以看出,與純納米TiO2的圖譜相比,曲線b的吸收邊向可見(jiàn)光區(qū)移動(dòng)了約50 nm,進(jìn)入了可見(jiàn)光區(qū)域.由此可得結(jié)論:S摻雜納米TiO2擴(kuò)大了其光譜響應(yīng)范圍,提高了太陽(yáng)光的利用率.
圖2 樣品的XRD圖譜 圖3 樣品的UV-Vis吸收光譜Fig.2 XRD spectra of the samples Fig.3 UV-Vis spectra of the sample
2.4光催化性能的研究
回流時(shí)間對(duì)光催化性能的影響不同回流時(shí)間對(duì)降解率的影響如圖4所示,當(dāng)回流時(shí)間為15 min時(shí),降解效果最好,降解酸性紅3R的降解率可達(dá)到98%.但隨著回流時(shí)間不斷延長(zhǎng),降解效果開(kāi)始下降,是因?yàn)閺?fù)合溶膠開(kāi)始出現(xiàn)渾濁,逐漸被分解,不再均一透明,最后分層.因此,最佳的回流時(shí)間應(yīng)控制在15 min,不宜過(guò)長(zhǎng).
不同摻雜量乳液光催化效果比較圖5是不同摻硫量對(duì)降解率的影響.如圖5所示,當(dāng)S摻雜質(zhì)量分?jǐn)?shù)低于0.5%時(shí),催化效果隨著S摻雜質(zhì)量的增加而上升;當(dāng)S摻雜質(zhì)量分?jǐn)?shù)高于0.5%時(shí),催化效果隨著S摻雜質(zhì)量的增加而下降.由此可知,當(dāng)S的摻雜質(zhì)量分?jǐn)?shù)為0.5%時(shí),降解率達(dá)到最高.這可能是因?yàn)?,?dāng)少量S離子摻入到TiO2晶格使母格發(fā)生畸變,從而出現(xiàn)了更多缺陷位置,這些缺陷的位置作為新的活動(dòng)中心有利于光傳輸產(chǎn)生的電子和空穴[27].此外,當(dāng)摻雜離子進(jìn)入晶格,增加了原有的能級(jí)態(tài),在一定程度上增加了電子躍遷的幾率.這抑制了光生電子與空穴的復(fù)合,進(jìn)而提高了樣品的光催化活性[30].然而,摻雜過(guò)量S可能會(huì)導(dǎo)致納米TiO2的粒徑增大,比表面積減少,從而降低了光催化效率[31].
圖4 回流時(shí)間對(duì)降解率的影響 圖5 不同摻硫量對(duì)降解率的影響 Fig.4 Influence of reflux time on degradation rate Fig.5 Influence of different proportion of S on degradation rate
以四氯化鈦、硫脲、有機(jī)羧酸、氨水、D-山梨醇等為主要實(shí)驗(yàn)原料,常溫常壓條件下采用新型絡(luò)合-控制水解法制備S摻雜納米TiO2透明溶膠.制備出粒徑為4.1 nm的S摻雜納米TiO2溶膠.利用這種新型絡(luò)合-控制水解法可以有效地抑制TiO2的聚合,極大優(yōu)化了其光催化活性,而且使光譜響應(yīng)范圍明顯加寬,從而提高了太陽(yáng)光利用率.實(shí)驗(yàn)表明,用絡(luò)合-控制水解法制備的S摻雜納米TiO2對(duì)降解酸性紅3R有很好的催化作用.當(dāng)S的摻雜質(zhì)量分?jǐn)?shù)為0.5%時(shí),納米TiO2的性能達(dá)到最優(yōu).在太陽(yáng)光照射下60 min,其降解效率高達(dá)98%,可以直接利用太陽(yáng)光和正常光凈化環(huán)境.
[1]ZHANG L D,MOU J M.Nano-material and nano-structure[J].Science Publication,2001,59:88-90.
[2]HE B P,WANG Z S.Actuality of study and developing trends in photocatalysis of organic compound with semiconductor[J].Environmental Science,1994,15(3):80-83.
[3]XU Y M,YU X H.Synthesis of TiO2nanoparticles via a Ti (IV) complex with stearic acid and the photocatalytic activity for organic oxidation[J].Chinese Journal of Chemistry,2002,20(1):9-13.DOI:10.1002/cjoc.20020200103.
[4]FUJII H,OHTAKI M,EGUCHI K.Synthesis and photocatalytic activity of lamellar titanium oxide formed by surfactant bilayer templating[J].Journal of the American Chemical Society,1998,120(27):6832-6839.DOI:10.1021/ja980430d.
[5]LEGRINI O,OILVEROS E,BRAUN A M.Photochemical processes for water treatment[J].Chemical Reviews,1993,93(2):671-698.DOI:10.1021/cr00018a003.
[6]FOX M A,DULAY M T.Heterogeneous photocatalysis[J].Chemical Reviews,1993,93(1):341-357.DOI:10.1021/cr00017a016.
[7]HAGFELDT A,GRATZEL M.Light-induced redox reactions in nanocrystalline systems[J].Chemical Reviews,1995,95(1):49-68.DOI:10.1021/cr00033a003.
[8]ASAHI R,MORIKAWA T,OHWAKI T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293(5528):269-271.DOI:10.1126/science.1061051.
[9]ZHAO W,MA W H,CHEN C C,et al.Efficient degradation of toxic organic pollutants with NI2O3/TiO2-xBxunder visible irradiation[J].Journal of the American Chemical Society,2004,126(15):4782-4783.DOI:10.1021/ja0396753.
[10]魏鳳玉,倪良鎖.硼硫共摻雜TiO2的光催化性能及摻雜機(jī)理[J].催化學(xué)報(bào),2007,28(10):905-909.
[11]李立清,劉宗耀,唐新村,等.B/Fe2O3共摻雜納米TiO2可見(jiàn)光下的催化性能[J].中國(guó)有色金屬學(xué)報(bào),2006,16(12):2098-2103.
LI Liqing,LIU Zongyao,TANG Xincun,et al.Photocatalytic activity of nano-TiO2codoped with boron and Fe2O3in visible region[J].The Chinese Journal of Nonferrous Metals,2006,16(12):2098-2103.
[12]曹永強(qiáng),龍繪錦,陳詠梅,等.金紅石/銳鈦礦混晶結(jié)構(gòu)的TiO2薄膜光催化活性[J].物理化學(xué)學(xué)報(bào),2009,25(6):1088-1092.
CAO Yongqiang,LONG Huijin,CHEN Yongmei,et al.Photocatalytic activity of TiO2films with rutile/anatase mixed crystal Structures [J].Acta Phys-Chim Sin,2009,25(6):1088-1092.
[13]YUAN J J,LI H D,GAO S Y,et al.A facile route to n-type TiO2-nanotube/P-type boron-doped-diamond heterojunction for higlly efficient photocatalysts[J].Chem Commun,2010,46,3119-3121.DOI:10.1039/C003172K.
[14]WANG X D,BLACKFORD M,PRINCE K,et al.Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity[J].ACS Appl Mater Interfaces,2012,4(1):476-482.DOI:10.1021/am201695c.
[15]NAM S H N,KIM T K,BOO J H.Physical property and photo-catalytic activity of sulfur doped TiO2catalysts responding to visible light [J].Catalysis Today,2012,185(1):259-262.DOI:10.1016/j.cattod.2011.07.033.
[16]WU Q P,KROL R.Selective photoreduction of notric oxide to nitrogen by nanostructured TiO2photocatalysts:role of oxygen vacancies and iron dopant [J].J Am Chem Soc,2012,134(22):9369-9375.DOI:10.1021/ja302246b.
[17]HOANG S,GUO S W,HAHN N,et al.Visble light driven photoelectochemical water oxidation on nitrogen-modified TiO2nanowires [J].Nano Lett,2012,12(1):26-32.DOI:10.1021/nl2028188.
[18]DUNNILL C W,PARKIN I P.Nitrogen-doped TiO2thin films:photocatalytic applications for healthare environments [J].Dalton Trans,2011,40(8):1635-1640.DOI:10.1039/C0DT00494D.
[19]XIONG Z G,ZHAO X S.Nitrogen-doped titanate-anatase core-shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic activity [J].J Am Chem Soc,2012,134(13):5754-5757.DOI:10.1021/ja300730c.
[20]LI D,HANEDA H,HISHITA S,et al.Visible-light-driven N-F-codoped TiO2photocatalysts.2.Optical characterization,photocatalysis,and potential application to air purification [J].Chem Mater,2005,17(10)2596-2602.DOI:10.1021/cm049099p.
[21]DUNNILL C W,PARKIN I P.Nitrogen-doped TiO2thin films:photocatalytic applications for healthcare environments [J].Dalton Transactions,2011,40(8):1635-1640.DOI:10.1039/C0DT00494D.
[22]XING M Y,LI W K,WU Y M,et al.Formation of new structures and theis synergistic effects in boron and nitrogen codoped TiO2for enhancement of photocatalytic performance [J].J Phys Chem C,2011,115(16):7858-7865.DOI:10.1021/jp111103r.
[23]LIU G,ZHAO Y N,SUN C H,et al.Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2[J].Angew Chem Int Ed,2008,47(24)4516-4520.DOI:10.1002/anie.200705633.
[24]DUNNILL C W,PARKIN I P.Nitrogen-doped TiO2thin films:photocatalytic applications for healthcare environments [J].Dalton Transactions,2011,40(8):1635-1640.DOI:10.1039/C0DT00494D.
[25]YU Y,WU H H,ZHU B L,et al.Preparation Characterization and Photocatalytic Activities of F-doped TiO2Nanotubes [J].Catalysis Letters,2008,121(1-2):165-171.DOI:10.1007/s10562-007-9316-1.
[26]LI H Y,FAN H M.Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2nanospheres [J].Chemistry-A European Journal,2009(15):12521-12527.DOI:10.1002/chem.200901193.
[27]李發(fā)堂,趙地順,郝勇靜,等.氟摻雜納米TiO2粉體的合成及光催化活性研究[J].化學(xué)工程,2009,37(2):54-57.
LI Fatang,ZHAO Dishun,HAO Yongjing,et al.Preparation and photocatalytic activities of F-doped nano-TiO2power [J].Chemical Engineering,2009,37(2):54-57.
[28]王積森,馮忠彬,孫金全,等.納米TiO2的光催化機(jī)理及其影響因素分析[J].納米材料與結(jié)構(gòu),2008,45(1):28-32.
[29]楊儒,李敏,張敬暢,等.銳鈦礦型納米TiO2粉體的精細(xì)結(jié)構(gòu)及其光催化降解苯酚的活性[J].催化學(xué)報(bào),2003,24(8):629-634.
[30]PISCOPO A,ROBERT D,WEBER J V.Influence of pH and chloride anion on the photocatalytic degradation of organic compounds:Part 1.Effect on the benzamide and para-hydroxybenzoic acid in TiO2aqueous solution [J].Applied Catalysis B:Environmental,2001,35(2):117-124.DOI:10.1016/S0926-3373(01)00244-2.
(責(zé)任編輯:孟素蘭)
Preparation and photocatalysis performance of the sulfur-doped nano-TiO2transparent hydrosol
WANG Mingkun1,TAI Youyi2,CUI Tong1,LI Xiaowei1,LI Ling1
(1.College of Physics Science and Technology,Hebei University,Baoding 071002,China;2.College of Materials Science and Engineering,Sichuan University,Chengdu 610064,China)
Sulfur-doped nano TiO2transparent hydrosol was synthesized by using TiCl4,thiourea,organic carboxylic acid,NH3·H2O,D-sorbitol etc.as raw materials,through a novel complexation-controlled hydrolysis method at room temperature and atmospheric pressure.The hydrosol average particle size is 4.1 nm.The phase structure,particle size,composition,absorbance spectrum,and photocatalytic performance of samples were characterized by XRD,nano laser particle size analyzer and ultraviolet-visible spectrophotometer.Furthermore,the effect of reaction conditions on the synthesis process was also studied.The results show that the photocatalytic performance of sulfur-doped TiO2hydrosol was optimal when the doping content of S was 0.5% and the reflux time was 15 min.
nano-TiO2transparent hydrosol;sulfur-doped;minimum particle diameter;photocatalysis
10.3969/j.issn.1000-1565.2016.02.003
2015-06-16
國(guó)家自然科學(xué)基金資助項(xiàng)目(21201053);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金新教師類資助項(xiàng)目(20121301120005);河北省自然科學(xué)基金資助項(xiàng)目(F2014201078);河北省應(yīng)用基礎(chǔ)研究計(jì)劃重點(diǎn)基礎(chǔ)研究項(xiàng)目(14964306D);河北大學(xué)引進(jìn)人才啟動(dòng)基金資助項(xiàng)目(2012-233);河北大學(xué)學(xué)生綜合素質(zhì)培養(yǎng)項(xiàng)目(2015zh0442;2015zh0443);河北省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(2015066;2015064;201510075047:026);河北省自然科學(xué)基金資助項(xiàng)目(2015201050);河北省教育廳基金資助項(xiàng)目(QN2014057);河北省大學(xué)杰出青年基金資助項(xiàng)目(2015JQ02);河北省教育廳重點(diǎn)項(xiàng)目基金(ZD2016055);河北省研究生創(chuàng)新資助項(xiàng)目(S2016023)
王明坤 (1991—),女,河北邢臺(tái)人,河北大學(xué)在讀碩士研究生.E-mail:wmk_1234@126.com
李玲(1980—),女,河北保定人,河北大學(xué)副教授,博士,主要從事納米材料及太陽(yáng)能電池研究.
E-mail:lilinghbu@163.com
TQ613.1
A
1000-1565(2016)02-0124-05