孫 強(qiáng),孫月海,2
(1. 天津大學(xué)機(jī)構(gòu)理論與裝備設(shè)計(jì)教育部重點(diǎn)實(shí)驗(yàn)室,天津 300072;2. 天津大學(xué)輕型動(dòng)力教育部工程研究中心,天津 300072)
S型齒廓少齒數(shù)齒輪的幾何建模與強(qiáng)度分析
孫 強(qiáng)1,孫月海1,2
(1. 天津大學(xué)機(jī)構(gòu)理論與裝備設(shè)計(jì)教育部重點(diǎn)實(shí)驗(yàn)室,天津 300072;2. 天津大學(xué)輕型動(dòng)力教育部工程研究中心,天津 300072)
針對漸開線少齒數(shù)齒輪副因齒面接觸應(yīng)力大導(dǎo)致承載能力低而難以廣泛應(yīng)用的問題,提出了一種能夠?qū)崿F(xiàn)凹凸弧齒廓嚙合的基于正弦曲線齒條刀具加工的S型齒廓.給出了齒條刀具正弦函數(shù)的曲線方程,推導(dǎo)了S型齒廓數(shù)學(xué)模型,建立了S型齒廓少齒數(shù)齒輪的幾何模型,分析了S型齒廓的誘導(dǎo)法曲率的計(jì)算方法,開展了齒輪副接觸應(yīng)力的有限元仿真分析,并與漸開線少齒數(shù)齒輪作了對比分析.結(jié)果表明,相互共軛嚙合的S型齒廓齒輪副具有相同的齒廓方程形式,能夠用一把齒條刀具或滾刀加工,且能較大幅度地提高少齒數(shù)齒輪副的承載能力.
S型齒廓;漸開線;少齒數(shù)齒輪;齒輪
齒形是決定齒輪傳動(dòng)性能優(yōu)劣的基本因素,也是影響齒輪承載能力的最根本因素.目前,少齒數(shù)齒輪傳動(dòng)的齒形設(shè)計(jì)及相關(guān)研究還沒有像普遍使用的漸開線圓柱齒輪那樣得到重視,絕大多數(shù)有關(guān)少齒數(shù)齒輪的研究也是以漸開線齒形為研究對象,把少齒數(shù)齒輪傳動(dòng)作為漸開線齒輪傳動(dòng)的延伸.然而,理論分析和試驗(yàn)研究表明,漸開線齒廓凸凸嚙合,綜合曲率大,容易出現(xiàn)齒面接觸疲勞破壞,導(dǎo)致少齒數(shù)齒輪傳動(dòng)承載能力不足的問題更加突出.
針對少齒數(shù)齒輪,國內(nèi)外學(xué)者對已有的幾種齒廓曲線齒輪進(jìn)行了研究.Ishibashi等[1-2]試制了小齒輪齒數(shù)為3和5的圓弧齒輪副,并進(jìn)行了圓弧齒輪副和漸開線齒輪副的傳動(dòng)效率試驗(yàn),測得前者效率為86%,~98%,后者為93%,~95%,并表明圓弧齒輪副具有較好的承載能力,但也發(fā)現(xiàn)圓弧齒輪副磨損嚴(yán)重,壽命較短;孫月海等[3]提出了漸開線少齒數(shù)齒輪的強(qiáng)度計(jì)算方法,并獲得齒廓變位的計(jì)算方法;Fujiwara[4]發(fā)明了齒廓由部分?jǐn)[線構(gòu)成的少齒數(shù)齒輪傳動(dòng),與漸開線齒輪相比有較好的齒高優(yōu)勢,但未見其相關(guān)性試驗(yàn)和應(yīng)用報(bào)道.在理論研究方面,專門針對少齒數(shù)齒輪傳動(dòng)特點(diǎn)的齒形設(shè)計(jì)研究較少[5],特別是在提高少齒數(shù)齒輪傳動(dòng)承載能力方面,有針對性的研究及成果尚鮮見報(bào)道.
為提高少齒數(shù)齒輪的承載能力,筆者提出了一種基于正弦函數(shù)的齒條刀具加工的S型齒廓曲線[6-7],并將該曲線應(yīng)用于少齒數(shù)齒輪副.為了探究該種齒輪副的承載能力,本文建立了基于正弦函數(shù)的齒條刀具方程和其展成的齒輪副齒廓數(shù)學(xué)模型,對S型廓線少齒數(shù)齒輪中的齒廓變位進(jìn)行了研究;建立了S型齒廓齒輪的幾何模型;分析了S型齒廓齒輪副接觸的誘導(dǎo)法曲率;并應(yīng)用有限元法對具有同等參數(shù)的S型齒廓和漸開線齒廓的兩種少齒數(shù)齒輪副進(jìn)行了對比分析.研究表明,S型齒廓少齒數(shù)齒輪較漸開線少齒數(shù)齒輪有明顯的強(qiáng)度優(yōu)勢.
由Camus定理[8]可知,一對在齒形上能彼此嵌合的齒條刀具,按共軛運(yùn)動(dòng)原理分別加工出的齒輪副,能夠?qū)崿F(xiàn)共軛嚙合.漸開線齒輪副即可認(rèn)為是由彼此嵌合的直線齒條共軛加工而成.而齒條直線被正弦曲線代替后,就可由加工獲得能夠相互共軛的S型廓線齒輪副.
1.1齒條刀具模型
齒形為正弦曲線的齒條如圖1所示.可以看出,兩齒條刀具齒形在采用同一正弦曲線而相互嵌合后,這兩齒條刀具切削部位的幾何形狀完全相同,因此,只需用一把刀具即可加工出兩個(gè)相互共軛嚙合的齒廓副.
采用上述齒條刀具和包絡(luò)加工法,可得到圖2所示的齒輪齒廓,用同一把刀具可以加工出圖3所示的一對能互相共軛嚙合的齒輪副.可以看出,它們屬于凸凹弧的齒廓嚙合.
如圖4(a)所示,建立與齒條刀具固連的坐標(biāo)系O1x1y1,為使齒條刀具的方程直觀、簡單,在原來的基礎(chǔ)上建立一個(gè)新的坐標(biāo)系O0x0y0,此坐標(biāo)系與O1x1y1共原點(diǎn),夾角為α,在坐標(biāo)系O0x0y0建立齒條ab段的齒形方程為
1.2齒廓曲線方程
將齒條齒形在坐標(biāo)系O0x0y0中的方程,變換到與齒輪固連的坐標(biāo)系O2x2y2中,如圖5所示,借助坐標(biāo)系Pxy就可以得到齒輪的齒廓方程,其變換矩陣為
圖1 一對相互嵌合的齒條刀具Fig.1 A pair of rack cutter of mutual gomphosis
圖2 正弦形刀具包絡(luò)加工得到的S型齒廓Fig.2S-shaped tooth profile envelope processed by sine shape cutter
圖3 一對相互嚙合的S型齒廓齒輪Fig.3A pair of mutually meshing S-shaped tooth profile gears
圖4 齒條刀具建模Fig.4 Rack cutter modeling
圖5 齒條齒輪嚙合的坐標(biāo)系Fig.5 Rack and pinion meshing coordinate system
將式(1)代入式(6)并化簡可以得到齒輪的齒廓方程.
由S型齒廓曲線的成形原理可知,一對能相互嚙合的S型齒輪具有相同的齒廓方程形式.如圖6所示,在以齒輪中心為原點(diǎn)的與齒輪固連的坐標(biāo)系O1x1y1、O2x2y2中,相互共軛嚙合的齒輪齒廓曲線參數(shù)方程可統(tǒng)一為
式中:-πω≤t ≤πω;r為齒輪分度圓,r=mz2,z為齒輪齒數(shù).與漸開線齒輪一樣引入S型齒廓齒輪的基圓rb=rcosα.
圖6 S型齒廓齒輪副參數(shù)Fig.6 Parameters of S-shaped tooth profile gear pair
齒根過渡曲線依加工方法而不同,本文建模時(shí)過渡曲線方程是利用展成法加工齒輪得到,可由齒輪嚙合原理[8]所提供的方法求出.
1.3S型齒廓齒輪的變位
由式(1)可知,當(dāng)衍生系數(shù)λ′=0即λ=0時(shí),S型齒廓曲線齒輪轉(zhuǎn)化為漸開線齒輪,即漸開線齒輪是S型齒輪的一種特殊形式.
則正變位齒輪的齒厚為
齒槽寬為
采用同一原理,可以得到大齒輪的負(fù)變位計(jì)算方法. 1.4 S型齒廓少齒數(shù)齒輪的端面模型
圖7 S型齒廓齒輪變位Fig.7 Addendum modification of S-shaped tooth profile gear
根據(jù)上述齒廓方程及變位原理,可建立齒輪端面模型.圖8為模數(shù)為1.75,mm、齒數(shù)為3時(shí)的S型齒輪與漸開線型齒輪的齒形比較.通過對比可以看出,同等參數(shù)條件下,S型齒輪齒高較漸開線大.表1給出了小齒輪齒數(shù)分別為2、3、6的一組參數(shù),變位系數(shù)按照嚙合齒對齒根等彎曲強(qiáng)度條件選取[3].其中安裝中心距a′=62,法面模數(shù)mn=1.75.
圖8 S型與漸開線型齒輪比較Fig.8 S-shaped tooth profile gear compared with involute gear
表1 少齒數(shù)齒輪副參數(shù)Tab.1 Parameters of gear pair with small number of teeth
2.1S型齒廓副嚙合的誘導(dǎo)法曲率分析
少齒數(shù)齒輪齒面接觸強(qiáng)度是影響其承載能力的關(guān)鍵[6],誘導(dǎo)法曲率是表征接觸應(yīng)力乃至接觸強(qiáng)度的指標(biāo).在材料等指標(biāo)相同的情況下,誘導(dǎo)法曲率取值越小,齒面接觸應(yīng)力越小,表明齒輪副接觸強(qiáng)度越好.下文分析S型齒廓副誘導(dǎo)法曲率的求解方法.S型齒廓齒輪副屬于凸凹弧嚙合,其誘導(dǎo)法曲率k∑計(jì)算式[9]為
式中1ρ、2ρ分別為嚙合點(diǎn)處齒廓1、2的曲率半徑.
由于直接求解S型曲線的曲率較為復(fù)雜,這里采用間接求法.S型齒條在任一點(diǎn)M的曲率半徑0ρ計(jì)算式為
如圖9(a)所示,具有共軛關(guān)系的齒條與齒輪齒廓的曲率滿足[7]
式中:'α為嚙合角;s為嚙合點(diǎn)與P點(diǎn)之間的距離.
將式(14)代入式(15),即可求出與齒條共軛的齒輪2 在嚙合點(diǎn)M處的曲率
如圖9(b)所示,具有共軛關(guān)系的齒輪1與齒輪2齒廓在嚙合點(diǎn)曲率滿足
將2ρ代入式(17),可得齒輪1上與齒輪2在嚙合點(diǎn)M的曲率半徑
根據(jù)上述公式,用表1中z1=6、z2=60時(shí)的S型齒廓曲線和漸開線齒輪的曲率[7]對比,結(jié)果如圖10所示.
圖10表明,S型齒廓副嚙合誘導(dǎo)法曲率較小,特別是離節(jié)點(diǎn)較遠(yuǎn)處已接近0.少齒數(shù)齒輪由于有較大的變位,齒廓嚙合區(qū)域在節(jié)點(diǎn)至齒頂?shù)囊粋?cè).與漸開線對比可知,S型齒廓的綜合曲率小于漸開線型齒廓,在齒面接觸強(qiáng)度方面較漸開線有優(yōu)勢.
圖9 S型齒廓齒輪副的曲率關(guān)系Fig.9 Curvature relationship of S-shaped tooth profile gear pair
圖10 S型齒廓齒輪曲率與漸開線的曲率對比Fig.10 S-shaped tooth profile gear curvature compared with involute gear curvature
2.2輪齒接觸的有限元分析
為分析S型少齒數(shù)齒輪的強(qiáng)度,分別建立表1參數(shù)的S型與漸開線型齒輪副模型,應(yīng)用有限元軟件對比分析了同等載荷條件下齒數(shù)比z1/z2為2/60和6/60的S型齒廓齒輪與漸開線齒輪的接觸最大應(yīng)力及齒根最大應(yīng)力.
用有限元法得到的齒面接觸應(yīng)力與赫茲接觸應(yīng)力接近[10],少齒數(shù)齒輪的端面重合度一般小于1[3],應(yīng)力分析只在端面進(jìn)行.按平面應(yīng)變[11-12]建立有限元分析模型,主要設(shè)置如下:①將大小齒輪賦予相同的材料屬性,其彈性模量為2.06× 105MPa ,泊松比為0.3,密度為7.85× 106kg/m3;②大齒輪軸孔全約束,小齒輪加載扭矩為T.
載荷T=0.2 N· m 條件下z1z2=2 60的S型齒廓齒輪與漸開線齒輪的應(yīng)力云圖如圖11所示.
按一對齒輪副從嚙入至嚙出時(shí)兩種齒形大、小齒輪分別旋轉(zhuǎn)的對應(yīng)角度,分別獲得各嚙合位置單對齒輪副嚙合接觸的最大應(yīng)力和齒根最大應(yīng)力,見圖12.
圖11 齒數(shù)比2/60的S型與漸開線型齒輪應(yīng)力云圖Fig.11Stress nephogram of S-shaped tooth profile gear with gear ratio of 2/60 and the involute gear
為避免偶然性,在T=1,N·m條件下,用同樣的方法將齒數(shù)比z1/z2=6/60的S型與漸開線齒廓齒輪副最大應(yīng)力對比分析如圖13和圖14所示.
圖12 齒數(shù)比2/60的S型與漸開線型齒輪最大應(yīng)力對比Fig.12The maximum stress comparison between S-shaped tooth profile gear with gear ratio of 2/60 and the involute gear
上述分析說明,S型齒廓少齒數(shù)齒輪副的齒根應(yīng)力與漸開線齒輪副近似相等,而齒面接觸最大應(yīng)力明顯要小,表明S型齒廓曲線少齒數(shù)齒輪能降低齒面接觸應(yīng)力,接觸強(qiáng)度提高20%,以上.圖15和圖16分析了齒數(shù)比6/60的S型齒輪副的齒面接觸情況.圖中有較為明顯的接觸印跡線,也驗(yàn)證了S型齒廓齒輪具有較好的接觸特性.
圖13 齒數(shù)比6/60的S型與漸開線型齒輪應(yīng)力云圖Fig.13 Stress nephogram of S-shaped tooth profile gear with gear ratio of 6/60 and the involute gear
圖14 齒數(shù)比6/60的S型與漸開線齒輪最大應(yīng)力對比Fig.14 The maximum stress comparison between S-shaped tooth profile gear with gear ratio of 6/60 and the involute gear
圖15 S型齒廓齒輪三維有限元模型Fig.15 3D finite element model of S-shaped tooth profile gear
圖16 齒數(shù)比6/60的S型齒廓齒輪副接觸線Fig.16Contact line of S-shaped tooth profile gear pair with gear ratio 6/60
(1) 一對相互共軛的S型齒廓齒輪副方程形式相同,齒條刀具相對簡單,能夠?qū)崿F(xiàn)一把齒條或滾刀加工一對相互共軛嚙合的齒輪副,有較好的可加工性.
(2) S型齒廓齒輪副屬于凸凹嚙合,齒廓副接觸誘導(dǎo)法曲率小,接觸強(qiáng)度較漸開線型齒廓有較大優(yōu)勢.
(3) S型曲線應(yīng)用于少齒數(shù)齒輪時(shí),齒根彎曲強(qiáng)度和漸開線齒輪近似相等,但較小的誘導(dǎo)法曲率使其齒面接觸應(yīng)力較漸開線齒輪降低20%,以上,承載能力有較大提高,同時(shí)具有較好的接觸性能.
[1] Ishibashi Akira,Yoshino Hidehiro,Nakashima Iwao. Design and manufacturing processes and load carrying capacity of cylindrical gear pairs with 2 to 4 pinion teeth for high gear ratios(1st report,design and manufacture and surface durability of gears with 2 to 3 pinion teeth)[J]. Bulletin of JSME,1981,24(198):2210-2217.
[2] Ishibashi Akira,Yoshino Hidehiro,Nakashima Iwao.
Design and manufacturing processes and load carrying capacity of cylindrical gear pairs with 2 to 4 pinion teeth for high gear ratios(2nd report,bending and twisting de-flections of pinion and surface durability of gears with 2 to 4 pinion teeth)[J]. Bulletin of JSME,1983,26(212):291-298.
[3] 孫月海,劉彥峰,段路茜,等. 等彎曲強(qiáng)度條件下漸開線少齒數(shù)齒輪副的變位[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2014,47(11):1001-1007. Sun Yuehai,Liu Yanfeng,Duan Luqian,et al. Modification of involute gear pair with fewer teeth based on equal bending strength [J]. Journal of Tianjin University:Science of Technology,2014,47(11):1001-1007(in Chinese).
[4] Fujiwara Kotonori. Cycloidal Gear with Small Number of Teeth:US,6276226B1[P]. 2001-08-21.
[5] 趙 韓,吳其林,黃 康. 國內(nèi)齒輪研究現(xiàn)狀及問題研究[J]. 機(jī)械工程學(xué)報(bào),2013,49(19):11-20. Zhao Han,Wu Qilin,Huang Kang. Status and problem research on gear study [J]. Journal of Mechanical Engineering,2013,49(19):11-20(in Chinese).
[6] 孫月海,孫 強(qiáng). 一種具有新型齒廓曲線的齒輪:中國,ZL201420706863. 6[P]. 2015-08-19. Sun Yuehai,Sun Qiang. A Kind of New Type Profile of the Gear:CN,ZL201420706863.6[P]. 2015-08-19(in Chinese).
[7] 孫月海,孫 強(qiáng). 一種新型齒輪加工刀具:中國,ZL201420706368. 5[P]. 2015-08-26. Sun Yuehai,Sun Qiang. A New Type of Gear Cutting Tools:CN,ZL201420706368.5[P]. 2015-08-26(in Chinese).
[8] 吳序堂. 齒輪嚙合原理[M]. 西安:西安交通大學(xué)出版社,2009. Wu Xutang. Principle of Gear Meshing [M]. Xi’an:Xi’an Jiaotong University Press,2009(in Chinese).
[9] 齒輪手冊編委會(huì). 齒輪手冊[M]. 北京:機(jī)械工業(yè)出版社,2000. Gear Manual Editing Committee. Gear Manual [M]. Beijing:China Machine Press,2000(in Chinese).
[10] 馮 偉,周新聰,嚴(yán)新平,等. 接觸問題實(shí)體建模及有限元法仿真實(shí)現(xiàn)[J]. 武漢理工大學(xué)學(xué)報(bào),2004,26(6):52-55. Feng Wei,Zhou Xincong,Yan Xinping,et al. The entity modeling of contact problem and its simulation realization by finite element method [J]. Journal of Wuhan University of Technology,2004,26(6):52-55(in Chinese).
[11] 李海翔,陳兵奎,譚儒龍. 一種新型齒輪的數(shù)學(xué)模型及有限元分析[J]. 中國機(jī)械工程,2012,23(12):1451-1455. Li Haixiang,Chen Bingkui,Tan Rulong. Mathematical model and finite element analysis of a new type of gear[J]. China Mechanical Engineering,2012,23(12):1451-1455(in Chinese).
[12] Litvin F L,F(xiàn)uentes A,Gonzalez-Perez I,et al. Modified involute helical gears:Computerized design,simulation of meshing and stress analysis [J]. Computer Methods in Applied Mechanics and Engineering,2003,192(33/34):3619-3655.
(責(zé)任編輯:金順愛)
Geometric Modeling and Strength Analysis of Gear with S-Shaped Tooth Profile and Small Number of Teeth
Sun Qiang1,Sun Yuehai1,2
(1. Key Laboratory of Mechanism and Equipment Design of Ministry of Education,Tianjin University,
Tianjin 300072,China;2. Engineering Research Center of Light-Duty Power Machine of Ministry of Education,Tianjin University,Tianjin 300072,China)
The large contact stress of involute gear pair with small number of teeth causes a low load-carrying capacity and failure in wide application.To solve this problem,an S-shaped tooth profile was proposed that could achieve concave-convex profile meshing based on sinusoidal rack tool.A curvilinear equation of sinusoidal rack tool was introduced,a mathematical model of S-shaped tooth profile was deduced,and a geometry model of S-shaped tooth profile with small number of teeth was established.Then,the calculation method of induced normal curvature of S-shaped tooth profile was analyzed,simulation analysis on the contact stress of gear pair was conducted by FEM,and finally a comparative analysis on S-shaped tooth profile gear and involute gear with small number of teeth was made.The results show that the S-shaped tooth profile gear pair with mutual conjugate meshing shares the same equation,and one common rack tool or hob can be used to machine them,improving greatly the load-carrying capacity of the gear pair with small number of teeth.
S-shaped tooth profile;involute;gear with small number of teeth;gear
TH132.413
A
0493-2137(2016)07-0702-07
10.11784/tdxbz201512003
2015-12-06;
2016-01-12.
國家自然科學(xué)基金資助項(xiàng)目(51175369).
孫 強(qiáng)(1988— ),男,博士研究生,qiangsun@tju.edu.cn.
孫月海,yuehaisun@tju.edu.cn.
網(wǎng)絡(luò)出版時(shí)間:2016-01-14. 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/12.1127.N.20160114.1643.006.html.