• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Framework for Semantic Similarity Estimation in Formal Concept Analysis

    2016-11-05 02:15:17JIANGYunchengLIPuAkramAFTAB
    關(guān)鍵詞:語義背景概念

    JIANG Yuncheng, LI Pu, Akram AFTAB

    (School of Computer Science, South China Normal University, Guangzhou 510631, China)

    ?

    A Framework for Semantic Similarity Estimation in Formal Concept Analysis

    JIANG Yuncheng*, LI Pu, Akram AFTAB

    (School of Computer Science, South China Normal University, Guangzhou 510631, China)

    To realize the semantic similarity estimation for Formal Concept Analysis (FCA) concepts or concept lattices, the formal contexts of FCA are extended into semantic cases by using the concepts of Description Logics (DLs) to act as the attributes of formal contexts, that is, a kind of semantic representation for formal contexts is presented using domain ontologies (DL knowledge bases). Furthermore, a framework for semantic similarity estimation of FCA concepts and concept lattices by using DL reasoning (i.e., ontology reasoning) is proposed based on the semantic representation for formal contexts. The framework ensures that the semantic similarity measures resulting from instantiations fulfill fundamental properties such as symmetry and equivalence invariance.

    formal concept analysis; semantic similarity; description logics

    Chinese library classification:TP391Document code:AArticle ID: 1000-5463(2016)03-0044-09

    Formal Concept Analysis (FCA) has been introduced by WILLE[1]in 1982 for analyzing and structuring a domain of interest[1-2]. It is not only a method for data analysis and knowledge representation, but also a formal formulation for concept formation and learning[3]. In fact, FCA is a conceptual clustering technique that formalizes the concept of ‘concept’ as established in the international standard ISO 704 (a concept is considered as a unit of thought constituted of two parts: its extent and its intent[1-2]).

    FCA starts with the notion of a formal context specifying, which objects have what attributes. From a semantics point of view, a formal context is an information system which contains values 0 or 1[3]. It is based on the perspective that a concept has two constituent parts: its extent, which consists of all objects belonging to the concept, and its intent, which comprises all attributes shared by the objects. An important notion in FCA is thus a formal concept, which is a pair consisting of a set of objects (the extents) and a set of attri-butes (the intents) such that the intent consists of exactly those attributes that the objects in the extent have in common, and the extent contains exactly those objects that share all attributes in the intent. All concepts associated with the formal context form a complete lattice called the concept lattice.

    As pointed out by ALQADAH and BHATNAGAR[4], one shortcoming of FCA is the large number of formal concepts that typically arise in dense datasets hindering typical tasks such as rule generation and visualization. To overcome this shortcoming, it is important to develop formalisms and methods to segment, categorize and cluster formal concepts. The first step in achieving these aims is to define suitable similarity and dissimilarity measures of formal concepts. A similarity measure of formal concepts is used for estimating the degree of similarity between two formal concepts. Seve-ral researchers like ALQADAH and BHATNAGAR[4], BELOHLAVEK[5], TADRAT et al.[3], and FORMICA[6-8]have worked on similarity measures of formal concepts in FCA.

    It is worth noting that all these studies mentioned above in similarity measures do not consider semantic representation of attributes of formal contexts (or formal concepts, concept lattices). Thus, the approaches of measuring the similarity between FCA concepts mentioned above cannot use the implicit knowledge between attributes deduced from explicitly represented knowledge (i.e., attributes). That is, the existing methods of similarity measures of FCA concepts only make use of the explicitly represented attributes of formal contexts (or formal concepts). It is easy to know that the attributes in formal contexts are very simple. Each attribute is only a word or a term, and expressive (or complex) attributes are not considered in formal contexts. Similarly to the parameters of soft sets[9-11], the attributes of formal contexts have not semantics from a semantic point of view. Therefore, the existing methods of similarity measures of FCA concepts cannot eva-luate similarity of FCA concepts at the semantic level.

    It is well known that ontologies provide a formal specification of a shared conceptualization. Thanks to initiatives such as the Semantic Web, which brought the creation of thousands of domain ontologies, ontologies have been extensively exploited in knowledge-based systems[12]. The Web Ontology Language which comprises three sublanguages of increasing expressive power: OWL Lite, OWL DL and OWL Full, and its revision OWL 2, are well-known languages for ontology modeling. Nowadays, properties and semantics of ontology constructs mainly are determined by Description Logics (DLs)[13], which can be used to represent the terminological knowledge of an application domain in a structured and formally well-understood way. DL systems provide their users with inference services that deduce implicit knowledge from the explicitly represented knowledge.

    To assess similarity between FCA concepts at the semantic level, in this paper we will propose a framework for semantic similarity estimation of FCA concepts (or concept lattices) by using DL reasoning (i.e., ontology reasoning) that can deduce implicit knowledge from the explicitly represented knowledge.

    1 Preliminaries

    1.1Description Logics

    C∷=·|A|CD|r.CwhererNRandC,Ddenote arbitrary εL-concepts.

    An interpretationI=(ΔI, ?I) consists of a domain of interpretationΔI, and an interpretation function ?Imapping every atomic conceptAto a subset ofΔIand every atomic roleRto a subset ofΔI×ΔI. The top-concept · is mapped toΔI. The interpretation function ?Iis extended to complex concepts of εL as follows:(CD)I=CI_DIand (r.C)I={xΔI|yΔI,x,yrI∧yCI}.

    We callA=Ca concept definition andACa primitive concept definition. A finite set of (possibly primitive) concept definitions is a TBox TB. A concept nameAis called a primitive name of TB, iff it does not occur on the left-hand side of any concept axiom in TB. The set of all primitive names in denoted asNB.

    1.2Formal Concept Analysis

    Definition 3A formal concept (or FCA concept) of the formal contextK=(G,M,J) is a pair (A,B) withAíG,BíM,A′=BandB′=A. We callAthe extent andBthe intent of the formal concept (A,B). B(G,M,J) (or B(K)) denotes the set of all formal concepts of the formal contextK=(G,M,J), Int(K) and Ext(K) denote the sets of intents and extents of all formal concepts of the formal contextK=(G,M,J), respectively.

    We have the following properties: if (G,M,J) is a context,A,A1,A2íGare sets of objects andB,B1,B2íMare sets of attributes, then:(1)A1íA2ííB2ííA″,BíB″; (3)A′=A?,B′=B?; and (4)AíB′BíA′A×BíJ.

    2 Semantic Representation of Formal Contexts Based on DLs

    2.1Semantic Representation of Formal Contexts

    Definition 5LetK=(G,M,J) be a formal context, whereG={a1,…,am},M={C1,…,Cn}. Suppose that DO=〈RB,TB〉 is a domain ontology (i.e., DL-ontology) expressed in εLH, where TB is an unfoldable TBox, andΣis the set of all εLH-concepts of TB in DO (denoted byC(εLH,DO)), i.e.,Σ=C(εLH, DO). IfMíΣ, then 〈K,DOAB〉 is called as a se-mantic representation ofKw.r.t. DO, where DOAB=〈RB,TB,AB〉, AB={Ci(aj)|ajG,CiM,(aj,Ci)J}.

    Clearly, if we only consider the definition of semantic representation of formal contexts, we can use an arbitrary (decidable) description logic. The semantic representation of several formal contexts may also be defined as follows: LetK1=(G1,M1,J1),…,Kn=(Gn,Mn,Jn) be some formal contexts, whereG1={a11,…,a1m},…,Gn={an1,…,anm},M1={C11,…,C1m},…,Mn={Cn1,…,Cnm}. Suppose that DO=〈RB,TB〉 is a domain ontology (i.e., DL-ontology) expressed in εLH, where TB is an unfoldable TBox, andΣis the set of all εLH-concepts of TB in DO, i.e.,Σ=C(εLH, DO). IfMiíΣ(1≤i≤n), then 〈K1…Kn,DOAB〉 is called as a semantic representation ofK1,…,Knw.r.t. DO, where DOAB=〈RB,TB,AB〉,AB={Cij(akl)|aklG1…Gn,CijM1…Mn,(akl,Cij)J1…Jn}.

    The εLH-ontology of a semantic representation 〈K,DOAB〉 ofKw.r.t. DO uses an open-world semantics. The formal context of a semantic representation has a closed-world semantics. In fact, we only use open-world assumption in subsumption reasoning of DO=〈RB,TB〉. In formal contexts of FCA and AB of εLH-ontology of a semantic representation,we require closed-world knowledge about objects, thus, from a DL viewpoint we may use a model as a closed-world representation of objects.

    The algorithm of constructing a semantic representation is as follows.

    Algorithm 1Construct the semantic representation of formal context

    Input: a formal contextK=(G,M,J), whereG={a1,…,am},M={C1,…,Cn}

    Output: a semantic representation 〈K,DOAB〉 ofKw.r.t. DO, where DOAB=〈RB,TB,AB〉

    (1) 〈RB,TB,AB〉:=φ,i.e.,RB:=φ,TB:=φ, and AB:=φ;

    (5) RB:=RIA(role(TB)), DO:=〈RB,TB〉;

    (7) return 〈K,DOAB〉.

    2.2Conflict Management

    Definition 6LetK=(G,M,J) be a formal context, DO=〈RB,TB〉 be a domain ontology (i.e., DL-ontology) expressed in εLH, and 〈K,DOAB〉 be the semantic representation ofKw.r.t. DO. There exists a conflict(C1,C2,a) inKw.r.t. DO iff both of the following conditions hold:

    To implement the conflict resolution of a formal context (i.e., obtain a correct context), we have to find all conflicts in formal context. The approach is as follows:

    Algorithm 2Find all conflicts in formal context (i.e., conflict detection algorithm)

    Input: a formal contextK=(G,M,J) whereG={a1,…,am},M={C1,…,Cn}, a semantic representation 〈K,DOAB〉 ofKw.r.t. DO where DO=〈RB,TB〉

    Output: The set conflicts(K,DO) of all conflicts inKw.r.t. DO

    conflicts(K,DO):=φ

    for all attributes {C1,…,Cn} inMdo

    for all objects {a1,…,am} inGdo

    if (1) there existCiandCj(1≤i,j≤n) such that DOCiCj, and

    endfor

    endfor

    Now we give the method to conflict resolution for formal contexts.

    Algorithm 3Remove all conflicts for formal context (i.e., conflict resolution algorithm)

    Input: a formal contextK=(G,M,J), whereG={a1,…,am},M={C1,…,Cn}

    Output: a correct formal contextK′=(G,M,I) which does not include conflicts

    (1)I:=J;

    (2) use Algorithm 1 to obtain a semantic representation 〈K,DOAB〉 ofK;

    (3) utilize Algorithm 2 to get the set conflicts(K,DO) of all conflicts inKw.r.t. DO;

    (5) returnK′=(G,M,I).

    3 Semantic Representation of Formal Contexts Based on DLs

    3.1Semantic Similarity for Formal Concepts

    The mathematical metric space is a pair (D,d), where D is the domain of objects anddis the distance functiond:D×D →+{0} able to compute distances between any pair of objects from D. From a normalized metric space (D,d), we can define a similarity functions: D ×D →[0,1] by definings(X,Y)=1-d(X,Y) for allX,YD. Formally

    (1)s(X,Y)=1X=Yidentity of indiscernible,

    (2)s(X,Y)=s(Y,X) symmetry,

    (3)1+s(X,Y)≥s(X,Z)+s(Z,Y) triangle inequality.

    Definition 8LetK1=(G1,M1,J1),…,Kn=(Gn,Mn,Jn) be some formal contexts. Given any two formal concepts (EX1,IN1) and (EX2,IN2) of the same formal contextKi(or different formal contextsKi,Kj), a similarity measure sim between (EX1,IN1) and (EX2,IN2), denoted as sim((EX1,IN1),(EX2,IN2)), is a function:

    sim: B(Gi,Mi,Ji)×B(Gi,Mi,Ji)→[0,1]

    (or sim: B(Gi,Mi,Ji)×B(Gj,Mj,Jj)→[0,1])

    such that sim((EX1,IN1),(EX2,IN2))=sim((EX2,IN2),(EX1,IN1)).

    Now we present simcon, a framework for similarity measures for formal concepts (i.e., FCA concepts) based on extent similarity and intent similarity.

    Definition 9LetK1=(G1,M1,J1),…,Kn=(Gn,Mn,Jn) be some formal contexts. Given any two formal concepts (EX1,IN1) and (EX2,IN2) of the same formal contextKi(or different formal contextsKi,Kj), the similarity of EX1and EX2, denoted as simext(EX1,EX2), is a function:

    simext: Ext(Ki)×Ext(Ki)→[0,1]

    (or simext: Ext(Ki)×Ext(Kj)→[0,1])

    such that simext(EX1,EX2)=S(EX1,EX2), whereSis the Jaccard index, Sorenesen coefficient, or Symmetric difference.

    According to the properties of Jaccard index, Sorenesen coefficient, or Symmetric difference[4]249, we know that the similarity of extents of FCA concepts satisfies the property of symmetry, i.e., simext(EX1,EX2)=simext(EX2,EX1).

    To implement semantic similarity measures for FCA concepts, we have to use the similarity measures for DL concepts. In this paper we will use the approaches presented in References [14-15] to measure similarity of DL concepts because the framework provides the flexibility to adjust measures to specifics of the modeled domain.

    Definition 10Let DO=〈RB,TB〉 be a domain ontology (i.e.,DL-ontology) expressed in εLH,K1=(G1,M1,J1),…,Kq=(Gq,Mq,Jq) be some formal contexts, and 〈K1…Kq,DOAB〉 be a semantic representation ofK1,…,Kqw.r.t. DO. Given two setsM1={C1,C2,…,Cm} andM2={D1,D2,…,Dn} (m≤n) of attributes (i.e., εLH-concepts) of the same formal contextKi(or different formal contextsKi,Kj), if there is a mappingf:M1→M2such that

    (2)Ck≠Clf(Ck)≠f(Cl),

    Now we present simint, a similarity measure for intents of FCA concepts. Similarly to the framework for DL concepts[14-15], simint also uses unfoldable TBox.

    If two intents IN1and IN2are logical equivalent w.r.t. DO (i.e., IN1≡DOIN2), then we should have simint(IN1,IN2)=1 from a semantics point of view. Since IN1≡DOIN2iff IN1DOIN2and IN2DOIN1(see Definition 10), so we can define simint by extending similarity measure for DL concepts[14-15]. Formally, for any two intents IN1and IN2,

    simint(IN1,IN2)=

    simintd(IN1,IN2)simintd(IN2,IN1),

    where simintd(IN1,IN2) stands for directed similarity of IN1and IN2, and is defined as simintd(IN1,IN2)=1 iff IN2DOIN1, andis a fuzzy connector such as boundedt-norms, the Dice’s connector, or the average introduced in References [14-15]. The definition of fuzzy connector is as follows:

    Definition 11[14]63A fuzzy connector is an opera-tor on the interval [0,1],:[0,1]×[0,1]→[0,1] such that for allx,y[0,1] the following properties are true:

    ? commutativity:xy=yx,

    ? equivalence closed:xy=1x=y=1,

    ? weak monotonicity:x≤y1x≤1y,

    ? bounded:xy=0x=0 ory=0, and

    Now we present the definition of simintd. The notion of simintdpresented below is based on maximum weighted matching problem in bipartite graphs[6-7].

    ?k,l≠h}.

    Definition 13Let DO=〈RB〉 be a domain ontology expressed in εLH,K1=(G1,M1,J1),…,Kq=(Gq,Mq,Jq) be some formal contexts, and 〈K1…Kq,DOAB〉 be a semantic representation ofK1,…,Kqw.r.t. DO. Given any two formal concepts (EX1,IN1) and (EX2,IN2) of the same formal contextKi(or different formal contextsKi,Kj), where IN1={C1,C2,…,Cm} and IN2={D1,D2,…,Dn}, the directed similarity of IN1and IN2, denoted as simintd(IN1,IN2), is the function simintd: Int(K)×Int(K)→[0,1], and is defined as follows:

    simid(Ci,Dj)=

    where:

    (1)thefunctionρ:C(εLH)→P(NA) is defined in Section 1.1,

    (2)A is a boundedt-conorm,

    (3)the functiong:NA→+is a weighting function,

    (4)the functionp:(NC×NC)(NR×NR)→[0,1] is a primitive measure,

    Definition 14[14]60A functiong:NA→+is called a weighting function. The functiongdef:NA→+with for allC′NA,gdef(C″)=1, is called the default weighting function.

    Definition 15[14]55A functionp:(NC×NC)(NR×NR)→[0,1] with the properties that for allA,BNCandr,s,tNR

    ?p(A,B)=1A=B,

    ?p(r,s)=1sr,

    ?sRBrp(r,s)>0, and

    ?tRBsp(r,s)≤p(r,t),

    is called a primitive measure.

    Therefore, for any two formal concepts (EX1,IN1) and (EX2,IN2) of the same formal contextKi(or different formal contextsKi,Kj), we have that the simi-larity simint(IN1,IN2) of IN1and IN2is as follows, where IN1={C1,C2,…,Cm} and IN2={D1,D2,…,Dn}:

    simint(IN1,IN2)=

    simintd(IN1,IN2)

    Theorem 1Let DO=〈RB〉 be a domain ontology expressed in εLH,K1=(G1,M1,J1),…,Kq=(Gq,Mq,Jq) be some formal contexts, and 〈K1…Kq,DOAB〉 be a semantic representation ofK1,…,Kqw.r.t. DO. For any formal concepts (EX1,IN1),(EX2,IN2), and (EX3,IN3) of the same formal contextKi(or different formal contextsKi,Kj,Kk),

    (1)simint(IN1,IN2)=simint(IN2,IN1), i.e., simint fulfills symmetry;

    (2)if IN1≡DOIN2, then we have that simint(IN1,IN3)=simint(IN2,IN3), i.e., simint fulfills equivalence invariance.

    Now we present the similarity simcon of two formal concepts by using extent similarity (i.e.,simext) and intent similarity (i.e., simint).

    Definition 16Let DO=〈RB〉 be a domain ontology expressed in εLH,K1=(G1,M1,J1),…,Kq=(Gq,Mq,Jq) be some formal contexts, and 〈K1…Kq,DOAB〉 be a semantic representation ofK1,…,Kqw.r.t. DO. For any two formal concepts (EX1,IN1) and (EX2,IN2) of the same formal contextKi(or different formal contextsKi,Kj), the similarity of (EX1,IN1) and (EX2,IN2), denoted as simcon((EX1,IN1),(EX2,IN2)), is defined as follows:

    simcon((EX1,IN1),(EX2,IN2))=

    simext(EX1,EX2)*w+simint(IN1,IN2)*(1-w),

    wherewis a weight such that 0≤w≤1, that can be established by the user to enrich the flexibility of the method.

    Definition 17Let DO=〈RB〉 be a domain ontology expressed in εLH,K1=(G1,M1,J1),…,Kq=(Gq,Mq,Jq) be some formal contexts, and 〈K1…Kq,DOAB〉 be a semantic representation ofK1,…,Kqw.r.t. DO. For any formal conceptsP1=(EX1,IN1) andP2=(EX2,IN2) of the same formal contextKi(or different formal contextsKi,Kj), if EX1=EX2and IN1≡DOIN2, then we say thatP1andP2are logical equiva-lent with respect to DO (denoted byP1≡DOP2).

    Theorem 2Let DO=〈RB〉 be a domain ontology expressed in εLH,K1=(G1,M1,J1),…,Kq=(Gq,Mq,Jq) be some formal contexts, and 〈K1…Kq,DOAB〉 be a semantic representation ofK1,…,Kqw.r.t. DO. For any formal conceptsP1=(EX1,IN1),P2=(EX2,IN2), andP3=(EX3,IN3) of the same formal contextKi(or different formal contextsKi,Kj,Kk),

    (1)simcon(P1,P2)=simcon(P2,P1), i.e., simcon fulfills symmetry;

    (2)ifP1≡DOP2, then we have that simcon(P1,P3)=simcon(P2,P3), i.e., simcon fulfills equivalence invariance.

    From Theorem 2 we know that the similarity simcon of formal concepts is a similarity measure, i.e., simcon satisfies the condition (symmetry) of Definition 8. In addition, simcon also fulfills some additional property (equivalence invariance).

    3.2Semantic Similarity for Concept Lattices

    sim: ConLat×ConLat →[0,1]

    such that

    Now we present simlat, a framework for similarity measures for concept lattices based on the similarity of formal concepts.

    CS(FC(K2),FC(K1))={{〈Q1,P1〉,…,

    ?h=1,…,m, andQh≠Q(mào)k,Ph≠Pl,?k,l≠h}.

    Definition 20Let DO=〈RB〉 be a domain ontology (i.e., DL-ontology) expressed in εLH,K1=(G1,M1,J1) andK2=(G2,M2,J2) be two formal contexts, and 〈K1K2,DOAB〉 be a semantic representation ofK1andK2w.r.t. DO.,, is the function simlat:ConLat×ConLat →[0,1], and is defined as follows:

    Definition 21Let DO=〈RB〉 be a domain ontology expressed in εLH,K1=(G1,M1,J1) andK2=(G2,M2,J2) be two formal contexts, and 〈K1K2,DOAB〉 be a semantic representation ofK1andK2w.r.t. DO.y. If there is a bijective mappingf:FC(K1)→FC(K2) such that ?PiFC(K1), there existsQj).

    Theorem 3Let DO=〈RB〉 be a domain ontology expressed in εLH,K1=(G1,M1,J1),…,Kq=(Gq,Mq,Jq) be some formal contexts, and 〈K1…Kq,DOAB〉 be a semantic representation ofK1,…,Kqw.r.t. DO.y. Then

    From Theorem 3 we know that the similarity simlat of concept lattices is a similarity measure, i.e., simlat satisfies the condition (symmetry) of Definition 18. In addition, simlat also fulfills some additional property (equivalence invariance).

    4 Conclusion

    FCA is not only a method for data analysis and knowledge representation, but also a formal formulation for concept formation and learning. DLs are a family of knowledge representation languages which can be used to represent the terminological knowledge of an application domain in a structured and formally well-understood way. In this paper, we propose a framework for semantic similarity estimation of FCA concepts or concept lattices by using DL reasoning (i.e., ontology reasoning).

    [1]WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]∥RIVAL I. Ordered Sets.Netherlands: Springer, 1982.

    [2]GANTER B, WILLE R. Formal concept analysis: mathematical foundations[M]. Heidelberg: Springer, 1999.

    [3]TADRAT J, BOONJING V, PATTARAINTAKORN P. A new similarity measure in formal concept analysis for case-based reasoning[J]. Expert Systems with Applications, 2012, 39(1): 967-972.

    [4]ALQADAH F, BHATNAGAR R. Similarity measures in formal concept analysis[J]. Annals of Mathematics and Artificial Intelligence, 2011, 61(3): 245-256.

    [5]BELOHLAVEK R. Similarity relations in concept lattices[J]. Journal of Logic and Computation, 2000, 10(6): 823-845.

    [6]FORMICA A. Ontology-based concept similarity in formal concept analysis[J]. Information Sciences, 2006, 176 (18): 2624-2641.

    [7]FORMICA A. Concept similarity in formal concept analysis: an information content approach[J]. Knowledge-Based Systems, 2008, 21(1): 80-87.

    [8]FORMICA A. Similarity reasoning for the semantic web based on fuzzy concept lattices: an informal approach[J]. Information Systems Frontiers, 2013, 15(3): 511-520.

    [9]HERAWAN T, DERIS M M. A soft set approach for association rules mining[J]. Knowledge-Based Systems, 2011, 24(1): 186-195.

    [10]JIANG Y C, TANG Y, CHEN Q, et al. Semantic operations of multiple soft sets under conflict[J]. Computers & Mathematics with Applications, 2011, 62(4): 1923-1939.

    [11]JIANG Y C, TANG Y, CHEN Q, et al. Extending soft sets with description logics[J]. Computers & Mathematics with Applications, 2010, 59(6): 2087-2096.

    [12]SANCHEZ D, BATET M, ISERN D, et al. Ontology-based semantic similarity: a new feature-based approach[J]. Expert Systems with Applications, 2012, 39(9): 7718-7728.

    [13]BAADER F, CALVANESE D, MCGUINNESS D, et al. The description logic handbook: theory, implementation and applications[M]. 2nd ed. New York: Cambridge University Press, 2007.

    [14]LEHMANN K. A framework for semantic invariant similarity measures for εLH concept descriptions[D].Dresden: Dresden University of Technology, 2012.

    [15]LEHMANN K, TURHAN A. A framework for semantic-based similarity measures for εLH-concepts[C]∥CERRO L F, HERZIG A, MENGIN J. Logics in Artificial Intelligence. Heidelberg: Springer, 2012: 307-319.

    【中文責(zé)編:莊曉瓊英文責(zé)編:肖菁】

    2015-10-05《華南師范大學(xué)學(xué)報(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n.

    國家自然科學(xué)基金項目(61272066);教育部新世紀優(yōu)秀人才支持計劃項目(NCET-12-0644);廣州市科技計劃項目(2014J4100031)

    蔣運承,教授,Email: ycjiang@scnu.edu.cn.

    一種面向形式概念分析的語義相似度計算框架

    蔣運承*, 李璞, Akram AFTAB

    (華南師范大學(xué)計算機學(xué)院,廣州 510631)

    為了計算形式概念分析的形式概念或概念格的語義相似度,利用描述邏輯概念作為形式背景的特征屬性對形式概念分析的形式背景進行語義擴展,即利用領(lǐng)域本體(描述邏輯知識庫)提出了形式背景的一種語義表示方法.在此基礎(chǔ)上,基于形式背景的語義表示,利用描述邏輯推理(即本體推理)給出了一種面向形式概念分析的形式概念或概念格語義相似度計算框架,并且證明了實例化該架構(gòu)所得到的語義相似度計算方法滿足對稱性和等價不變性等基本性質(zhì).

    形式概念分析; 語義相似度; 描述邏輯

    猜你喜歡
    語義背景概念
    Birdie Cup Coffee豐盛里概念店
    “新四化”背景下汽車NVH的發(fā)展趨勢
    《論持久戰(zhàn)》的寫作背景
    當代陜西(2020年14期)2021-01-08 09:30:42
    語言與語義
    幾樣概念店
    學(xué)習(xí)集合概念『四步走』
    聚焦集合的概念及應(yīng)用
    晚清外語翻譯人才培養(yǎng)的背景
    “上”與“下”語義的不對稱性及其認知闡釋
    認知范疇模糊與語義模糊
    最近最新中文字幕免费大全7| 久久久久久久亚洲中文字幕| 亚洲成人手机| 桃花免费在线播放| 欧美区成人在线视频| 涩涩av久久男人的天堂| 亚洲精品国产av成人精品| 久久久久视频综合| 欧美xxⅹ黑人| 另类亚洲欧美激情| 国产一级毛片在线| 国产精品久久久久久av不卡| 七月丁香在线播放| 高清黄色对白视频在线免费看 | av福利片在线观看| 免费黄频网站在线观看国产| 亚洲va在线va天堂va国产| 777米奇影视久久| 男人舔奶头视频| av视频免费观看在线观看| 欧美丝袜亚洲另类| 99久久综合免费| 精品熟女少妇av免费看| 极品少妇高潮喷水抽搐| 成年人午夜在线观看视频| 狂野欧美激情性xxxx在线观看| 午夜av观看不卡| 夫妻性生交免费视频一级片| 欧美日韩综合久久久久久| 国产亚洲av片在线观看秒播厂| 黄色视频在线播放观看不卡| 青青草视频在线视频观看| 桃花免费在线播放| 亚洲欧美精品专区久久| 寂寞人妻少妇视频99o| 欧美日本中文国产一区发布| 成年女人在线观看亚洲视频| 亚洲av不卡在线观看| 熟女人妻精品中文字幕| 国产成人a∨麻豆精品| 国产亚洲午夜精品一区二区久久| 又大又黄又爽视频免费| 男女啪啪激烈高潮av片| 久久女婷五月综合色啪小说| 97超碰精品成人国产| 又黄又爽又刺激的免费视频.| 久久久久久久大尺度免费视频| 久久精品夜色国产| 99久久综合免费| 欧美性感艳星| 亚洲av福利一区| 又大又黄又爽视频免费| 免费人妻精品一区二区三区视频| av.在线天堂| 国产一区二区三区综合在线观看 | 一本—道久久a久久精品蜜桃钙片| 久久精品国产自在天天线| 22中文网久久字幕| 日本wwww免费看| 视频区图区小说| 亚洲自偷自拍三级| 在线观看国产h片| 能在线免费看毛片的网站| 18禁在线无遮挡免费观看视频| 亚洲精品乱久久久久久| 最近最新中文字幕免费大全7| 日日爽夜夜爽网站| 91久久精品国产一区二区成人| 久久久久人妻精品一区果冻| 亚洲国产欧美在线一区| 亚洲av国产av综合av卡| 日本wwww免费看| 两个人的视频大全免费| 国产伦精品一区二区三区四那| 亚洲人成网站在线观看播放| 看免费成人av毛片| 国产精品99久久久久久久久| 欧美区成人在线视频| 三级经典国产精品| 亚洲电影在线观看av| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久久久免| 啦啦啦中文免费视频观看日本| 一级毛片我不卡| 美女内射精品一级片tv| 亚洲婷婷狠狠爱综合网| 日本爱情动作片www.在线观看| 亚洲av电影在线观看一区二区三区| 国产综合精华液| 一级毛片久久久久久久久女| 久久99热这里只频精品6学生| 国产视频首页在线观看| 在线观看三级黄色| 亚洲欧美成人综合另类久久久| 亚洲精品视频女| 男女啪啪激烈高潮av片| 日韩人妻高清精品专区| 欧美三级亚洲精品| 午夜日本视频在线| 国产极品天堂在线| 男人舔奶头视频| 我的老师免费观看完整版| 九九在线视频观看精品| 成人亚洲精品一区在线观看| 亚洲欧美日韩东京热| 少妇被粗大的猛进出69影院 | 精品人妻熟女毛片av久久网站| 夜夜爽夜夜爽视频| 少妇精品久久久久久久| 新久久久久国产一级毛片| 丝瓜视频免费看黄片| 高清毛片免费看| 高清毛片免费看| 久久精品国产亚洲av天美| 成人午夜精彩视频在线观看| 在线观看免费视频网站a站| 久久狼人影院| 午夜影院在线不卡| 亚洲第一av免费看| 在线观看一区二区三区激情| 精品亚洲成国产av| 国产亚洲av片在线观看秒播厂| 新久久久久国产一级毛片| videos熟女内射| 乱码一卡2卡4卡精品| 新久久久久国产一级毛片| 久久精品国产鲁丝片午夜精品| 九九爱精品视频在线观看| 午夜精品国产一区二区电影| 中文字幕亚洲精品专区| 晚上一个人看的免费电影| 亚洲精品中文字幕在线视频 | 日韩欧美一区视频在线观看 | 国产欧美另类精品又又久久亚洲欧美| 最近最新中文字幕免费大全7| 精品久久久久久电影网| 亚洲怡红院男人天堂| 亚洲综合色惰| 日韩三级伦理在线观看| av又黄又爽大尺度在线免费看| 大码成人一级视频| 日韩强制内射视频| 少妇裸体淫交视频免费看高清| 日韩欧美精品免费久久| 亚洲人成网站在线播| a级片在线免费高清观看视频| 在线看a的网站| 日韩中字成人| 在线观看国产h片| 水蜜桃什么品种好| 一个人免费看片子| 老女人水多毛片| 日韩视频在线欧美| 另类亚洲欧美激情| 欧美激情国产日韩精品一区| 免费看光身美女| 大香蕉久久网| 国产男女超爽视频在线观看| 高清午夜精品一区二区三区| 永久免费av网站大全| 这个男人来自地球电影免费观看 | 中文字幕免费在线视频6| 午夜精品国产一区二区电影| 久久精品国产鲁丝片午夜精品| 又黄又爽又刺激的免费视频.| 成年女人在线观看亚洲视频| 在线播放无遮挡| 日本黄色日本黄色录像| 国产成人精品福利久久| 成人亚洲精品一区在线观看| 美女脱内裤让男人舔精品视频| 成人毛片60女人毛片免费| 亚洲一区二区三区欧美精品| 国产一区二区三区av在线| 国产午夜精品久久久久久一区二区三区| 欧美精品一区二区免费开放| 欧美日韩在线观看h| 国产 一区精品| 亚洲国产av新网站| 国产一区亚洲一区在线观看| 男女边吃奶边做爰视频| 9色porny在线观看| 嫩草影院入口| 精品一区二区三区视频在线| 99热6这里只有精品| 美女视频免费永久观看网站| 精品亚洲乱码少妇综合久久| 国产免费又黄又爽又色| 成人午夜精彩视频在线观看| 亚洲在久久综合| 99精国产麻豆久久婷婷| 永久免费av网站大全| 国产精品福利在线免费观看| 少妇人妻 视频| 国产成人精品婷婷| 亚洲欧洲精品一区二区精品久久久 | 纵有疾风起免费观看全集完整版| 日日啪夜夜撸| 美女主播在线视频| 中国三级夫妇交换| 精品一区在线观看国产| 国产黄片视频在线免费观看| 国产免费一区二区三区四区乱码| 最近手机中文字幕大全| 欧美日韩av久久| 国产亚洲一区二区精品| 亚洲av不卡在线观看| 精品亚洲成a人片在线观看| 男女无遮挡免费网站观看| 国产精品不卡视频一区二区| 国产在线视频一区二区| 免费在线观看成人毛片| 久久久久国产精品人妻一区二区| 欧美丝袜亚洲另类| 欧美成人午夜免费资源| 中文在线观看免费www的网站| 国产日韩欧美在线精品| 两个人免费观看高清视频 | 777米奇影视久久| 日韩强制内射视频| 成人无遮挡网站| 中文乱码字字幕精品一区二区三区| 精品人妻熟女av久视频| 亚洲av综合色区一区| 国产欧美日韩一区二区三区在线 | 亚洲成人一二三区av| 老熟女久久久| 免费人成在线观看视频色| 蜜桃在线观看..| 黄色一级大片看看| 大陆偷拍与自拍| 美女大奶头黄色视频| 中文欧美无线码| 亚洲综合色惰| 精品一区在线观看国产| 国产成人免费无遮挡视频| 2021少妇久久久久久久久久久| 狂野欧美白嫩少妇大欣赏| 国产乱人偷精品视频| 免费看光身美女| 亚洲电影在线观看av| 婷婷色麻豆天堂久久| 精品久久久久久久久亚洲| 一级毛片 在线播放| 有码 亚洲区| 青青草视频在线视频观看| 精品国产国语对白av| 黄色视频在线播放观看不卡| 丝袜在线中文字幕| 免费黄频网站在线观看国产| 国产又色又爽无遮挡免| 免费大片黄手机在线观看| 亚洲第一区二区三区不卡| 欧美亚洲 丝袜 人妻 在线| 亚洲国产av新网站| 亚洲欧洲日产国产| 中文字幕av电影在线播放| 中文字幕精品免费在线观看视频 | 日本色播在线视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品国产色婷婷电影| 日日爽夜夜爽网站| 男人爽女人下面视频在线观看| 男人狂女人下面高潮的视频| 涩涩av久久男人的天堂| a级片在线免费高清观看视频| 老司机影院毛片| 亚洲av中文av极速乱| 99久久精品热视频| 国产亚洲午夜精品一区二区久久| 国精品久久久久久国模美| 2021少妇久久久久久久久久久| 在线观看www视频免费| 国产色爽女视频免费观看| 欧美高清成人免费视频www| 黑丝袜美女国产一区| 777米奇影视久久| 国产av国产精品国产| 亚洲欧美中文字幕日韩二区| 国产91av在线免费观看| 80岁老熟妇乱子伦牲交| 亚洲成色77777| 亚洲精品,欧美精品| av免费在线看不卡| 免费大片18禁| 在现免费观看毛片| 久久久久久久大尺度免费视频| 99久久精品一区二区三区| 久久国产精品大桥未久av | 久久久久精品性色| 亚洲不卡免费看| 18+在线观看网站| 亚洲电影在线观看av| 欧美日韩精品成人综合77777| 精品久久国产蜜桃| 最后的刺客免费高清国语| 一级av片app| 赤兔流量卡办理| 久久久久久久久久人人人人人人| 婷婷色麻豆天堂久久| 国产一区亚洲一区在线观看| 高清不卡的av网站| 秋霞在线观看毛片| 在线观看一区二区三区激情| av有码第一页| 自拍偷自拍亚洲精品老妇| 日韩中文字幕视频在线看片| 日日摸夜夜添夜夜爱| 免费在线观看成人毛片| 国产免费又黄又爽又色| 国产黄片美女视频| 欧美精品一区二区免费开放| 午夜久久久在线观看| 精品国产国语对白av| 国产精品伦人一区二区| 成人午夜精彩视频在线观看| 免费观看av网站的网址| 亚洲怡红院男人天堂| 日日摸夜夜添夜夜爱| 建设人人有责人人尽责人人享有的| 国产精品麻豆人妻色哟哟久久| 少妇的逼水好多| 高清视频免费观看一区二区| 亚洲精品aⅴ在线观看| 亚洲国产精品专区欧美| 一区二区三区四区激情视频| 久久人人爽人人片av| 国产日韩欧美亚洲二区| 国产探花极品一区二区| 日韩一本色道免费dvd| 国产精品国产三级国产av玫瑰| 国产黄片视频在线免费观看| 99热6这里只有精品| 一个人免费看片子| 色94色欧美一区二区| 亚洲精品日韩av片在线观看| 激情五月婷婷亚洲| 国产片特级美女逼逼视频| 日日啪夜夜爽| 免费看光身美女| 亚洲熟女精品中文字幕| 人妻人人澡人人爽人人| 极品少妇高潮喷水抽搐| 成人亚洲精品一区在线观看| 26uuu在线亚洲综合色| 久久6这里有精品| 超碰97精品在线观看| 亚洲国产精品999| av播播在线观看一区| 青青草视频在线视频观看| 国产无遮挡羞羞视频在线观看| 亚洲久久久国产精品| av免费观看日本| 日日爽夜夜爽网站| 99热这里只有精品一区| 久久久久久久久久久免费av| 国产精品秋霞免费鲁丝片| 99久久综合免费| 精品人妻一区二区三区麻豆| 美女脱内裤让男人舔精品视频| 一级毛片 在线播放| av不卡在线播放| 成年女人在线观看亚洲视频| 在线观看av片永久免费下载| 久久久精品94久久精品| 麻豆精品久久久久久蜜桃| 亚洲性久久影院| 精品久久久久久久久亚洲| 午夜福利视频精品| 妹子高潮喷水视频| 国产探花极品一区二区| 最黄视频免费看| 久久韩国三级中文字幕| 日日啪夜夜爽| 制服丝袜香蕉在线| 多毛熟女@视频| 麻豆精品久久久久久蜜桃| 99re6热这里在线精品视频| 日韩中字成人| 国产免费一区二区三区四区乱码| 国产亚洲av片在线观看秒播厂| 日本黄大片高清| 91久久精品国产一区二区三区| 久久久a久久爽久久v久久| 99视频精品全部免费 在线| 免费不卡的大黄色大毛片视频在线观看| 热99国产精品久久久久久7| 精品亚洲成a人片在线观看| 你懂的网址亚洲精品在线观看| xxx大片免费视频| 亚洲人与动物交配视频| 人妻一区二区av| 亚洲欧美成人综合另类久久久| 国语对白做爰xxxⅹ性视频网站| 精品久久久噜噜| 日日啪夜夜撸| 一区二区三区四区激情视频| 乱人伦中国视频| 国产免费福利视频在线观看| a级毛片免费高清观看在线播放| 啦啦啦啦在线视频资源| 黄色一级大片看看| 色吧在线观看| 国产成人aa在线观看| 中国美白少妇内射xxxbb| 婷婷色综合大香蕉| 亚洲va在线va天堂va国产| 秋霞伦理黄片| 国产精品福利在线免费观看| 久久国产亚洲av麻豆专区| 丝袜喷水一区| 亚洲精品乱码久久久久久按摩| 亚洲精品久久午夜乱码| 国产乱人偷精品视频| 亚洲精品aⅴ在线观看| 美女xxoo啪啪120秒动态图| 狠狠精品人妻久久久久久综合| 九九在线视频观看精品| 日本猛色少妇xxxxx猛交久久| 性色av一级| 老司机影院毛片| 午夜久久久在线观看| 韩国高清视频一区二区三区| 欧美激情国产日韩精品一区| 亚洲伊人久久精品综合| 麻豆成人午夜福利视频| 伦精品一区二区三区| 国产成人91sexporn| 精品一区二区三区视频在线| 中国美白少妇内射xxxbb| 草草在线视频免费看| 亚洲欧美中文字幕日韩二区| 久久久久久久久久成人| 精品久久久久久电影网| 久久久久国产精品人妻一区二区| 成人毛片60女人毛片免费| 成人漫画全彩无遮挡| 成人二区视频| 在线天堂最新版资源| 国产亚洲最大av| 99热这里只有精品一区| 国产女主播在线喷水免费视频网站| 亚洲av电影在线观看一区二区三区| 免费黄网站久久成人精品| 亚洲精品aⅴ在线观看| 最近中文字幕高清免费大全6| videos熟女内射| 久久99精品国语久久久| 七月丁香在线播放| 日日摸夜夜添夜夜爱| 欧美一级a爱片免费观看看| 欧美日韩视频精品一区| 免费观看的影片在线观看| 色5月婷婷丁香| 我的女老师完整版在线观看| 韩国av在线不卡| 最近中文字幕2019免费版| 青春草亚洲视频在线观看| 国产亚洲av片在线观看秒播厂| 国产亚洲5aaaaa淫片| 人妻少妇偷人精品九色| 91久久精品电影网| 少妇猛男粗大的猛烈进出视频| 美女中出高潮动态图| 哪个播放器可以免费观看大片| 国产在视频线精品| 国产伦在线观看视频一区| 日韩三级伦理在线观看| 免费看日本二区| 纵有疾风起免费观看全集完整版| 中文字幕av电影在线播放| av专区在线播放| 亚洲怡红院男人天堂| 建设人人有责人人尽责人人享有的| 日本免费在线观看一区| 亚洲精品久久午夜乱码| 免费人成在线观看视频色| 少妇人妻 视频| 国产乱来视频区| 亚洲电影在线观看av| 嫩草影院新地址| 人妻 亚洲 视频| 亚洲av.av天堂| 中文字幕亚洲精品专区| 亚洲精品视频女| 一本大道久久a久久精品| 日韩,欧美,国产一区二区三区| 一级片'在线观看视频| 国产欧美日韩一区二区三区在线 | 天天操日日干夜夜撸| 99久久综合免费| 人人妻人人爽人人添夜夜欢视频 | 欧美 亚洲 国产 日韩一| 欧美日本中文国产一区发布| 九色成人免费人妻av| 亚洲精品乱码久久久v下载方式| 国产黄色免费在线视频| 亚洲精品国产av成人精品| 亚洲欧美日韩东京热| 激情五月婷婷亚洲| 欧美精品高潮呻吟av久久| 久久久久精品久久久久真实原创| 一级黄片播放器| 亚洲国产精品一区二区三区在线| 美女福利国产在线| 亚洲,欧美,日韩| 多毛熟女@视频| 久久久久久久亚洲中文字幕| 免费播放大片免费观看视频在线观看| 韩国av在线不卡| 午夜福利网站1000一区二区三区| 亚洲高清免费不卡视频| 国产成人午夜福利电影在线观看| 五月玫瑰六月丁香| 伊人久久国产一区二区| 国产一区二区在线观看日韩| 欧美成人精品欧美一级黄| 国内少妇人妻偷人精品xxx网站| 精品少妇内射三级| 中国美白少妇内射xxxbb| 大码成人一级视频| 蜜桃久久精品国产亚洲av| 69精品国产乱码久久久| 国产黄色视频一区二区在线观看| 美女脱内裤让男人舔精品视频| 日本av手机在线免费观看| 在线观看免费视频网站a站| 99热网站在线观看| 香蕉精品网在线| 蜜臀久久99精品久久宅男| 一本大道久久a久久精品| 看免费成人av毛片| 在线观看国产h片| 精品视频人人做人人爽| 美女国产视频在线观看| 久久99热6这里只有精品| 亚洲精品aⅴ在线观看| 午夜老司机福利剧场| 欧美激情极品国产一区二区三区 | 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 久久99热6这里只有精品| 两个人的视频大全免费| 国语对白做爰xxxⅹ性视频网站| 久久鲁丝午夜福利片| 国产日韩一区二区三区精品不卡 | 午夜91福利影院| 免费大片黄手机在线观看| 国产日韩一区二区三区精品不卡 | 人妻人人澡人人爽人人| 国产白丝娇喘喷水9色精品| 色视频在线一区二区三区| 国产又色又爽无遮挡免| 一级片'在线观看视频| 国产乱人偷精品视频| 国产欧美日韩综合在线一区二区 | av专区在线播放| 亚洲国产欧美在线一区| 久久久久久久久久久丰满| av福利片在线| 婷婷色av中文字幕| av在线观看视频网站免费| 熟女人妻精品中文字幕| 久久99一区二区三区| 美女cb高潮喷水在线观看| 老司机影院毛片| 毛片一级片免费看久久久久| 看免费成人av毛片| 视频中文字幕在线观看| 日韩成人伦理影院| 国产高清国产精品国产三级| 午夜免费男女啪啪视频观看| 有码 亚洲区| 久久婷婷青草| 亚洲内射少妇av| 精品一区二区三卡| 五月玫瑰六月丁香| 少妇精品久久久久久久| 亚洲av.av天堂| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久电影网| 国产深夜福利视频在线观看| 亚洲美女视频黄频| 99热这里只有精品一区| 国产欧美日韩综合在线一区二区 | 日韩欧美一区视频在线观看 | 久久久国产欧美日韩av| 亚洲av男天堂| 丁香六月天网| 日本vs欧美在线观看视频 | 一区在线观看完整版| 久久精品久久久久久久性| 亚洲欧美精品专区久久| 亚洲av综合色区一区| 如日韩欧美国产精品一区二区三区 | 欧美日韩综合久久久久久| 午夜91福利影院| 国产精品久久久久久久电影| 日韩av不卡免费在线播放| 国产淫片久久久久久久久| 国产女主播在线喷水免费视频网站| 王馨瑶露胸无遮挡在线观看| h日本视频在线播放| 99九九在线精品视频 | 久久97久久精品| h日本视频在线播放| 能在线免费看毛片的网站| 亚洲电影在线观看av| 男人爽女人下面视频在线观看| 亚洲激情五月婷婷啪啪| 性色av一级| 国产一区二区在线观看日韩| 伊人久久国产一区二区| 国产精品人妻久久久影院| 亚洲三级黄色毛片|