吳 垚, 曹巨江, 劉言松, 燕衛(wèi)亮
(陜西科技大學(xué) 機(jī)電工程學(xué)院, 陜西 西安 710021)
?
曲柄群驅(qū)動機(jī)構(gòu)剛?cè)狁詈系膭悠胶庋芯?/p>
吳垚, 曹巨江, 劉言松, 燕衛(wèi)亮
(陜西科技大學(xué) 機(jī)電工程學(xué)院, 陜西 西安 710021)
針對曲柄群驅(qū)動機(jī)構(gòu)運(yùn)轉(zhuǎn)過程存在較大振動和噪音的問題,根據(jù)平面連桿機(jī)構(gòu)動平衡理論中質(zhì)量矩替代法和動量矩替代法推導(dǎo)出曲柄群驅(qū)動機(jī)構(gòu)的動平衡條件.利用ADAMS軟件建立剛性體六曲柄群驅(qū)動機(jī)構(gòu)的動力學(xué)模型,并對比分析模型配重前后各曲柄固定轉(zhuǎn)動副處的受載曲線,基于剛性體虛擬樣機(jī)模型仿真結(jié)果得到機(jī)構(gòu)剛?cè)狁詈咸摂M樣機(jī)動平衡模型.該剛?cè)狁詈夏P头抡娼Y(jié)果說明六曲柄群驅(qū)動機(jī)構(gòu)擺動力和擺動力矩均得到了較好的平衡,揭示了只靠施加配重質(zhì)量的曲柄群驅(qū)動機(jī)構(gòu)并不能實現(xiàn)理想的動平衡效果.這種剛?cè)狁詈系膭悠胶夥椒檫M(jìn)一步研究曲柄群驅(qū)動機(jī)構(gòu)的動力學(xué)特性提供了新的思路.
曲柄群驅(qū)動機(jī)構(gòu); 動平衡條件; 部分柔性連桿桁架; 剛?cè)狁詈夏P停?ADAMS軟件
許多輕工行業(yè)使用的機(jī)器,常需要實現(xiàn)多個平行軸間傳遞轉(zhuǎn)矩不大的同步轉(zhuǎn)動,比如食品和藥品自動包裝機(jī)械、煙草機(jī)械、多軸專用鉆床等,若采用帶傳動、齒輪傳動或鏈條等傳動,通常會使傳動鏈結(jié)構(gòu)變得復(fù)雜,機(jī)構(gòu)尺寸也變得異常龐大[1-2].為解決這一難題,提出了一種新型傳動機(jī)構(gòu)——曲柄群驅(qū)動機(jī)構(gòu).
曲柄群驅(qū)動機(jī)構(gòu)是一種包含多個定軸轉(zhuǎn)動的曲柄和一個作平動的連桿桁架,且具有冗余約束的平面連桿機(jī)構(gòu)[3-4].其具有結(jié)構(gòu)簡單緊湊、傳動鏈較短、可實現(xiàn)較大中心距等速傳動、加工制造容易等優(yōu)點(diǎn),機(jī)構(gòu)中虛約束的存在對提高強(qiáng)度、剛度和傳動平穩(wěn)性也有重要作用,因此曲柄群機(jī)構(gòu)因工作效率高及成本低廉等優(yōu)越性廣泛應(yīng)用于自動化流水線、組合機(jī)床和專用工藝設(shè)備中.但由于曲柄群機(jī)構(gòu)工作時總質(zhì)心的偏心會使其產(chǎn)生較大的振動和噪音,因此為提高機(jī)構(gòu)性能、減小振動,需解決曲柄群驅(qū)動機(jī)構(gòu)的動平衡問題.
機(jī)構(gòu)動平衡一直是機(jī)構(gòu)學(xué)研究中的重要課題,連桿機(jī)構(gòu)的動平衡問題由來已久,此類機(jī)構(gòu)不能自行消除自身的慣性作用,需附加慣性元件加以抵消.20世紀(jì)70年代以來國內(nèi)外學(xué)者對連桿機(jī)構(gòu)動平衡提出了各種有效的理論模型和實驗方法,尤其是剛性平面連桿機(jī)構(gòu),按機(jī)構(gòu)被平衡程度分為部分平衡、完全平衡和綜合優(yōu)化平衡.1968年,Berkof和Lowen[5]對慣性力、慣性力矩和輸入力矩平衡方法進(jìn)行了全面的總結(jié),以輸入轉(zhuǎn)矩、擺動力和擺動力矩為優(yōu)化目標(biāo)函數(shù)進(jìn)行優(yōu)化計算.2007年,Hinanshu和Subir[6]提出運(yùn)用遞歸動力學(xué)算法的最大值對四桿機(jī)構(gòu)進(jìn)行最優(yōu)平衡,這種方法是基于轉(zhuǎn)動副軸承的動力學(xué)方程的遞歸最大值進(jìn)行分析,該方法也適用于多環(huán)平面機(jī)構(gòu).2008年,Hinanshu和Subir[7]利用等動量系統(tǒng)的點(diǎn)質(zhì)量代替平面機(jī)構(gòu)的慣性性質(zhì)進(jìn)行動平衡研究,每根桿件用3個等力矩點(diǎn)質(zhì)量替代,進(jìn)一步發(fā)展了平面機(jī)構(gòu)綜合優(yōu)化平衡方法.近年來國內(nèi)許多學(xué)者對平面機(jī)構(gòu)動平衡創(chuàng)新方法也做了大量的研究工作.1986年,黃真等[8]提出一種完全平衡平面連桿機(jī)構(gòu)擺動力矩的非圓齒輪——變速轉(zhuǎn)子法,這種方法的優(yōu)點(diǎn)是平衡構(gòu)件數(shù)目少,適用于多桿機(jī)構(gòu)同時還可以平衡慣性輸入扭矩的波動.2009年,沈惠平、張慧芳等[9-10]提出機(jī)構(gòu)擺動力和擺動力矩完全平衡有限位置法,該方法不需進(jìn)行連桿的附加配重計算,只需知道機(jī)構(gòu)在運(yùn)動過程中的(ν+f+1)個位置的角位置和角加速度,易于自動生成平衡條件方程.另外,在曲拐傳動多軸鉆以及框架傳動機(jī)構(gòu)等曲柄群驅(qū)動機(jī)構(gòu)的實際應(yīng)用中[11-12],各曲柄所在平面和連桿桁架平面在2個平行平面中,2個平面的質(zhì)量必然會使機(jī)構(gòu)產(chǎn)生一個慣性力偶矩[13],使機(jī)架產(chǎn)生反力偶,為了驗證由平面機(jī)構(gòu)動平衡理論推導(dǎo)出的曲柄群機(jī)構(gòu)動平衡條件的合理性,建立虛擬樣機(jī)模型時應(yīng)盡量減小2個平面的距離以降低或消除慣性力偶的影響,機(jī)構(gòu)動平衡仿真如果完全按照柔性體特性來進(jìn)行,仿真分析的工作量和結(jié)果處理難度將大大增加,所以建模時針對剛度大、變形小的曲柄構(gòu)件可將其視為剛性體,對于連桿桁架中受載情況復(fù)雜、剛性小的獨(dú)立連桿可部分視為柔性體,建立的這種剛?cè)狁詈夏P图饶芊从硻C(jī)構(gòu)的動力特性又可以為物理樣機(jī)動平衡實驗提供參考.
曲柄群驅(qū)動機(jī)構(gòu)中任取2個曲柄和連桿桁架均可組成平行四邊形機(jī)構(gòu),連桿桁架中每根獨(dú)立連桿為連枝構(gòu)件,機(jī)構(gòu)中所有曲柄為樹枝構(gòu)件,根據(jù)質(zhì)量矩和動量矩替代法分別建立連枝構(gòu)件的質(zhì)量矩和動量矩公式[14-15],推導(dǎo)出任意獨(dú)立連桿作用在相鄰2個曲柄上的附加質(zhì)量矩和附加動量矩公式.
(1)
圖1 相鄰樹枝構(gòu)件上連枝構(gòu)件動量矩等效替代Fig.1 The equivalent substitution of momentum moment for linkage component in the adjacent tree component
圖2 直形連枝構(gòu)件Fig.2 Straight branch component
任意直形連枝構(gòu)件(獨(dú)立連桿)j的質(zhì)量矩可轉(zhuǎn)化為等效在相鄰曲柄構(gòu)件i,k上的附加質(zhì)量矩,
(2)
考慮連桿桁架中每根直形連枝構(gòu)件的質(zhì)量矩完全等效在與其相鄰的曲柄(樹枝構(gòu)件)上,機(jī)構(gòu)中由所有曲柄組成的二副桿樹系統(tǒng)滿足擺動力完全平衡條件,即曲柄群驅(qū)動機(jī)構(gòu)擺動力完全平衡,其動平衡分析如圖3所示.
圖3 任意曲柄構(gòu)件的動平衡分析Fig.3 Dynamic balancing analysis of arbitrary crank member
所有曲柄擺動力平衡條件聯(lián)立組成曲柄群驅(qū)動機(jī)構(gòu)擺動力完全平衡條件:
(3)
故任意曲柄構(gòu)件i的總動量矩H0i為
(4)
上述機(jī)構(gòu)中每個曲柄已實現(xiàn)擺動力完全平衡,將任意曲柄擺動力完全平衡條件代入式(4)得
(5)
綜上所述,曲柄群驅(qū)動機(jī)構(gòu)動平衡條件為
(6)
圖4為未施加配重的六曲柄群驅(qū)動機(jī)構(gòu)簡圖,桿3為驅(qū)動曲柄,桿1,2,4,5,6為輸出曲柄,桿7至13組成連桿桁架,各桿件均為均質(zhì)桿,密度ρ=7.801×103kg/m3.
圖4 未施加配重的六曲柄群驅(qū)動機(jī)構(gòu)簡圖Fig.4 The diagram of six crank-group driving mechanism without counterweight
應(yīng)用Pro/E三維建模軟件,忽略軸承、曲柄軸、螺栓等對仿真結(jié)果影響不大的零件,建立六曲柄機(jī)構(gòu)的三維實體模型[16-17],將其保存為.x_t格式文件,通過產(chǎn)品交換庫的標(biāo)準(zhǔn)文件格式將三維實體模型導(dǎo)入機(jī)械系統(tǒng)動力學(xué)分析軟件ADAMS環(huán)境中,在ADAMS界面中定義各構(gòu)件的材料屬性為剛性(在MaterialType欄依次選擇Material→Guesses→steel),再按機(jī)構(gòu)的約束關(guān)系定義各曲柄與連桿桁架之間的轉(zhuǎn)動副,得到如圖5所示的未配重六曲柄群驅(qū)動機(jī)構(gòu)虛擬樣機(jī)模型.
進(jìn)行動力學(xué)仿真時,在曲柄3上添加1 200 °/s的轉(zhuǎn)動驅(qū)動,設(shè)定仿真時間為3s,仿真步長為0.01,仿真完成后以各固定轉(zhuǎn)動副的載荷情況來表征六曲柄群機(jī)構(gòu)作平面運(yùn)動時的動態(tài)特性.仿真結(jié)果通過ADAMS/PostProcessor中的Ploting輸出[18-19],圖6至圖11為未配重六曲柄群驅(qū)動機(jī)構(gòu)中各曲柄固定轉(zhuǎn)動副處的反作用力矩.
圖5 未施加配重的六曲柄群驅(qū)動機(jī)構(gòu)虛擬樣機(jī)模型Fig.5 The virtual prototype model of six crank-group driving mechanism without counterweight
圖6 六曲柄群驅(qū)動機(jī)構(gòu)配重前曲柄1轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.6 The reaction force and torque curve of rotation pair of crank 1 of six crank-group driving mechanism before adding the counterweight
圖7 六曲柄群驅(qū)動機(jī)構(gòu)配重前曲柄2轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.7 The reaction force and torque curve of rotation pair of crank 2 of six crank-group driving mechanism before adding the counterweight
圖8 六曲柄群驅(qū)動機(jī)構(gòu)配重前曲柄3轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.8 The reaction force and torque curve of rotation pair of crank 3 of six crank-group driving mechanism before adding the counterweight
圖9 六曲柄群驅(qū)動機(jī)構(gòu)配重前曲柄4轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.9 The reaction force and torque curve of rotation pair of crank 4 of six crank-group driving mechanism before adding the counterweight
圖10 六曲柄群驅(qū)動機(jī)構(gòu)配重前曲柄5轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.10 The reaction force and torque curve of rotation pair of crank 5 of six crank-group driving mechanism before adding the counterweight
圖11 六曲柄群驅(qū)動機(jī)構(gòu)配重前曲柄6轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.11 The reaction force and torque curve of rotation pair of crank 6 of six crank-group driving mechanism before adding the counterweight
從各曲柄轉(zhuǎn)動副處的反作用力和反作用力矩曲線圖(見圖6至圖11)可以看出,機(jī)構(gòu)運(yùn)轉(zhuǎn)時各曲柄固定轉(zhuǎn)動副處作用反力的大小隨時間呈周期性變化,這種變化是加劇轉(zhuǎn)動副中軸承與軸之間磨損,降低機(jī)構(gòu)傳動效率,造成機(jī)座產(chǎn)生振動、噪音的原因.曲柄1,2,4的總反作用力峰值最大,分別為1 750,9 000,9 000N,相比其他曲柄,這3個曲柄對六曲柄群機(jī)構(gòu)的運(yùn)動平穩(wěn)性影響更為顯著.而每個曲柄固定轉(zhuǎn)動副處的反作用力矩始終為零,說明此類曲柄群機(jī)構(gòu)在勻速運(yùn)轉(zhuǎn)時機(jī)構(gòu)的擺動力矩恒為零,與上述曲柄群驅(qū)動機(jī)構(gòu)擺動力矩完全平衡條件符合,說明了該動力學(xué)模型的正確性.
將六曲柄群機(jī)構(gòu)中的6個曲柄均設(shè)計為相同扇角、不同扇形半徑的扇形曲柄,如表1所示,通過改變扇形半徑調(diào)整配重曲柄質(zhì)量矩的中心位置,如圖12所示.
(7)
式中:α為扇形曲柄的扇角大小,ρ為曲柄的材料密度,Ri為扇形曲柄的扇形半徑,t為曲柄厚度,每個扇形曲柄均取t=30mm.
表1各扇形曲柄的配重參數(shù)
Table 1The weight parameters of each fan shaped crank
扇形曲柄的扇角量值/(°)扇形曲柄的扇形半徑量值/mmα1150R1151.141α2150R2183.365α3150R3168.342α4150R4121.531α5150R5183.909α6150R6161.848
圖12 利用扇形曲柄配重后的六曲柄群驅(qū)動機(jī)構(gòu)模型Fig.12 The virtual prototype model of six crank-group driving mechanism by using fan shaped crank
在ADAMS中添加與未配重六曲柄機(jī)構(gòu)相同的約束以及驅(qū)動,圖13至圖18為扇形曲柄配重后各曲柄固定轉(zhuǎn)動副處的反作用力和反作用力矩曲線圖.
圖13 六曲柄群驅(qū)動機(jī)構(gòu)配重后扇形曲柄1固定轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.13 The reaction force and torque curve of rotation pair of fan shaped crank 1 of six crank-group driving mechanism after adding the counterweight
圖14 六曲柄群驅(qū)動機(jī)構(gòu)配重后扇形曲柄2固定轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.14 The reaction force and torque curve of rotation pair of fan shaped crank 2 of six crank-group driving mechanism after adding the counterweight
圖15 六曲柄群驅(qū)動機(jī)構(gòu)配重后扇形曲柄3固定轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.15 The reaction force and torque curve of rotation pair of fan shaped crank 3 of six crank-group driving mechanism after adding the counterweight
圖16 六曲柄群驅(qū)動機(jī)構(gòu)配重后扇形曲柄4固定轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.16 The reaction force and torque curve of rotation pair of fan shaped crank 4 of six crank-group driving mechanism after adding the counterweight
圖17 六曲柄群驅(qū)動機(jī)構(gòu)配重后扇形曲柄5固定轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.17 The reaction force and torque curve of rotation pair of fan shaped crank 5 of six crank-group driving mechanism after adding the counterweight
通過對比施加配重前后六曲柄群驅(qū)動機(jī)構(gòu)各曲柄固定轉(zhuǎn)動副處的受力與力矩發(fā)現(xiàn),機(jī)構(gòu)配重前后曲柄受載曲線圖中出現(xiàn)較大的周期瞬時載荷,產(chǎn)生這種情況的原因可能是機(jī)構(gòu)運(yùn)動到死點(diǎn)時受力不明確及構(gòu)件之間存在的尺寸誤差引起構(gòu)件在轉(zhuǎn)動副處發(fā)生碰撞,引起沖擊載荷使運(yùn)動副反作用力出現(xiàn)高頻振蕩影響機(jī)構(gòu)的動態(tài)特性.在同樣的轉(zhuǎn)速下,各曲柄固定轉(zhuǎn)動副處反作用力矩仍為零,曲柄1,2,4的總反作用力分別下降了85.71%,91.67%,93.33%;相反,曲柄3,5,6固定轉(zhuǎn)動副處總反力上升了95.9%,90%和93.15%.從機(jī)構(gòu)整體反作用力變化幅值來看,添加扇形曲柄平衡六曲柄群驅(qū)動機(jī)構(gòu)后,機(jī)構(gòu)對機(jī)座的擺動力大大降低,但不平衡慣性力未能如動平衡條件推導(dǎo)的那樣完全消失,所以單純利用質(zhì)量配重的動平衡效果并不能達(dá)到完全平衡狀態(tài).
根據(jù)上述剛性體扇形配重后的六曲柄群驅(qū)動機(jī)構(gòu)的仿真結(jié)果,曲柄2固定轉(zhuǎn)動副處所受的反作用載荷最大,為協(xié)調(diào)機(jī)構(gòu)各桿件受載時發(fā)生的變形以及降低曲柄2處的受力幅值,考慮到連桿桁架作為聯(lián)接各輸入輸出曲柄的傳動部件時,所受載荷最復(fù)雜,而連桿桁架剛度過大可能會加劇轉(zhuǎn)動副間的摩擦與磨損,降低傳動效率,甚至使機(jī)構(gòu)發(fā)生“卡死”現(xiàn)象.因此把連桿桁架進(jìn)行部分柔性處理,用離散柔性連接件替換連桿桁架中獨(dú)立剛性連桿7,8,13,使整個機(jī)構(gòu)的誤差和間隙在曲柄2與連桿桁架的連接處得到補(bǔ)償[20-21].其中ADAMS動力學(xué)軟件中的離散柔性連接件是直接利用柔性梁把被離散的剛性構(gòu)件中的多個小剛性體聯(lián)接起來,離散柔性連接件產(chǎn)生的變形即柔性連接梁的變形,小剛性體上任意兩點(diǎn)不能相對移動,嚴(yán)格來說離散柔性連接件仍屬于剛性構(gòu)件的范疇,因而該方法只適合用于結(jié)構(gòu)簡單的零件.圖19為對六曲柄群驅(qū)動機(jī)構(gòu)施加配重的基礎(chǔ)上,連桿桁架中加入柔性連桿的曲柄群驅(qū)動機(jī)構(gòu)虛擬樣機(jī)模型.
圖19 引入部分柔性連桿桁架的六曲柄群驅(qū)動機(jī)構(gòu)虛擬樣機(jī)模型Fig.19 The virtual prototype model of six crank-group driving mechanism with partial flexible connecting rod truss
在曲柄與機(jī)架、曲柄與連桿桁架之間添加相同的轉(zhuǎn)動副約束,仍在曲柄3固定轉(zhuǎn)動副處添加1 200 °/s的旋轉(zhuǎn)驅(qū)動,設(shè)置仿真時間為1.5 s,即各曲柄旋轉(zhuǎn)3周的時間,仿真步長為0.01,各曲柄運(yùn)動副處的反作用力和反作用力矩仿真結(jié)果如圖20至圖25所示.
圖20 六曲柄群驅(qū)動機(jī)構(gòu)引入部分柔性連桿桁架后扇形曲柄1轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.20 The reaction force and torque curve of rotation pair of fan shaped crank 1 of six crank-group driving mechanism with partial flexible connecting rod truss
圖21 六曲柄群驅(qū)動機(jī)構(gòu)引入部分柔性連桿桁架后扇形曲柄2轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.21 The reaction force and torque curve of rotation pair of fan shaped crank 2 of six crank-group driving mechanism with partial flexible connecting rod truss
圖22 六曲柄群驅(qū)動機(jī)構(gòu)引入部分柔性連桿桁架后扇形曲柄3轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.22 The reaction force and torque curve of rotation pair of fan shaped crank 3 of six crank-group driving mechanism with partial flexible connecting rod truss
圖23 六曲柄群驅(qū)動機(jī)構(gòu)引入部分柔性連桿桁架后扇形曲柄4轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.23 The reaction force and torque curve of rotation pair of fan shaped crank 4 of six crank-group driving mechanism with partial flexible connecting rod truss
圖24 六曲柄群驅(qū)動機(jī)構(gòu)引入部分柔性連桿桁架后扇形曲柄5轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.24 The reaction force and torque curve of rotation pair of fan shaped crank 5 of six crank-group driving mechanism with partial flexible connecting rod truss
圖25 六曲柄群驅(qū)動機(jī)構(gòu)引入部分柔性連桿桁架后扇形曲柄6轉(zhuǎn)動副處的反作用力與反作用力矩曲線Fig.25 The reaction force and torque curve of rotation pair of fan shaped crank 6 of six crank-group driving mechanism with partial flexible connecting rod truss
從上述仿真曲線圖中可以看出,機(jī)構(gòu)在啟動階段有較大的動載荷,初始振動因連桿桁架部分柔性連桿的彈性變形在短時間振蕩后迅速降低,各固定轉(zhuǎn)動副處的反作用力和反作用力矩立刻變小,其幅值在零值附近作小范圍周期性變化.尤其是曲柄2固定轉(zhuǎn)動副處的反作用力得到完全平衡,整個過程中各曲柄固定轉(zhuǎn)動副處受力平穩(wěn),機(jī)構(gòu)動平衡效果明顯.這種結(jié)構(gòu)會大幅降低構(gòu)件之間的沖擊載荷,防止連桿桁架中各獨(dú)立連桿發(fā)生斷裂破壞和減少機(jī)構(gòu)工作過程中的噪音,使機(jī)構(gòu)的使用壽命和傳遞效率明顯提高.
本文結(jié)合質(zhì)量矩和動量矩替代法得出的曲柄群驅(qū)動機(jī)構(gòu)動平衡條件和ADAMS/Flex柔性體理論,建立了多組六曲柄群驅(qū)動機(jī)構(gòu)的動平衡模型并進(jìn)行了仿真分析,比較模型間各曲柄固定轉(zhuǎn)動副處反作用載荷的變化曲線圖,發(fā)現(xiàn)只利用質(zhì)量配重的方法并不能實現(xiàn)機(jī)構(gòu)的完全平衡.將連桿桁架中與受載情況最惡劣曲柄相連的獨(dú)立連桿替換為柔性體后,對曲柄群驅(qū)動機(jī)構(gòu)剛?cè)狁詈蟿悠胶夥椒P瓦M(jìn)行仿真分析,結(jié)果表明后者動平衡效果明顯優(yōu)于前者,說明柔性構(gòu)件的引入對機(jī)構(gòu)動平衡效果的提高存在較大影響,該剛?cè)狁詈蟿悠胶夥椒茌^好地平衡機(jī)構(gòu)傳給機(jī)架的擺動力和擺動力矩.因此在動平衡物理樣機(jī)設(shè)計時一定要考慮連桿桁架中相關(guān)連桿彈性變形對各曲柄固定轉(zhuǎn)動副受載的影響,合理地對結(jié)構(gòu)進(jìn)行優(yōu)化以滿足機(jī)構(gòu)工作的平穩(wěn)性能要求,為曲柄群驅(qū)動機(jī)構(gòu)實驗物理樣機(jī)的研制提供可靠保證.
[1] 汪玉琪,曹巨江.曲柄群驅(qū)動機(jī)構(gòu)的運(yùn)動特點(diǎn)研究[J].機(jī)械傳動,2013,37(10): 79-81.
WANG Yu-qi,CAO Ju-jiang.Study on the motion feature of crank-group driving mechanism[J].Journal of Mechanical Transmission,2013,37(10): 79-81.
[2] 焦楠.曲柄群驅(qū)動裝置虛擬樣機(jī)研究[D].西安:陜西科技大學(xué)機(jī)電工程學(xué)院,2014: 1-4.
JIAO Nan.Virtual prototyping of crank-group driving device[D].Xi′an: Shanxi University of Science and Technology, College of Mechanical and Electrical Engineering, 2014: 1-4.
[3] 任升,曹巨江,劉言松,等.曲柄群驅(qū)動機(jī)構(gòu)單元化平衡[J].輕工機(jī)械,2015,33(1): 8-10.
REN Sheng,CAO Ju-jiang,LIU Yan-song,et al.Inertia force balance of crank-group driving mechanism based on crank unit[J].Journal of Light Industrial Machinery,2015,33(1): 8-10.
[4] 洪光輝.框架傳動機(jī)構(gòu)集成優(yōu)化動力平衡研究[D].長沙:湖南大學(xué)機(jī)械與汽車工程學(xué)院,2006: 1-3.
HONG Guang-hui.The research of integrated optimization dynamical balancing in framework transmission mechanism[D].Changsha: Hunan University, College of Mechanical and Automobile Engineering, 2006: 1-3.
[5] BERKOF R S,LOWEN G G.A new method for completely force balancing simple linkages[J].Journal of Engineering for Industry, 1969, 91(1):21-26.
[6] HINANSHU Chaudhary,SUBIR Kumar Saha.Balancing of four-bar linkages using maximum recursive dynamic algorithm[J].Mechanism and Machine Theory,2007,42(2): 216-232.
[7] HIMANSHU Chaudhary,SUBIR Kumar Saha.Balancing of shaking forces and shaking moments for planar mechanisms using the equimomental systems[J].Mechanism and Machine Theory,2008,43(3): 310-334.
[8] 黃真,石鎮(zhèn)德.平衡機(jī)構(gòu)擺動力矩的非園齒輪法[J].東北重型機(jī)械學(xué)院學(xué)報,1986(4): 40-45.
HUANG Zhen,SHI Zhen-de.Non-circular gear method for balancing shaking moment of mechanism[J].Journal of Northeast Heavy Machinery College,1986(4): 40-45.
[9] 張會芳,沈惠平,楊廷力.機(jī)構(gòu)擺動力完全平衡有限位置法及其應(yīng)用[J].機(jī)械科學(xué)與技術(shù),2009,28(3): 360-366.
ZHANG Hui-fang,SHEN Hui-ping,YANG Ting-li.A finite place method for balancing the shaking force of mechanism and its application[J].Mechanical Science and Technology for Aerospace Engineering,2009,28(3): 360-366.
[10] 沈惠平,張會芳,丁少華,等.機(jī)構(gòu)擺動力矩完全平衡的有限位置法[J].機(jī)械科學(xué)與技術(shù),2011,30(6): 861-864.
SHEN Hui-ping,ZHANG Hui-fang,DING Shao-hua,et al.A finite place method for solving the shaking moment of a mechanism[J].Mechanical Science and Technology for Aerospace Engineering, 2011,30(6): 861-864.
[11] 朱波兒,黎東升.曲拐傳動及其在機(jī)加工中的應(yīng)用[J].機(jī)電工程技術(shù),2002,31(1): 44-45.
ZHU Bo-er,LI Dong-sheng.Crankshaft transmission and its application in machining[J].Journal of Electromechanical Technology,2002,31(1): 44-45.
[12] 謝明金,劉子建,汪祥,等.卸載方式在高速框架傳動機(jī)構(gòu)中的應(yīng)用研究[J].現(xiàn)代制造工程,2008(5): 99-102.
XIE Ming-jin,LIU Zi-jian,WANG Xiang,et al.The application research of unloading methods in high-speed framework transmission mechanism[J].Journal of Modern Manufacturing Engineering,2008(5): 99-102.
[13] 楊敬涵,黃季靈.平面連桿機(jī)構(gòu)震動力矩平衡的行星轉(zhuǎn)子法[J].機(jī)械工程師,1988(4): 2-4.
YANG Jing-han,HUANG Ji-ling.Planetary rotor method for balancing shaking moment of planar linkage mechanisms[J].Journal of Mechanical Engineer,1998(4): 2-4.
[14] 郭瑞琴,孔憲文.平面連桿機(jī)構(gòu)擺動力完全平衡的質(zhì)量矩替代法[J].機(jī)械傳動,2000,24(1): 9-12.
GUO Rui-qin,KONG Xian-wen.Mass moment substitution method for balancing shaking force of planar linkage mechanism[J].Journal of Mechanical Transmission,2000,24(1): 9-12.
[15] 孔憲文,楊廷力.全R副空間連桿機(jī)構(gòu)擺動力和擺動力矩的完全平衡[J].機(jī)械科學(xué)與技術(shù),1997(3): 442-447.
KONG Xian-wen,YANG Ting-li.Complete balance of the swing force and the swing moment of spatial linkage mechanism with only R pairs[J].Mechanical Science and Technology for Aerospace Engineering,1997(3): 442-447.
[16] 童寶宏,桂長林,陳華,等.內(nèi)燃機(jī)曲柄連桿機(jī)構(gòu)的建模與仿真研究[J].計算機(jī)仿真,2007,24(12): 229-234.
TONG Bao-hong,GUI Chang-lin,CHEN Hua,et al.Modeling and simulation of the crank-connecting rod mechanism in internal combustion engine[J].Journal of Computer Simulation,2007,24(12): 229-234.
[17] 姜峣,李鐵民,王立平.過約束并聯(lián)機(jī)構(gòu)動力學(xué)建模方法[J].機(jī)械工程學(xué)報,2013,49(17): 123-129.
JIANG Yao,LI Tie-min,WANG Li-ping.Research on the dynamic model of an over-constrained parallel mechanism[J].Journal of Mechanical Engineering,2013,49(17): 123-129.
[18] 劉劍釗,黨建軍,張進(jìn)軍.基于ADAMS的擺盤機(jī)構(gòu)動力學(xué)仿真分析[J].機(jī)械設(shè)計與制造,2012(4): 76-78.
LIU Jian-zhao,DANG Jian-jun,ZHANG Jin-jun.ADAMS-based dynamic simulation analysis for wobble-plate mechanism[J].Journal of Mechanical Design and Manufacturing,2012(4): 76-78.
[19] 吳艷榮,金國光,李東福.基于ADAMS的變胞機(jī)構(gòu)動力學(xué)仿真[J].機(jī)械設(shè)計與制造,2007(5): 87-88.
WU Yan-rong,JIN Guo-guang,LI Dong-fu.Dynamic simulation of metamorphic mechanism with ADAMS software[J].Machinery Design & Manufacture,2007(5): 87-88.
[20] 孫建銳.基于剛?cè)狁詈夏P偷拈T座起重機(jī)動力學(xué)仿真研究[D].武漢:武漢理工大學(xué)物流工程學(xué)院,2010: 61-67.
SUN Jian-rui.Crane based on rigid-flexible multiply model[D].Wuhan: Wuhan University of Technology,College of Logistics Engineering, 2010: 61-67.
[21] DYER S S,SHI Jian-jun.Robust optimal influence-coefficient control of multiple-plane active rotor balancing systems[J].Journal of Dynamic Systems (Measurement and Control),2002,124(1):41-46.
Research of the rigid-flexible coupling dynamic balancing on crank-group driving mechanism
WU Yao, CAO Ju-jiang, LIU Yan-song, YAN Wei-liang
(College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi′an 710021, China)
Aiming at the problems of serious vibration and noise during the operation of the crank-group driving mechanism, the mass moment substitution method and the momentum moment substitution method in the dynamic balance theory of the planar linkage mechanism were used to derive the dynamic balancing condition of crank-group driving mechanism. Then ADAMS software package was utilized to establish the dynamic models of rigid six crank-group both before and after adding counterweight and the loading curve of crank’s fixed rotate pair of each model was comparatively analyzed. Based on the former simulation results of rigid virtual prototype model, the rigid-flexible coupling virtual prototype model of mechanism was obtained. The simulation results of rigid-flexible coupling dynamic balancing model showed that the unbalanced force and moment of six crank-group mechanism were well balanced. Therefore, the desired dynamic balancing effect can not be achieved by merely imposing counterweight mass so that the application of rigid-flexible coupling dynamic balancing method provide a new approach for the research of dynamic characteristics of crank-group driving mechanism.
crank-group driving mechanism; dynamic balance condition; partially flexible linkage truss; rigid-flexible coupling model; ADAMS software
2016-04-08.
國家自然科學(xué)基金資助項目(51175313).
吳垚(1989—),男,山東菏澤人,碩士,從事曲柄群驅(qū)動機(jī)構(gòu)動力學(xué)實驗研究,E-mail:1696199213@qq.com.
曹巨江(1955—),男,陜西戶縣人,教授,博士生導(dǎo)師,從事機(jī)械工程、凸輪機(jī)構(gòu)及先進(jìn)制造技術(shù)等研究,E-mail:1787626716@qq.com.http://orcid.org//0000-0002-0264-0867
10.3785/j.issn. 1006-754X.2016.05.010
TH 113
A
1006-754X(2016)05-0468-13
本刊網(wǎng)址·在線期刊:http://www.zjujournals.com/gcsjxb